
BSI Standards Publication

BS EN 16590-3:2014

Tractors and machinery for
agriculture and forestry —
Safety-related parts of control
systems
Part 3: Series development, hardware and
software (ISO 25119-3:2010 modified)

http://dx.doi.org/10.3403/30156649

BS EN 16590-3:2014 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 16590-3:2014.

It is derived from ISO 25119-3:2010. It supersedes BS ISO 25119-3:2010

which is withdrawn.

The UK participation in its preparation was entrusted to Technical
Committee AGE/6, Agricultural tractors and forestry machinery.

A list of organizations represented on this committee can be
obtained on request to its secretary.

This publication does not purport to include all the necessary
provisions of a contract. Users are responsible for its correct
application.

© The British Standards Institution 2014. Published by BSI Standards
Limited 2014

ISBN 978 0 580 82330 5

ICS 35.240.99; 65.060.01

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 30 April 2014.

Amendments issued since publication

Date Text affected

http://dx.doi.org/10.3403/30156649
http://dx.doi.org/10.3403/30156649

BS EN 16590-3:2014

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

 EN 16590-3

 April 2014

ICS 35.240.99; 65.060.01

English Version

 Tractors and machinery for agriculture and forestry - Safety-
related parts of control systems - Part 3: Series development,

hardware and software (ISO 25119-3:2010 modified)

Tracteurs et matériels agricoles et forestiers - Parties des
systèmes de commande relatives à la sécurité - Partie 3:

Développement en série, matériels et logiciels (ISO 25119-
3:2010 modifié)

 Sicherheit von Land- und Forstmaschinen -
Sicherheitsbezogene Teile von Steuerungen - Teil 3:

Serienentwicklung, Hardware, Software (ISO 25119-3:2010
modifiziert)

This European Standard was approved by CEN on 23 February 2014.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national
standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same
status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R OP É E N D E N O R M A LI S A T I O N
EUR O P Ä IS C HES KOM I TE E F ÜR NOR M UNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2014 CEN All rights of exploitation in any form and by any means reserved
worldwide for CEN national Members.

Ref. No. EN 16590-3:2014 E

http://dx.doi.org/10.3403/30280052U
http://dx.doi.org/10.3403/30156649
http://dx.doi.org/10.3403/30156649

BS EN 16590-3:2014
EN 16590-3:2014 (E)

2

Contents Page

Foreword ..4

Introduction ...5

1 Scope ..7

2 Normative references ..7

3 Terms and definitions ...7

4 Abbreviated terms ...7

5 System design ..8
5.1 Objectives ...8
5.2 General ..8
5.3 Prerequisites ..9
5.4 Requirements ...9
5.4.1 Structuring safety requirements ..9
5.4.2 Functional safety concept ... 10
5.4.3 Technical safety concept ... 11

6 Hardware .. 13
6.1 Objectives .. 13
6.2 General ... 13
6.3 Prerequisites ... 14
6.4 Requirements .. 14
6.5 Hardware categories .. 15
6.6 Work products ... 16

7 Software ... 16
7.1 Software development planning ... 16
7.1.1 Objectives .. 16
7.1.2 General ... 17
7.1.3 Prerequisites ... 17
7.1.4 Requirements .. 17
7.1.5 Work products ... 20
7.2 Software safety requirements specification .. 20
7.2.1 Objectives .. 20
7.2.2 General ... 20
7.2.3 Prerequisites ... 20
7.2.4 Requirements .. 21
7.2.5 Work products ... 24
7.3 Software architecture and design ... 24
7.3.1 Objectives .. 24
7.3.2 General ... 24
7.3.3 Prerequisites ... 24
7.3.4 Requirements .. 24
7.3.5 Work products ... 27
7.4 Software module design and implementation ... 27
7.4.1 Objectives .. 27
7.4.2 General ... 27
7.4.3 Prerequisites ... 27
7.4.4 Requirements .. 27
7.4.5 Work products ... 36
7.5 Software module testing .. 36

BS EN 16590-3:2014
EN 16590-3:2014 (E)

3

7.5.1 Objectives .. 36
7.5.2 General ... 36
7.5.3 Prerequisites .. 36
7.5.4 Requirements ... 36
7.5.5 Work products ... 44
7.6 Software integration and testing ... 44
7.6.1 Objectives .. 44
7.6.2 General ... 44
7.6.3 Prerequisites .. 45
7.6.4 Requirements ... 45
7.6.5 Work products ... 46
7.7 Software safety validation .. 47
7.7.1 Objectives .. 47
7.7.2 General ... 47
7.7.3 Prerequisites .. 47
7.7.4 Requirements ... 47
7.7.5 Work products ... 49
7.8 Software-based parameterisation .. 49
7.8.1 Objective... 49
7.8.2 General ... 49
7.8.3 Prerequisites .. 49
7.8.4 Requirements ... 50
7.8.5 Work products ... 50

Annex A (informative) Example of agenda for assessment of functional safety at AgPL = e 52

A.1 Functions of system .. 52

A.2 Hardware .. 52

A.3 Safety concept ... 52

A.4 Safety analysis and safety data ... 52

A.5 Safety design process for phases of life cycle .. 52

A.6 Software development .. 53

A.7 Verification and testing ... 53

A.8 Documentation and safety documentation... 53

A.9 Summary and assessment ... 53

Annex B (informative) Independence by software partitioning .. 54

B.1 General ... 54

B.2 Terms, definitions and abbreviated terms .. 54

B.3 Objectives .. 56

B.4 General ... 57

B.5 Requirements ... 57

B.5.1 General requirements ... 57

B.5.2 Several partitions within a single microcontroller ... 57

B.5.3 Several partitions within the scope of a micro-controller network .. 60

Annex ZA (informative) Relationship between this European Standard and the Essential
Requirements of EU Machinery Directive 2006/42/EC ... 63

Bibliography .. 64

BS EN 16590-3:2014
EN 16590-3:2014 (E)

4

Foreword

This document (EN 16590-3:2014) has been prepared by Technical Committee CEN/TC 144 “Tractors and
machinery for agriculture and forestry”, the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical
text or by endorsement, at the latest by October 2014, and conflicting national standards shall be withdrawn at
the latest by October 2014.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association, and supports essential requirements of EU Directive(s).

For relationship with EU Directive(s), see informative Annex ZA, which is an integral part of this document.

EN 16590 Tractors and machinery for agriculture and forestry — Safety-related parts of control systems
consists of the following parts:

— Part 1: General principles for design and development

— Part 2: Concept phase

— Part 3: Series development, hardware and software

— Part 4: Production, operation, modification and supporting processes

The modifications to ISO 25119-3:2010 are indicated by a vertical line in the margin.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech
Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

http://dx.doi.org/10.3403/30156649

BS EN 16590-3:2014
EN 16590-3:2014 (E)

5

Introduction

EN 16590 sets out an approach to the design and assessment, for all safety life cycle activities, of
safety-relevant systems comprising electrical and/or electronic and/or programmable electronic systems
(E/E/PES) on tractors used in agriculture and forestry, and on self-propelled ride-on machines and mounted,
semi-mounted and trailed machines used in agriculture. It is also applicable to municipal equipment. It covers
the possible hazards caused by the functional behaviour of E/E/PES safety-related systems, as distinct from
hazards arising from the E/E/PES equipment itself (electric shock, fire, nominal performance level of E/E/PES
dedicated to active and passive safety, etc.).

The control system parts of the machines concerned are frequently assigned to provide the critical functions of
the safety-related parts of control systems (SRP/CS). These can consist of hardware or software, can be
separate or integrated parts of a control system, and can either perform solely critical functions or form part of
an operational function.

In general, the designer (and to some extent, the user) will combine the design and validation of these
SRP/CS as part of the risk assessment. The objective is to reduce the risk associated with a given hazard (or
hazardous situation) under all conditions of use of the machine. This can be achieved by applying various
protective measures (both SRP/CS and non-SRP/CS) with the end result of achieving a safe condition.

EN 16590 allocates the ability of safety-related parts to perform a critical function under foreseeable
conditions into five performance levels. The performance level of a controlled channel depends on several
factors, including system structure (category), the extent of fault detection mechanisms (diagnostic coverage),
the reliability of components (mean time to dangerous failure, common-cause failure), design processes,
operating stress, environmental conditions and operation procedures. Three types of failures are considered:
systematic, common-cause and random.

In order to guide the designer during design, and to facilitate the assessment of the achieved performance
level, EN 16590 defines an approach based on a classification of structures with different design features and
specific behaviour in case of a fault.

The performance levels and categories can be applied to the control systems of all kinds of mobile machines:
from simple systems (e.g. auxiliary valves) to complex systems (e.g. steer by wire), as well as to the control
systems of protective equipment (e.g. interlocking devices, pressure sensitive devices).

EN 16590 adopts a risk-based approach for the determination of the risks, while providing a means of
specifying the required performance level for the safety-related functions to be implemented by E/E/PES
safety-related channels. It gives requirements for the whole safety life cycle of E/E/PES (design, validation,
production, operation, maintenance, decommissioning), necessary for achieving the required functional safety
for E/E/PES that are linked to the performance levels.

The structure of safety standards in the field of machinery is as follows.

a) Type-A standards (basic safety standards) give basic concepts, principles for design and general aspects
that can be applied to machinery.

b) Type-B standards (generic safety standards) deal with one or more safety aspect(s), or one or more type(s)
of safeguards that can be used across a wide range of machinery:

− type-B1 standards on particular safety aspects (e.g. safety distances, surface temperature, noise);

− type-B2 standards on safeguards (e.g. two-hands controls, interlocking devices, pressure sensitive devices,
guards).

c) Type-C standards (machinery safety standards) deal with detailed safety requirements for a particular
machine or group of machines.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

6

This part of EN 16590 is a type-B1 standard as stated in EN ISO 12100.

For machines which are covered by the scope of a machine specific type-C standard and which have been
designed and built according to the provisions of that standard, the provisions of that type-C standard take
precedence over the provisions of this type-B standard.

http://dx.doi.org/10.3403/30201665U

BS EN 16590-3:2014
EN 16590-3:2014 (E)

7

1 Scope

This part of EN 16590 provides general principles for the series development, hardware and software of
safety-related parts of control systems (SRP/CS) on tractors used in agriculture and forestry, and on self-
propelled ride-on machines and mounted, semi-mounted and trailed machines used in agriculture. It can also
be applied to municipal equipment (e.g. street-sweeping machines). It specifies the characteristics and
categories required of SRP/CS for carrying out their safety functions.

This part of EN 16590 is applicable to the safety-related parts of electrical/electronic/programmable electronic
systems (E/E/PES), as these relate to mechatronic systems. It does not specify which safety functions,
categories or performance levels are to be used for particular machines.

Machine specific standards (type-C standards) can identify performance levels and/or categories or they
should be determined by the manufacturer of the machine based on risk assessment.

It is not applicable to non-E/E/PES systems (e.g. hydraulic, mechanic or pneumatic).

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

EN 16590-1:2014, Tractors and machinery for agriculture and forestry — Safety-related parts of control
systems — Part 1: General principles for design and development

EN 16590-2:2014, Tractors and machinery for agriculture and forestry — Safety-related parts of control
systems — Part 2: concept phase

EN 16590-4:2014, Tractors and machinery for agriculture and forestry — Safety-related parts of control
systems — Part 4: Production, operation, modification and supporting processes

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 16590-1:2014 apply.

4 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply.

AgPL agricultural performance level

AgPLr required agricultural performance level

CAD computer-aided design

Cat hardware category

CCF common-cause failure

DC diagnostic coverage

DCavg average diagnostic coverage

ECU electronic control unit

ETA event tree analysis

E/E/PES electrical/electronic/programmable electronic systems

EMC electromagnetic compatibility

http://dx.doi.org/10.3403/30280042
http://dx.doi.org/10.3403/30280049
http://dx.doi.org/10.3403/30280055
http://dx.doi.org/10.3403/30280042

BS EN 16590-3:2014
EN 16590-3:2014 (E)

8

EUC equipment under control

FMEA failure mode and effects analysis

FMECA failure mode effects and criticality analysis

EPROM erasable programmable read only memory

FSM functional safety management

FTA fault tree analysis

HAZOP hazard and operability study

HIL hardware in the loop

MTTF mean time to failure

MTTFd mean time to dangerous failure

MTTFdC mean time to dangerous failure for each channel

PES programmable electronic system

QM quality measures

RAM random-access memory

SOP start of production

SRL software requirement level

SRP safety-related parts

SRP/CS safety-related parts of control systems

SRS safety-related system

UML unified modelling language.

5 System design

5.1 Objectives

The objective is to define a development process for producing a design that fulfils the safety requirements for
the entire safety-related system.

5.2 General

Safety requirements constitute all requirements aimed at achieving and ensuring functional safety. During the
safety life cycle, safety requirements are detailed and specified in ever greater detail at hierarchical levels.
The different levels for safety requirements are illustrated in Figure 1. For the overall representation of the
procedure for developing safety requirements, see also 5.4. In order to support management of safety
requirements, the use of suitable tools for requirements management is recommended.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

9

Key

 result

 verification

 validation
a The first of two numbers separated by a slash refer to the respective part of EN 16590, and the second to
the clause in that document: 2/6 is EN 16590-2:2014/Clause 6, 3/5 is EN 16590-3:2014/Clause 5, and so on.

Figure 1 — Structuring of safety requirements

5.3 Prerequisites

Before beginning system design, define the safety-related function requirements, application and operation
environment.

5.4 Requirements

5.4.1 Structuring safety requirements

The functional safety concept specifies the basic functioning of the safety-related system with which the safety
goals are to be fulfilled. The basic allocation of functional safety requirements to the system architecture is
specified by the technical safety concept in the form of technical safety requirements. This system architecture
is comprised of both hardware and software.

The hardware safety requirements refine and solidify the requirements of the technical safety concept.
Clause 6 describes how to specify the hardware requirements in detail.

The software safety requirements are derived from the requirements of the technical safety concept and the
underlying hardware. The requirements for the software defined in Clause 7 shall be taken into account.

http://dx.doi.org/10.3403/30280049

BS EN 16590-3:2014
EN 16590-3:2014 (E)

10

This clause specifies the approach to be used in the specification of the safety concept requirements during
system design, thereby providing a basis for error-free system design.

5.4.2 Functional safety concept

5.4.2.1 General requirements of functional safety concept

Safety functions are normally identified during the system risk analysis, and the functional safety concept
document includes the functional safety requirements for the system.

The implementation for each safety concept requirement shall consider the following.

— Feasibility

When listing functional safety requirements, attention shall be paid to the feasibility of the requirement,
considering constraints, such as available technology, as well as financial and time resources. The
persons in charge of implementation shall understand and accept the technical safety requirements.

— Unambiguousness

The functional safety requirements shall be formulated as precisely and unambiguously as possible.

NOTE A functional safety requirement is unambiguously formulated when it permits only one interpretation by the
anticipated readers.

— Consistency

Functional safety requirements shall not be self-contradicting (internal consistency), nor shall they
contradict other requirements (external consistency).

Analyses of the requirements and comparisons between different requirements are necessary to ensure
external consistency. This is a requirement management task.

— Completeness

The functional safety concept shall take all relevant norms, standards and statutory regulations into
account.

The functional safety concept shall take into account all relevant safety goals derived from the risk
analysis according to EN 16590-2.

The completeness of the functional safety concept increases iteratively during system design. To ensure
completeness:

1) the version of the functional safety concept and the version of the relevant underlying sources shall
be specified;

2) the requirements from change management (see EN 16590-4:2014, Clause 10) shall be met and, for
this reason, the functional safety requirements shall be structured and formulated to provide support for a
modification process;

3) the functional safety requirements shall be reviewed (see EN 16590-4:2014, Clause 6).

The functional safety concept shall consider all phases of the life cycle (including production, customer
operation, servicing and decommissioning).

http://dx.doi.org/10.3403/30280049U
http://dx.doi.org/10.3403/30280055
http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

11

5.4.2.2 Specification of the functional safety concept

This clause presents the information that is required to be specified in the functional safety concept. The
functional safety concept may be derived from the machine failure scenarios evaluated during a risk analysis.

Each failure scenario description shall include the following:

— environmental conditions (moving on an ice covered road, up-hill, down-hill, weather, etc.);

— machine conditions (engine running, in-gear, standing still, etc.);

— resulting AgPL;

— safe state descriptions (engine stopped, valve off, transmission in park, continue function at reduced
performance, etc.).

5.4.3 Technical safety concept

5.4.3.1 General requirements of technical safety concept

The technical safety concept document includes the technical safety requirements for the system.

Each technical safety concept shall be associated (e.g. by cross-reference) with higher-level safety
requirements, which may be

— other technical safety requirements,

— functional safety requirements, or

— safety goals and objectives.

NOTE 1 Traceability can be greatly facilitated by the use of suitable requirement management tools.

Just as for the functional safety concept, the implementation of each technical safety concept requirement
shall take account of feasibility, unambiguousness, consistency and completeness.

— Feasibility

When listing technical safety requirements, attention shall be paid to the feasibility of the requirement
considering constraints, such as available technology, as well as financial and time resources. Those in
charge of implementation shall understand and accept the technical safety requirements.

— Unambiguousness

The technical safety requirements shall be formulated as precisely and unambiguously as possible.

NOTE 2 A technical safety requirement is unambiguously formulated when it permits only one interpretation by
the anticipated readers.

— Consistency

Technical safety requirements shall not be self-contradicting (internal consistency), nor shall they
contradict other requirements (external consistency).

Analyses of the requirements and comparisons between different requirements are necessary to ensure
external consistency. This is a requirement management task.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

12

— Completeness

The technical safety concept shall take the following into account:

1) all safety objectives and functional safety requirements;

2) all relevant norms, standards and statutory regulations;

3) the relevant results from safety analysis tools (FMEA, FTA, etc.); the safety analysis provides
iterative support for the technical safety concept during system development.

The completeness of the technical safety concept increases iteratively during system design. To ensure
completeness:

4) the version of the technical safety concept and the version of the relevant underlying sources shall be
specified;

5) the requirements from change management (see EN 16590-4:2014, Clause 10) shall be met and, for
this reason, the technical safety requirements shall be structured and formulated to provide support for a
modification process;

6) the technical safety requirements shall be reviewed (see EN 16590-4:2014, Clause 6).

The technical safety concept shall consider all phases of the life cycle (including production, customer
operation, servicing and decommissioning).

5.4.3.2 Specification of the technical safety concept

5.4.3.2.1 General

The technical safety concept shall include hardware and software safety requirements sufficient for the design
of the unit of observation, and shall be determined in accordance with 5.4.3.1.

5.4.3.2.2 States and times

The behaviour of the unit of observation, its modules and their interfaces shall be specified for all relevant
operating states, including

— start-up,

— normal operation,

— shut-down,

— restart after reset, and

— reasonably foreseeable unusual operating states (e.g. degraded operating states).

In particular, failure behaviour and the required reaction shall be described exactly. Additional emergency
operation functions may be included.

The technical safety concept shall specify a safe state for each functional safety requirement, the transition to
the safe state, and the maintenance of the safe state. In particular, it shall be specified whether shutting off the
unit of observation immediately represents a safe state, or if a safe state can only be attained by a controlled
shut down.

http://dx.doi.org/10.3403/30280055
http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

13

The technical safety concept shall specify for each functional safety requirement the maximum time that may
elapse between the occurrence of an error and the attainment of a safe state (response time). All response
times for subsystems and sub-functions shall be specified in the technical safety concept.

If no safe state can be achieved by a direct shut down, a time shall be defined during which a special
emergency operation function has to be sustained for all subsystems and sub-functions. This emergency
operation function shall be documented in the technical safety concept.

5.4.3.2.3 Safety architecture, interfaces and marginal conditions

The safety architecture and its sub-modules shall be described. In particular, the technical measures shall be
specified. The technical safety concept shall separately describe the following modules (as applicable):

— sensor system, separate for each physical parameter recorded;

— miscellaneous digital and analogue input and output units;

— processing, separate for each arithmetic unit/discrete logical unit;

— actuator system, separate for each actuator;

— displays, separate for each indicator unit;

— miscellaneous electromechanical components;

— signal transmission between modules;

— signal transmission from/to systems external to the unit of observation;

— power supply.

The interfaces between the modules of the unit of observation, interfaces to other systems and functions in
the machine, as well as user interfaces, shall be specified.

Limitations and marginal conditions of the unit of observation shall be specified. This applies in particular to
extreme values for all ambient conditions in all phases of the life cycle.

6 Hardware

6.1 Objectives

The objective is to define acceptable hardware architectures for safety-related control systems.

6.2 General

Improving the hardware structure of the safety-related parts of a control system can provide measures for
avoiding, detecting or tolerating faults. Practical measures can include redundancy, diversity and monitoring.

In general, the following fault criteria shall be taken into account.

— If, as a consequence of a fault, further components fail, the first fault and all following faults are
considered to be a single fault.

— Two or more separate faults having a common cause are regarded as a single fault (known as common
cause failure).

BS EN 16590-3:2014
EN 16590-3:2014 (E)

14

— The simultaneous occurrence of two independent faults is considered highly unlikely.

6.3 Prerequisites

The prerequisite is AgPLr, determined for each safety function to be realised by the hardware.

6.4 Requirements

The hardware development process shall begin at the system level where safety functions and associated
requirements are identified (see Figure 2).

The hardware safety analysis shall be used to identify the performance level (AgPLr) for each system safety
function (see EN 16590-2).

The designer shall group functions into appropriate architectures (hardware category) with associated
MTTFdC, DC and CCF.

The system may be broken down into subsystems for easier development.

Each phase of the development cycle shall be verified.

Key

 result

 verification

 validation
a The first of two numbers separated by a slash refer to this part of EN 16590 and the second to Clause 6.

Figure 2 — Hardware development V-model

http://dx.doi.org/10.3403/30280049U

BS EN 16590-3:2014
EN 16590-3:2014 (E)

15

The design procedure for the hardware system architecture is as follows.

a) Select a hardware category (see EN 16590-2:2014, Annex A).

b) Identify the component operating environment and stress level.

c) Select components.

d) Calculate and verify that the MTTFdC meets the required level (see EN 16590-2:2014, Annex B).

e) Determine and verify that the DC meets the required level (see EN 16590-2:2014, Annex C).

f) Consider CCF (see EN 16590-2:2014, Annex D).

g) Consider systematic failures (see EN 16590-2:2014, Annex E).

h) Consider other safety functions (see EN 16590-2:2014, Annex F).

NOTE Iteration could be required for the above steps.

6.5 Hardware categories

The safety-related parts of control systems shall be designed in accordance with the requirements of one or
more of the five categories specified in EN 16590-2:2014, Annex A.

When a safety function is realised by an integrated combination of multiple hardware categories, the resulting
safety function, AgPL, is limited by the overall hardware category: MTTFdC, DC, SRL, CCF, etc. (see Figure
3).

To determine the overall SRL, see 7.3.4.7.

http://dx.doi.org/10.3403/30280049
http://dx.doi.org/10.3403/30280049
http://dx.doi.org/10.3403/30280049
http://dx.doi.org/10.3403/30280049
http://dx.doi.org/10.3403/30280049
http://dx.doi.org/10.3403/30280049
http://dx.doi.org/10.3403/30280049

BS EN 16590-3:2014
EN 16590-3:2014 (E)

16

Key

I input device (e.g. sensor) SI interconnecting signal input

L logic SO interconnecting signal output

O output device (e.g. actuator) m monitoring

TE test equipment Cat hardware category

OTE output of test equipment

Figure 3 — Integrated system with maximum AgPL for category 2

6.6 Work products

The following work products are applicable to hardware design:

a) hardware safety validation test plan;

b) hardware safety validation test specification;

c) hardware safety validation test results;

d) hardware system integration test plan/hardware subsystem test plan;

e) hardware system integration test specification;

f) hardware system integration test results/hardware subsystem test results.

7 Software

7.1 Software development planning

7.1.1 Objectives

The objective is to determine and plan the individual phases of software development. This includes the
process of software development itself, which is described in this clause, as well as the necessary supporting
processes described in EN 16590-4:2014, Clause 10.

http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

17

7.1.2 General

Figure 4 illustrates the process for developing software. In the following paragraphs and tables, each box in
the diagram is explained in detail.

Appropriate techniques/measures shall be selected according to the required SRL. Given the large number of
factors that affect software safety integrity, it is not possible to give an algorithm for combining the techniques
and measures that are correct for any given application. For a particular application, the appropriate
combination of techniques or measures shall be stated during safety planning, with appropriate techniques or
measures being selected according to the requirements in 7.1.4.

7.1.3 Prerequisites

The prerequisites in this phase are

— the required SRL as determined by the AgPLr for each safety function to be realised,

— the project plan (including system development plan),

— the system verification plan,

— the technical safety concept,

— the system design specification, and

— the safety plan.

7.1.4 Requirements

7.1.4.1 Phase determination

For the software development process, it shall be determined which phases of software development (see
Figure 4) are to be carried out. The extent and complexity of the project shall be taken into account. The
phases can be carried out according to Figure 4, without modification, or individual phases can be combined,
if all work products of the combined phases are generated.

NOTE It is common to combine individual phases if the method used makes it difficult to clearly distinguish between
the phases. For example, the design of the software architecture and the software implementation can be generated
successively with the same computer-aided development tool, as is done in the model-based development process.

Other phases can be added by distributing the activities and tasks.

EXAMPLE The application of data can be inserted as a separate phase before the safety validation of the electronic
control unit. The safety validation of the ECU can be conducted differently depending on the distribution of the functions —
as a test of particular ECU or as a test of the combined control network. It could be conducted at the test location of the
component systems or at the laboratory vehicle.

7.1.4.2 Process flexibility

Activities and tasks may be moved from one phase to another.

7.1.4.3 Process timetable

A timetable shall be set up showing the relationship between the individual phases of the software
development and the product development process including the integration steps at machine level.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

18

7.1.4.4 Applicability

After the software safety requirement specification has been completed according to Table 1, it needs to be
determined which software safety requirements shall be applied to which integration steps.

7.1.4.5 Supporting processes

Supporting processes shall be planned and implemented as part of the software development process:

a) the work products shall be documented according to EN 16590-4:2014, Clause 12;

b) changes to the software shall be dealt with according to EN 16590-4:2014, Clause 10;

c) the work products shall be subject to the configuration management process.

NOTE Supporting process b), above, includes a strategy for dealing with the different branches of the software that
result from changes, including the merging of these branches.

7.1.4.6 Phases of software development

For each phase of software development, the selection of the appropriate development methods and
measures, the corresponding tools, and the guidelines for the implementation of the methods, measures and
tools shall be carried out according to the SRL.

These selections shall be justified with regard to the appropriateness to the application area, and shall be
made at the beginning of each development phase.

When selecting methods and measures, it needs to be kept in mind that, in addition to manual coding,
model-based development can be applied in which the source code or the object code is automatically
generated from models.

NOTE The selection of coordinated methods and measures offers the possibility of reducing the complexity of
software development.

http://dx.doi.org/10.3403/30280055
http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

19

Key

 result

 verification

 validation
a The first of the two numbers separated by a slash refers to this part of EN 16590 and the second to
Clause 7.

Figure 4 — Software development V-model

7.1.4.7 Using the tables

For every development method and measure, Tables 1 to 6 present an entry for each of the four SRL, using
either the symbol “+” or “o”:

+ the method or measure shall be used for this SRL, unless there is reason not to, in which case that
reason shall be documented during the planning phase;

o there is no recommendation for or against the use of this method or measure for this SRL.

In a table, an “o” may appear to the right of a “+”. This means a more rigorous measure or technique is
available for the same SRL.

Methods and measures corresponding to the respective SRL shall be selected. Alternative or equivalent
methods and measures are identified by letters after the number. At least one of the alternative or equivalent
methods and measures marked with a “+” shall be selected.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

20

If a special method or measure is not listed in the tables, this does not mean that such a method or measure
may not be used. If an unlisted method or measure is substituted for one listed in the table, it shall be one that
has an equivalent or higher value.

7.1.5 Work products

The work product applicable to this phase is the software project plan resulting from 7.1.4.2 to 7.1.4.4 (see
also EN 16590-4:2014, Clause 6).

7.2 Software safety requirements specification

7.2.1 Objectives

The first objective is to derive the software safety requirements, including the SRL, from the technical safety
requirements.

The second objective is to verify that the software safety requirements are consistent with the technical safety
concept.

7.2.2 General

The software safety requirements specification shall be derived from the requirements of the technical safety
concept of the system, and labelled as software safety requirements. At least the following shall be taken into
account:

a) adequate implementation of the technical safety concept in the software;

b) system configuration and architecture;

c) design of the E/E/PES system hardware;

d) response times of the safety functions;

e) external interfaces, such as communication;

f) physical requirements and environmental conditions as far as they affect the software;

g) requirements for safe software modification.

NOTE Iterations are required between the hardware and software development of the system. During the process of
further specifying and detailing the software safety requirements and the software architecture, there may be
repercussions on the hardware architecture. For this reason, close cooperation between the hardware development and
the software development is necessary.

7.2.3 Prerequisites

The following are the prerequisites for the software safety requirements specification:

— software project plan according to 7.1.4.2 to 7.1.4.4;

— technical safety concept according to 5.4.3;

— hardware categories according to 6.5.

http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

21

7.2.4 Requirements

7.2.4.1 Software safety requirements specification methods

The software safety requirements specification shall be in accordance with Table 1.

Table 1 — Software safety requirements specification

Technique/measurea Subclause SRL=B SRL=1 SRL=2 SRL=3

1 Requirements specification in natural language 7.2.4.1.1 + + + +

2a Informal design methodsa 7.2.4.1.2 + + o o

2b Semi-formal design methods 7.2.4.1.3 o o + +

2c Formal design methods 7.2.4.1.4 o o + +

3 Computer-aided specification tools 7.2.4.1.5 o o + +

4a Inspection of software safety requirementsa EN 16590-1:2014, 3.28 + + + +

4b Walk-through of software safety requirements EN 16590-1:2014, 3.56 + + o o

See 7.1.4.7 for instructions on the use of this and the other tables.

a Appropriate techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/measures are
indicated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied.

NOTE 1 Ways of modelling which possess a complete syntax definition and a complete semantic definition with
calculus are summarised in item 2c. Formal methods admit to formal verification and automatic test case generation.
Examples include state machines connected to formal verification.
NOTE 2 Ways of modelling which possess a complete syntax definition and a semantic definition without calculus are
summarised in item 2b. Examples include structured analysis/design and graphic ways of modelling, such as UML class
diagrams or block diagrams.
In case of model-based development with code generation, the methods and measures for software architectural design
have to be applied to the functional model, which will serve as the basis for code generation.

7.2.4.1.1 Requirements specification in natural language

7.2.4.1.1.1 Aim

The specification requirements shall be introduced in natural language (i.e. ordinary spoken and written).

7.2.4.1.1.2 Description

The software safety requirements specification shall include a description of the problem in natural language,
and if necessary, further informal methods, such as figures and diagrams.

7.2.4.1.2 Informal design methods

7.2.4.1.2.1 Aim

To express a complete concept, a natural language shall be used.

http://dx.doi.org/10.3403/30280042
http://dx.doi.org/10.3403/30280042

BS EN 16590-3:2014
EN 16590-3:2014 (E)

22

7.2.4.1.2.2 Description

Informal methods shall provide a means of developing a description of a system at some stage in its
development, i.e. specification, design or coding, typically by means of natural language, diagrams, figures,
etc.

7.2.4.1.3 Semi-formal design methods

7.2.4.1.3.1 Aim

Semi-formal design methods shall express a concept, specification or design unambiguously and consistently,
so that some mistakes and omissions can be detected.

7.2.4.1.3.2 Description

Semi-formal methods for software design shall be used to provide a means of developing a description of a
system at some stage in its development, i.e. specification, design or coding.

EXAMPLE Data flow diagrams, finite state machines/state transition diagrams.

The description shall in some cases be analysed by machine or animated to display various aspects of the
system behaviour. Animation shall give extra confidence that the system meets the requirements.

7.2.4.1.4 Formal design methods

7.2.4.1.4.1 Aim

The development of software in a way that is based on mathematics shall include formal design and formal
coding techniques.

7.2.4.1.4.2 Description

Formal methods shall provide a means of developing a description of a system at some stage in its
specification, design or implementation. The resulting description is in a strict notation that shall be subjected
to mathematical analysis to detect various classes of inconsistency or incorrectness. Moreover, the
description shall in some cases be analysed by machine with a rigour similar to the syntax checking of a
source program by a compiler, or animated to display various aspects of the behaviour of the system
described. Animation shall give extra confidence that the system meets the real requirement as well as the
formally specified requirement, because it improves human recognition of the specified behaviour.

A formal method shall generally offer a notation (normally some form of discrete mathematics being used), a
technique for deriving a description in that notation, and various forms of analysis for checking a description
for different correctness properties.

7.2.4.1.5 Computer-aided specification tools

7.2.4.1.5.1 Aim

To facilitate automatic detection of ambiguity and completeness, formal specification techniques shall be
used.

7.2.4.1.5.2 Description

The technique shall produce specifications in the form of a database that can be automatically inspected to
assess consistency and completeness. The specification tool shall animate various aspects of the specified
system for the user. In general, the technique supports not only the creation of the specification but also of the
design and other phases of the project life cycle.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

23

7.2.4.2 Non-safety–related functions

If functions additional to the safety functions are carried out by the E/E/PES, these shall be specified, or
reference shall be made to their specifications.

If the requirements specification includes both the functional requirements and the safety requirements, the
latter shall be clearly identified as such.

7.2.4.3 Level of detail

The software safety requirements specification shall contain enough detail to implement the safety function in
the software.

7.2.4.4 Consistency

The software safety requirements shall be retraceable and consistent with the specifications of the technical
safety requirements and the system architecture.

7.2.4.5 Hardware and software co-dependency

The software safety requirements specification shall specify the safety-related dependencies between the
hardware and the software, if relevant.

7.2.4.6 Software safety requirements specification

The software safety requirements specification shall describe software safety requirements for the following, if
relevant.

— Functions that enable the system to achieve or maintain a safe state.

— Functions related to the detection, indication and handling of faults in the ECU, sensors, actuators and
communication system.

— Functions related to the detection, indication and handling of faults in the software itself (self-supervision
of the software).

NOTE 1 This includes both the self-monitoring of the software in the operating system, and an application-specific
self-monitoring of the software aimed at detecting systematic faults in the application software.

— Functions related to the online and offline tests of the safety functions.

NOTE 2 Self-testing can be carried out during operation and when the vehicle is started.

NOTE 3 This refers in particular to the testability of the safety functions in customer service or through other
E/E/PES systems.

— Functions that allow modifications of the software to be carried out safely.

— Interfaces with functions that are not safety-related.

— Performance and reaction time.

— Interfaces between the software and the hardware of the electronic control unit.

NOTE 4 The interfaces also include programming and configuration.

The requirements for the safety integrity of the software are

BS EN 16590-3:2014
EN 16590-3:2014 (E)

24

— the SRL for each of the functions listed above, and

— the acceptance criteria for the software safety validation of the software safety requirements.

7.2.4.7 Software safety requirements verification

The software safety requirements shall be examined to determine if they comply with the requirements given
in 7.2.4.1 to 7.2.4.6. The software safety requirements shall also be examined to determine whether they are
consistent with the technical safety concept. The software developers shall participate in the verification
activities. The verification methods may be either of two types: inspection or walk-through (as defined in
EN 16590-1).

7.2.5 Work products

The following work products are applicable to this phase:

a) software safety requirements specification according to 7.2.4.1 and 7.2.4.3 to 7.2.4.6;

b) non-safety-related software requirements specification according to 7.2.4.2;

c) acceptance criteria for the software safety requirements according to 7.2.4.6;

d) verification report on the software safety requirements specification resulting from 7.2.4.7.

7.3 Software architecture and design

7.3.1 Objectives

The objective of the software architecture is the implementation and structuring of all software requirements
using software components. It shall be ensured that all software safety requirements are fulfilled by the
software components allocated to them.

7.3.2 General

The software architecture is a representation of all software components and their interactions with one
another in a hierarchical structure. The static aspects, such as the interfaces and data paths of all the software
components, as well as the dynamic aspects, such as process sequences and time behaviour, shall be
described.

7.3.3 Prerequisites

The software architecture is only to be started after the software safety requirements specification has
reached a sufficient degree of maturity.

7.3.4 Requirements

7.3.4.1 Software architecture and design methods

The software architecture and design shall be developed in accordance with Table 2.

http://dx.doi.org/10.3403/30280042U

BS EN 16590-3:2014
EN 16590-3:2014 (E)

25

Table 2 — Software architecture and design

Technique/measurea Subclause SRL=B SRL=1 SRL=2 SRL=3

1a Informal design methodsa 7.2.4.1.2 + + o o

1b Semi-formal design methods 7.2.4.1.3 o o + +

1c Formal design methods 7.2.4.1.4 o o + +

2 Computer-aided specification tools 7.2.4.1.5 o o + +

3 Bottom-up failure analysis 7.3.4.1.1 o o o +

4 Top-down failure analysis 7.3.4.1.2 o o + +

5a Inspection of software architecturea EN 16590-1:2014, 3.28 + + + +

5b Walk-through of software architecture EN 16590-1:2014, 3.56 + + o o

See 7.1.4.7 for instructions on the use of this and the other tables.

a Appropriate techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/measures are
indicated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied.

7.3.4.1.1 Failure analysis — Bottom-up methods

7.3.4.1.1.1 Aim

The analysis of events or combinations of events that will lead to a hazard or serious consequence shall be
supported by bottom-up methods.

7.3.4.1.1.2 Description

Starting at an event which would be the immediate cause of a hazard or serious consequence (the “bottom
event”), analysis shall be carried out along a tree path. Combinations of causes are described with logical
operators (and, or, etc.). Intermediate causes are analysed in the same way, and so on, back to basic events
where analysis stops. The method is graphical, and a set of standardised symbols is used to draw the fault
tree.

EXAMPLE FMEA, HAZOP or FMECA method.

7.3.4.1.2 Failure analysis — Top-down methods

7.3.4.1.2.1 Aim

Top-down methods shall be used to rank the criticality of components which could result in injury, damage or
system degradation through single-point failures, in order to determine which components might need special
attention and necessary control measures during design or operation.

7.3.4.1.2.2 Description

Criticality can be ranked in many ways. The criticality number is a function of a number of parameters, most of
which have to be measured. A very simple method for criticality determination is to multiply the probability of
component failure by the damage that could be generated; this method is similar to simple risk factor
assessment.

NOTE These techniques are mainly intended for the analysis of hardware systems, but there have also been
attempts to apply this approach to software failure analysis, examples being FTA, ETA and “cause and effect” diagrams.

7.3.4.2 Design method characteristics

The selected design method shall have characteristics supporting

http://dx.doi.org/10.3403/30280042
http://dx.doi.org/10.3403/30280042

BS EN 16590-3:2014
EN 16590-3:2014 (E)

26

a) abstraction, modularity, encapsulation and other characteristics that make complexity manageable,

b) the description of

— functionality,

— the information flow between the components,

— process control and information regarding time,

— time limitations,

— concurrent processes, if relevant,

— data structures and their characteristics, and

— assumptions in the design and their dependencies,

c) the understanding of the developers and others involved,

d) capability for software modification, and

e) verification and validation.

7.3.4.3 Software architecture structure

A software architecture shall be developed that describes the hierarchical structure, based on the software
safety requirements, of all the safety-related software components.

NOTE At the top level of the software architecture, there is usually a separation into basic software and application
software.

7.3.4.4 Level of detail

The hierarchical structure of the software architecture shall end with the software modules at the lowest level.

When developing the software architecture, the extent of the safety-related components should be kept as
small as possible.

7.3.4.5 Software architecture traceability

Bi-directional traceability between software architecture and software safety requirements shall be realised.

7.3.4.6 Software architecture verification

The software architecture shall be verified. It shall be examined whether the designed architecture satisfies
the software safety requirements. The software developers shall participate in the verification activities. The
verification method may be either of two types: inspection or walk-through (as defined in EN 16590-1).

7.3.4.7 Combination of safety-related software components

If the embedded software has to implement software components with different SRL or safety-related and
non-safety-related software components, then the overall SRL is limited to the component implemented with
the lowest SRL, unless adequate independence (see Annex B) between the software components can be
demonstrated.

http://dx.doi.org/10.3403/30280042U

BS EN 16590-3:2014
EN 16590-3:2014 (E)

27

7.3.5 Work products

The following work products are applicable to this phase:

a) software architecture according to 7.3.4.1 to 7.3.4.5;

b) a software architecture verification report resulting from 7.3.4.6.

7.4 Software module design and implementation

7.4.1 Objectives

The first objective is to specify in detail the behaviour of the safety-related software modules that are
prescribed by the software architecture.

The second objective is to generate a readable, testable and maintainable source (code, model, etc.) suitable
to be translated into object code.

The third objective is to verify that the software architecture has been fully and correctly implemented.

7.4.2 General

7.4.3 Prerequisites

The following are the prerequisites for software module design and implementation:

— software project plan (see 7.1.4.2 to 7.1.4.4);

— software requirements [see 7.2.5 a) and b)];

— software architecture (see 7.3.4.1 to 7.3.4.5);

— software verification plan (see EN 16590-4:2014, Clause 6).

7.4.4 Requirements

7.4.4.1 Software module design and implementation methods

Software shall be designed and developed in accordance with Table 3.

http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

28

Table 3 — Software design and development — Support tools and programming language

Technique/measurea Subclause SRL=B SRL=1 SRL=2 SRL=3

1 Tools and programming language

1.1 Suitable programming language 7.4.4.1.1 + + + +

1.2 Strongly typed programming language 7.4.4.1.2 o + + +

1.3 Language subset 7.4.4.1.3 o + + +

1.4 Tools and translators: increased
confidence from use 7.4.4.1.4 o + + +

1.5 Use of trusted/verified software modules
and components (if available) 7.4.4.1.5 o o + +

2 Design methods

2.1a Informal design methodsa 7.2.4.1.2 + + o o

2.1b Semi-formal design methods 7.2.4.1.3 o o + +

2.1c Formal design methods 7.2.4.1.4 o o + +

2.2 Defensive programming 7.4.4.1.6 o o o +

2.3 Structured programming 7.4.4.1.7 o + + +

2.4 Modular approach 7.4.4.1.8 o o o +

2.5 Library of trusted/verified software modules
and components 7.4.4.1.9 + + + +

2.6 Computer-aided design tools 7.4.4.1.10 o o o +

3 Design and coding standard

3.1 Use of coding standard 7.4.4.1.11 o o + +

3.2 No dynamic variables or objects 7.4.4.1.12 o o o +

3.3 Limited use of interrupts 7.4.4.1.13 o o o +

3.4 Defined use of pointers 7.4.4.1.14 o o o +

3.5 Limited use of recursion 7.4.4.1.15 o o o +

4 Design and coding verification

4a Inspection of software design and/or
source codea

EN 16590-1:2014, 3.28 + + + +

4b Walk-through of software design and/or
source code EN 16590-1:2014, 3.56 + + o o

See 7.1.4.7 for instructions on the use of this and the other tables.

a Appropriate techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/measures are
indicated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied.

7.4.4.1.1 Suitable programming language

7.4.4.1.1.1 Aim

The aim is to choose a programming language to support the requirements of EN 16590 as much as possible,
in particular defensive programming, structured programming and possibly assertions. The programming
language chosen shall lead to easily verifiable code, and facilitate program development, verification and
maintenance.

http://dx.doi.org/10.3403/30280042
http://dx.doi.org/10.3403/30280042

BS EN 16590-3:2014
EN 16590-3:2014 (E)

29

7.4.4.1.1.2 Description

The language shall be fully and unambiguously defined. The language shall be user- or problem-orientated
rather than processor/platform machine-orientated. Widely used languages or their subsets are preferred to
special-purpose languages.

In addition to the already referenced features, the language shall provide for

— block structure,

— translation time checking, and

— run-time type and array bounds checking.

The language shall encourage:

— the use of small and manageable software modules,

— restriction of access to data in specific software modules,

— definition of variable sub-ranges, and

— any other type of error-limiting constructs.

If safe operation of the system is dependent upon real-time constraints, then the language shall also provide
for exception/interrupt handling. It is desirable that the language be supported by a suitable translator,
appropriate libraries of pre-existing software modules, a debugger, and tools for both version control and
development. At the time of developing this part of EN 16590, it is not clear whether object-orientated
languages are to be preferred to procedural languages. The following features which make verification difficult
shall be avoided:

a) unconditional jumps, excluding subroutine calls;

b) recursion;

c) pointers, heaps, or any type of dynamic variables or objects;

d) handling of interrupts at source code level;

e) multiple entries or exits of loops, blocks or subprograms;

f) implicit variable initialisation or declaration;

g) variant records and equivalence;

h) procedural parameters.

Low-level languages, in particular assembly languages, present problems due to their processor/platform
machine-orientated nature. A desirable language property is that the design and use result in programs whose
execution is predictable. Given a suitably defined programming language, there is a subset which ensures that
program execution is predictable. This subset cannot (in general) be statically determined, although many
static constraints can assist in ensuring predictable execution. This would typically require a demonstration
that array indices are within bounds, and that numeric overflow cannot arise, etc.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

30

7.4.4.1.2 Strongly typed programming language or guideline checking

7.4.4.1.2.1 Aim

The probability of faults shall be reduced by using a language or programming practice which permits a high
level of checking by the compiler or static analysis tool.

7.4.4.1.2.2 Description

When a strongly typed programming language is compiled or statically analysed, many checks need to be
made on how variable types are used (for example, in procedure calls and external data access). Compilation
shall fail and produce an error message for any usage that does not conform to predefined rules.

NOTE Such languages usually allow user-defined data types to be defined from the basic language data types (such
as integer, real). These types can then be used in exactly the same way as the basic type. Strict checks are imposed to
ensure the correct type is used. These checks are imposed over the whole program, even if this is built from separately
compiled units. The checks also ensure that the number and type of procedure arguments match, even when referenced
from separately compiled software modules.

7.4.4.1.3 Language subset

7.4.4.1.3.1 Aim

The use of a language subset shall reduce the probability of introducing programming faults and increase the
probability of detecting any remaining faults.

7.4.4.1.3.2 Description

The programming language shall be examined to determine programming constructs which are either
error-prone or difficult to analyse (e.g. using static analysis methods). These programming constructs shall
then be excluded and a language subset defined. Also, it shall be documented as to why the constructs used
in the language subset are safe.

7.4.4.1.4 Tools and translators — Increased confidence from use

7.4.4.1.4.1 Aim

Tools and translators which are proven in use shall be applied, in order to avoid any difficulties due to
translator failures which can arise during development, verification and maintenance of software packages.

7.4.4.1.4.2 Description

A translator shall be used where there has been no evidence of improper performance over a substantial
number of prior projects. Translators without operating experience or with any serious known faults shall be
avoided unless there is some other assurance of correct performance. If the translator has shown small
deficiencies, the related language constructs are noted down, and carefully avoided during a safety-related
project.

NOTE 1 This description is based on experience from many projects. It has been shown that immature translators are
a serious handicap to software development and make a safety-related software development generally unfeasible.

NOTE 2 It is recognised that no method currently exists to prove the correctness for all tool or translator parts.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

31

7.4.4.1.5 Use of trusted/verified software modules and components (if available)

7.4.4.1.5.1 Aim

Trusted/verified software modules and components shall be used to avoid the need for software modules and
hardware component designs to be extensively revalidated or redesigned for each new application. This
allows the developer to take advantage of designs which have not been formally or rigorously verified, but for
which considerable operational history is available.

7.4.4.1.5.2 Description

This measure shall verify that the software modules and components are sufficiently free from systematic
design faults and/or operational failures. Only in rare cases will the employment of trusted software modules
and components (i.e. those which are proven in use) be sufficient as the sole measure to ensure that the
necessary SRL is achieved. For complex components with many possible functions (e.g. operating system), it
is essential to establish which functions are actually sufficiently proven in use. For example, where a self-test
routine is provided to detect hardware faults, but no hardware failure occurs within the operating period, the
self-test routine cannot be considered as being proven by use.

A component or software module can be sufficiently trusted if it is already verified to the required SRL, or if it
fulfils the following criteria:

— unchanged specification;

— systems in different applications;

— at least one year of service history;

— all of the operating experience of the software module shall relate to known demand profiles, ensuring
that increased operating experience leads to an increased knowledge of the behaviour of the software
module;

— no safety-related failures.

NOTE Failures which might not be safety-critical in one context can be safety-critical in another, and vice versa.

To enable verification that a component or software module fulfils the above criteria, the following shall be
documented:

a) exact identification of each system and its components, including version numbers (for software and
hardware);

b) identification of users and time of application;

c) operating time;

d) procedure for the selection of the user-applied systems and application cases;

e) procedures for detecting and registering failures, and for removing faults.

7.4.4.1.6 Defensive programming

7.4.4.1.6.1 Aim

Defensive programming shall be used to produce programs which detect anomalous control flow, data flow or
data values during their execution, and which react to these in a predetermined and acceptable manner.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

32

7.4.4.1.6.2 Description

Many techniques can be used during programming to check for control or data anomalies. The techniques
used shall be applied systematically throughout the programming of a system to decrease the likelihood of
erroneous data processing. There are two overlapping areas of defensive techniques. Intrinsic error-safe
software is designed to accommodate its own design shortcomings. These shortcomings can be due to
mistakes in design or coding, or to erroneous requirements. Techniques include the following:

— range checking the variables;

— checking values for plausibility;

— type, dimension and range checking parameters of procedures at procedure entry.

This first set of defensive techniques helps to ensure that the numbers manipulated by the program are
reasonable, both in terms of the program function and physical significance of the variables.

Read-only and read-write parameters shall be separated, and their access checked. Functions shall treat all
parameters as read-only. Literal constants shall not be written accessible. This helps detect accidental
overwriting or mistaken use of variables. Fault tolerant software is designed to “expect” failures in its own
environment or use outside nominal or expected conditions, and behave in a predefined manner.

Techniques include the following:

— checking input variables and intermediate variables with physical significance for plausibility;

— checking the effect of output variables, preferably by direct observation of associated system state
changes;

— checking by the software of its configuration, including both the existence and accessibility of expected
hardware, and also that the software itself is complete — particularly important for maintaining integrity
after maintenance procedures.

Some of the defensive programming techniques, such as control flow sequence checking, also cope with
external failures.

7.4.4.1.7 Structured programming

7.4.4.1.7.1 Aim

Structured programming shall be used to design and implement the program such that it is practical to analyse
without being executed.

7.4.4.1.7.2 Description

The following shall be carried out so as to minimise structural complexity.

a) Divide the program into appropriately small software modules, ensuring they are decoupled as far as
possible and all interactions are explicit.

b) Compose the software module control flow using structured constructs, i.e. sequences, iterations and
selection.

c) Keep the number of possible paths through a software module small, and the relation between the input
and output parameters as simple as possible.

d) Avoid complicated branching. In particular, avoid unconditional jumps (go-to) in higher-level languages.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

33

e) Where possible, relate loop constraints and branching to input parameters.

f) Avoid using complex calculations as the basis of branching and loop decisions. Features of the
programming language which encourage the above approach shall be used in preference to other
features which are (allegedly) more efficient, except where efficiency takes absolute priority.

7.4.4.1.8 Modular approach

7.4.4.1.8.1 Aim

A modular approach shall be used for a decomposition of the software system into small comprehensible
parts, in order to manage the complexity of the system.

7.4.4.1.8.2 Description

A modular approach (modularisation) presupposes a number of rules for the design, coding and maintenance
phases of a software project. These rules vary according to the design method employed. For the methods of
this part of EN 16590, the following apply.

— A software module shall have a single well-defined task or function to fulfil.

— Connections between software modules shall be limited and strictly defined; coherence in one software
module shall be strong.

— Collections of subprograms shall be built, providing several levels of software modules.

— Software module size shall be restricted to a specified value, typically two to four screen sizes.

— Software modules shall have a single entry and a single exit.

— Software modules shall communicate with other software modules via their interfaces. Where global or
common variables are used they shall be well structured, access shall be controlled, and their use shall
be justified in each instance.

— All software module interfaces shall be fully documented.

— Any software module interface shall contain only those parameters necessary for its function.

7.4.4.1.9 Library of trusted/verified software modules and components

7.4.4.1.9.1 Aim

A library of trusted/verified software modules and components shall be used to avoid the need for extensive
revalidation or redesign for each new application. This method allows the developer to reuse designs which
have not been formally or rigorously validated, but for which considerable operational history is available.

7.4.4.1.9.2 Description

In order to be well-designed and structured, E/E/PES shall be composed of hardware components, software
components and software modules which are clearly distinct, and which interact with one another in clearly
specified ways.

E/E/PES designed for differing applications can contain a number of software modules or components which
are the same or very similar. Building up a library of such generally applicable software modules allows many
of the resources necessary for validating the designs to be shared by more than one application.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

34

Furthermore, the use of such software modules in multiple applications provides empirical evidence of
successful operational use. This empirical evidence justifiably enhances the trust which users are likely to
have in the software modules.

7.4.4.1.10 Computer-aided design tools

7.4.4.1.10.1 Aim

CAD tools shall be used to carry out the design procedure more systematically, and to include appropriate
automatic construction elements which are already available and tested.

7.4.4.1.10.2 Description

CAD tools shall be used during the design of both hardware and software when available and justified by the
complexity of the system. The correctness of such tools shall be demonstrated by specific testing, by an
extensive history of satisfactory use, or by independent verification of their output for the applicable safety-
related system.

7.4.4.1.11 Use of coding standards

7.4.4.1.11.1 Aim

Coding standards shall be used to facilitate verifiability of the produced code.

7.4.4.1.11.2 Description

The detailed rules shall be fully agreed upon before coding. These rules typically require

— details of modularisation, e.g. interface shapes, software module sizes,

— use of encapsulation, inheritance (restricted in depth) and polymorphism, in the case of object-orientated
languages,

— limited use or avoidance of certain language constructs such as “go-to”, “equivalence”, dynamic objects,
dynamic data, dynamic data structures, recursion, pointers and exits,

— restrictions on interrupts enabled during the execution of safety-critical code,

— layout of the code (listing), and

— no unconditional jumps (for example “go-to”) in programs in higher-level languages.

These rules enable ease of software module testing, verification, assessment and maintenance. Therefore,
they shall take into account available tools in particular analysers.

7.4.4.1.12 Design and coding standards — No dynamic variables or objects

7.4.4.1.12.1 Aim

Design and coding standards shall exclude dynamic variables or objects to be avoided, such as

— unwanted or undetected overlay of memory, and

— bottlenecks of resources during (safety-related) run-time.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

35

7.4.4.1.12.2 Description

For the purposes of this measure, dynamic variables and dynamic objects are those variables and objects that
have their memory allocated and absolute addresses determined at run-time. The value of allocated memory
and its address depends on the state of the system at the moment of allocation, which means that it cannot be
checked by the compiler or any other off-line tool.

Because the number of dynamic variables and objects, and the existing free memory space for allocating new
dynamic variables or objects, depends on the state of the system at the moment of allocation, it is possible for
faults to occur when allocating or using the variables or objects. For example, when the amount of free
memory at the location allocated by the system is insufficient, the memory contents of another variable can be
inadvertently overwritten. If dynamic variables or objects are not used, these faults are avoided.

7.4.4.1.13 Design and coding standards — Limited use of interrupts

7.4.4.1.13.1 Aim

The software developer shall limit the use of interrupts, in order to keep the software verifiable and testable.

7.4.4.1.13.2 Description

The use of interrupts shall be restricted. Interrupts may be used if they simplify the system. Software handling
of interrupts shall be inhibited during execution of critical software. If interrupts are used, then parts not able to
be interrupted shall have a specified maximum computation time, so that the maximum time for which an
interrupt is inhibited can be calculated. Interrupt usage and inhibiting shall be thoroughly documented.

7.4.4.1.14 Design and coding standards — Defined use of pointers

7.4.4.1.14.1 Aim

Defined use of pointers shall be used to avoid the problems caused by accessing data without first checking
range and type of the pointer, to support modular testing and verification of software, and to limit the
consequence of failures.

7.4.4.1.14.2 Description

In the application software, pointer arithmetic shall be used at source code level only if the pointer data type
and value range (to ensure that the pointer reference is within the correct address space) are checked.

7.4.4.1.15 Design and coding standards — Limited use of recursion

7.4.4.1.15.1 Aim

Limited use of recursion shall be employed to avoid unverifiable and unstable use of subroutine calls.

7.4.4.1.15.2 Description

If recursion is used, clear criteria shall be established on the allowed depth of recursion.

7.4.4.2 Software module design and coding verification

The software module design and its coding shall be verified. It shall be examined whether the design and
coding fulfil the software safety requirements. The software developers shall participate in the verification
activities. The verification methods may be either of two types: inspection or walk-through (as defined in
EN 16590-1).

http://dx.doi.org/10.3403/30280042U

BS EN 16590-3:2014
EN 16590-3:2014 (E)

36

7.4.5 Work products

The following work products are applicable to this phase:

a) detailed design of the software according to 7.4.4.1;

b) software according to 7.4.4.1;

c) software module design and coding verification report resulting from 7.4.4.2.

7.5 Software module testing

7.5.1 Objectives

The objective of the software module test is to verify that the designed and coded software modules correctly
implement the software requirements.

7.5.2 General

In this phase, a procedure for testing the software modules against their requirements is established, and the
tests carried out in accordance with that procedure.

7.5.3 Prerequisites

The following are the prerequisites for software module testing:

— software project plan (see 7.1.4.2 to 7.1.4.4);

— software requirements [see 7.2.5 a) and b)];

— software verification plan (see EN 16590-4:2014, Clause 6);

— software modules according to 7.4.4.1.

7.5.4 Requirements

7.5.4.1 Software module testing methods

The software module testing shall be in accordance with Table 4.

http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

37

Table 4 — Software module testing

Technique/measurea Subclause SRL=B SRL=1 SRL=2 SRL=3

1 Dynamic analysis and testing 7.5.4.1.1

1.1 Test case execution from boundary value

analysis 7.5.4.1.2 o o o +

1.2 Structure-based testing 7.5.4.1.3 o o o +

2 Static analysis

2.1 Boundary value analysis 7.5.4.1.4 + + + +

2.2 Checklists 7.5.4.1.5 + + + +

2.3 Control flow analysis 7.5.4.1.6 o o + +

2.4 Data flow analysis 7.5.4.1.7 o o + +

2.5 Walk-through/design reviews 7.5.4.1.8 o o + +

3 Functional and black-box testing

3.1 Equivalence classes and input partition

testing 7.5.4.1.9 o o + o

3.2 Boundary value analysis 7.5.4.1.4 o o o +

4 Performance testing 7.5.4.1.10

4.1 Resource budget testing 7.5.4.1.11 o + o o

4.2 Response timings and memory
constraints 7.5.4.1.12 o o + +

4.3 Performance requirements 7.5.4.1.13 o o + +

4.4 Avalanche/stress testing 7.5.4.1.14 o o o +

5 Interface testing 7.5.4.1.15 o o o +

See 7.1.4.7 for instructions on the use of this and the other tables.

a Appropriate techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/measures are
indicated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied.

7.5.4.1.1 Dynamic analysis and testing

7.5.4.1.1.1 Aim

Dynamic analysis and testing shall be used to detect specification failures by inspection of the dynamic
behaviour of a prototype at an advanced state of completion.

7.5.4.1.1.2 Description

The dynamic analysis of a safety-related system is carried out by subjecting a near-operational prototype of
the safety-related system to input data which is typical of the intended operating environment. The analysis is
satisfactory if the observed behaviour of the safety-related system conforms to the required behaviour. Any
failure of the safety-related system shall be corrected and the new operational version shall then be
re-analysed.

7.5.4.1.2 Test case execution from boundary value analysis

7.5.4.1.2.1 Aim

Test case execution from boundary value analysis shall be used to detect software errors occurring at
parameter limits or boundaries.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

38

7.5.4.1.2.2 Description

The input domain of the program is divided into a number of input classes according to the equivalence
relation (see 7.5.4.1.9). The tests shall cover the boundaries and extremes of the classes. The tests check
that the boundaries in the input domain of the specification coincide with those in the program. The use of the
value zero, in a direct as well as in an indirect translation, is often error-prone and demands special attention
to the following:

— zero divisor;

— blank ASCII characters;

— empty stack or list element;

— full matrix;

— zero table entry.

Normally, the boundaries for input have a direct correspondence to the boundaries for the output range. Test
cases shall be written to force the output to its limited values. Consider also if it is possible to specify a test
case which causes the output to exceed the specification boundary values.

If the output is a sequence of data (e.g. a printed table) special attention shall be paid to the first and the last
elements and to lists containing no elements, one element and two elements.

7.5.4.1.3 Structure-based testing

7.5.4.1.3.1 Aim

Structure-based testing shall be used to apply tests which exercise certain subsets of the program structure.

7.5.4.1.3.2 Description

Based on analysis of the program, a set of input data is chosen so that a large (and often pre-specified target)
percentage of the program code is exercised. Measures of code coverage vary as follows, depending upon
the level of rigour required.

— Statements

This is the least rigorous test since it is possible to execute all code statements without exercising both
branches of a conditional statement.

— Branches

Both sides of every branch shall be checked. This may be impractical for some types of defensive code.

— Compound conditions

Every condition in a compound conditional branch (i.e. linked by AND/OR) is exercised.

— Linear code sequence and jump

Applicable to any linear sequence of code statements, including conditional statements, terminated by a
jump. Many potential sub-paths will not be feasible due to constraints on the input data imposed by the
execution of earlier code.

— Data flow

BS EN 16590-3:2014
EN 16590-3:2014 (E)

39

The execution path is selected on the basis of data usage, for example, a path where the same variable
is both written and read.

— Call graph

A program is composed of subroutines which can be invoked from other subroutines. The call graph is
the tree of subroutine invocations in the program. Tests are designed to cover all invocations in the tree.

— Basis path

One of a minimal set of finite paths from start to finish, such that all arcs are included (overlapping
combinations of paths in this basis set can form any path through that part of the program). Tests of all
basis paths have been shown to be efficient for locating errors.

7.5.4.1.4 Boundary value analysis

7.5.4.1.4.1 Aim

Boundary value analysis shall be used to detect software errors occurring at parameter limits or boundaries.

7.5.4.1.4.2 Description

The input domain of the program is divided into a number of input classes according to the equivalence
relation (see 7.5.4.1.9). The tests shall cover the boundaries and extremes of the classes. The tests check
that the boundaries in the input domain of the specification coincide with those in the program. The use of the
value zero, in a direct as well as in an indirect translation, is often error-prone and demands special attention
to the following:

— zero divisor;

— blank ASCII characters;

— empty stack or list element;

— full matrix;

— zero table entry.

Normally, the boundaries for input have a direct correspondence to the boundaries for the output range. Test
cases shall be written to force the output to its limited values. Consider also if it is possible to specify a test
case which causes the output to exceed the specification boundary values.

If the output is a sequence of data (e.g. a printed table) special attention shall be paid to the first and the last
elements and to lists containing no elements, one element and two elements.

7.5.4.1.5 Checklists

7.5.4.1.5.1 Aim

Checklists shall be used to draw attention to, and manage critical appraisal of, all important aspects of the
system by safety life cycle phase, ensuring comprehensive coverage without the laying down of exact
requirements.

7.5.4.1.5.2 Description

A checklist is a set of questions to be answered by the person performing the checklist. Many of the questions
are of a general nature and the assessor shall interpret them as seems most appropriate. Checklists shall be

BS EN 16590-3:2014
EN 16590-3:2014 (E)

40

used for all phases of the overall E/E/PES software safety life cycle, and are particularly useful as a tool to aid
in the functional safety assessment. To accommodate wide variations in the systems being validated, most
checklists contain questions which are applicable to many types of systems. As a result, there can be
questions in the checklists being used which are not relevant to the system being dealt with and which need to
be ignored. Equally, there may be a need for a particular system to supplement the standard checklist with
questions specifically directed at the system being dealt with. In any case, it needs to be clear that the use of
checklists depends on the expertise and judgement of the engineer selecting and applying the checklist. As a
result, the decisions taken by the engineer, with regard to the checklist(s) selected, and any additional or
superfluous questions, shall be fully documented and justified. The objective is to ensure that the application
of the checklists can be reviewed, and that the repeatable results will be achieved, unless different criteria are
used. The object in completing a checklist is to be as concise as possible. When extensive justification is
necessary, this shall be done by reference to additional documentation. Pass, fail and inconclusive, or some
similar restricted set of responses, shall be used to document the results for each question. This conciseness
greatly simplifies the procedure of reaching an overall conclusion as to the results of the checklist
assessment.

7.5.4.1.6 Static analysis — Control flow analysis

7.5.4.1.6.1 Aim

Control flow analysis shall be used to detect poor and potentially incorrect program structures.

7.5.4.1.6.2 Description

Control flow analysis is a static testing technique for finding suspect areas of code that do not follow good
programming practice. The program analysed produces a directed graph which can be further analysed for

— inaccessible code, e.g. unconditional jumps which leave blocks of code unreachable,

— knotted code, where — in contrast to well-structured code with a control graph reducible by successive
graph reductions to a single node — poorly structured code can only be reduced to a knot composed of
several nodes.

7.5.4.1.7 Static analysis — Data flow analysis

7.5.4.1.7.1 Aim

Data flow analysis shall be used to detect poor and potentially incorrect program structures.

7.5.4.1.7.2 Description

Data flow analysis is a static testing technique that combines the information obtained from the control flow
analysis with information about which variables are read or written in different portions of code. The analysis
can check for the following types of variables:

— those that may be read before they are assigned a value, which can be avoided by always assigning a
value when declaring a new variable;

— those written more than once without being read, which could indicate omitted code;

— those written but never read, which could indicate redundant code.

A data flow anomaly does not always directly correspond to a program fault; however, if anomalies are
avoided, the code is less likely to contain faults.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

41

7.5.4.1.8 Static analysis — Walk-through/design review

7.5.4.1.8.1 Aim

A walk-through/design review shall be used to detect faults as soon as economically possible during
development.

7.5.4.1.8.2 Description

A formal design review shall be conducted for all new products/processes, new applications, and revisions to
existing products and manufacturing processes which affect the function, performance, safety, reliability,
ability to inspect, maintainability, availability, cost, and other characteristics affecting the end product/process
(users or bystanders).

A code walk-through consists of a walk-through team selecting a small set of paper test cases, representative
sets of inputs and corresponding expected outputs for the program. The test data is then manually traced
through the logic of the program.

7.5.4.1.9 Equivalence classes and input partition testing

7.5.4.1.9.1 Aim

Equivalence classes and input partition testing shall be used to test the software adequately using a minimum
of test data. The test data shall be obtained by selecting the partitions of the input domain required to exercise
the software.

7.5.4.1.9.2 Description

This testing strategy shall be based on the equivalence relation of the inputs, which determines a partition of
the input domain.

Test cases are selected with the aim of covering all the partitions previously specified. At least one test case is
taken from each equivalence class.

There are two basic possibilities for input partitioning:

— equivalence classes derived from the specification — the interpretation of the specification may be either
input orientated (e.g. the values selected are treated in the same way) or output orientated (e.g. the set of
values lead to the same functional result);

— equivalence classes derived from the internal structure of the program — the equivalence class results
are determined from static analysis of the program (e.g. the set of values leading to the same path being
executed).

7.5.4.1.10 Performance testing

7.5.4.1.10.1 Aim

Performance testing shall be used to ensure that the working capacity of the system is sufficient to meet the
specified requirements.

7.5.4.1.10.2 Description

The requirements specification shall include throughput and response time requirements for specific functions,
perhaps combined with constraints on the use of total system resources. The proposed system design is
compared against the stated requirements by:

BS EN 16590-3:2014
EN 16590-3:2014 (E)

42

— producing a model of the system processes and their interactions,

— determining the use of resources by each process (processor time, communications bandwidth, storage
devices, etc.),

— determining the distribution of demands placed upon the system under average and worst-case
conditions, and

— computing the mean and worst-case throughput and response times for the individual system functions.

7.5.4.1.11 Performance testing — Resource budget testing

7.5.4.1.11.1 Aim

Resource budget testing shall be used according to the complexity of the system:

— for simple systems, an analytic solution may be sufficient;

— for more complex systems, some form of simulation may be more appropriate for obtaining accurate
results.

7.5.4.1.11.2 Description

Before detailed modelling, a simpler “resource budget” check can be used which sums the resources
requirements of all the processes. If the requirements exceed designed system capacity, the design is
unfeasible. Even if the design passes this check, performance modelling can show that excessive delays and
response times occur due to resource starvation. To avoid this situation, engineers often design systems to
use some fraction (for example 50 %) of the total resources, so that the probability of resource starvation is
reduced.

7.5.4.1.12 Performance testing — Response time and memory constraints

7.5.4.1.12.1 Aim

Response time and memory constraints shall be used to ensure that the system will meet its temporal and
memory requirements.

7.5.4.1.12.2 Description

The requirements specification for the system and the software includes memory and response requirements
for specific functions, perhaps combined with constraints on the use of total system resources. An analysis is
performed to determine the distribution demands under average and worst-case conditions. This analysis
requires estimates of the resource usage and elapsed time of each system function. These estimates can be
obtained in several ways (e.g. comparison with an existing system, or the prototyping and benchmarking of
time-critical systems).

7.5.4.1.13 Performance testing — Performance requirements

7.5.4.1.13.1 Aim

Testing shall be established to demonstrate the performance requirements of a software system.

7.5.4.1.13.2 Description

An analysis is performed on both the system and the software requirements specifications to specify all
general/specific and explicit/implicit performance requirements.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

43

Each performance requirement shall be examined to determine

— that the success criteria is obtained,

— whether a failure to meet the success criteria is obtained,

— the potential accuracy of such measurements,

— the project stages at which the measurements can be estimated, and

— the project stages at which the measurements can be made.

The practicability of each performance requirement shall be analysed in order to obtain a list of performance
requirements, success criteria and potential measurements. The main objectives are as follows.

a) Each performance requirement is associated with at least one measurement.

b) Where possible, accurate and efficient measurements are selected which can be used as early in the
development as possible.

c) Essential and optional performance requirements and success criteria are specified.

d) Where possible, advantage shall be taken of the possibility of using a single measurement for more than
one performance requirement.

7.5.4.1.14 Performance testing — Avalanche/stress testing

7.5.4.1.14.1 Aim

Avalanche/stress testing shall be used to burden the test object with an exceptionally high workload in order to
show that the test object would stand normal workloads easily.

7.5.4.1.14.2 Description

There are a variety of test conditions applicable to avalanche/stress testing, including the following.

— If working in a polling mode, then the test object gets many more input changes per time unit than under
normal conditions.

— If working on demands, then the number of demands per time unit to the test object is increased beyond
normal conditions.

— If the size of a database plays an important role, then it is increased beyond normal conditions.

— Influential devices are tuned to their maximum speed or lowest speed respectively.

— For the extreme cases, all influential factors, as far as possible, are put to the boundary conditions at the
same time.

Under these test conditions, the time behaviour of the test object can be evaluated, the influence of load
changes observed, and the correct dimension of internal buffers or dynamic variables, stacks, etc., can be
checked.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

44

7.5.4.1.15 Interface testing

7.5.4.1.15.1 Aim

Interface testing shall be used to detect errors in the interfaces of subprograms.

7.5.4.1.15.2 Description

Several levels of detail or completeness of testing are feasible. The most important levels are tests for

— all interface variables at their extreme values,

— all interface variables individually at their extreme values, with other interface variables at normal values,

— all values of the domain of each interface variable, with other interface variables at normal values,

— all values of all variables in combination (only feasible for small interfaces), and

— the specified test conditions relevant to each call of each subroutine.

These tests are particularly important if the interfaces do not contain assertions that detect incorrect
parameter values. They are also important after new configurations of pre-existing subprograms have been
generated.

The errors detected during this phase shall be eliminated. For each modification, an impact analysis shall be
performed. All modifications which have an impact on the work products of any previous phase shall initiate a
return to that phase of the software safety life cycle. All subsequent phases shall then be carried out in
accordance with the respective parts of EN 16590.

7.5.5 Work products

The following work products are applicable to this phase:

a) software module test plan resulting from 7.5.4.1;

b) software module test specification in accordance with 7.5.4.1;

c) software module test report resulting from the performance of the tests.

7.6 Software integration and testing

7.6.1 Objectives

The first objective of software integration and testing is to integrate the software units step by step into
software components up to the entire embedded software of the ECU.

NOTE The embedded software of the ECU can consist of either safety-related or non-safety-related software
components.

The second objective is to verify that the software requirements are correctly realised by the embedded
software.

7.6.2 General

In this phase, the particular integration levels are tested against the software requirements. The interfaces
between the software modules and/or software components are also tested. The steps of the integration and
the tests of the software components shall directly correspond to the hierarchical software architecture.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

45

7.6.3 Prerequisites

The following are the prerequisites for software integration and testing:

— software project plan (see 7.1.4.2 to 7.1.4.4);

— software requirements [see 7.2.5 a) and b)];

— software architecture (see 7.3.4.1 to 7.3.4.5);

— software verification plan (see EN 16590-4:2014, Clause 6);

— tested software modules according to 7.4.4.1.

7.6.4 Requirements

7.6.4.1 Software integration and test plan

A plan shall be developed for the software integration and tests that shall include at least the following:

a) a software integration strategy;

b) planning of the software integration tests.

The software integration strategy and software test plan should be developed during the software architecture
and design phase.

7.6.4.2 Software integration strategy

The software integration strategy shall describe at least the following:

a) the steps to be taken for integrating the individual software modules hierarchically into software
components until the entire embedded software of the ECU is integrated;

b) functional dependencies that are relevant to the software integration.

NOTE 1 If the hardware–software integration and the test of the embedded software on the target hardware are not
already planned and carried out, this could be part of the integration strategy. This procedure can sometimes make the
software integration and tests considerably easier.

NOTE 2 In the case of model-based development, the software integration might be replaced with integration at the
model level and subsequent code generation for the integrated model.

NOTE 3 Depending on the constraints, the software might be integrated in a host environment, a target-like
environment (e.g. an evaluation board) or the target environment (the ECU).

7.6.4.3 Software integration and test procedures

Appropriate test procedures shall be developed in the planning of the software integration tests.

NOTE The software integration tests always combine different procedures, because there is no test procedure that
covers equally well all the aspects that have to be taken into account.

7.6.4.4 Software integration and test methods

A hardware and software integration test shall be conducted in accordance with Table 5.

http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

46

Table 5 — Integration testing (module)

Technique/measurea Subclause SRL=B SRL=1 SRL=2 SRL=3

1 Functional and black-box testing 7.6.4.4.1

1.1 Equivalence classes and input partition

testing 7.5.4.1.9 o o + o

1.2 Boundary value analysis 7.5.4.1.4 o o o +

2 Performance testing

2.1 Resource budget analysis 7.5.4.1.1 o + o o

2.2 Response timings and memory constraints 7.5.4.1.12 o o + +

2.3 Performance requirements 7.5.4.1.13 o o + +

2.4 Avalanche/stress testing 7.5.4.1.14 o o o +

See 7.1.4.7 for instructions on the use of this and the other tables.

a Appropriate techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/measures are
indicated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied.

7.6.4.4.1 Functional testing

7.6.4.4.1.1 Aim

Functional testing shall be used to reveal failures during the specification and design phases, and to avoid
failures during implementation and the integration of software and hardware.

7.6.4.4.1.2 Description

During the functional tests, reviews shall be carried out to determine whether the specified characteristics of
the system have been achieved and that the system input data which adequately characterise the normally
expected operation have been given. The outputs are observed and their response is compared with that
given by the specification. Deviations from the specification and indications of an incomplete specification
shall be documented. Functional testing of electronic components designed for a multi-channel architecture
usually involves the manufactured components being tested with pre-validated partner components.

In addition, it is recommended that the manufactured components be tested in combination with other partner
components of the same batch, in order to reveal common mode faults which would otherwise have remained
masked.

7.6.4.5 Elimination of defects

The errors detected during this phase shall be eliminated. For each modification, an impact analysis shall be
performed. All modifications which have an impact on the work products of any previous phase shall initiate a
return to that phase of the software safety life cycle. All subsequent phases shall then be carried out in
accordance with the respective parts of EN 16590.

7.6.5 Work products

The following work products are applicable to this phase:

a) software integration test plan, with a software integration strategy resulting from 7.6.4.1 to 7.6.4.3;

b) software integration test specification as required by 7.6.4.3;

c) software integration test report according to 7.6.4.1.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

47

7.7 Software safety validation

7.7.1 Objectives

The first objective of the software safety validation is to show that the software requirements are correctly
realised by the embedded software.

The second objective is to provide proof that the requirements of the technical safety concept at the machine
level are qualified, complete and completely achieved.

The software safety validation is a part of the safety validation of the E/E/PES system (see EN 16590-4:2014,
Clause 6). During the planning of the safety validation of the complete E/E/PES system, it has to be
determined which safety goals may be tested at E/E/PES system level, and which may be tested at the
software level. In the simplest case, all of the safety goals are covered by the safety validation of the E/E/PES
system with the software taken into account, so that no separate software safety validation is necessary.

NOTE The prerequisite of the software safety validation is that the hardware–software integration has already been
carried out.

7.7.2 General

7.7.3 Prerequisites

The following are the prerequisites for software safety validation:

— software project plan (see 7.1.4.2 to 7.1.4.4);

— software requirements [see 7.2.5 a) and b)];

— software architecture (see 7.3.4.1 to 7.3.4.5);

— software verification plan (see EN 16590-4:2014, Clause 6);

— integrated software;

— ECU.

7.7.4 Requirements

7.7.4.1 Software safety validation methods

Testing shall be the main verification method for software; animation and modelling may be used to
supplement the verification activities; adequate measures/techniques shall be selected according to Table 6.

http://dx.doi.org/10.3403/30280055
http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

48

Table 6 — Software safety validation

Technique/measurea Subclause SRL=B SRL=1 SRL=2 SRL=3

1 Tests of software safety requirements

1.1 Test interface 7.7.4.1.1 + + + +

1.2a Tests within the ECU networka 7.7.4.1.2 o + + o

1.2b Hardware-in-the-loop tests 7.7.4.1.3 o o + +

1.2c Tests in the test machine 7.7.4.1.4 o o o +

See 7.1.4.7 for instructions on the use of this and the other tables.

NOTE Measures in points 1.2a, 1.2b and 1.2c represent test environments.

a Appropriate techniques/measures shall be selected according to the SRL. Alternative or equivalent techniques/measures are
indicated by a letter following the number. Only one of the alternative or equivalent techniques/measures need be satisfied.

7.7.4.1.1 Test interface

The software shall be integrated with its host microprocessor in its associated ECU. The test interface is used
for determining the inner state of the ECU while testing as well as monitoring internal results.

7.7.4.1.2 Tests within the electronic control unit network

The software shall be integrated with its host microprocessor in its associated ECU, and this ECU shall be
integrated with the remaining ECUs that are part of the complete E/E/PES system. The software shall then be
tested at the interface to the ECU network, in order to demonstrate that the software performs according to
specification.

7.7.4.1.3 Hardware-in-the-loop tests

The software shall be integrated with its host microprocessor in its associated ECU, while the rest of the
associated E/E/PES system and its environment shall be simulated. The software shall then be tested in this
simulated environment to demonstrate that the software performs according to specification.

7.7.4.1.4 Tests in the machine

The software and the associated E/E/PES system shall be integrated into the associated machine
architecture. The system shall then be tested in the machine to demonstrate that the software performs
according to specification.

7.7.4.2 Extent of tests

The software shall be exercised by simulation of

— input signals present during normal operation,

— anticipated occurrences, and

— undesired conditions requiring system action.

7.7.4.3 Software safety requirements validation

The effectiveness of the test procedures, and of any other measures used, shall be evaluated against the
safety concept on conclusion of the verification process, in order to validate the software safety requirements.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

49

7.7.4.4 Documentation

The supplier and/or developer shall make the documented results of the software safety validation and all
pertinent documentation available to the system developer to enable him to meet the requirements of
EN 16590-4:2014.

7.7.4.5 Elimination of defects

Errors or defects detected during this phase shall be eliminated. For each modification, an impact analysis
shall be performed. All modifications which have an impact on the work products of any previous phase shall
initiate a return to that phase of the software safety life cycle. All subsequent phases shall then be carried out
in accordance with the respective parts of EN 16590.

7.7.5 Work products

The following work products are applicable to this phase:

a) software validation plan resulting from 7.7.4.1 to 7.7.4.4;

b) software validation test specification resulting from 7.7.4.1 and 7.7.4.2;

c) software validation test report according to 7.7.4.3.

7.8 Software-based parameterisation

7.8.1 Objective

Software-based parameterisation refers to the possibility of adapting the software system to different
requirements, after completion of development, by changing parameters in order to modify the functionality of
the software.

The objective is to derive the requirements for safety-related parameters.

7.8.2 General

Software-based parameterisation of safety-related parameters shall be considered as safety-related aspects
of SRP/CS design to be described in the software safety requirement specification. Software-based
parameters include

— variant coding (e.g. country code, left-hand/right-hand steering),

— parameters (e.g. value for low idle speed, engine characteristic diagrams), and

— calibration data (e.g. vehicle specific, limit stop for throttle setting).

7.8.3 Prerequisites

The following are the prerequisites for software-based parameterisation:

— software project plan (see 7.1.4.2 to 7.1.4.4);

— software requirements [see 7.2.5 a) and b)];

— software architecture (see 7.3.4.1 to 7.3.4.5);

— software verification plan (see EN 16590-4:2014, Clause 6);

http://dx.doi.org/10.3403/30280055
http://dx.doi.org/10.3403/30280055

BS EN 16590-3:2014
EN 16590-3:2014 (E)

50

— tested software modules according to 7.4.4.1.

7.8.4 Requirements

7.8.4.1 Data integrity

The integrity of data used for parameterisation shall be maintained, and unauthorised modifications shall be
prevented. This shall be achieved by applying measures to control

a) the range of valid inputs,

b) data corruption before and after transmission, including

— checking configuration data for a valid range,

— performing plausibility checks on configuration data,

— using redundant data storage, and

— using error detecting and correcting codes,

c) the errors from the parameter transmission process,

d) the effects of incomplete parameter transmission, and

e) the effects of faults and failures of hardware and software of the tool used for parameterisation.

7.8.4.2 Executable code in parameter data

Parameter data shall not contain executable code.

7.8.4.3 Configuration management

Software-based parameterisation shall be part of the version configuration management (see EN 16590-
4:2014, Clause 6).

7.8.4.4 Software-based parameterisation verification

The following verification activities shall be undertaken for software-based parameterisation:

— verification of the correct setting for each safety-related parameter (minimum, maximum and
representative values);

— verification that the safety-related parameters have been checked for plausibility, by use of invalid values,
etc.;

— verification that unauthorised modification of safety-related parameters is prevented;

— verification that the data/signals for parameterisation are generated and processed in such a way that
faults cannot lead to a loss of the safety function.

7.8.5 Work products

The following work products are applicable to this phase:

a) validated safety-related software parameter configurations;

BS EN 16590-3:2014
EN 16590-3:2014 (E)

51

b) software validation plan resulting from 7.7.4.1 to 7.7.4.3;

c) software validation test specification resulting from 7.7.4.1;

d) software validation test report resulting from 7.7.4.3.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

52

Annex A
(informative)

Example of agenda for assessment of functional safety at AgPL = e

A.1 Functions of system

A.1.1 Detailed presentation of the system, the components and the functional properties

A.1.2 Overview of electrical components

A.1.3 Hazard and risk analysis of the functions

A.2 Hardware

A.2.1 Block diagram of the functions

A.2.2 Layout and wiring diagram

A.2.3 Environmental connections (interfaces)

A.3 Safety concept

A.3.1 Fundamental principles of the safety concept

A.3.2 Definition of the “safe state(s)” or of the “degradation principle”

A.3.3 Function of the safety concept

A.3.4 Verification of safe function under fault conditions (“fault tolerance”)

A.3.5 Interaction of the safety concept with other systems/functions

A.4 Safety analysis and safety data

A.4.1 Failure analysis (FMEA, FTA, etc.)

A.4.2 Internal monitoring functions

A.4.3 Hardware failure rates (for different failure modes, e.g. from databases, FTA, FMEA, etc.)

A.4.4 Data for discovering internal faults (e.g. diagnostic discovery for component failure, failure recognition
times, etc.)

A.4.5 Data for discovering external faults (e.g. network, sensor, switch, power supply failure, etc.)

A.5 Safety design process for phases of life cycle

A.5.1 Project management

A.5.2 Documentation

BS EN 16590-3:2014
EN 16590-3:2014 (E)

53

A.5.3 Specification phase

A.5.4 Planning and development phase

A.5.5 Integration phase

A.5.6 Planning general validation/safety validation

A.5.7 Results of general validation/safety validation

A.6 Software development

A.6.1 Software safety concept

A.6.2 Software structure

A.6.3 Software test and documentation

A.6.4 Development tools used

A.6.5 Identification and tracking software modifications (“version control”)

A.6.6 Protecting the implemented software from non-authorised modifications

A.7 Verification and testing

A.7.1 Verification of system functions under failure-free conditions

A.7.2 Verification of system functions under the influence of failures

A.8 Documentation and safety documentation

A.8.1 Completeness

A.8.2 Consistency

A.9 Summary and assessment

…

BS EN 16590-3:2014
EN 16590-3:2014 (E)

54

Annex B
(informative)

Independence by software partitioning

B.1 General

In an area in which the state of the art is rapidly changing, this annex provides a means — software
partitioning and its associated methods and measures — to aid the designer in proving independence for
software modules.

Adequate independence of software components is guaranteed by excluding particular fault effects violating
this independence. For that purpose, methods and measures are necessary that should be implemented with
at least medium effectiveness. For each method or measure given in this annex, a recommendation is given
as to its effectiveness (see Tables B.1. and B.2):

“high” means that it prevents the corresponding fault effect effectively;

“medium” means that it prevents the corresponding fault effect partially;

“none” means that it does not contribute to the prevention of the corresponding fault effect.

B.2 Terms, definitions and abbreviated terms

For the purposes of this annex, the following terms, definitions and abbreviated terms apply.

B.2.1
alive counter
accounting component initialised with “0” when the object to be monitored is created
NOTE The counter increases from time t–1 to time t as long as the object is alive. Finally, the alive counter shows the
period of time for which the object has been alive within a network.

B.2.2
black-box test
test of a test object that does not require knowledge of its internal structure or its concrete implementation

B.2.3
bus guardian
independent component between a node and the bus that allows its node to transmit on the bus only when it
is allowed to do so
NOTE The guardian needs to know when its node is allowed to access the bus — difficult to achieve in an event-
triggered system, but conceptually simple in a time-triggered system.

B.2.4
message queue
(inter-process/inter-task communication) procedure used for passing and exchanging data (messages)
between asynchronous processes or tasks, including FIFO buffering
NOTE The queue is either managed by the operating system, or by an application. Message queuing enables
synchronisation and mutual exclusion.

B.2.5
minislotting
bus scheduling technique in which each node connected to the bus waits a certain period of time before it is
permitted to access the bus again

B.2.6
mutual exclusion

BS EN 16590-3:2014
EN 16590-3:2014 (E)

55

synchronisation mechanism to protect a sequence of statements that ought to appear to be executed
indivisibly

B.2.7
partitions
resource entities, i.e. a virtual machine environment with allocated resources like quota of memory, I/O
devices and CPU time
NOTE 1 Partitions are statically specified, and are created at system start-up.
NOTE 2 The programs running within a partition are always restricted to the resources allocated to the partition at system
start-up by the system configuration.

B.2.8
partition
(within single micro-controller) subsystem consisting of fixed assigned system resources where each partition
contains one or more tasks

B.2.9
partition
(within scope of micro-controller network) subsystem consisting of available memory, available CPU, and the
I/O-functionality of the micro-controller

B.2.10
partitioning
software partitioning
fault containment technique which consists in precluding that a failure in a partition will propagate and cause
other partitions to fail
NOTE 1 When applied to software, the intent of partitioning is to control the additional hazard created when a software
partition shares its resources or part thereof with other partitions (e.g. processor and/or peripherals). Software partitioning
is not intended to protect against the failure of each software partition but against the propagation of such failures.
NOTE 2 Software partitioning encompasses, on the one hand, space partitioning that addresses unauthorised data
access and illegitimate command of peripherals assigned to other partitions. On the other hand, time partitioning that
focuses on disturbance of the timing of events in other partitions (scheduling, order of execution, etc.) is also addressed.

B.2.11
pipe
one-way communication between two processes/tasks, including buffering according to the FIFO principle
NOTE A pipe is built on top of message queues and used like a standard I/O interface, i.e. the output of one
process/ task is used as input for another.

B.2.12
real addressing
absolute addressing
explicit identification of a memory location or of a peripheral device
cf. relative addressing (B.2.14)

B.2.13
redundancy
multiplication, i.e. in most cases the duplication, of components of a system with the intention of increasing the
reliability of the system
NOTE This action is usually taken in cases where a backup or fail-safe is necessary.

B.2.14
relative addressing
identification of a memory location or of a peripheral device as an offset from some other address
cf. real addressing (B.2.12)

B.2.15
shared memory
memory used for inter-task communication
NOTE The shared memory is a designated memory area, which is directly accessible to more than one task.
Semaphores are used to avoid interference and to ensure memory integrity. This method of inter-process/inter-task
communication is faster than exchanging data by operating system services.

B.2.16
semaphore

BS EN 16590-3:2014
EN 16590-3:2014 (E)

56

non-negative integer variable, whose value is decreased when entering a critical program section and
incremented again when leaving this section
NOTE Semaphores are used for synchronisation when several tasks access a common resource such as a common
data space.

B.2.17
software component
implementation of one or more functions in software
NOTE A software component is a logically separable part of the software, and consists of one or more software
components and/or software units. Within the software architecture, software components are realised by partitions and
tasks.

B.2.18
software unit
smallest independent piece of software, which can be independently translated, and which can be tested with
the relevant data whether it performs to specification
NOTE The software unit is an atomic software component.

B.2.19
software partitions
runtime environment with separate system resources assigned

B.2.20
system resources
all resources required by the software to operate
EXAMPLE CPU time, I/O devices, memory.

B.2.21
task
runtime entities which are executed within the resource budget of partitions where each task has its own stack
and priority
NOTE A task is executed under the control of the scheduler according to the task priority assigned to it and the
selected scheduling policy.

B.2.22
independence of software
exclusion of unintended interactions between software components, as well as freedom from impact on the
correct operation of another software component, resulting from design and/or implementation errors of a
software component

B.2.23
user mode
one of two execution modes of the CPU, the other being kernel mode
NOTE User mode is non-privileged, i.e. references or accesses to memory and I/O space are checked for
authorisation. In user mode, specific memory areas are assigned and accessible while memory areas of other processes,
for example, are prohibited. In contrast, kernel mode gives privileged access and execution rights.

B.2.24
watchdog
timer process that, if not reset within a certain period by a software component, assumes that the software
component is in error
The software component should continually reset the timer to indicate that it is functioning correctly.

CRC cyclic redundancy check

CPU central processing unit

MMU memory management unit

MPU memory protection unit

B.3 Objectives

The first objective is to control hazards that can occur in subsystems so that they cannot affect other
subsystems.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

57

NOTE Software hazards can occur due to design and implementation errors of a software component that could then
disturb the correct operation of other software components sharing resources with it.

The second objective is to specify how to demonstrate adequate independence of software components by
software partitioning.

B.4 General

In order to achieve adequate independence of software components, the system resources should be
assigned to independent subsystems or partitions, each representing a particular runtime environment.
System resources include the CPU, memory, bus, I/O-channels and resources of the operation system such
as file handles.

The use of software partitioning is not restricted to the co-existence of software of different SRL in the same
runtime environment. It can also support

a) changes in a partition without re-verification of unmodified software partitions, and

b) coexistence of software of different nature (in-house, third party).

Partitioning is usually not possible without adequate support from the hardware.

In order to isolate multiple partitions in a shared resource environment, the hardware should provide the
operating system with the ability to restrict memory spaces, processing time, and access to I/O for each
individual partition.

NOTE Partitions can be allocated within a single micro-controller or allocated to several micro-controllers within a
micro-controller network.

Depending on the selected architecture, two approaches can be used:

a) several partitions within a single micro-controller;

b) several partitions within the scope of an ECU network.

B.5 Requirements

B.5.1 General requirements

B.5.1.1 SRL

That part of the software that implements the support for partitioning implementation shall have the same or
higher SRL than the highest SRL associated with the software partitions.

NOTE In general, the software providing or supporting partitioning is part of the operating system.

B.5.1.2 Software architecture

The concept of software partitioning shall be taken into account when specifying the software architecture.

B.5.2 Several partitions within a single microcontroller

B.5.2.1 General

See Figure B.1.

NOTE Tasks within a partition are not independent of one another.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

58

Figure B.1 — Several partitions within a single micro-controller

B.5.2.2 Software partitioning methods/measures

Each partition shall implement the methods and measures given in Table B.1 so as to prevent each of the
following fault effects and ensure adequate independence of software components:

— memory corruption (unintended writing to memory of another partition);

— blocking of partitions (due to communication deadlocks);

— wrong allocation of processor execution time;

— wrong communication peer (sender sends messages to the wrong recipient or masquerades as a sender
other than himself);

— corruption of I/O interface by unintended writing to an I/O interface of another partition.

B.5.2.3 Software partitioning effectiveness

The methods and measures given in Table B.1 should be implemented with at least medium effectiveness to
guarantee adequate independence of software components.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

59

Table B.1 — Methods and measures within micro-controller

Fault effect
Method/measure

Memory
corruption

Blocking of
partitions

Wrong
processor
execution

time

Wrong
communi-

cation peer

Corruption
of

I/O interface

Verification of communication

1 Unambiguous bidirectional
communication objecta

None None None Medium None

2 Strictly two unidirectional communication
objectsb

None None None Medium None

3 Identifications for identification and/or
acknowledgementc

None None None High None

4 Asynchronous data communicationd None High None None None

Allocation of processor execution time

5 No priority-based schedulinge None None Medium None None

6 Time slicing methodf None None High None None

Allocation of system resources

7 Memory protection mechanismsg High None None None None

8 Verification of safety critical datah High/medium None None None None

9 Static analysisi Medium None None None None

10 Static allocationj Medium Medium Medium Medium Medium

Communication objects in items 1 and 2 between partitions are, e.g. pipes, message queues, shared memory. These
should not be used for synchronising partitions.
Access shall be synchronised between both partitions using shared memory for communication. This may be done, for
example, by using semaphores.
Blocking read or write access should be prohibited by design when using message queues.
An MMU enables the concept of virtual address space. This prevents a task of one partition from corrupting the memory
space of another task by unintended writing into that memory space, since every partition has its own address space.
Usage of MMU requires support of the operating system for that feature. Provisions shall be made so that the MMU
cannot be ignored. Therefore, the tasks run in a so-called user mode, and real addressing mode is not used.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

60

a Exactly one bi-directional communication object is used between two partitions respectively for data exchange.
b Exactly two uni-directional communication objects are used between two partitions respectively for data exchange.
c Uses unique numbers for identifying communication peers and/or acknowledges receipt of messages by the communication peer.
d In using asynchronous data communication as described in this item, there is no waiting state completed by the communication
itself.
e The partitions are considered coequally in allocating processor execution time and the same priority is assigned to all of them.
Regarding the allocation of processor time in this item, there has to be some spare time/buffer in each processor cycle because of
incoming interrupts.
f The time slicing method specifies a scheduling algorithm based on a predetermined fixed schedule, repetitive with a fixed period.
Using the time slicing method, the allocation of processor execution time takes place through a static allocation table. Thus for each
task, a fixed point in time is predetermined for activating the task. Usage of a time slicing method precludes priority-based scheduling.
g The memory protection mechanisms referred to specify processors with, for example, MMU or MPU.
h RAM locations containing safety critical data are verified by additional measures. This can be accomplished by, for example, using
CRC or redundant storage. The effectiveness of this measure depends very heavily on the verification quality.
i Specifies adequate static analysis methods for reviewing pieces of code that access memory locations containing safety-related
data.
j Resources are allocated statically during initialisation.

B.5.3 Several partitions within the scope of a micro-controller network

B.5.3.1 General

Software components are executed within their respective partition is on their respective micro-controllers, as
illustrated in Figure B.2.

The micro-controller network may consist of several processors on a single ECU communicating via an
internal data bus (internal processor communication). This is illustrated in Figure B.3. The following
examinations apply analogously.

Figure B.2 — Several partitions within scope of micro-controller network

BS EN 16590-3:2014
EN 16590-3:2014 (E)

61

Figure B.3 — Several partitions within scope of multi-processor ECU

B.5.3.2 Methods for multi-processor partitioning

In order to guarantee adequate independence of software components within a micro-controller network, it
shall be ensured that none of the following fault effects prevents the correct execution of the safety function:

— failure of communication peer (communication peer is not available);

— unintended message repetition (the same message is unintentionally sent again);

— message loss (message is lost during transmission);

— insertion of messages (receiver unintentionally gets an additional message, interpreted as having correct
source and destination addresses).

— re-sequencing (order in which data has been sent changed during transmission, i.e. the data is not
received in the same order as in which it was sent);

— message corruption (one or more data bits are changed in the message during transmission);

— message delay (the message is received correctly, but not in time);

— blocking access to data bus (a faulty node does not adhere to expected patterns of use and makes
excessive demands for service, thereby reducing that available to other nodes, e.g. while wrongly waiting
for non-existing data);

— constant transmission of messages, known as “babbling idiot” (a faulty node transmits constantly, thereby
compromising the operation of the entire bus).

B.5.3.3 Multi-processor partitioning effectiveness

The methods and measures listed in Table B.2 shall be implemented so that all appropriate fault effects can
be handled with sufficient effectiveness to ensure adequate independence of software components.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

62

Table B.2 — Methods and measures within the scope of a micro-controller network

Fault effect
Method/
measure

Fa
ilu

re

of

co
m

m
un

ic
at

io
n

pe
er

U
ni

nt
en

de
d

m
es

sa
ge

re

pe
tit

io
n

M
es

sa
ge

 lo
ss

In
se

rt
io

n
of

 m
es

sa
ge

s

R
e-

se
qu

en
ci

ng

M
es

sa
ge

co

rr
up

tio
n

an
d/

or
 m

as
qu

er
ad

in
g

M
es

sa
ge

 d
el

ay

B
lo

ck
in

g
ac

ce
ss

 to
 d

at
a

bu
s

C
on

st
an

t
tr

an
sm

is
si

on

of
 m

es
sa

ge
s

Verification of communication

1 Keep alive
messages High None None None None Medium None None None

2 Alive counter None High Medium Medium None None None None Medium

3 CRC None None None None None High None None None

4 Sequence
number None High High High High None None None Medium

 Message
repetition None None High None Medium Medium None None None

5 Watchdog High None Medium High High High

Bus allocation

6 Time-triggered
data bus High High None High None None High None

7 Bus guardian None None None None None Medium None None High

8 Minislotting None None None None None None Medium None High

Using CRC (item 3), it shall be taken into account that the residual error rate of the CRC implemented in the bus system
may not be sufficient, in which case an additional CRC at the application level is recommended.
Blocking access is caused by a micro-controller connected to the bus, which permanently accesses the bus and thereby
prevents other micro-controllers from getting access to the bus.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

63

Annex ZA
(informative)

Relationship between this European Standard and the Essential

Requirements of EU Machinery Directive 2006/42/EC

This European Standard has been prepared under a mandate given to CEN by the European Commission
and the European Free Trade Association to provide a means of conforming to Essential Requirements of the
New Approach Machinery Directive 2006/42/EC.

Once this standard is cited in the Official Journal of the European Union under that Directive and has been
implemented as a national standard in at least one Member State, compliance with the normative clauses of
this standard confers, within the limits of the scope of this standard, a presumption of conformity with the
relevant Essential Requirements 1.2.1 and 1.7 of Annex I of that Directive and associated EFTA regulations.

NOTE Compliance with the normative clauses of parts 1, 2, 3 and 4 of EN 16590 is required to achieve the
presumption of conformity indicated in this annex.

WARNING — Other requirements and other EU Directives may be applicable to the product(s) falling within
the scope of this standard.

BS EN 16590-3:2014
EN 16590-3:2014 (E)

64

Bibliography

[1] ISO 3600:1996, Tractors, machinery for agriculture and forestry, powered lawn and garden
equipment — Operator's manuals — Content and presentation

[2] EN ISO 9001, Quality management systems - Requirements (ISO 9001)

[3] EN ISO 12100, Safety of machinery - General principles for design - Risk assessment and risk
reduction (ISO 12100)

[4] ISO 15003, Agricultural engineering — Electrical and electronic equipment — Testing resistance to
environmental conditions

[5] ISO/TS 16949:2009, Quality management systems — Particular requirements for the application of
ISO 9001:2008 for automotive production and relevant service part organizations

[6] EN 61000-4-1, Electromagnetic compatibility (EMC) — Part 4-1: Testing and measurement techniques
— Overview of IEC 61000-4 series (IEC 61000-4-1)

[7] EN 61496-1, Safety of machinery — Electro-sensitive protective equipment — Part 1: General
requirements and tests (IEC 61496-1)

http://dx.doi.org/10.3403/00337555U
http://dx.doi.org/10.3403/00337555U
http://dx.doi.org/10.3403/30201665U
http://dx.doi.org/10.3403/BSENISO12100
http://dx.doi.org/10.3403/30149271U
http://dx.doi.org/10.3403/30195254
http://dx.doi.org/10.3403/30135838
http://dx.doi.org/10.3403/00450670U
http://dx.doi.org/10.3403/00450670U
http://dx.doi.org/10.3403/01950265U
http://dx.doi.org/10.3403/01950265U

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms
	5 System design
	5.1 Objectives
	5.2 General
	5.3 Prerequisites
	5.4 Requirements
	5.4.1 Structuring safety requirements
	5.4.2 Functional safety concept
	5.4.2.1 General requirements of functional safety concept
	5.4.2.2 Specification of the functional safety concept

	5.4.3 Technical safety concept
	5.4.3.1 General requirements of technical safety concept
	5.4.3.2 Specification of the technical safety concept

	6 Hardware
	6.1 Objectives
	6.2 General
	6.3 Prerequisites
	6.4 Requirements
	6.5 Hardware categories
	6.6 Work products

	7 Software
	7.1 Software development planning
	7.1.1 Objectives
	7.1.2 General
	7.1.3 Prerequisites
	7.1.4 Requirements
	7.1.4.1 Phase determination
	7.1.4.2 Process flexibility
	7.1.4.3 Process timetable
	7.1.4.4 Applicability
	7.1.4.5 Supporting processes
	7.1.4.6 Phases of software development
	7.1.4.7 Using the tables

	7.1.5 Work products

	7.2 Software safety requirements specification
	7.2.1 Objectives
	7.2.2 General
	7.2.3 Prerequisites
	7.2.4 Requirements
	7.2.4.1 Software safety requirements specification methods
	7.2.4.2 Non-safety–related functions
	7.2.4.3 Level of detail
	7.2.4.4 Consistency
	7.2.4.5 Hardware and software co-dependency
	7.2.4.6 Software safety requirements specification
	7.2.4.7 Software safety requirements verification

	7.2.5 Work products

	7.3 Software architecture and design
	7.3.1 Objectives
	7.3.2 General
	7.3.3 Prerequisites
	7.3.4 Requirements
	7.3.4.1 Software architecture and design methods
	7.3.4.2 Design method characteristics
	7.3.4.3 Software architecture structure
	7.3.4.4 Level of detail
	7.3.4.5 Software architecture traceability
	7.3.4.6 Software architecture verification
	7.3.4.7 Combination of safety-related software components

	7.3.5 Work products

	7.4 Software module design and implementation
	7.4.1 Objectives
	7.4.2 General
	7.4.3 Prerequisites
	7.4.4 Requirements
	7.4.4.1 Software module design and implementation methods
	7.4.4.2 Software module design and coding verification

	7.4.5 Work products

	7.5 Software module testing
	7.5.1 Objectives
	7.5.2 General
	7.5.3 Prerequisites
	7.5.4 Requirements
	7.5.4.1 Software module testing methods

	7.5.5 Work products

	7.6 Software integration and testing
	7.6.1 Objectives
	7.6.2 General
	7.6.3 Prerequisites
	7.6.4 Requirements
	7.6.4.1 Software integration and test plan
	7.6.4.2 Software integration strategy
	7.6.4.3 Software integration and test procedures
	7.6.4.4 Software integration and test methods
	7.6.4.5 Elimination of defects

	7.6.5 Work products

	7.7 Software safety validation
	7.7.1 Objectives
	7.7.2 General
	7.7.3 Prerequisites
	7.7.4 Requirements
	7.7.4.1 Software safety validation methods
	7.7.4.2 Extent of tests
	7.7.4.3 Software safety requirements validation
	7.7.4.4 Documentation
	7.7.4.5 Elimination of defects

	7.7.5 Work products

	7.8 Software-based parameterisation
	7.8.1 Objective
	7.8.2 General
	7.8.3 Prerequisites
	7.8.4 Requirements
	7.8.4.1 Data integrity
	7.8.4.2 Executable code in parameter data
	7.8.4.3 Configuration management
	7.8.4.4 Software-based parameterisation verification

	7.8.5 Work products

	Annex€A (informative)Example of agenda for assessment of functional safety at AgPL = e
	A.1 Functions of system
	A.2 Hardware
	A.3 Safety concept
	A.4 Safety analysis and safety data
	A.5 Safety design process for phases of life cycle
	A.6 Software development
	A.7 Verification and testing
	A.8 Documentation and safety documentation
	A.9 Summary and assessment

	Annex€B (informative)Independence by software partitioning
	B.1 General
	B.2 Terms, definitions and abbreviated terms
	B.3 Objectives
	B.4 General
	B.5 Requirements
	B.5.1 General requirements
	B.5.1.1 SRL
	B.5.1.2 Software architecture

	B.5.2 Several partitions within a single microcontroller
	B.5.2.1 General
	B.5.2.2 Software partitioning methods/measures
	B.5.2.3 Software partitioning effectiveness

	B.5.3 Several partitions within the scope of a microcontroller network
	B.5.3.1 General
	B.5.3.2 Methods for multi-processor partitioning
	B.5.3.3 Multi-processor partitioning effectiveness

	Annex€ZA (informative)Relationship between this European Standard and the Essential Requirements of EU Machinery Directive 2006/42/EC

