Copper and copper alloys — Determination of lead content — Flame atomic absorption spectrometric method (FAAS) ICS 77.120.30 ## National foreword This British Standard is the UK implementation of EN 15622:2010. The UK participation in its preparation was entrusted to Technical Committee NFE/34, Copper and copper alloys. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2010 © BSI 2010 ISBN 978 0 580 58190 8 ## Amendments/corrigenda issued since publication | Date | Comments | |------|----------| | | | | | | | | | | | | # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 15622 March 2010 ICS 77.120.30 ## **English Version** # Copper and copper alloys - Determination of lead content - Flame atomic absorption spectrometric method (FAAS) Cuivre et alliages de cuivre - Dosage du plomb - Méthode par spectrométrie d'absorption atomique dans la flamme (SAAF) Kupfer und Kupferlegierungen - Bestimmung des Bleigehaltes - Flammenatomabsorptionsspektrometrisches Verfahren (FAAS) This European Standard was approved by CEN on 23 January 2010. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: Avenue Marnix 17, B-1000 Brussels © 2010 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 15622:2010: E #### **Contents** Page Foreword 3 Scope 4 2 Normative references4 Principle......4 3 4 Reagents ______4 5 Apparatus5 Sampling......5 6 Procedure5 Preparation of the test portion solution5 7.1 Test portion5 7.1.1 Test portion solution5 7.1.2 7.1.3 Lead mass fractions between 0,01 % and 0,15 %......6 Lead mass fractions between 0,1 % and 0,75 %......6 7.1.4 7.1.5 Lead mass fractions between 0,5 % and 5,0 %......6 Blank test.......6 7.2 7.3 Check test 6 7.4 Establishment of the calibration curve6 7.4.1 Preparation of the calibration solutions.......6 Adjustment of the atomic absorption spectrometer8 7.4.2 Spectrometric measurement8 7.4.3 7.4.4 7.5 7.5.1 7.5.2 Preliminary spectrometric measurement......9 7.5.3 Spectrometric measurements9 Expression of results9 8 8.1 Use of calibration curve......9 8.2 Use of bracketing method.......9 9 10 Bibliography 12 #### **Foreword** This document (EN 15622:2010) has been prepared by Technical Committee CEN/TC 133 "Copper and copper alloys", the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2010, and conflicting national standards shall be withdrawn at the latest by September 2010. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. Within its programme of work, Technical Committee CEN/TC 133 requested CEN/TC 133/WG 10 "Methods of analysis" to prepare the following European Standard: EN 15622, Copper and copper alloys — Determination of lead content — Flame atomic absorption spectrometric method (FAAS). According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. BS EN 15622:2010 EN 15622:2010 (E) #### 1 Scope This document specifies a flame atomic absorption spectrometric method (FAAS) for the determination of the lead in copper and copper alloys in the form of unwrought, wrought and cast products. The method is applicable to products having lead mass fractions between 0,01 % and 5,0 %. #### Normative references 2 The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1811-1, Copper and copper alloys — Selection and preparation of samples for chemical analysis — Part 1: Sampling of cast unwrought products ISO 1811-2, Copper and copper alloys — Selection and preparation of samples for chemical analysis — Part 2: Sampling of wrought products and castings #### **Principle** 3 Dissolution of a test portion in fluoroboric-nitric acid mixture followed, after suitable dilution, by aspiration of the test solution into an air/acetylene flame of an atomic absorption spectrometer. Measurement of the absorption of the 217,0 nm line emitted by a lead hollow-cathode lamp. NOTE During the validation exercise of this standard method some laboratories have also carried out the measurements at 283 nm line. These measurements showed a satisfactory trueness. However, the number of results produced was too few and, therefore, insufficient for the estimation of the corresponding precision data. #### Reagents During the analysis, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity. - Nitric acid, HNO₃ (ρ = 1,40 g/ml). 4.1 - 4.2 Nitric acid solution (1 + 1). Add 100 ml of nitric acid (4.1) to 100 ml of water. **Hydrofluoric acid**, HF, 40 % solution (ρ = 1,13 g/ml). 4.3 WARNING — Hydrofluoric acid is a hazardous substance. Care shall be taken and it shall be used under an efficient fume hood. - Boric acid, H₃BO₃, 40 g/l solution. 4.4 - Fluoroboric-nitric acid mixture. 4.5 Add 300 ml of boric acid (4.4), 30 ml of hydrofluoric acid (4.3) and 500 ml of nitric acid (4.1) to 150 ml of water and mix well. 4.6 Lead stock solution, 1,0 g/l Pb. Weigh $(1 \pm 0,001)$ g of lead $(Pb \ge 99,9 \%)$ and transfer it into a 250 ml beaker. Add 20 ml of nitric acid solution (4.2), cover with a watch glass and heat gently until the lead is completely dissolved and then bring to the boiling point until the nitrous fumes have been expelled. Cool to room temperature, transfer the solution quantitatively into a 1 000 ml one-mark volumetric flask, add 100 ml of water and 9 ml of nitric acid solution (4.2). Dilute to the mark with water and mix well. 1 ml of this solution contains 0,001 g of Pb. #### 4.7 Lead standard solution, 0,1 g/l Pb. Transfer 25,0 ml of the lead stock solution (4.6) into a 250 ml one-mark volumetric flask, add 100 ml of water and 9 ml of nitric acid solution (4.2). Dilute to the mark with water and mix well. 1 ml of this solution contains 0,1 mg of Pb. #### 4.8 Copper base solution, 20 g/l Cu. Weigh $(10 \pm 0,01)$ g of pure, lead-free copper (Pb < 0,000 2 %) and transfer it into a 600 ml polytetrafluorethylene, polyethylene or low-pressure polypropylene beaker. Add 400 ml of the fluoroboric-nitric acid mixture (4.5) and cover with a watch glass. Heat until the copper is completely dissolved, then boil until the nitrous fumes have been expelled. Allow to cool and transfer the solution into a 500 ml one-mark volumetric flask. Dilute to the mark with water and mix well. 50 ml of the solution contain 1,0 g of copper and 40 ml of the fluoroboric-nitric acid mixture. #### 5 Apparatus - **5.1 Beakers**, polytetrafluorethylene, polyethylene or polypropylene. - **5.2 One-mark volumetric flasks**, polytetrafluorethylene, polyethylene or polypropylene. - **5.3 Atomic absorption spectrometer**, fitted with an air/acetylene burner. - 5.4 Lead hollow-cathode lamp. #### 6 Sampling Sampling shall be carried out in accordance with ISO 1811-1 or ISO 1811-2, as appropriate. Test samples shall be in the form of fine drillings, chips or millings with a maximum thickness of 0,5 mm. #### 7 Procedure #### 7.1 Preparation of the test portion solution #### 7.1.1 Test portion Weigh $(1 \pm 0,001)$ g of the test sample. #### 7.1.2 Test portion solution Transfer the test portion (7.1.1) into a 250 ml polytetrafluorethylene, polyethylene or polypropylene beaker (5.1). Add 40 ml of the fluoroboric-nitric acid mixture (4.5). Cover with a watch glass and heat gently BS EN 15622:2010 **EN 15622:2010 (E)** until the test portion is completely dissolved, then heat at a temperature of approximately 90 °C until brown fumes have been expelled. If polyethylene or polypropylene beakers are used, heating shall be carried out in water bath. Wash the cover and the sides of the beaker with water and allow to cool. Transfer the dissolved test portion quantitatively into a 100 ml one-mark volumetric flask, dilute the solution to the mark with water and mix well. #### 7.1.3 Lead mass fractions between 0.01 % and 0.15 % Proceed as indicated in 7.5. #### 7.1.4 Lead mass fractions between 0,1 % and 0,75 % Take a 20 ml aliquot of the test portion solution (7.1.2) and introduce into a 100 ml one-mark volumetric flask. Dilute to the mark with water and mix well. Proceed as indicated in 7.5. NOTE The validation exercise of this standard method showed that for lead mass fractions between 0,5 % and 0,75 % results are better when the determination is carried out following 7.1.4. #### 7.1.5 Lead mass fractions between 0,5 % and 5,0 % Take a 20 ml aliquot of the test portion solution (7.1.2) and introduce into a 500 ml one-mark volumetric flask. Dilute to the mark with water and mix well. Proceed as indicated in 7.5. #### 7.2 Blank test Carry out a blank test simultaneously with the determination, following the same procedure and using the same quantities of all reagents, as used for the determination, but omitting the test portion. #### 7.3 Check test Make a preliminary check of the apparatus by preparing a solution of a reference material or a synthetic sample containing a known amount of lead and of composition similar to the material to be analysed. Carry out the procedure specified in 7.5. #### 7.4 Establishment of the calibration curve #### 7.4.1 Preparation of the calibration solutions #### **7.4.1.1** General In all cases, copper, salt-concentrations and acidity in the calibration solutions shall be similar to those of the test portion solutions. The presence of copper in the calibration solutions compensates for chemical interaction effects of copper in the test solution. Normally no similar additions are required to compensate for the effect of alloying elements. If an alloying element is present in the material to be analysed in mass fraction > 10 %, an appropriate mass of this element shall be added to the calibration solutions. The volumes of copper base solution added (4.8) have been calculated to compensate for chemical interaction effects of copper in test solutions of copper or high-copper alloys. Overcompensation may occur if the same volumes are added when the test samples are copper-based alloys where the percentage of copper is lower. In these cases, the volumes of copper base solution shall be decreased to match the copper content of the test sample in solution. The lead concentration of the calibration solutions shall be adjusted to suit the sensitivity of the spectrometer used, so that the curve of absorbance as a function of concentration is a straight line. #### **7.4.1.2** Lead mass fractions between 0,01 % and 0,15 % Into each of a series of six 100 ml one-mark volumetric flasks, introduce the volumes of lead standard solution (4.7) and of copper base solution (4.8) shown in Table 1. Dilute to the mark with water and mix well. Table 1 — Calibration for lead mass fractions between 0,01 % and 0,15 % | Lead standard
solution volume
(4.7) | Corresponding
lead
mass | Corresponding lead concentration after final dilution | Copper base solution volume (4.8) | Corresponding copper mass | Corresponding
lead
mass fraction
of sample | |--|-------------------------------|---|-----------------------------------|---------------------------|---| | ml | mg | mg/ml | ml | g | % | | 0 ^a | 0 | 0 | 50 | 1,000 | 0 | | 1 | 0,1 | 0,001 | 50 | 1,000 | 0,01 | | 2 | 0,2 | 0,002 | 50 | 1,000 | 0,02 | | 5 | 0,5 | 0,005 | 50 | 1,000 | 0,05 | | 10 | 1,0 | 0,010 | 50 | 1,000 | 0,10 | | 15 | 1,5 | 0,015 | 50 | 1,000 | 0,15 | | ^a Blank test on reagents for calibration curve. | | | | | | #### **7.4.1.3** Lead mass fractions between 0,1 % and 0,75 % Into each of a series of five 100 ml one-mark volumetric flask, introduce the volumes of lead standard solution (4.7) and of copper base solution (4.8) as shown in Table 2. Dilute to the mark with water and mix well. Table 2 — Calibration for lead mass fractions between 0,1 % and 0,75 % | Lead standard
solution volume
(4.7) | Corresponding
lead
mass | Corresponding
lead
concentration
after
final dilution | Copper
base
solution volume
(4.8) | Corresponding copper mass | Corresponding
lead
mass fraction
of sample | |---|-------------------------------|---|--|---------------------------|---| | ml | mg | mg/ml | ml | g | % | | 0a | 0 | 0 | 10 | 0,200 | 0 | | 2 | 0,2 | 0,002 | 10 | 0,200 | 0,10 | | 5 | 0,5 | 0,005 | 10 | 0,200 | 0,25 | | 10 | 1,0 | 0,010 | 10 | 0,200 | 0,50 | | 15 | 1,5 | 0,015 | 10 | 0,200 | 0,75 | | Blank test on reagents for calibration curve. | | | | | | #### **7.4.1.4** Lead mass fractions between 0,5 % and 5,0 % Into each of a series of six 100 ml one-mark volumetric flask, introduce the volumes of lead standard solution (4.7) and of copper base solution (4.8) as shown in Table 3. Dilute to the mark with water and mix well. Table 3 — Calibration for lead mass fractions between 0,5 % and 5,0 % | Lead standard
solution volume
(4.7) | Corresponding
lead
mass | Corresponding lead concentration after final dilution | Copper base solution volume (4.8) | Corresponding copper mass | Corresponding
lead
mass
fraction
of sample | |--|-------------------------------|---|-----------------------------------|---------------------------|--| | ml | mg | mg/ml | ml | g | % | | 0 ^a | 0 | 0 | 2 | 0,040 | 0 | | 2 | 0,2 | 0,002 | 2 | 0,040 | 0,50 | | 5 | 0,5 | 0,005 | 2 | 0,040 | 1,25 | | 10 | 1,0 | 0,010 | 2 | 0,040 | 2,50 | | 15 | 1,5 | 0,015 | 2 | 0,040 | 3,75 | | 20 | 2,0 | 0,020 | 2 | 0,040 | 5,00 | | ^a Blank test on reagents for calibration curve. | | | | | | #### 7.4.2 Adjustment of the atomic absorption spectrometer Fit the lead hollow-cathode lamp (5.4) into the atomic absorption spectrometer (5.3), switch on the current and allow it to stabilize. Adjust the wavelength in the region of 217,0 nm to minimum absorbance (see NOTE in Clause 3). Following the manufacturer's instructions, fit the correct burner, light the flame and allow the burner temperature to stabilize. Taking careful note of the manufacturer's instructions regarding the minimum flow rate of acetylene, aspirate the calibration solution of highest concentration of analyte and adjust the burner configuration and gas flows to obtain maximum absorbance. #### 7.4.3 Spectrometric measurement Aspirate the relevant series of calibration solutions (7.4.1.2, 7.4.1.3 or 7.4.1.4 depending on the expected lead content) in succession into the flame and measure the absorbance for each solution. Take care to keep the aspiration rate constant throughout the preparation of the calibration curve. Spray water through the burner after each measurement, see NOTE. NOTE For certain types of spectrometer, instead of water it is preferable to use a solution containing the attack reagents, in the same concentrations as in the test portion solutions. #### 7.4.4 Calibration curve Establish the calibration curve using measured absorbances and corresponding analyte amounts. Use appropriate spectrometer software or an off-line computer for regression calculations or prepare a graphical representation. #### 7.5 Determination #### 7.5.1 General The analyses shall be carried out independently, in duplicate. #### 7.5.2 Preliminary spectrometric measurement Carry out a preliminary measurement on the test portion solutions (7.1.3, 7.1.4, 7.1.5) following the procedure specified in 7.4.2 and 7.4.3 at the same time as the spectrometric measurements are carried out on the calibration solutions (see 7.4.1.2, 7.4.1.3 or 7.4.1.4). Estimate the preliminary analyte amount by using the calibration curve (7.4.4). #### 7.5.3 Spectrometric measurements #### **7.5.3.1** Use of the calibration curve Repeat the measurements and determine the concentration directly using the appropriate calibration curve. #### **7.5.3.2** Use of bracketing method Carry out a second measurement on the test portion solutions (7.1.3, 7.1.4 or 7.1.5) following the procedure specified in 7.4.3, by bracketing between two new calibration solutions with a composition similar to that of the calibration solutions (see 7.4.1), but having lead contents slightly higher and slightly lower (\pm 10 %) than the estimated lead concentration of the test portion solution. To prepare these calibration solutions, follow the procedure specified in 7.4.1 using, however, suitable quantities of lead standard solution (4.7). ## 8 Expression of results #### 8.1 Use of calibration curve Calculate the lead mass fraction, in percent (%), as follows: $$w(Pb) = \frac{c_1}{m} \times V_f \times 100 \tag{1}$$ where w(Pb) is the lead mass fraction in per cent (%); c_1 is the lead concentration from the calibration curve, in milligram per millilitre (mg/ml); is the mass of the test portion in milligram (mg); $V_{\rm f}$ is the total¹⁾ volume of the test portion solution (7.1.3, 7.1.4, 7.1.5), in millilitre (ml). #### 8.2 Use of bracketing method Calculate the lead mass fraction, in percent (%), as follows: $$w(Pb) = \frac{c_2}{m} \times V_f \times 100 \tag{2}$$ ¹⁾ Is the final volume corrected by a dilution ratio (if the case). - is the lead concentration, calculated using Formula (3), in milligram per millilitre (mg/ml); - is the mass of the test portion in milligram (mg); m - is the total¹⁾ volume of the test portion solution (7.1.3, 7.1.4 or 7.1.5), in millilitre (ml); $$c_2(Pb) = C_1 + (C_2 - C_1) \times \frac{S_0 - S_1}{S_2 - S_1}$$ (3) where - is the lower lead concentration of the calibration solution used, in milligram per millilitre (mg/ml); C_1 - is the higher lead concentration of the calibration solution used, in milligram per millilitre (mg/ml); - is the absorbance value of the test portion solution; S_0 - is the absorbance value of the calibration solution corresponding to concentration C_1 ; - is the absorbance value of the calibration solution corresponding to concentration C_2 . #### **Precision** Seven laboratories co-operated in validating this method and obtained the results summarized in Table 4 and Figure 1 respectively. Table 4 — Statistical information | Level | Reference value % | Found
% | Repeatability | Reproducibility R | |--------------|-------------------|------------|---------------|-------------------| | 1 (7.4.1.2) | 0,013 1 | 0,013 1 | 0,000 9 | 0,003 5 | | 2 (7.4.1.2) | 0,023 6 | 0,023 6 | 0,002 0 | 0,002 5 | | 3 (7.4.1.2) | 0,079 | 0,077 1 | 0,002 0 | 0,005 7 | | 4 (7.4.1.3) | 0,15 | 0,151 9 | 0,006 2 | 0,014 9 | | 5 (7.4.1.3) | 0,564 | 0,563 5 | 0,017 0 | 0,034 7 | | 6 (7.4.1.3) | 0,74 | 0,752 3 | 0,020 2 | 0,032 1 | | 7 (7.4.1.4) | 0,564 | 0,560 5 | 0,021 8 | 0,040 6 | | 8 (7.4.1.4) | 1,13 | 1,140 4 | 0,055 4 | 0,112 4 | | 9 (7.4.1.4) | 2,90 | 2,895 1 | 0,105 7 | 0,176 5 | | 10 (7.4.1.4) | 4,12 | 4,123 3 | 0,098 8 | 0,175 5 | | 11 (7.4.1.4) | 5,01 | 5,021 2 | 0,132 9 | 0,240 3 | $\lg r = 0.8615 \cdot \lg M - 1.4788$ $\lg R = 0.789 \ 9 \cdot \lg M - 1.200 \ 8$ Figure 1 — Ig relationship between lead mass fraction M and r and R ## 10 Test report The test report shall contain the following information: - a) Identification of the test sample; - b) Reference to this European Standard (EN 15622); - c) Test method used; - d) Results; - e) Any unusual characteristics noted during the determination; - f) Any operation not included in this European Standard or in the document to which reference is made or regarded as optional; - g) Date of the test and/or date of preparation or signature of the test report; - h) Signature of the responsible person. BS EN 15622:2010 EN 15622:2010 (E) # **Bibliography** - ISO 4749, Copper alloys Determination of lead content Flame atomic absorption spectrometric [1] method - [2] ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions - [3] ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - ISO 5725-3, Accuracy (trueness and precision) of measurement methods and results Part 3: [4] Intermediate measures of the precision of a standard measurement method # **BSI - British Standards Institution** BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL Further information about BSI is available on the BSI website at http://www.bsigroup.com. #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright and Licensing Manager. Tel: $\pm 44~(0)20~8996~7070$ Email: copyright@bsigroup.com BSI Group Headquarters 389 Chiswick High Road, London, W4 4AL, UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/ standards