Test of insulation of bars and coils of high-voltage machines

The European Standard EN 50209:1998 has the status of a British Standard

ICS 29.080.01; 29.160.10

National foreword

This British Standard is the English language version of EN 50209:1998. It supersedes BS 4999-144:1987 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PEL/2, Rotating electrical machinery, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this committee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the BSI Standards Catalogue under the section entitled "International Standards Correspondence Index", or by using the "Find" facility of the BSI Standards Electronic Catalogue.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages $2\ \mathrm{to}\ 7$ and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

This British Standard, having been prepared under the direction of the Electrotechnical Sector Committee, was published under the authority of the Standards Committee and comes into effect on 15 November 1999

© BSI 11-1999

Amendments issued since publication

Amd. No.	Date	Comments

ISBN 0 580 35475 X

EUROPEAN STANDARD

EN 50209

NORME EUROPÉENNE

EUROPÄISCHE NORM

March 1998

ICS 29.080.00; 29.160.10

Supersedes HD 345 S1:1976

Descriptors:

High-voltage machines, tests of insulation, bars and coils of high-voltage machines, insulation of bars and coils, manufacturing control of insulations, loss tangent

English version

Test of insulation of bars and coils of high-voltage machines

Essai de l'isolation des barres et des bobines des machines à haute tension

Prüfung der Isolierung von Stäben und Spulen von Hochspannungsmaschinen

This European Standard was approved by CENELEC on 1995-09-20. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

CENELEC

European Committee For Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B-1050 Brussels

© 1998 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Foreword

The Harmonization Document HD 345 S1, prepared by the Technical Committee CENELEC TC 2, Rotating machinery, was approved by CENELEC on 1976-03-30.

This Harmonization Document was submitted to the formal vote for conversion into a European Standard and was approved by CENELEC as EN 50209 on 1995-09-20.

The following date was fixed:

 latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement

(dop) 1998-10-01

©BSI 11-1999

Introduction

The purpose of this standard is to assess the uniform quality of manufacturing and determine the dielectric behaviour of the insulation of machines having rated voltages from 5 kV to 24 kV. It applies to conductor bars and coils.

EN 60034-15 relates to impulse voltage withstand levels of rotating machines with formwound stator coils and having rated voltages from 3 kV to 15 kV inclusive.

Scope

This specification applies to rotating electrical machines with rated voltages (U_N) from 5 kV to 24 kV inclusive and with rated output from 5 MVA upwards for generators and from 5 MW upwards for motors.

Requirements for machines with rated voltage above 24 kV should remain the subject of individual agreement.

This specification is also applicable to machines with rated outputs between 1 MVA (1 MW) and 5 MVA (5 MW) and with rated voltages of 5 kV and above, provided its use has been agreed beforehand.

In the case of machines whose windings are cured in the stator, tests on the separate winding elements are not possible; for these machines the requirements in Part B apply. The test of the conductor lamination insulation must however be carried out in accordance with 2.3 of Part A.

Part A – Tests on conductors bars and coils

1 Tests

As a manufacturer quality control of the insulation, bars and coils of high voltage windings shall undergo a routine test in accordance with clause 2, and, where it has been agreed, an additional random sample test in accordance with clause 3.

These tests serve to assess the uniformity of manufacture as well as to determine the dielectric behaviour of the insulation.

NOTE: In the routine test, the uniformity of the manufacture is judged by measurement of the dielectric loss angle as a function of voltage. In the random sample test, the behaviour of the slot insulation under thermal stress is determined by measurement of the dielectric loss angle before and after heating.

The random sample test also serves to determine by means of a.c. voltage tests, the dielectric strength of the insulation between the laminations of the conductor as well as the inter-turn insulation, the end winding insulation and the slot insulation. In the case of the last three insulations the breakdown voltage is also determined.

2 Routine test

2.1 The routine test shall be carried out on the number of bars or coil sides, including any spare bars or coils, as shown in Table 1.

Table 1

Number of poles	Rated output	Number of test samples
all polarities	< 5 MVA (MW)	10 % of bars or coil sides with a minimum of 20
two and four	≥ 50 MVA (MW)	all bars or coil sides
	< 50 MVA (MW) but not less than 5 MVA (MW)	at least 60 bars or 60 coil sides and, in addition, 10 % of all bars or coil sides
six and more	≥ 5 MVA (MW)	

2.2 The loss tangent shall be measured on the samples at room temperature in relation to voltage (see Figure 1) over the range of 0,2 U_N to 1,0 U_N at intervals of 0,2 U_N .

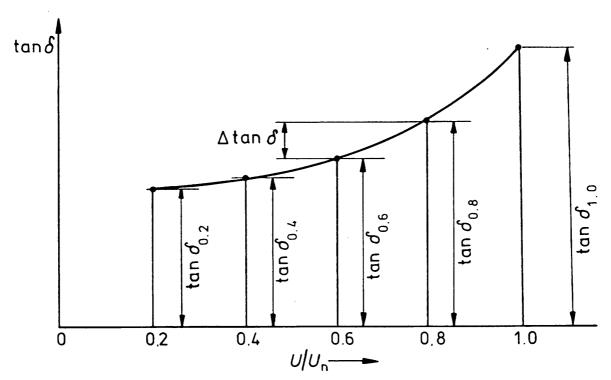


Figure 1: Curve of tan δ against the ratio U/U_N (example of a series of measurements)

The measurements shall be carried out by means of a Schering Bridge or an equivalent type of bridge, using a guard ring arrangement.

The length of the test foil shall be about equal to the axial length of the stator core.

The guard ring arrangement shall lie outside this zone.

The initial value of tan $\delta_{0,2}$, the increment ½ (tan $\delta_{0,6}$ - tan $\delta_{0,2}$) and the increment Δ tan δ per measuring step must not exceed the values in Table 2 for rated voltages up to 11 kV.

For rated voltages above 11 kV the values should be fixed by special agreement.

If more than 5% of the samples show test results in the ranges between columns 2 and 3 or between columns 4 and 5 of Table 2, or in a different range of agreed values, the testing shall be continued with an equal number of further samples, if necessary up to the total number of bars or coil sides. If during these tests the values of Table 2 or the agreed values are not exceeded, the test of insulation shall be regarded as satisfactory.

Table 2: Highest permissible values of loss tangent (rated voltage ≤ 11 kV)

1	2	3	4	5
tan $\delta_{0,2}$	$\frac{1}{2}$ (tan $\delta_{0,6}$ - tan $\delta_{0,2}$)		△ tan δ per step of 0,2 U_N	
all samples	95 % Remaining 5 % samples		95 % remaining 5 % samples	
30 × 10 ⁻³	2,5 × 10 ⁻³	3 × 10 ⁻³	5 × 10 ⁻³	6 × 10 ⁻³

2.3 The conductor lamination insulation of all bars of the machine shall be tested using a.c. 110 V, 50 Hz before applying the high voltage insulation. Interlaminar short-circuits must be eliminated.

3 Random test

3.1 Sampling

If a random sample test has been agreed it shall be carried out on two samples (two bars or two coil sides) chosen at random from the winding in the sequence shown below.

3.2 General

The loss tangent shall be measured as a function of the voltage (voltage range 0,2 U_N to 1,0 U_N , at steps of 0,2 U_N) at room temperature before and after heating to at least 90°C.

The test samples may be fitted into a model of the slot. The temperature of the insulation, which must be as uniform as possible, shall be measured at the surface of the insulation. After cooling the test samples to room temperature, the loss tangent shall be measured again in relation to voltage as described above.

For voltages equal to or below 11 kV, the maximum value of Δ tan δ per measuring interval of 0,2 U_N measured at room temperature after heating the sample, shall not exceed the maximum value measured before heating by more than 2×10^{-3} and shall not in any case exceed 7×10^{-3} .

In the case of rated voltages above 11 kV up to 24 kV the maximum values per measuring interval of $0.2~U_N$ shall not exceed values fixed by special agreement.

3.3 Insulation of conductor laminations

In the case of bars, the conductor lamination insulation shall be tested with a.c. 110 V, 50 Hz. In the case of transposed conductors, no short-circuits shall occur between the laminations within the slot portion.

3.4 Insulation of turns

3.4.1 To check the interturn insulation of coils, a test shall be carried out on the opened coil with a.c. at $0.3~U_N$, applied between adjacent turns for a period of 1 min. During this test no breakdown shall occur. Immediately after this, the voltage shall be increased at the rate of 0.5~kV/s until breakdown of the interturn insulation occurs.

The breakdown voltage shall be recorded.

3.4.2 Alternatively, the following high-frequency method may be used.

A voltage with a peak value equal to the effective voltage of the machine, U_N , shall be applied for 15 seconds to the end of the coil from a high-frequency source (sinusoidal or non-sinusoidal).

3.5 Insulation of straight parts

3.5.1 The slot insulation shall be tested for 1 min with the test voltage prescribed for the rated voltage of the winding (EN 60034-1, 8.1). Immediately after this test, the voltage shall be increased at the rate of 1 kV/s if possible up to breakdown.

The breakdown voltage of the insulation shall be more than double the test voltage.

3.5.2 When the slot portions and the end windings are insulated in different ways, the insulation of both end windings shall be tested with a voltage of 2 U_N for 1 min. No breakdown shall occur. Immediately after this test, the voltage shall be increased at the rate of 1 kV/s up to breakdown.

The breakdown voltage shall be recorded.

3.6 Result of the test

If the random sample test in accordance with 3.2 to 3.5 on one of the samples is not successful, the unsuccessful part of the test shall be repeated on six further bars or three further coils. The random sample test shall be considered satisfactory if the part of the test repeated on the number of samples mentioned above fulfils the requirements.

Part B – Tests as a whole or composite tests

1 Test of the winding

The loss tangent of the complete winding, or if possible, of portions of the winding, shall be measured at room temperature as a function of the voltage over the range from 0,2 U_N to 1,0 U_N at steps of 0,2 U_N

Agreement should be reached on permissible limiting values.

2 Tests on corresponding single winding elements

If such a test has been agreed, at least two additional winding elements shall be manufactured at the same time and under the same conditions as the rest of the winding and accommodated in a slot model; these shall be submitted to tests in accordance with clause 3 of Part A.

Agreement should be reached on permissible limiting values.

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.

BSI 389 Chiswick High Road London W4 4AL