Solid biofuels — Fuel specifications and classes

Part 1: General requirements

ICS 75.160.10

National foreword

This British Standard is the UK implementation of EN 14961-1:2010. It supersedes DD CEN/TS 14961:2005 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PTI/17, Solid biofuels.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2010

© BSI 2010

ISBN 978 0 580 67082 4

Amendments/corrigenda issued since publication

Date	Comments

BS EN 14961-1:2010

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 14961-1

January 2010

ICS 75.160.10

Supersedes CEN/TS 14961:2005

English Version

Solid biofuels - Fuel specifications and classes - Part 1: General requirements

Biocombustibles solides - Partie 1 : Classes et spécifications des combustibles

Feste Biobrennstoffe - Brennstoffspezifikationen und - klassen - Teil 1: Allgemeine Anforderungen

This European Standard was approved by CEN on 1 November 2009.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents	Pa	age
Foreword		3
1 Scope		5
2 Norma	ive references	5
3 Terms	and definitions	6
	Is and abbreviations	
-	le	
6 Classif 6.1 Genera 6.2 Woody 6.2.1 Forest, 6.2.2 By-pro 6.2.4 Blends 6.3 Herbac 6.3.1 Agricu 6.3.2 By-pro 6.3.3 Blends 6.4 Fruit bi 6.4.1 Orchar 6.4.2 By-pro 6.4.3 Blends	ication of origin and sources of solid biofuels	8 12 12 13 13 13 13 13 13
7.1 Traded	cation of solid biofuels based on traded forms and properties forms of solid biofuels cation of properties of solid biofuels	14
Annex A (inform	native) Illustrations of typical forms of wood fuels	34
Annex B (inform	native) Typical values of solid biomass fuels	36
	native) Examples of possible causes for deviant levels for different properties and sequences of handling and treatments for the properties of biomass	47
	native) Calculation of the net calorific value at different bases and energy density ived	49
Bibliography		52

Foreword

This document (EN 14961-1:2010) has been prepared by Technical Committee CEN/TC 335 "Solid biofuels", the secretariat of which is held by SIS.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2010, and conflicting national standards shall be withdrawn at the latest by July 2010.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes CEN/TS 14961:2005.

The series EN 14961, *Solid biofuels* — *Fuel specifications and classes* is provided as a general requirement and additional product standards. Additional product standards may extend this series over time.

EN 14961, Solid biofuel — Fuel specification and classes, consists of the following parts:

- Part 1: General requirements
- Part 2: Wood pellets for non-industrial use (under development)
- Part 3: Wood briquettes for non-industrial use (under development)
- Part 4: Wood chips for non-industrial use (under development)
- Part 5: Firewood for non-industrial use (under development)
- Part 6: Non woody pellets for non-industrial use (under development)

Although these product standards may be obtained separately, they require a general understanding of the standards based on and supporting EN 14961-1. It is recommended to obtain and use EN 14961-1 in conjunction with these standards.

In these product standards, "non-industrial" use means use in smaller scale appliances, such as in households and small commercial and public sector buildings.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Introduction

This European Standard, *Fuel Specifications and Classes — Part 1: General requirements*, has been produced by TC 335 Solid Biofuels Working Group "Fuel Specifications, Classes and Quality Assurance".

The objective of this European Standard is to provide unambiguous and clear classification principles for solid biofuels and to serve as a tool to enable efficient trading of biofuels and to enable good understanding between seller and buyer as well as a tool for communication with equipment manufacturers. It will also facilitate authority permission procedures and reporting.

This European Standard is made for all user groups.

Figure 1 describes the bioenergy utilisation chain from sources of biomass, to biofuel production to final use of bioenergy. Although biomass can be used for energy generation it has many other primary uses (non-fuels) as a raw material for construction, furniture, packaging, paper products, etc. The classifications given in this European Standard are provided with the objective of using biomass as a biofuel, and therefore do not deal with all other uses. The biofuels covered by this European Standard are identical to the fuels exempted from the Directive 2000/76/EC (Article 2.2 a) from i) to v)) on incineration of waste.

Figure 1 — CEN TC 335 within the biomass - Biofuel - Bioenergy field

1 Scope

This European Standard determines the fuel quality classes and specifications for solid biofuels. According to the mandate given for the standardisation work, the scope of the CEN/TC 335 only includes solid biofuels originating from the following sources:

- a) products from agriculture and forestry;
- vegetable waste from agriculture and forestry;
- vegetable waste from the food processing industry;
- wood waste, with the exception of wood waste which may contain halogenated organic compounds or heavy metals as a result of treatment with wood preservatives or coating, and which includes in particular such wood waste originated from construction and demolition waste;
- e) fibrous vegetable waste from virgin pulp production and from production of paper from pulp, if it is coincinerated at the place of production and heat generated is recovered;
- f) cork waste.

NOTE 1 For the avoidance of doubt, demolition wood is not included in the scope of this European Standard. Demolition wood is "used wood arising from demolition of buildings or civil engineering installations" (prEN 14588).

NOTE 2 Aquatic biomass is not included in the scope of this European Standard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

prEN 14588:2009, Solid biofuels — Terminology, definitions and descriptions

EN 14774-1, Solid biofuels — Determination of moisture content — Oven dry method – Part 1: Total moisture — Reference method

EN 14774-2, Solid biofuels — Determination of moisture content — Oven dry method – Part 2: Total moisture — Simplified method

EN 14775, Solid biofuels — Determination of ash content

CEN/TS 14778 (all parts), Solid biofuels — Sampling

CEN/TS 14780, Solid biofuels — Methods for sample preparation

EN 14918, Solid Biofuels — Determination of calorific value

EN 15103, Solid Biofuels — Determination of bulk density

CEN/TS 15104, Solid biofuels — Determination of total content of carbon, hydrogen and nitrogen — Instrumental methods

CEN/TS 15149-1, Solid biofuels — Methods for the determination of particle size distribution — Part 1: Oscillating screen method using sieve apertures of 3,15 mm and above

CEN/TS 15149-2, Solid biofuels — Methods for the determination of particle size distribution — Part 2: Vibrating screen method using sieve apertures of 3,15 mm and below

CEN/TS 15150, Solid biofuels — Methods for the determination of particle density

EN 15210-1, Solid Biofuels — Determination of mechanical durability of pellets and briquettes — Part 1: Pellets

CEN/TS 15210-2, Solid biofuels — Methods for the determination of mechanical durability of pellets and briquettes — Part 2: Briquettes

CEN/TS 15234, Solid biofuels — Fuel quality assurance

CEN/TS 15289, Solid Biofuels — Determination of total content of sulphur and chlorine

CEN/TS 15290, Solid Biofuels — Determination of major elements

CEN/TS 15296, Solid Biofuels — Calculation of analyses to different bases

CEN/TS 15297, Solid Biofuels — Determination of minor elements

CEN/TS 15370-1, Solid biofuels — Method for the determination of ash melting behaviour — Part 1: Characteristic temperatures method

3 Terms and definitions

For the purposes of this document, the terms and definitions given in prEN 14588:2009 and the following apply.

3.1

chemical treatment

any treatment with chemicals other than air, water or heat (e.g. glue and paint)

NOTE Examples of chemical treatments are listed in informative Annex C.

4 Symbols and abbreviations

The symbols and abbreviations used in this European Standard comply with the SI system of units as far as possible.

d dry (dry basis)

daf dry, ash-free

ar as received

w-% weight-percentage

- A Designation for ash content [w-%, dry basis]¹⁾
- BD Designation for bulk density as received [kg/m³]¹⁾
- D Designation for diameter as received [mm]¹⁾
- D Diameter as received [mm]
- DE Designation for particle density as received [g/cm³]¹⁾
- DT Designation for deformation temperature [°C]
- DU Designation for mechanical durability as received [w-%]¹⁾
- Energy density as received [GJ/m³ or MWh/m³ loose or stacked volume] (amount of energy/volume unit)
- E Designation for energy density [GJ/m³ or MWh/m³ loose or stacked volume]¹⁾
- F Designation for amount of fines [w-%, as received]
- L Length as received [mm]
- L Designation for length as received [mm]¹⁾
- $M_{\rm ar}$ Total moisture content as received [w-%] on wet basis
- M Designation for moisture content as received [w-%]¹⁾
- P Designation for particle size distribution as received [mm]¹⁾
- $q_{V,gr,d}$ Gross calorific value at constant volume on dry basis [MJ/kg]
- $q_{p,\text{net,d}}$ Net calorific value at constant pressure on dry basis [MJ/kg]
- Q Designation for net calorific value as received, $q_{p,\text{net,ar}}$ [MJ/kg or kWh/kg or MWh/t] at constant pressure¹⁾

NOTE 1 MJ/kg equals 0,2778 kWh/kg (1 kWh/kg equals 1 MWh/t and 1 MWh/t is 3,6 MJ/kg). 1 g/cm^3 equals 1 kg/dm^3 .

5 Principle

Solid biofuels are specified by:

- a) origin and source, Clause 6;
- b) major traded forms and properties, Clause 7.

For specification of origin and source, see Table 1. For major traded forms, see Table 2.

For specification of properties see Tables 3 to 15. The major traded forms of solid biofuels are covered by Tables 3 to 14. Table 15 is a general master table to be used for solid biofuels not covered by Tables 3 to 14.

¹⁾ Designation symbols are used in combination with a number to specify property levels in Tables 3 to 15. For designation of chemical properties chemical symbols like S (sulphur), Cl (chlorine), N (nitrogen) are used and the value is added at the end of the symbol.

If solid biofuels fall outside the specifications of the major traded fuels given in Tables 3 to 14 then Table 15 should be used for specification purposes.

Tables 3 to 15 list the normative properties, which shall be specified and informative properties, which are voluntary. Normative properties vary depending on both origin and traded form.

EXAMPLE OF SPECIFICATION

Origin: Logging residues (1.1.4)

Traded form: Wood chips

Properties: Particle size distribution P45, Moisture M40, Ash A1.5

In the case of wood chips (Table 5) the properties of dimensions, moisture and ash are normative in the specification. Other properties are informative.

Specifications for high quality classes of solid biofuels are recommended for smaller scale appliances, such as in households and small commercial and public sector buildings. Product standards for such biofuels are given in other parts of EN 14961.

6 Classification of origin and sources of solid biofuels

6.1 General

The classification is based on the biofuel origin and source. In the hierarchical classification system (Table 1) the main origin-based solid biofuel groups are:

- a) woody biomass;
- b) herbaceous biomass;
- c) fruit biomass; and
- d) blends and mixtures.

Woody biomass is biomass from trees, bushes and shrubs.

Herbaceous biomass is from plants that have a non-woody stem and which die back at the end of the growing season. It includes grains and their by-products such as cereals.

Fruit biomass is the biomass from the parts of a plant which are from or hold seeds.

If appropriate, also the actual species (e.g. spruce, wheat) of biomass should be stated.

The term "Blends and mixtures" in Table 1 refers to material of various origin within the given box in the classification table and appears on four levels. Blends are intentionally mixed biofuels, whereas mixtures are unintentionally mixed biofuels. The origin of the blend and mixture shall be described using Table 1.

If solid biofuel blend or mixture may contain chemically treated material it shall be stated.

The second level of classification in Table 1 describes fuels from different sources within the main groups, primarily stating whether the biomass is a virgin material, a by-product or a residue from the industry.

Groups in Table 1 are further divided into third and fourth level sub-groups. The purpose of Table 1 is to allow the possibility to differentiate and specify biofuel material based on origin with as much detail as needed. With the help of typical values from informative Annex B information on physical and chemical properties can be deduced.

Examples for classification according to Table 1:

- a) Whole trees without roots from birch (1.1.1.1);
- b) Logging residues (1.1.4);
- c) Logging residues from spruce stands (1.1.4.2);
- d) Sawdust from broad-leaf (1.2.1.1);
- e) Ply from coniferous(1.2.1.2);
- f) Plywood residues (1.2.2.1);
- g) Grinding dust from furniture industry (1.2.2.1);
- h) Lignin (1.2.2.4);
- i) Construction wood (1.3.1.1);
- j) Pallets (1.3.2.1);
- k) Reed canary grass (2.1.2.1);
- I) Straw from wheat, barley, oat, rye (2.1.1.2);
- m) Rice husk (2.1.1.4);
- n) Grains or seeds crops from food processing industry (2.2.1.1);
- o) Olive residues from olive pressing (3.2.2.4).

Table 1 — Classification of origin and sources of solid biofuels

1. Woody	1.1 Forest, plantation and	1.1.1 Whole trees without roots	1.1.1.1 Broad-leaf	
biomass	other virgin wood		1.1.1.2 Coniferous	
	- I said tagain tree a		1.1.1.3 Short rotation coppice	
			1.1.1.4 Bushes	
			1.1.1.5 Blends and mixtures	
		1.1.2 Whole trees with roots	1.1.2.1 Broad-leaf	
		Title villete areas mai reas	1.1.2.2 Coniferous	
			1.1.2.3 Short rotation coppice	
			1.1.2.4 Bushes	
			1.1.2.5 Blends and mixtures	
		1.1.3 Stemwood	1.1.3.1 Broad-leaf	
		111.0 Ctomwood	1.1.3.2 Coniferous	
			1.1.3.3 Blends and mixtures	
		1.1.4 Logging residues	1.1.4.1 Fresh/Green, Broad-leaf	
		1.1.4 Logging residues	(including leaves)	
			1.1.4.2 Fresh/Green, Coniferous	
			(including needles)	
			1.1.4.3 Stored, Broad-leaf	
			1.1.4.4 Stored, Coniferous	
			1.1.4.5 Blends and mixtures	
		1.1.5 Stumps/roots	1.1.5.1 Broad-leaf	
		1.1.0 Stamportooto	1.1.5.2 Coniferous	
			1.1.5.3 Short rotation coppice	
			1.1.5.4 Bushes	
			1.1.5.5 Blends and mixtures	
		1.1.6 Bark (from forestry operatio	ns) ^a	
			dens, parks, roadside maintenance,	
		vineyards and fruit orchards	ione, pario, readolae maintenarios,	
		1.1.8 Blends and mixtures		
	1.2 By-products and	1.2.1 Chemically untreated	1.2.1.1 Without bark, Broad-leaf	
	residues from wood	wood residues	1.2.1.2 Without bark, Coniferous	
	processing industry		1.2.1.3 With bark, Broad-leaf	
	,		1.2.1.4 With bark, Coniferous	
			1.2.1.5 Bark (from industry	
			operations) ^a	
		1.2.2 Chemically treated wood	1.2.2.1 Without bark	
		residues, fibres and wood	1.2.2.2 With bark	
		constituents	1.2.2.3 Bark (from industry	
			operations) ^a	
			1.2.2.4 Fibres and wood constituents	
		1.2.3 Blends and mixtures		
	1.3 Used wood	1.3.1 Chemically untreated	1.3.1.1 Without bark	
	,	wood	1.3.1.2 With bark	
			1.3.1.3 Bark ^a	
		1.3.2 Chemically treated wood	1.3.2.1 Without bark	
		Griding and wood	1.3.2.2 With bark	
			1.3.2.3 Bark ^a	
		1.3.3 Blends and mixtures		
	1.4 Blends and mixtures			
	-			
a Cork waste is in	ncluded in bark sub-groups.			
	NOTE 1 For the avoidance of doubt, demolition wood is not included in the scope of this European Standard.			

NOTE 1 For the avoidance of doubt, demolition wood is not included in the scope of this European Standard. Demolition wood is "used wood arising from demolition of buildings or civil engineering installations" (see prEN 14588).

NOTE 2 If appropriate, also the actual species (e.g. spruce, wheat) of biomass may be stated. Wood species may be stated e.g. according to EN 13556, *Round and sawn timber — Nomenclature of timbers used in Europe*^[1].

NOTE 3 Chemical treatment before harvesting of biomass does not need to be stated. Where any operator in the fuel supply chain has reason to suspects serious contamination of land (e.g. coal slag heaps) or if planting has been used specifically for the sequestration of chemicals or biomass is fertilized by sewage sludge (issued from waste water treatment or chemical process), fuel analysis should be carried out to identify chemical impurities such as halogenated organic compounds or heavy metals.

Table 1 (continued)

2. Herbaceous	2.1 Herbaceous biomass	2.1.1 Cereal crops	2.1.1.1 Whole plant
biomass	from agriculture and		2.1.1.2 Straw parts
	horticulture		2.1.1.3 Grains or seeds
			2.1.1.4 Husks or shells
			2.1.1.5 Blends and mixtures
		2.1.2 Grasses	2.1.2.1 Whole plant
			2.1.2.2 Straw parts
			2.1.2.3 Seeds
			2.1.2.4 Shells
			2.1.2.5 Blends and mixtures
		2.1.3 Oil seed crops	2.1.3.1 Whole plant
			2.1.3.2 Stalks and leaves
			2.1.3.3 Seeds
			2.1.3.4 Husks or shells
			2.1.3.5 Blends and mixtures
		2.1.4 Root crops	2.1.4.1 Whole plant
			2.1.4.2 Stalks and leaves
			2.1.4.3 Root
			2.1.4.4 Blends and mixtures
		2.1.5 Legume crops	2.1.5.1 Whole plant
			2.1.5.2 Stalks and leaves
			2.1.5.3 Fruit
			2.1.5.4 Pods
			2.1.5.5 Blends and mixtures
		2.1.6 Flowers	2.1.6.1 Whole plant
			2.1.6.2 Stalks and leaves
			2.1.6.3 Seeds
			2.1.6.4 Blends and mixtures
		2.1.7 Segregated herbaceous b	piomass from gardens, parks, roadside
		maintenance, vineyards, and fruit orchards	
		2.1.8 Blends and mixtures	
	2.2 By-products and residues from herbaceous	2.2.1 Chemically untreated	2.2.1.1 Cereal crops and grasses
		herbaceous residues	2.2.1.2 Oil seed crops
	processing industry ^b		2.2.1.3 Root crops
			2.2.1.4 Legume crops
			2.2.1.5 Flowers
			2.2.1.6 Blends and mixtures
		2.2.2 Chemically treated	2.2.2.1 Cereal crops and grasses
		herbaceous residues	2.2.2.2 Oil seed crops
			2.2.2.3 Root crops
			2.2.2.4 Legume crops
			2.2.2.5 Flowers
			2.2.2.6 Blends and mixtures
		2.2.3 Blends and mixtures	
	2.3 Blends and mixtures		
^b Group 2.2 also in	cludes residues and by-products	from the food processing industry.	

Table 1 (concluded)

3. Fruit biomass	3.1 Orchard and	3.1.1 Berries	3.1.1.1 Whole berries
o. I fait bioinage	horticulture fruit	O.T. I Bollico	3.1.1.2 Flesh
	l increase in an		3.1.1.3 Seeds
			3.1.1.4 Blends and mixtures
		3.1.2 Stone/kernel fruits	3.1.2.1 Whole fruit
		0.1.2 Grond/Remornal marks	3.1.2.2 Flesh
			3.1.2.3 Stone/kernel
			3.1.2.4 Blends and mixtures
		3.1.3 Nuts and acorns	3.1.3.1 Whole nuts
			3.1.3.2 Shells/husks
			3.1.3.3 Kernels
			3.1.3.4 Blends and mixtures
		3.1.4 Blends and mixtures	
	3.2 By-products and residues from fruit processing industry ^c	3.2.1 Chemically untreated fruit residues	3.2.1.1 Berries
			3.2.1.2 Stone/kernel fruits
			3.2.1.3 Nuts and acorns
			3.2.1.4 Crude olive cake
			3.2.1.5 Blends and mixtures
		3.2.2 Chemically treated fruit residues	3.2.2.1 Berries
			3.2.2.2 Stone/kernel fruits
			3.2.2.3 Nuts and acorns
			3.2.2.4 Exhausted olive cake
			3.2.2.5 Blends and mixtures
		3.2.3 Blends and mixtures	
	3.3 Blends and mixtures		
4 Blends and	4.1 Blends		
mixtures	4.2 Mixtures		
^c Group 3.2 also includes residues and by-products from the food processing industry.			

NOTE 4 Group 4 "Blends and mixtures" include blends and mixtures from the main origin-based solid biofuel groups 1 to 3.

6.2 Woody biomass

6.2.1 Forest, plantation and other virgin wood

Forest, plantation and other virgin wood in this group may only have been subjected to size reduction, debarking, drying or wetting. Forest, plantation and other virgin wood includes wood from forests, parks, gardens, plantations and from short rotation forests and coppice.

6.2.2 By-products and residues from wood processing industry

Wood by-products and wood residues from industrial production are classified in this group. These biofuels can be chemically untreated (for example residues from debarking, sawing or size reduction, shaping, pressing) or chemically treated wood residues from wood processing and the production of panels and furniture (glued, painted, coated, lacquered or otherwise treated wood), as long as they do not contain heavy metals or halogenated organic compounds as a result of treatment with wood preservatives or coating.

NOTE This classification is in accordance with the classification in the European Waste Catalogue^[2] including the waste code No. 03 01 (Wastes from wood processing and the production of panels and furniture).

6.2.3 Used wood

This group includes post consumer/post society wood waste; natural or merely mechanically processed wood, contaminated only to an insignificant extent during use by substances that are not normally found in wood in its natural state (for example pallets, transport cases, boxes, wood packages, cable reels, construction wood). With respect to treatment the same criteria apply as with respect to "wood processing industry by-products and residues", i.e. the used wood shall not contain heavy metals or halogenated organic compounds as a result of treatment with wood preservatives or coating.

NOTE This classification is in accordance with the classification in the European Waste Catalogue^[2] including the waste codes No. 15 01 03 (Wooden packaging), 17 02 01 (Construction and demolition wood wastes, but without the demolition wood wastes, which are excluded according the scope) and 20 01 38 (Municipal wood wastes including separately collected fractions).

6.2.4 Blends and mixtures

This refers to blends and mixtures of woody biomass in the groups 1.1 to 1.3 in Table 1. The mixing can be either intentional (blends) or unintentional (mixtures).

6.3 Herbaceous biomass

6.3.1 Agriculture and horticulture herbaceous biomass

Material, which comes directly from the field, perhaps after a storage period, and may only have been subject to size reduction and drying is included here. It covers herbaceous material from agricultural and horticultural fields and from gardens and parks.

6.3.2 By-products and residues from herbaceous processing industry

This refers to any herbaceous biomass material that is left over after industrial handling and treatment.

Examples are residues from the production of sugar from sugar beets, barley malt residues from beer production and raw vegetable residues from food processing industry.

6.3.3 Blends and mixtures

This refers to blends and mixtures of herbaceous biomass in the groups 2.1 to 2.2 in Table 1. The mixing can be either intentional (blends) or unintentional (mixtures).

6.4 Fruit biomass

6.4.1 Orchard and horticulture fruit

Fruit from trees, bushes and fruit from herbs (e.g. tomatoes and grapes) are classified in this group.

6.4.2 By-products and residues from fruit processing industry

This refers to a fruit biomass material that is left over after industrial handling and treatment.

Examples are pressing residues from olive oil or apple juice production and processed (e.g. heated, steamed, cooked, etc.) vegetable residues from food processing industry.

6.4.3 Blends and mixtures

This refers to blends and mixtures of fruit biomass in the groups 3.1 to 3.2 in Table 1. The mixing can be either intentional (blends) or unintentional (mixtures).

6.5 Biomass blends and mixtures

These include blends and mixtures of different biomasses mentioned above under 6.2 to 6.4. The mixing can be either intentional (blends) or unintentional (mixtures).

7 Specification of solid biofuels based on traded forms and properties

7.1 Traded forms of solid biofuels

Solid biofuels are traded in many different sizes and shapes. The size and shape influence the handling of the fuel as well as its combustion properties. Biofuels may be delivered for example in the forms shown in Table 2.

Table 2 — Major traded forms of solid biofuels

Fuel name	Typical particle size	Common preparation method
Whole tree (Table 15)	> 500 mm	No preparation or delimbed
Wood chips (Table 5)	5 mm to 100 mm	Cutting with sharp tools
Hog fuel (Table 6)	Varying	Crushing with blunt tools
Log wood/firewood (Table 7)	100 mm to 1 000 mm	Cutting with sharp tools
Bark (Table 10)	Varying	Debarking residue from trees Can be shredded or unshredded
Bundle (Table 15)	Varying	Lengthways oriented & bound
Fuel powder (Table 15)	< 1 mm	Milling
Sawdust (Table 8)	1 mm to 5 mm	Cutting with sharp tools
Shavings (Table 9)	1 mm to 30mm	Planing with sharp tools
Briquettes (Table 3)	Ø <u>></u> 25 mm	Mechanical compression
Pellets (Table 4)	Ø < 25 mm	Mechanical compression
Bales (Table 11)		
Small square bales	0,1 m ³	Compressed and bound to squares
Big square bales	3,7 m ³	Compressed and bound to squares
Round bales	2,1 m ³	Compressed and bound to cylinders
Chopped straw or energy grass (Table 15)	10 mm to 200 mm	Chopped during harvesting or before combustion
Grain (Table 12, Table 13) or seed (Table 13, Table 14)	Varying	No preparation or drying except for process operations necessary for storage for cereal grain
Fruit stones or kernel (Table 13)	5 mm to 15 mm	No preparation or pressing and extraction by chemicals.
Fibre cake (Table 15)	Varying	Prepared from fibrous waste by dewatering

NOTE 1 Also other forms may be used.

NOTE 2 The definitions from different traded forms are in accordance with prEN 14588.

Figures in the informative Annex A describe the particle size differences between different wood fuels and also the difference between wood chips and hog fuel.

7.2 Specification of properties of solid biofuels

The European Standards listed in Clause 2 shall be used for the sampling and determination of properties of solid biofuels. The additional parts of 14961 (e.g. 14961-2, 14961-3, etc.) have been developed to describe non-industrial solid biofuel products. These Product Standards are recommended for smaller scale appliances, such as households and small commercial and public sector buildings. Wood pellets, wood briquettes, wood chips and firewood (log wood) are traded forms commonly used for small-scale applications.

For a specification of a solid biofuel, the denominations given in Tables 3 to 15 are normative and informative properties. In Tables 3 to 14 solid biofuels are defined by property classes.

When specifying a class within a property, the average numerical value from the whole lot or defined portion from the lot (e.g. shipload, truckload or bag) shall determine which class shall be used. For an example in Table 6, the ash class A3.0 (\leq 3%) means that the average ash content shall be \leq 3,0% to belong to this class.

A general master table (Table 15) shall be used for solid biofuels not covered by Tables 3 to 14.

If the properties being specified are sufficiently known through information about the origin and handling (or preparation method combined with experience) then physical/chemical analysis may not be needed.

To minimise resources needed, one of the measures in the following order is recommended:

- a) using typical values, e.g. laid down in Annex B, or obtained by experience;
- b) calculation of properties, e.g. by using typical values and considering documented specific values;
- c) carrying out of analysis:
 - 1) with simplified methods if available;
 - 2) with reference methods.

The responsibility of the producer or supplier to provide correct and accurate information is exactly the same whether laboratory analysis is performed or not. Typical values do not negate the producer or supplier from providing accurate and reliable information.

NOTE 1 Typical values for some physical and chemical properties of biofuels are listed in Annex B. These can be used as an indication of the properties when needed, however, they may not be used for the limitation of the fuel parameters.

Conversion of a value on a dry basis (d) to a dry, ash free basis (daf) or to as received basis (ar) is given in CEN/TS 15296.

NOTE 2 For Tables 3 to 15: only chemically treated biomass that are included in the scope, should be considered, i.e. wood waste which can contain halogenated organic compounds or heavy metals as a result of treatment with wood preservatives or coating, are not included. Examples of chemical treatment are mentioned in Annex C.

NOTE 3 For Tables 3 to 15 is stated that the net calorific value should be specified on as received basis. The net calorific value will vary depending on the actual moisture content in the fuel. The value given in a specification is thus valid only for the actual connected moisture content. The net calorific value as received $(q_{p,\text{net,ar}}, \text{ designation } Q)$ can be calculated using both the net calorific value on a dry basis $(q_{p,\text{net,d}})$ and the moisture content (see Annex D).

Table 3 — Specification of properties for briquettes

	Master table		1	
	Origin:	-	Woody biomass (1);	
		6.1 and Table 1	Herbaceous biomass (2);	
			Fruit biomass (3);	
			Blends and mixtures (4).	
		n (see Table 2)	Briquette	
	Dimensions			
) or equivalent (diagonal or cross cut), mm		
	D 40	25 ≤ <i>D</i> ≤ 40		
	D 50	≤ 50		
	D 60	≤ 60		
	D 80	≤ 80		
	D 100	≤ 100		
	D 125	≤ 125		
	D 125+	> 125 (maximum value to be stated)		
	Length (L), r			
	L 50	≤ 50		
	L 100	≤ 100	L Length D Diameter	
	L 200	≤ 200		
	L 300	≤ 300		
	L 400	≤ 400	Figure 2 — Examples of briquettes	
	L 400+	> 400 (maximum value to be stated)		
		(w-% as received) EN 14774-1, EN 14774	l-2	
	M10	≤ 10 %		
>	M15 ≤ 15 %			
ormative	Ash, A (w-% of dry basis) EN 14775			
Ē	A0.5	≤ 0,5 %		
	A0.7	≤ 0,7 %		
z	A1.0	≤ 1,0 %		
	A1.5	≤ 1,5 %		
	A2.0	≤ 2,0 %		
	A3.0	≤ 3,0 %		
	A5.0	≤ 5,0 %		
	A7.0	≤ 7,0 %		
	A10.0	≤ 10,0 %		
	A10.0+ > 10,0 % (maximum value to be stated)			
		sity, DE (g/cm ³) CEN/TS 15150		
	DE0.8	≥ 0,8		
	DE0.9	≥ 0,9		
	DE1.0	≥ 1,0		
	DE1.1	≥ 1,1		
	DE1.2	≥ 1,2		
	DE1.2+	> 1,2 (maximum value to be stated)		
	Additives (w	<i>u</i> -% of pressing mass) ^a	Type and content of pressing aids, slagging inhibitors or any other additives have to be stated	
	Net calorific	value as received, Q (MJ/kg or kWh/kg)		
	EN 14918			
	-			

	Mechanio	cal durability, DU (w-% of briquettes after to	esting) CEN/TS 15210-2	
	DU95.0	≥ 95.0 %	Informative:	
	DU90.0	≥ 90,0 %	only if traded in bulk	
	DU90.0-	< 90,0 % (minimum value to be stated)	,	
	Nitrogen, N (w-% of dry basis) CEN/TS 15104			
	N0.3	≤ 0,3 %	Normative:	
	N0.5	≤ 0,5 %	Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)	
	N1.0	≤ 1,0 %	Informative:	
ا≝	N2.0	≤ 2,0 %	All fuels that are not chemically treated (see the	
nat	N3.0	≤ 3,0 %	exceptions above)	
o I	N3.0+	>3,0 % (maximum value to be stated)	·	
Normative / informative		S (w-% of dry basis) CEN/TS 15289		
- e	S0.02	≤ 0,02 %	Normative:	
≟	S0.05	≤ 0,05 %	Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2) or	
Щ	S0.08	≤ 0,08 %	if sulphur containing additives have been used.	
ļ	S0.10	≤ 0,10 %	Informative:	
-	S0.20	≤ 0,20 %	All fuels that are not chemically treated (see the	
	S0.20+	> 0,20 % (maximum value to be stated)	exceptions above)	
		CI (w-% of dry basis) CEN/TS 15289		
	CI0.02	≤ 0,02 %	Normative:	
	CI0.03	≤ 0,03 %	Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)	
	CI0.07	≤ 0,07 %	Informative:	
	CI0.10	≤ 0,10 %	All fuels that are not chemically treated (see the	
	CI0.10+	> 0,10 % (maximum value to be stated)	exceptions above)	
Inforr	mative: As	h melting behaviour (°C) CEN/TS 15370-	Deformation temperature, DT should be stated	
1				
	^a The maximum amount of additive is 20 w-% of pressing mass. Type stated as chemical substance (e.g. starch). If amount is greater,			
then raw material for briquette is blend.				

NOTE 4 Special attention should be paid to the ash melting behaviour for some biomass fuels, for example eucalyptus, poplar, short rotation coppice, straw, miscanthus and olive stone.

Table 4 —Specification of properties for pellets

	Master tak	ble		
	Origin:		Woody biomass (1);	
			Herbaceous biomass (2);	
			Fruit biomass (3);	
			Blends and mixtures (4).	
	Traded Fo	orm (see Table 2)	Pellets	
	L	Length D Diameter	*	
			$D \mid ($	
	'	Figure 3 — Dimensions (mm)	L	
	Dimension	ns (mm)		
		(D) and Length (L) a		
	D 06	6 mm ± 1,0 mm and 3,15 ≤ L ≤ 40 mm		
	D 08	D 08 8 mm \pm 1,0 mm, and 3,15 \leq L \leq 40 mm		
	D 10	, , , , , , , , , , , , , , , , , , , ,		
	D 12	12 mm \pm 1,0 mm, and 3,15 \leq L \leq 50 mm		
	D 25	25 mm \pm 1,0 mm, and 10 \leq L \leq 50 mm		
		M (w-% as received) EN 14774-1, EN 14774-2	2	
	M10	\(\(\text{W} \cdot \text{W} \) as received) EN 14774-1, EN 14774-2 \(\leq \text{10 } \text{\tin\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi\texi}\text{\text{\texi\texi{\texi}\text{\texit{\text{\ti}\tint{\text{\texi}\text{\ti}\ti	-	
	M15			
		≤ 15 % -% of dry basis) EN 14775		
	ASII, A (W-	•		
		≤ 0,5%		
	A0.7	≤ 0,7%		
	A1.0	≤ 1,0%		
	A1.5	≤ 1,5 %		
) e	A2.0	≤ 2,0 %		
ţ	A3.0	≤ 3,0 %		
ormative	A5.0	≤ 5,0 %		
r -	A7.0	≤ 7,0 %		
Ž	A10.0	≤ 10,0 %		
-	A10.0+	> 10,0 %		
	Mechanical durability, DU (w-% of pellets after testing) EN 15210-1			
	DU97.5	≥ 97,5 %		
	DU96.5	≥ 96,5 %		
	DU95.0	≥ 95,0 %		
	DU95.0-	< 95,0 % (minimum value to be stated)		
	Amount o	of fines, F (w-%, < 3,15 mm b) after production	when loaded or packed, CEN/TS 15149-1	
	F1.0	≤ 1,0 %		
	F2.0	≤ 2,0 %		
	F3.0	≤ 3,0 %		
	F5.0	≤ 5,0 %		
	F5.0+	> 5,0 % (maximum value to be stated)		
	Additives		Type and content of pressing aids, slagging inhibitors or any other additives have to be stated	
		sity (BD) as received (kg/m³) EN 15103	or any other additives have to be stated	
	BD550	≥ 550 kg/m ³		
	BD600	≥ 600 kg/m ³		
	BD650	≥ 650 kg/m ³		
	BD700	≥ 700 kg/m ³		
	BD700+	> 700 kg/m³ (minimum value to be stated)		
	Net calori EN 14918		Minimum value to be stated	
		L		

	Sulphur, S	(w-% of dry basis) CEN/TS 15289			
	S0.02	≤ 0,02 %	Normative:		
	S0.05	≤ 0,05 %	Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2) or		
	S0.08	≤ 0,08 %	if sulphur containing additives have been used.		
	S0.10	≤ 0,10 %	Informative:		
o o	S0.20	≤ 0,20 %	All fuels that are not chemically treated (see the		
Ĭ.Š	S0.20+	> 0,20 % (maximum value to be stated)	exceptions above)		
Normative / informative	Nitrogen, N	(w-% of dry basis) CEN/TS 15104			
I	N0.3	≤ 0,3 %	Normative:		
Ξ.	N0.5	≤ 0,5 %	Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)		
- e	N1.0	≤ 1,0 %	Informative:		
≩	N2.0	≤ 2,0 %	All fuels that are not chemically treated (see the		
l e	N3.0	≤ 3,0 %	exceptions above)		
힏	N3.0+	> 3,0 % (maximum value to be stated)			
~		(w-% of dry basis) CEN/TS 15289			
	CI0.02	≤ 0,02 %	Normative:		
	CI0.03	≤ 0,03 %	Chemically treated biomass (1.2.2; 1.3.2; 2.2.2; 3.2.2)		
	CI0.07	≤ 0,07 %	Informative:		
	CI0.10	≤ 0,10 %	All fuels that are not chemically treated (see the		
	CI0.10+	> 0,10 % (maximum value to be stated)	exceptions above)		
Infor	mative: Ash	melting behaviour (°C) CEN/TS 15370-	Deformation temperature, DT should be stated		
1		- , ,			
<u> </u>					

^a Amount of pellets longer than 40 mm (or 50 mm) can be 5 w-%. Maximum length for classes D06, D08 and D10 shall be < 45 mm.

NOTE 5 Special attention should be paid to the ash melting behaviour for some biomass fuels, for example eucalyptus, poplar, short rotation coppice, straw, miscanthus and olive stone.

^b Fines shall be determined by using method CEN/TS 15149-1.

^c The maximum amount of additive is 20 w-% of pressing mass. Type stated (e.g. starch). If amount is greater, then raw material for pellet is blend.

Table 5 —Specification of properties for wood chips

	Master ta	able				
	Origin: According to 6.1 and Table 1. Traded Form			Woody biomass (1)		
				Wood chips		
	Dimensi	ons (mm) CEN/TS	15149-1, CEN/TS			
	15149-2	, ,				
		Main fraction	Fines fraction, w-%	Coarse fraction, (w-%), max. length of particle, mm		
		(minimum 75 w-%),	(< 3,15 mm)			
		mm ^a				
	P16A ^c	3,15 ≤ P ≤ 16 mm	<u><</u> 12 %	≤ 3 % > 16 mm and all < 31,5 mm		
	P16B c	3,15 ≤ P ≤ 16 mm	≤ 12 %	≤ 3 % > 45 mm and all < 120 mm		
	P45A ^c P45B ^c	8 <u>< P <u><</u> 45 mm</u>	≤ 8 % ^b	\(\leq 6 \times > 63 \text{ mm and maximum 3,5 } \times > 100 \text{ mm, all } < 120 \text{ mm} \) \(< 6 \times > 63 \text{ mm and maximum 3,5 } \times > 100 \text{ mm, all } < 350 \text{ mm} \)		
		8 <u>< P < 45 mm</u> b	8 % ^b			
	P63 °	8 <u>< P < 63 mm</u> b	≤ 6 % ^b	\(\left\) < 100 mm, all < 350 mm		
	P100 ^c	16 ≤ P ≤ 100 mm ^b	≤ 4 % ^b	<u>< 6 % > 200 mm, all < 350 mm</u>		
		e, M (w-% as received)	EN 14//4-1, EN 14/	774-2		
	M10	≤ 10 %				
	M15	≤ 15 %				
Φ /	M20 M25	≤ 20 %				
ormativ	M30	≤ 25 % ≤ 30 %				
a	M35	≤ 30 % ≤ 35 %				
r	M40	≤ 35 % ≤ 40 %				
0	M45					
_	M50	≤ 45 % ≤ 50 %				
	M55	≤ 50 % ≤ 55 %				
	M55+	> 55 % (maximum value to be stated)				
	Ash, A (w-% of dry basis) EN 14775					
	A0.5	≤ 0,5 %				
	A0.7	≤ 0,7 %				
	A1.0	≤ 1,0 %				
	A1.5	≤ 1,5 %				
	A2.0	≤ 2,0 %				
	A3.0	≤ 3,0 %				
	A5.0	≤ 5,0 %				
	A7.0	≤ 7,0 %				
	A10.0	≤ 10,0 %				
	A10.0+	> 10,0 % (maximum				
		, N (w-% of dry basis)	JEN/TS 15104	Tax ii		
	N0.3	≤ 0,3 %		Normative:		
ě	N0.5	≤ 0,5 %		Chemically treated biomass (1.2.2; 1.3.2)		
ati	N1.0	≤ 1,0 %		Informative:		
Ē	N2.0	≤ 2,0 %		All fuels that are not chemically treated (see the exceptions		
l fe	N3.0	≤ 3,0 %		above)		
<u>.</u>	N3.0+	> 3,0 % (maximum va				
<u>iš</u>	Chlorine	, CI (w-% of dry basis)	CEN/TS 15289			
nat	CI0.02	≤ 0,02 %		Normative:		
Normative / informative	CI0.03	≤ 0,03 %		Chemically treated biomass (1.2.2; 1.3.2)		
Ž	CI0.07	≤ 0,07 %		Informative:		
	CI0.10	≤ 0,10 %		All fuels that are not chemically treated (see the exceptions		
	CI0.10+	> 0,10 % (maximum v	alue to be stated)	above)		

	Net cald EN 1491		received) or energy density, E (MJ/ m ³ loose or kWh/m ³ loose)
	Minimum	value to be stated	
	Bulk der	sity (BD) as received (kg/m³) EN 1510	3
۵	BD150	<u>≥</u> 150	Recommended to be stated if traded by volume basis
Informative	BD200	≥ 200	
ma	BD250	≥ 250	
Ö	BD300	<u>≥</u> 300	
三	BD350	<u>></u> 350	
	BD400	<u>≥</u> 400	
	BD450	<u>≥</u> 450	
	BD450+	> 450 (minimum value to be stated)	
	Ash mel	ting behaviour (°C) CEN/TS 15370-1	Deformation temperature, DT should be stated

^a The numerical values (P-class) for dimension refer to the particle sizes (at least 75 w-%) passing through the mentioned round hole sieve size (CEN/TS 15149-1). The cross sectional area of the oversized particles shall be P16 < 1 cm², for P45 < 5 cm², for P63 < 10 cm² and P100 < 18 cm².

NOTE 6 Special attention should be paid to the ash melting behaviour for some biomass fuels, for example eucalyptus, poplar, short rotation coppice.

For logging residue chips, which include thin particles like needles, leaves and branches, the main fraction for P45B is $3,15 \le P \le 45$ mm, for P63 is $3,15 \le P \le 63$ mm and for P100 is $3,15 \le P \le 100$ mm and amount of fines (< 3,15 mm) may be maximum 25 w-%.

^c Property classes P16A, P16B and P45A are for non-industrial and property class P45B, P63 and P100 for industrial appliances. In industrial classes P45B, P63 and P100 the amount of fines may be stated from the following F04, F06, F08.

Table 6 —Specification of properties for hog fuel

	Master table			
		cording to 6.1 and Table 1.	Woody biomass (1)	
	Traded Fo		Hog fuel	
	Dimension	ns (mm) CEN/TS 15149-1, CEN/TS 15149-2		
		on (minimum 75 w-%), mm ^a	Coarse fraction, w-% (max. length of particle, mm) b	
	P16	3,15≤ P ≤ 16 mm	< 6 % > 45 mm and all < 120 mm	
	P45	3,15 <u><</u> P <u><</u> 45 mm	< 10 % > 63 mm and all < 350 mm	
	P63	3,15 ≤ P ≤ 63 mm	< 10 % > 100 mm and all < 350 mm	
	P100	3,15 < P < 100 mm	< 10 % > 125 mm and all < 350 mm	
	P125	3,15 ≤ P ≤ 125 mm	< 10 % > 150 mm and all < 350 mm	
	P200	3,15 < P < 200 mm	to be specified	
	P300	3,15 ≤ P ≤ 300 mm	to be specified	
		on (< 3,15 mm), % of weight, CEN/TS 15149-		
	F06	< 6 %		
	F10	<u>-</u> 10 %		
	F12	<u>-</u> 12 %		
	F15			
	F20	<u>-</u> ≥ 20 %		
	F25	< 25 %		
	Moisture,	M (w-% as received) EN 14774-1, EN 14774-	2	
	M10	≤ 10 %		
Φ	M15	≤ 15 %		
ormativ	M20	≤ 20 %		
at	M25	≤ 25 %		
٤	M30	≤ 30 %		
9	M35	≤ 35 %		
z	M40	≤ 40 %		
	M45	≤ 45 %		
	M50	≤ 50 %		
	M55	≤ 55 %		
	M55+	> 55 % (maximum value to be stated)		
		% of dry basis) EN 14775		
	A0.5	≤ 0,5 %		
	A0.7	≤ 0,7 %		
	A1.0	≤ 0,7 % ≤ 1,0 %		
	A1.5	≤ 1,5 % ≤ 1,5 %		
	A2.0	≤ 1,5 % ≤ 2,0 %		
	A3.0			
	A5.0 A5.0	≤ 3,0 %		
	A5.0 A7.0	≤ 5,0 %		
	A7.0 A10.0	≤ 7,0 %		
		≤ 10,0 %		
	A10.0+	> 10,0 % (maximum value to be stated)	Minimum value to be stated	
	density. F	fic value, Q (MJ/kg as received) or energy E (kWh/m ³ loose) EN 14918	Minimum value to be stated	
		N (w-% of dry basis) CEN/TS 15104		
	N0.3	≤ 0,3 %	Normative:	
	N0.5	≤ 0,5 %	Chemically treated biomass (1.2.2, 1.3.2)	
<u>š</u> .	N1.0	≤ 1,0 %		
Jat	N2.0	≤ 2,0 %	Informative:	
=	N3.0	≤ 3,0 %	All fuels that are not chemically treated (see the exceptions above)	
nfc	N3.0+	> 3,0 % (maximum value to be stated)	above)	
0		CI (w-% of dry basis) CEN/TS 15289	<u>'</u>	
Normative / informative		` ,	Namestics	
шa	CI0.02	≤ 0,02 %	Normative:	
<u> </u>	CI0.03	≤ 0,03 %	Chemically treated biomass (1.2.2; 1.3.2)	
Z	CI0.07	≤ 0,07 %	Informative:	
	CI0.10	≤ 0,10 %	All fuels that are not chemically treated (see the exceptions	
	CI0.10+	> 0,10 % (maximum value to be stated)	above)	
		, (ı	

	Bulk der	Bulk density (BD) as received (kg/m ³) EN 15103		
	BD150	≥ 150	Recommended to be stated if traded by volume basis	
	BD200	≥ 200		
<u>×</u>	BD250	≥ 250		
lati	BD300	≥ 300		
l r	BD350	<u>≥</u> 350		
Informative	BD400	≥ 400		
-	BD450	≥ 450		
	BD450+	> 450 (minimum value to be stated)		
	Ash mel	ting behaviour (°C) CEN/TS 15370-1	Deformation temperature, DT should be stated	

^a The numerical values (P-class) for dimension refer to the particle sizes (at least 75 w-%) passing through the mentioned round hole sieve size (CEN/TS 15149-1).

^b The cross sectional area of the oversized particles shall be P16 < 1 cm², for P45 < 5 cm², for P63 < 10 cm² and P100 < 18 cm².

NOTE 7 Special attention should be paid to the ash melting behaviour for some biomass fuels, for example eucalyptus, poplar, short rotation coppice.

Table 7 — Specification of properties for log wood, firewood

Origin: According to 6.1 and Table 1.Woody biomass (1.1) Wood species to be statedDimensions (cm)Length (L) (maximum length of a single chop), cmL 20- L 20- L 20- L 20- L 25- L 30- L 33- L 33- L 40- L 100- L 100+ $2 c m$ L 20- L 20- L 20- L 20- L 20- L 20- L 33- L 33- L 40- L 40- L 100- L 100+ Maximum value has to be stated D Diameter (D) Figure 4 — ExamplesDiameter (D) Image: Color of the color of th			
Traded Form Log wood, firewood Dimensions (cm) Length (L) (maximum length of a single chop), cm L 20			
Dimensions (cm) Length (L) (maximum length of a single chop), cm L 20- L 20			
Length (L) (maximum length of a single chop), cm L 20-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
L 20			
L 25			
L 30			
L 33			
L 40	-		
L 50			
L 100			
L 100+ maximum value has to be stated L Length Diameter Figure 4 — Examples Diameter (D) (maximum diameter of a single chop), cm D 2- D < 2 cm ignition wood (kindling) D 10 2 cm $\leq D \leq 10$ cm D 12 4 cm $\leq D \leq 12$ cm D 15 10 cm $\leq D \leq 15$ cm D 20 10 cm $\leq D \leq 20$ cm D 25 10 cm $\leq D \leq 20$ cm D 35 20 cm $\leq D \leq 35$ cm D 35+ D > 35 cm, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
Diameter (D) (maximum diameter of a single chop), cm D 2- D 10 D 10 D 12 D 2 cm $\leq D \leq 10$ cm D 15 D 10 cm $\leq D \leq 12$ cm D 15 D 20 D 10 cm $\leq D \leq 15$ cm D 20 D 25 D 20 cm $\leq D \leq 25$ cm D 35 D 20 cm $\leq D \leq 35$ cm D 35+ D > 35 cm, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
Figure 4 — Examples Diameter (D) (maximum diameter of a single chop), cm D 2- $D < 2 \text{ cm ignition wood (kindling)}$ D 10 $2 \text{ cm} \le D \le 10 \text{ cm}$ D 12 $4 \text{ cm} \le D \le 12 \text{ cm}$ D 15 $10 \text{ cm} \le D \le 15 \text{ cm}$ D 20 $10 \text{ cm} \le D \le 20 \text{ cm}$ D 25 $10 \text{ cm} \le D \le 25 \text{ cm}$ D 35 $20 \text{ cm} \le D \le 35 \text{ cm}$ D 35+ $D > 35 \text{ cm}$, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
Figure 4 — Examples Diameter (D) (maximum diameter of a single chop), cm D 2- $D < 2 \text{ cm ignition wood (kindling)}$ D 10 $2 \text{ cm} \le D \le 10 \text{ cm}$ D 12 $4 \text{ cm} \le D \le 12 \text{ cm}$ D 15 $10 \text{ cm} \le D \le 15 \text{ cm}$ D 20 $10 \text{ cm} \le D \le 20 \text{ cm}$ D 25 $10 \text{ cm} \le D \le 25 \text{ cm}$ D 35 $20 \text{ cm} \le D \le 35 \text{ cm}$ D 35+ $D > 35 \text{ cm}$, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2	r		
Diameter (D) (maximum diameter of a single chop), cm D 2- $D < 2 \text{ cm}$ ignition wood (kindling) D 10 $2 \text{ cm} \le D \le 10 \text{ cm}$ D 12 $4 \text{ cm} \le D \le 12 \text{ cm}$ D 15 $10 \text{ cm} \le D \le 15 \text{ cm}$ D 20 $10 \text{ cm} \le D \le 20 \text{ cm}$ D 25 $10 \text{ cm} \le D \le 25 \text{ cm}$ D 35 $20 \text{ cm} \le D \le 35 \text{ cm}$ D 35+ $D > 35 \text{ cm}$, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
D 2- $D < 2 < C$ cm ignition wood (kindling) D 10 $D < C$ cm $D < C$ cm $D < C$ cm D 12 $D < C$ cm D 15 $D < C$ cm D 20 $D < C$ cm D 20 $D < C$ cm D 20 $D < C$ cm D 25 $D < C$ cm D 35 $D < C$ cm, maximum value to be stated			
D 10			
Z D 25 10 cm \leq D \leq 25 cm D 35 20 cm \leq D \leq 35 cm D 35+ D > 35 cm, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
Z D 25 $10 \text{ cm} \le D \le 25 \text{ cm}$ D 35 $20 \text{ cm} \le D \le 35 \text{ cm}$ D 35+ $D > 35 \text{ cm}$, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
Z D 25 $10 \text{ cm} \le D \le 25 \text{ cm}$ D 35 $20 \text{ cm} \le D \le 35 \text{ cm}$ D 35+ $D > 35 \text{ cm}$, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
Z D 25 $10 \text{ cm} \le D \le 25 \text{ cm}$ D 35 $20 \text{ cm} \le D \le 35 \text{ cm}$ D 35+ $D > 35 \text{ cm}$, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
D 35			
D 35+ D > 35 cm, maximum value to be stated Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
Moisture, M (w-% as received) CEN/TS 15149-1, CEN/TS 15149-2			
M10 ≤ 10 %			
M15 ≤ 15 %			
M20 ≤ 20 %			
M25 ≤ 25 %			
M30 ≤ 30 %			
M35 ≤ 35 %			
M40 ≤ 40 %			
M45 ≤ 45 %			
M55 ≤ 55 %			
M55+ > 55 % (maximum value to be stated)			
Volume or weight, m³ stacked or loose or kg To be stated which volume is used when retailed (m³ stated which which	icked or		
as received m³ loose, kg) and/or packaged log woods weight.			
Energy density, E ^b (kWh/kg or kWh/m ³ loose Recommended to be specified when retailed.			
Proportion of split volume No split (= mainly round wood)			
Split: more than 85 % of volume is split			
Mixture: split and round wood as a mixture			
Mixture: split and round wood as a mixture The cut-off surface To be stated if the cut-off surface of log woods are estimated and decay Mould and decay If significant amount (more than 10 % of weight) of respectively.	ven ^a and		
Mould and decay If significant amount (more than 10 % of weight) of relationships would are threven.	nould and		
decay exists it should be stated.			
In case of doubt particle density or net calorific value			
used as indicator. a Use of chainsaw is considered to be smooth and even.	could be		

^a Use of chainsaw is considered to be smooth and even.

^b The energy density may be calculated according to Annex D on the basis of the bulk density and the net calorific value of the dry fuel. Example: For a firewood with a net calorific value on dry basis, E of 5,3 kWh/kg and an actual moisture content M_{ar} of 15 w-%, the net calorific value on as received basis E_{ar} is 4,43 kWh/kg. For a bulk density BD of 410 kg/stacked m^3 , the energy density E_{ar} is 1 800 kWh/stacked m^3 .

Table 8 —Specification of properties for sawdust

	Mostor toble			
	Master tab	le		
	Origin:	or C.A. and Table A	Woody biomass (1)	
	Traded Fo	to 6.1 and Table 1.	Sawdust	
		M (w-% as received) EN 14774-1, EN 14774-		
	M10	≤ 10 %	-2	
	M15	≤ 15 %		
	M20	≤ 13 % ≤ 20 %		
	M25	≤ 20 % ≤ 25 %		
	M30	≤ 23 % ≤ 30 %		
	M35	≤ 30 % ≤ 35 %		
	M45	≤ 45 %		
	M50	≤ 43 % ≤ 50 %		
	M55	≤ 55 %		
	M60	≤ 60 %		
Ф	M65	≤ 65 %		
Į <u>÷</u>	M65+	> 65 % (maximum value to be stated)		
Normative		% of dry basis) EN 14775		
Ì	A0.5	≤ 0,5 %		
-	A0.7	≤ 0,7 %		
	A1.0	≤ 1,0 %		
	A1.5	≤ 1,5 %		
	A2.0	≤ 2,0 %		
	A3.0	≤ 3,0 %		
	A5.0	≤ 5,0 %		
	A7.0	≤ 7,0 %		
	A10.0	≤ 10,0 %		
	A10.0+	> 10,0 % (maximum value to be stated)		
	Net calorif	ic value, Q (MJ/kg as received) or energy	Minimum value to be stated	
		(kWh/m ³ loose) EN 14918		
		(w-% of dry basis)		
	N0.3	≤ 0,3 %	Normative:	
e e	N0.5	≤ 0,5 %	Chemically treated biomass (1.2.2; 1.3.2)	
ığ	N1.0	≤ 1,0 %	Informative:	
ΙĔΙ	N2.0	≤ 2,0 %	All fuels that are not chemically treated (see the	
阜	N3.0	≤ 3,0 %	exceptions above)	
/ ir	N3.0+	> 3,0 % (maximum value to be stated)	,	
ive / informative	Chlorine, C	CI (weight of dry basis, w-%) CEN/TS 15289		
	CI0.02	≤ 0,02 %	Normative:	
Normat	CI0.03	≤ 0,03 %	Chemically treated biomass (1.2.2; 1.3.2)	
ž	CI0.07	≤ 0,07 %	Informative:	
	CI0.10	≤ 0,10 %	All fuels that are not chemically treated (see the	
	CI0.10+	> 0,10 % (maximum value to be stated)	exceptions above)	
	Bulk densi	ity (BD) as received (kg/m³) EN 15103		
	BD100	≥ 100 kg/m ³	Recommended to be stated if traded by volume basis	
و	BD150	150 kg/m³	,	
ļ ţ	BD200	≥ 200 kg/m ³		
ma	BD250	\geq 250 kg/m ³		
Informative	BD300	≥ 300 kg/m ³		
ם	BD350	 ≥ 350 kg/m ³		
	BD350+	≥ 350 kg/m³ (minimum value to be stated)		
		g behaviour (°C) CEN/TS 15370-1	Deformation temperature, DT should be stated	
NOTE 8		<u> </u>	mogenous Particle size distribution may be specified	

NOTE 8 Particle size of sawdust is considered to be homogenous. Particle size distribution may be specified if requested.

Table 9 —Specification of properties for shavings

	Master table			
	Origin:	7.F	Woody biomass (1)	
		o 6.1 and Table 1.	Troody Siomaco (1)	
			Shavings	
	Moisture, I	M (w-% as received) EN 14774-1, EN 14774-		
	M10	≤ 10 %		
	M15	≤ 15 %		
	M20	≤ 20 %		
	M30	≤ 30 %		
	M30+	> 30 % (maximum value to be stated)		
	Ash, A (w-	% of dry basis) EN 14775		
Φ	A0.5	≤ 0,5 %		
Normative	A0.7	≤ 0,7 %		
l a	A1.0	≤ 1,0 %		
or or	A1.5	≤ 1,5 %		
Z	A2.0	≤ 2,0 %		
	A3.0	≤ 3,0 %		
	A5.0	≤ 5,0 %		
	A7.0	≤ 7,0 %		
	A10.0	≤ 10,0 %		
	A10.0+	> 10,0 % (maximum value to be stated)		
	Net calorif	ic value Q (MJ/kg as received) or energy	Minimum value to be stated	
		(kWh/m³ loose) EN 14918		
		(w-% of dry basis)		
	N0.3	≤ 0,3 %	Normative:	
\ \	N0.5	≤ 0,5 %	Chemically treated biomass (1.2.2; 1.3.2)	
ati	N1.0	≤ 1,0 %	Informative:	
E	N2.0	≤ 2,0 %	All fuels that are not chemically treated (see the	
월	N3.0	≤ 3,0 %	exceptions above)	
-	N3.0+	> 3,0 % (maximum value to be stated)		
Normative / informative		(weight of dry basis, w-%) CEN/TS 15289		
nat	CI0.02	≤ 0,02 %	Normative:	
E	CI0.03	≤ 0,03 %	Chemically treated biomass (1.2.2; 1.3.2)	
Ž	CI0.07	≤ 0,07 %	Informative:	
	CI0.10	≤ 0,10 %	All fuels that are not chemically treated (see the	
	CI0.10+	> 0,10 % (maximum value to be stated)	exceptions above)	
	Bulk densi	ty (BD) as received (kg/m³) EN 15103		
	BD100	≥ 100 kg/m ³	Recommended to be stated if traded by volume basis	
] <u>≅</u>	BD150	≥ 150 kg/m ³		
Informative	BD200	≥ 200 kg/m ³		
9	BD250	≥ 250 kg/m ³		
<u>l</u>	BD300	\geq 300 kg/m ³		
	BD300+	> 300 kg/m ³ (minimum value to be stated)		
	Ash meltin	g behaviour (°C) CEN/TS 15370-1	Deformation temperature, DT should be stated	
NOTE (Dortiolo	since of charings are considered to be by	omogenous Particle size distribution may be specified	

NOTE 9 Particle sizes of shavings are considered to be homogenous. Particle size distribution may be specified if requested.

Table 10 —Specification of properties for bark ^a

	Master table			
	Origin:	pie	Woody biomass	
		to 6.1 and Table 1.	(1.1.6, 1.2.1.5, 1.2.2.3, 1.3.1.3, 1.3.2.3)	
	Traded Fo		Bark	
		ns (mm) CEN/TS 15149-1, CEN/TS	Dark	
	15149-2	(IIIII) CEN/13 13149-1, CEN/13		
	10140-2	Nominal top size, mm ^b	Coarse fraction, max. length of a particle, mm < 5 w-%	
	P16	P < 16 mm	> 45 mm all < 90 mm	
	P45	P < 45 mm	> 63 mm	
	P63	P < 63 mm	> 100 mm	
	P100	P < 100 mm	> 125 mm	
	P200	P < 200 mm	> 250 mm	
		M (w-% as received) EN 14774-1, EN 147		
	M20	≤ 20 %	14-2	
	M25	≤ 20 % ≤ 25 %		
	M30			
		≤ 30 %		
	M35	≤ 35 %		
	M40	≤ 40 %		
ø	M45	≤ 45 %		
≟	M50	≤ 50 %		
πa	M55	≤ 55 %		
Normative	M60	≤ 60 %		
	M65	≤ 65 %		
	M65+	> 65 % (maximum value to be stated)		
	Ash, A (w	-% of dry basis) EN 14775		
	A1.0	≤ 1,0 %		
	A1.5	≤ 1,5 %		
	A2.0	≤ 2,0 %		
	A3.0	≤ 3,0 %		
	A5.0	≤ 5,0 %		
	A7.0	≤ 7,0 %		
	A10.0	≤ 10.0 %		
	A10.0+	> 10,0 % (maximum value to be stated)		
	Shredding		To be stated if bark is shredded into pieces or unshredded	
		rific value, Q (MJ/kg as received) or		
	energy d	lensity, E (kWh/m ³ loose or MWh/m ³	IVIII III Value to be stated	
	loose) EN			
		N (w-% of dry basis) CEN/TS 15104		
_	N0.5	≤ 0,5 %	Normative:	
<u>≼</u>	N1.0	≤ 1,0 %	Chemically treated biomass (1.2.2; 1.3.2)	
at	N2.0	≤ 2,0 %		
Ē	N3.0	≤ 3,0 %	Informative:	
旦	N3.0+	> 3,0 % (maximum value to be stated)	All fuels that are not chemically treated (see the exceptions above)	
Normative / informative		CI (w-% of dry basis) CEN/TS 15289	above)	
<u>×</u>	Cl0.02	≤ 0,02 %	Normative:	
ıati	CI0.02	≤ 0,02 % ≤ 0,03 %	Chemically treated biomass (1.2.2; 1.3.2)	
🖹				
۱	CI0.07	≤ 0,07 %	Informative:	
	CI0.10	≤ 0,10 %	All fuels that are not chemically treated (see the exceptions	
	CI0.10+	> 0,10 % (maximum value to be stated)	above)	
		sity (BD) as received (kg/m³) EN 15103		
ě	BD250	≥ 250 kg/m ³	Recommended to be stated if traded by volume basis	
ati	BD300	≥ 300 kg/m ³		
Įξ	BD350	≥ 350 kg/m ³		
Informative	BD400	≥ 400 kg/m ³		
드	BD450	\geq 450 kg/m ³		
	Ash melti	ng behaviour (°C)	Deformation temperature, DT should be stated	
^a Als	o cork is incl	uded.		
The purposited values (Deleas) for dimension refer to the modification (At least 05 0) by second at the control of the control				

^b The numerical values (P-class) for dimension refer to the particle sizes (at least 95 % by mass) passing through the mentioned round hole sieve size (CEN/TS 15149-1).

Table 11 — Specification of properties for straw bales, reed canary grass bales and Miscanthus bales

	Master table			
	Origin:		2 1 1 2 Cereal crop stra	aw, 2.1.2.1 Whole plant (Reed canary grass
	According to 6.	.1 and Table 1.		2 Grass straw, 2.1.3.2 Oil seed crops stalks
	Traded Form		Round bale and square	e bale
	L ₂	L_1 Heig L_2 Wic		Diameter 3 Length
		Fig	gure 5 — Dimensions	s (m)
	Round bale	Diameter (D)	Length (L ₃)	
	D 1	1,2 – 1,5	1,2	
	D 2	1,6 – 1,8	1,5	
	Square bale	Height (L ₁)	Width (L_2)	Length (L_3)
	P1	<u><</u> 0,35	<u><</u> 0,4	<u><</u> 0,5
	P2	<u><</u> 0,9	<u><</u> 1,2	1,5-2,8
>	P3	<u><</u> 1,3	<u><</u> 1,2	1,0 - 3,0
Ξ	P3+	Maximum values to be sta	ted	
ormative	Bale density,	BD (kg/m³)		
o r	BD100	<u>></u> 100		
z	BD120	<u>></u> 120		
	BD160	<u>></u> 160		
	BD180	<u>≥</u> 180		
	BD220	≥ 220 > 220 (minimum value to b	o stated)	
	BD220+	v-% as received) EN 14774-		
	M10	≤ 10 %	i, = N T T Z	
	M15	≤ 10 % ≤ 15 %		
	M20	≤ 20 %		
	M25	≤ 25 % ≤ 25 %		
	M30	≤ 30 %		
	M30+	> 30 % (maximum value to	be stated)	
		f dry basis) EN 14775	/	
	A5.0	≤ 5 %		
	A7.0	≤ 7 %		
	A10.0	≤ 10 %		
	A10.0+	> 10 % (maximum value to	be stated)	
	Species of bio	omass		mple: spring harvested reed canary grass
			1	L.) or Miscanthus (Miscanthus Giganteus))
	Net calorific v	value, Q (MJ/kg as	Minimum value to be s	tated
received) or energy density , E (kWh/m ³				
	loose or MWh/m ³ loose) EN 14918			

	Production method	It is recommended to declare production methods that influence the size of the straw particles in the bale. That is for instance whether the crop has been trashed by rotation or oscillation or whether it has been chopped. Harvested as a whole plant for Reed canary grass and Miscanthus
Informative	Chlorine, CI (w-% of dry basis) CEN/TS 15	289
lat	CI0.01	<u><</u> 0,01 %
ıπ	CI0.03	<u>≤</u> 0,03 %
Ję.	CI0.07	<u><</u> 0,07 %
-	CI0.10	<u><</u> 0,10 %
	CI0.10+	> 0,10 % (maximum value to be stated)
	Binding type of bales	Tying material recommended to be specified (net binding, plastic
		line)
	Ash melting behaviour (°C) prEN 15370	Deformation temperature, DT should be stated

Table 12 — Specification of properties for energy grain

	Master table			
	Origin:			
	According	to 6.1 and Table 1	Herbaceous biomass (2.1.1.3)	
	Traded Fo	rm	Grain	
	Dimension			
		D) (5 w-% may have diameter over the clas	s) CEN/TS 15149-1, CEN/TS 15149-2	
	D 05			
	D 10	3,15 mm ≤ D ≤ 10 mm Ire, M (w-% as received) EN 14774-1, EN 14774-2		
	M10		4-2	
	M15	M ≤ 10 % M ≤ 15 %		
Φ		M ≤ 15 % % of dry basis) EN 14775		
ormative	A311, A (W-	≤ 2,0 %		
a	A3.0	≤ 3,0 %		
I E	A5.0	= 5,0 % ≤ 5,0 %		
0	A5.0+	> 5,0 % (maximum value to be stated)		
~	Net calorific value as received, Q (MJ/kg) EN 14918 Minimum value to be stated			
	Nitrogen, N (w-% of dry basis) CEN/TS 15104			
	N2.0	≤ 2,0 %		
	N2.0+	> 2,0 % (maximum value to be stated)		
	Sulphur, S (w-% of dry basis) CEN/TS 15289			
	S0.20	≤ 0,20 %		
	S0.20+	> 0,20 % (maximum value to be stated)		
	Amount of fines, F (w-%, < 1 mm for <i>D</i> 05 and w-%, < 3,15 mm for <i>D</i> 10) CEN/TS 15149-2 F1.0			
	F1.0+	≤ 1,0 % > 1,0 % (without additive)		
		Bulk density (BD) as received (kg/m³) EN 15103		
tive	BD550	≥ 550 kg/m³		
Па	BD550+	> 550 kg/m ³ (minimum value to be stated)		
Informative	Chlorine, (CI (w-% of dry basis) CEN/TS 15289		
=	CI 0.10	≤ 0,10 %		
	CI 0.15	≤ 0,15 %		
	CI0.15+	> 0,15 % (maximum value to be stated)		
	Ash meltir	ng behaviour (°C) CEN/TS 15370-1	Deformation temperature, DT should be stated	

NOTE When using cereal grain materials for combustion special attention should be paid to risk of corrosion in small- and medium-scale boilers and flue gas system. Be aware that different types and varieties of grains, grown under different conditions and soil type, may have a fuel ash composition, i.e. high content of P, K and Cl, that will capture chlorine (K will form K-phosphates instead of KCl) in the ash that will result in high hydrochloric emissions.

Table 13 — Specification of properties for olive residues

	Master table			
	Origin:		Fruit biomass (3.2.1.2, 3.2.1.4,3.2.2.2,3.2.2.4)	
	According t	to 6.1 and Table 1		
	Traded Fo	rm	Grain or seed, kernel	
	Dimensions (mm)			
		D) a, CEN/TS 15149-1, CEN/TS 15149-2		
	D 03	1 mm ≤ <i>D</i> ≤ 3,15 mm		
	D 05	1 mm ≤ <i>D</i> ≤ 5 mm		
	D 10	1 mm ≤ <i>D</i> ≤ 10 mm		
	D 10+	D > 10 mm (maximum value to be stated)		
		M (w-% as received) EN 14774-1, EN 1477	74-2	
	M10	M ≤ 10 %		
	M15	M ≤ 15 %		
		% of dry basis) EN 14775		
Φ	A1.5	≤ 1,5 %		
.>	A2.0	≤ 2,0		
at	A3.0	≤ 3,0		
ormative	A5.0	≤ 5,0 %		
0 .	A7.0	≤ 7,0 %		
z	A10.0	≤ 10,0 %		
	A10.0+	> 10,0 % (maximum value to be stated)		
	Additives		Type and amount of additive have to be stated	
	Net calori	fic value as received, Q (MJ/kg) b,	Minimum value to be stated	
	EN 14918 Nitrogen, N (w-% of dry basis) CEN/TS 15104			
	N1.0	≤ 1,0 %		
	N1.5	≤ 1,5 % ≤ 1,5 %		
	N2.0	≤ 2,0 %		
	N3.0	≤ 3,0 %		
	N3.0+	> 3,0 % (maximum value to be stated)		
		fines, F (w-%, < 1 mm) CEN/TS 15149-2		
	F1.0	≤ 1,0 %		
	F1.0+	> 1,0 % (without additive)		
			Recommended to be stated if traded by volume basis	
	EN 15103	, , , , , , , , , , , , , , , , , , , ,	,	
e e	Chlorine, C	CI (w-% of dry basis) CEN/TS 15289		
ati	CI 0.10	≤ 0,10 %		
Ē	CI 0.15	≤ 0,15 %		
Informative	CI0.15+	> 0,15 % (maximum value to be stated)		
=	Sulphur, S	(w-% of dry basis) CEN/TS 15289		
	S0.15	≤ 0,15 %		
	S0.20	≤ 0,20 %		
	S0.20+	> 0,20 % (maximum value to be stated)		
	Ash meltin	g behaviour (°C) CEN/TS 15370-1	Deformation temperature, DT should be stated	
		liameter over the class.		
^b Add	tives can redu	ice net calorific value.		

Table 14 — Specification of properties for fruit seeds

	· · · ·				
	Master table				
	Origin:		Fruit biomass (3.1.1.3, 3.1.3, 3.1.3.3, 3.2.1.2, 3.2.1.3,		
	According	to 6.1 and Table 1	3.2.2.2, 3.2.2.3)		
		Fruit seed or kernel			
		Dimensions (mm) CEN/TS 15149-1, CEN/TS			
	15149-2	Diameter (D) (5 w-% may have diameter over the class)			
		D) (5 w-% may have diameter over the class 1 mm $\leq D \leq 3,15$ mm	S)		
	D 03 D 05	1 mm $\leq D \leq$ 3, 15 mm 1 mm $\leq D \leq$ 5 mm			
	D 10	1 mm $\leq D \leq$ 5 mm			
		D 10+			
	M10	$M \in (W-\%)$ as received) EN 14774-1, EN 1477 $M \le 10\%$	4-2		
	M15	M ≤ 10 % M ≤ 15 %			
ø	A511, A (W-	% of dry basis) EN 14775			
ormative	A1.5 A2.0	≤ 1,5 % ≤ 2,0			
	A3.0	≤ 2,0 ≤ 3,0			
	A5.0	≤ 5,0 %			
	A7.0	≤ 5,0 % ≤ 7,0 %			
Z	A10.0	≤ 7,0 % ≤ 10,0 %			
	A10.0+	≤ 10,0 % > 10,0 % (maximum value to be stated)			
	Additives		Type and amount of additive have to be stated		
	EN 14918	ic value as received, Q (MJ/kg) ^a ,	Minimum value to be stated		
	EN 14918 Nitrogen, I	N (w-% of dry basis) CEN/TS 15104	Minimum value to be stated		
	EN 14918 Nitrogen, I N1.0	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 %	Minimum value to be stated		
	EN 14918 Nitrogen , I N1.0 N1.5	N (w-% of dry basis) CEN/TS 15104	Minimum value to be stated		
	EN 14918 Nitrogen, I N1.0	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 %	Minimum value to be stated		
	EN 14918 Nitrogen , I N1.0 N1.5	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 %	Minimum value to be stated		
	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated)	Minimum value to be stated		
	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2	Minimum value to be stated		
	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 %	Minimum value to be stated		
	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 F1.0+	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) F fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive)	Minimum value to be stated		
	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 Bulk dens	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103	Minimum value to be stated Recommended to be stated if traded by volume basis		
Ne Ne	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 F1.0+ Bulk dens Chlorine, 0	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289			
ative	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 F1.0+ Bulk dens Chlorine, 0 CI 0.10	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 %			
ormative	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0+ Bulk dens Chlorine, 0 CI 0.10 CI 0.15	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 %			
nformative	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0+ Bulk dens Chlorine, G CI 0.10 CI 0.15 CI 0.15+	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 % > 0,15 % (maximum value to be stated)			
Informative	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0+ Amount of F1.0+ Bulk dens Chlorine, 0 Cl 0.10 Cl 0.15 Cl 0.15+ Sulphur, S	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 % > 0,15 % (maximum value to be stated) 6 (w-% of dry basis) CEN/TS 15289			
Informative	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 F1.0+ Bulk dens Chlorine, 0 Cl 0.15 Cl 0.15+ Sulphur, S S0.15	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 % > 0,15 % (maximum value to be stated) s (w-% of dry basis) CEN/TS 15289 ≤ 0,15 %			
Informative	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0+ Amount of F1.0 F1.0+ Bulk dens Chlorine, 0 CI 0.15 CI 0.15+ Sulphur, S S0.15 S0.20	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 % > 0,15 % (maximum value to be stated) 6 (w-% of dry basis) CEN/TS 15289 ≤ 0,15 % ≤ 0,20 %			
Informative	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 F1.0+ Bulk dens Chlorine, O CI 0.15 CI 0.15+ Sulphur, S S0.15 S0.20 S0.20+	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 % > 0,15 % (maximum value to be stated) if (w-% of dry basis) CEN/TS 15289 ≤ 0,15 % ≤ 0,20 % > 0,20 % (maximum value to be stated)	Recommended to be stated if traded by volume basis		
Info	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 F1.0+ Bulk dens Chlorine, 0 CI 0.15 CI 0.15+ Sulphur, S S0.15 S0.20 S0.20+ Ash meltir	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 % > 0,15 % (maximum value to be stated) if (w-% of dry basis) CEN/TS 15289 ≤ 0,15 % > 0,20 % > 0,20 % > 0,20 % (maximum value to be stated) ing behaviour (°C) CEN/TS 15370-1			
a Add	EN 14918 Nitrogen, I N1.0 N1.5 N2.0 N3.0 N3.0+ Amount of F1.0 F1.0+ Bulk dens Chlorine, (CI 0.10 CI 0.15 CI 0.15+ Sulphur, S S0.15 S0.20 S0.20+ Ash meltir	N (w-% of dry basis) CEN/TS 15104 ≤ 1,0 % ≤ 1,5 % ≤ 2,0 % ≤ 3,0 % > 3,0 % (maximum value to be stated) f fines, F (w-%, < 1 mm) CEN/TS 15149-2 ≤ 1,0 % > 1,0 % (without additive) ity (BD) as received (kg/m³) EN 15103 CI (w-% of dry basis) CEN/TS 15289 ≤ 0,10 % ≤ 0,15 % > 0,15 % (maximum value to be stated) if (w-% of dry basis) CEN/TS 15289 ≤ 0,15 % ≤ 0,20 % > 0,20 % (maximum value to be stated)	Recommended to be stated if traded by volume basis		

NOTE 10 Includes kernels, nuts and acorns.

Table 15 — General master table for specification of properties for other solid biofuels

	General Master Table			
			To be specified in accordance with to 6.1 and Table 1, as detailed as needed.	
			A short description of the form of the biofuel (see Table 2 for guidelines).	
	Dimensions (mm)		If dimensions are not suitable to express as diameter and	
) 	D_{X}	x = Maximum diameter	length other formats may be used, but shall then be clearly stated.	
	L_{y}	y = Maximum length	otated.	
ormative	Moisture, M EN 14774-2	(w-% as received) EN 14774-1,	Recommended to be stated as a class: M10, M15, M20, M25, M30; M35, M40, M45, M50; M55, M60; M65, M65+ (maximum	
Nor	MXX	≤ XX %	value to be stated)	
-	Ash, A (w-%	of dry basis) EN 14775	Recommended to be stated as a class: A0.5, A0.7, A1.0,	
	AXX.X	≤ XX,X %	A1.5, A2.0, A3.0, A5.0, A7.0, A10, A10+ (maximum value to be stated)	
	Additives (w	-% of dry basis)	If any type of additive is added to the fuel, amount and type shall be stated.	
	Type and content of additives to be stated		The maximum amount of additive is 20 w-% of in solid biofuels. If amount is greater, then solid biofuel is a blend.	
	Nitrogen, N (w-% of dry basis) CEN/TS 15104		Nitrogen is normative only for chemically treated biomass.	
	NX.X	≤ X,X %	Recommended to be stated as a class N0.5, N1.0, N1.5, N2.0, N3.0, N3.0+ (maximum value to be stated)	
ative	Net calorific value, Q (MJ/kg as received) or energy density, E (kWh/ m³ loose) EN 14918		Minimum value to be stated.	
rmative/inform	Bulk density (BD) as received (kg/m ³) EN 15103		Recommended to be stated in the classes (minimum value): BD200, BD250, BD300, BD300, BD350, BD400, BD450, BD500, BD550, BD600, BD650, BD750.	
ive/i	Chlorine, CI (weight of dry basis, w-%) CEN/TS 15289		Chlorine is normative only for chemically treated biomass. Recommended to be state as a class: Cl 0.01, Cl 0.02, Cl	
mat	CIX.XX	≤ X,XX %	0.03, Cl 0.07, Cl 0.10 and Cl 0.10+ (if Cl > 0,10% maximum value to be stated)	
Nor	Sulphur, S (w-% of dry basis) CEN/TS 15289	Sulphur is normative only for chemically treated biomass or if sulphur containing additives have been used. Recommended	
	SX.XX	≤ X,XX %	to be stated as a class S0,03, S0,05, S0,1, S0,2 and S0,2+ (if S > 0,2 % maximum value to be stated)	
	Further speci	fication of dimensions	It is recommended that maximum allowed amount of fine and coarse particles of the fuel should be stated.	
	Others e.g. major (CEN/TS 15290) and minor elements (CEN/TS 15297)		Properties that are specific to the actual solid biofuel and considered as containing useful information.	
Infor	mative			
111101		behaviour (°C) CEN/TS 15370-1	Deformation temperature, DT should be stated	
NOTE		· ,	e used if also appropriate in this master table.	
	1. Sporty states of the first section also appropriate in this master table.			

Annex A (informative)

Illustrations of typical forms of wood fuels

A.1 Visually classifying wood fuels based on a typical particle size (Source: Swedish University of Agricultural Sciences $^{2)}$

Figure A.1 — Classification of wood fuels based on fuel particle size

²⁾ Jan Erik Mattsson, Swedish University of Agricultural Science, Department of Agricultural Engineering, PO Box 66, SE-23066, Alnarp, Sweden.

A.2 Differentiating between wood chips and hog fuel (Source: Swedish University of Agricultural Sciences³⁾

Figure A.2 — Close examination of wood chips and hog fuel

³⁾ Jan Erik Mattsson, Swedish University of Agricultural Science, Department of Agricultural Engineering, PO Box 66, SE-23066, Alnarp, Sweden.

Annex B (informative)

Typical values of solid biomass fuels

B.1 — Typical values ^a for virgin wood materials, with or without insignificant amounts of bark, leaves and needles

and needles						
Unit			Broad-leaf wood (1.1.2.1 and 1.2.1.1)			
	Typical value	Typical variation	Typical value	Typical variation		
w-% d	0,3	0,1 to 1,0	0,3	0,2 to 1,0		
MJ/kg d	20,5	20,0 to 20,8	20,1	19,4 to 20,4		
MJ/kg d	19,1	18,5 to 19,8	18,9	18,4 to 19,2		
w-% d	51	47 to 54	49	48 to 52		
w-% d	6,3	5,6 to 7,0	6,2	5,9 to 6,5		
w-% d	42	40 to 44	44	41 to 45		
w-% d	0,1	< 0,1 to 0,5	0,1	< 0,1 to 0,5		
w-% d	< 0,02	< 0,01 to 0,02	0,02	< 0,01 to 0,05		
w-% d	0,01	< 0,01 to 0,03	0,01	< 0,01 to 0,03		
w-% d	< 0,000 5	< 0,000 5	< 0,000 5	< 0,000 5		
mg/kg d	100	30 to 400	20	< 10 to 50		
mg/kg d	900	500 to 1 000	1 200	800 to 20 000		
mg/kg d	25	10 to 100	25	10 to 100		
mg/kg d	400	200 to 500	800	500 to 1 500		
mg/kg d	150	100 to 200	200	100 to 400		
mg/kg d	100	40 to 200	83			
mg/kg d	20	10 to 50	50	10 to 200		
mg/kg d	60	50 to 100	100	50 to 200		
mg/kg d	150	100 to 200	150	100 to 200		
mg/kg d	< 20	<20	<20	< 20		
mg/kg d	< 0,1	< 0,1 to 1,0	< 0,1	< 0,1 to 1,0		
mg/kg d	0,10	< 0,05 to 0,50	0,10	< 0,05 to 0,50		
mg/kg d	1,0	0,2 to 10,0	1,0	0,2 to 10,0		
mg/kg d	2,0	0,5 to 10,0	2,0	0,5 to 10,0		
mg/kg d	0,02	< 0,02 to 0,05	0,02	< 0,02 to 0,05		
mg/kg d	0,5	< 0,1 to 10,0	0,5	< 0,1 to 10,0		
mg/kg d	2,0	< 0,5 to 10,0	2,0	< 0,5 to 10,0		
mg/kg d	< 2	< 2	< 2	< 2		
mg/kg d	10	5 to 50	10	5 to 100		
	MJ/kg d MJ/kg d W-% d Mg/kg d	(1.1.2.2 Typical value w-% d 0,3 MJ/kg d 20,5 MJ/kg d 19,1 w-% d 51 w-% d 6,3 w-% d 42 w-% d 0,01 w-% d 0,002 w-% d 0,01 w-% d 0,002 w-% d 0,01 w-% d 0,002 w-% d 0,01 w-% d 0,02 mg/kg d 100 mg/kg d 20 mg/kg d 25 mg/kg d 150 mg/kg d 20 mg/kg d 2,0 mg/kg d 0,02 mg/kg d 0,02 mg/kg d 2,0 mg/kg d 2,0 mg/kg d 2,0 <t< td=""><td>(1.1.2.2 and 1.2.1.1) Typical value Typical variation w-% d 0,3 0,1 to 1,0 MJ/kg d 20,5 20,0 to 20,8 MJ/kg d 19,1 18,5 to 19,8 w-% d 51 47 to 54 w-% d 6,3 5,6 to 7,0 w-% d 42 40 to 44 w-% d 0,1 < 0,1 to 0,5</td> w-% d 0,01 < 0,01 to 0,02</t<>	(1.1.2.2 and 1.2.1.1) Typical value Typical variation w-% d 0,3 0,1 to 1,0 MJ/kg d 20,5 20,0 to 20,8 MJ/kg d 19,1 18,5 to 19,8 w-% d 51 47 to 54 w-% d 6,3 5,6 to 7,0 w-% d 42 40 to 44 w-% d 0,1 < 0,1 to 0,5	(1.1.2.2 and 1.2.1.1) (1.1.2.1 mypical value) Typical variation Typical value w-% d 0,3 0,1 to 1,0 0,3 MJ/kg d 20,5 20,0 to 20,8 20,1 MJ/kg d 19,1 18,5 to 19,8 18,9 w-% d 51 47 to 54 49 w-% d 6,3 5,6 to 7,0 6,2 w-% d 42 40 to 44 44 w-% d 0,1 < 0,1 to 0,5		

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish, Dutch and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in prEN 15296.

B.2 — Typical values ^a for virgin bark materials

Parameter	Unit	Bark from coniferous wood		Bark from broad-leaf wood	
		(1.1.5	5 and 1.2.1.2)	(1.1.5 a	nd 1.2.1.2)
		Typical value	Typical variation	Typical value	Typical variation
Ash	w-% d	1,5	<1 to 5	1,5	0,8 to 3,0
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	20,4	18,0 to 21,4	20	18,0 to 22,7
Net calorific value $q_{ m p,net,d}$	MJ/kg d	19,2	17,5 to 20,5	19	17,1 to 21,3
Carbon, C	w-% d	52	48 to 55	52	47 to 55
Hydrogen, H	w-% d	5,9	5,5 to 6,4	5,8	5,3 to 6,4
Oxygen, O	w-% d	38	34 to 42	38	32 to 42
Nitrogen, N	w-% d	0,5	0,3 to 0,9	0,3	0,1 to 0,8
Sulphur, S	w-% d	0,03	< 0,02 to 0,05	0,03	< 0,02 to 0,20
Chlorine, Cl	w-% d	0,02	<0,01 to 0,05	0,02	< 0,01 to 0,05
Fluorine, F	w-% d	0,001	< 0,000 5 to 0,002		
Aluminium, Al	mg/kg d	800	400 to 1 200	50	30 to 100
Calcium, Ca	mg/kg d	5 000	1 000 to 15 000	15 000	10 000 to 20 000
Iron, Fe	mg/kg d	500	100 to 800	100	50 to 200
Potassium, K	mg/kg d	2 000	1 000 to 3 000	2 000	1 000 to 3 200
Magnesium, Mg	mg/kg d	1 000	400 to 1 500	500	400 to 1 000
Manganese, Mn	mg/kg d	500	9 to 840	190	
Sodium, Na	mg/kg d	300	70 to 2 000	100	20 to 1 000
Phosphorus, P	mg/kg d	400	20 to 600	400	300 to 700
Silicate, Si	mg/kg d	2 000	500 to 5 000	2 500	2 000 to 20 000
Arsenic, As	mg/kg d	1,0	0,1 to 4,0	0,4	0,1 to 4
Cadmium, Cd	mg/kg d	0,5	0,2 to 1,0	0,5	0,2 to 1,2
Chromium, Cr	mg/kg d	5	1 to 10	5	1 to 30
Copper, Cu	mg/kg d	5	3 to 30	5	2 to 20
Mercury, Hg	mg/kg d	0,05	0,01 to 0,1,	< 0,05	
Nickel, Ni	mg/kg d	10	2 to 20	10	2 to 10
Lead, Pb	mg/kg d	4	1 to 30	15	2 to 30
Vanadium, V	mg/kg d	1,0	0,7 to 2,0	2	1 to 4
Zinc, Zn	mg/kg d	100	70 to 200	50	7 to 200
	nation of mainly Swedish, Finnish, Danish, Dutch and German research. The values only aim to				

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish, Dutch and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in CEN/TS 15296.

B.3 — Typical values ^a for virgin wood materials, logging residues

Parameter	Unit	Coniferous wood		Broad-leaf wood		
		(1.1.3)	(1.1.3)	
		Typical value	Typical variation	Typical value	Typical variation	
Ash	w-% d	3,0	< 1 to 10	5,0	2 to 10	
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	20,5	19,5 to 21,5	19,7	19,5 to 20,0	
Net calorific value $q_{ m p,net,d}$	MJ/kg d	19,2	18,5 to 20,5	18,7	18,3 to 18,5	
Carbon, C	w-% d	51	48 to 52	51	50 to 51	
Hydrogen, H	w-% d	6,0	5,7 to 6,2	6,0	5,8 to 6,1	
Oxygen, O	w-% d	40	38 to 44	40	40 to 43	
Nitrogen, N	w-% d	0,5	0,3 to 0,8	0,5	0,3 to 0,8	
Sulphur, S	w-% d	< 0,02	< 0,02 to 0,06	0,04	0,01 to 0,08	
Chlorine, Cl	w-% d	0,01	< 0,01 to 0,04	0,01	< 0,01 to 0,02	
Fluorine, F	w-% d	0,001		0,002	0,0 to 0,001	
Aluminium, Al	mg/kg d			250	1 to 3000	
Calcium, Ca	mg/kg d	5 000	2 000 to 8 000	4 000	3 000 to 5 000	
Iron, Fe	mg/kg d	1500	500 to 2000	150	10 to 1500	
Potassium, K	mg/kg d	2 000	1 000 to 4 000	1 500	1 000 to 4 000	
Magnesium, Mg	mg/kg d	800	400 to 2 000	250	100 to 400	
Manganese, Mn	mg/kg d	130	80 to 170	120	10 to 800	
Sodium, Na	mg/kg d	200	75 to 300	100	20 to 200	
Phosphorus, P	mg/kg d	500		300	30 to 1 000	
Silicate, Si	mg/kg d	3 000	200 to 10 000	150	75 to 250	
Titanium, Ti	mg/kg d			7	1 to 40	
Arsenic, As	mg/kg d	0,6	0,2 to 1	1	0 to 2	
Cadmium, Cd	mg/kg d	0,2	0,1 to 0,8	0,5	0 to 3	
Chromium, Cr	mg/kg d	1	0,7 to 1,2	8	1 to 40	
Copper, Cu	mg/kg d	10	10 to 200	10	1 to 100	
Mercury, Hg	mg/kg d	0,03		0,02	0 to 2	
Nickel, Ni	mg/kg d	1,6	0,4 to 3	10	1 to 80	
Lead, Pb	mg/kg d	1,3	0,4 to 4	1,5	0,5 to 5	
Vanadium, V	mg/kg d	0,6	0,1 to 1	0,5	0,1 to 3	
Zinc, Zn	mg/kg d	20	8 to 30	50	2 to 100	

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish, Dutch, Spanish and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in prEN 15296.

B.4 — Typical values a for virgin wood materials, short rotation coppice

Parameter	Unit	it Willow (Salix)		Poplar		
		(1	.1.1.3)	(1	.1.1.3)	
		Typical value	Typical variation	Typical value	Typical variation	
Ash	w-% d	2,0	1,1 to 4,0	2,0	1,5 to 3,4	
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	19,9	19,2 to 20,4	19,8	19,5 to 20,1	
Net calorific value $q_{ m p,net,d}$	MJ/kg d	18,4	17,7 to 19,0	18,4	18,1 to 18,8	
Carbon, C	w-% d	48	46 to 49	48	46 to 50	
Hydrogen, H	w-% d	6,1	5,7 to 6,4	6,2	5,7 to 6,5	
Oxygen, O	w-% d	43	40 to 44	43	39 to 45	
Nitrogen, N	w-% d	0,5	0,2 to 0,8	0,4	0,2 to 0,6	
Sulphur, S	w-% d	0,05	0,02 to 0,10	0,03	0,02 to 0,10	
Chlorine, Cl	w-% d	0,03	0,01 to 0,05	< 0,01	< 0,01 to 0,05	
Fluorine, F	w-% d	0,003	0 to 0,01			
Aluminium, Al	mg/kg d	50	3 to 100	10		
Calcium, Ca	mg/kg d	5 000	2 000 to 9 000	5 000	4 000 to 6 000	
Iron, Fe	mg/kg d	100	30 to 600	30		
Potassium, K	mg/kg d	2 500	1 700 to 4 000	2 500	2 000 to 4 000	
Magnesium, Mg	mg/kg d	500	200 to 800	500	200 to 800	
Manganese, Mn	mg/kg d	97	79 to 160	20		
Sodium, Na	mg/kg d	-	10 to 450	25	10 to 60	
Phosphorus, P	mg/kg d	800	500 to 1 300	1 000	800 to 1 100	
Silicate, Si	mg/kg d	500	2 to 2 000			
Titanium, Ti	mg/kg d	10	< 10 to 50			
Arsenic, As	mg/kg d	< 0,1	< 0,1	<0,1	< 0,1 to 0,2	
Cadmium, Cd	mg/kg d	2	0,2 to 5	0,5	0,2 to 1	
Chromium, Cr	mg/kg d	1	0,3 to 5	1	0,3 to 2	
Copper, Cu	mg/kg d	3	2 to 4	3	2 to 4	
Mercury, Hg	mg/kg d	< 0,03	< 0,03	< 0,03	< 0,03	
Nickel, Ni	mg/kg d	0,5	0,2 to 2	0,5	0,2 to 1,0	
Lead, Pb	mg/kg d	0,1	0,1 to 0,2	0,1	0,1 to 0,3	
Vanadium, V	mg/kg d	0,3	0,2 to 0,6			
Zinc, Zn	mg/kg d	70	40 to 100	50	30 to 100	

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish, Dutch, Spanish and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in CEN/TS 15296.

B.5 — Typical values a for virgin straw materials, with or without insignificant amounts of grains

Parameter	Unit	Straw from v	wheat, rye, barley	Straw from oilseed rape		
		(2	(2.1.1.2)		.1.3.2)	
		Typical value	Typical variation	Typical value	Typical variation	
Ash	w-% d	5	2 to 10	5	2 to 10	
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	18,8	16,6 to 20,1	18,8	16,6 to 20,1	
Net calorific value $q_{ m p,net,d}$	MJ/kg d	17,6	15,8 to 19,1	17,6	15,8 to 19,1	
Carbon, C	w-% d	47	41 to 50	48	42 to 52	
Hydrogen, H	w-% d	6,0	5,4 to 6,5	6,0	5,4 to 6,5	
Oxygen, O	w-% d	41	36 to 45	41	36 to 45	
Nitrogen, N	w-% d	0,5	0,2 to 1,5	0,8	0,3 to 1,6	
Sulphur, S	w-% d	0,1	< 0,05 to 0,2	0,3	< 0,05 to 0,7	
Chlorine, Cl	w-% d	0,4	< 0,1 to 1,2	0,5	< 0,1 to 1,1	
Fluorine, F	w-% d	0,000 5				
Aluminium, Al	mg/kg d	50	Up to 700	50	Up to 700	
Calcium, Ca	mg/kg d	4 000	2 000 to 7 000	15 000	8 000 to 20 000	
Iron, Fe	mg/kg d	100	Up to 500	100	Up to 500	
Potassium, K	mg/kg d	10 000	2 000 to 26 000	10 000	2 000 to 26 000	
Magnesium, Mg	mg/kg d	700	400 to 1 300	700	300 to 2 200	
Manganese, Mn	mg/kg d	40	20 to 100			
Sodium, Na	mg/kg d	500	Up to 3 000	500	Up to 3 000	
Phosphorus, P	mg/kg d	1 000	300 to 2 900	1 000	300 to 2 700	
Silicate, Si	mg/kg d	10 000	1 000 to 20 000	1 000	100 to 3 000	
Titanium, Ti	mg/kg d	70	5 to 200			
Arsenic, As	mg/kg d	< 0,1	< 0,1 to 2,0	< 0,1	< 0,1 to 0,5	
Cadmium, Cd	mg/kg d	0,10	< 0,05 to 0,30	0,10	< 0,05 to 0,30	
Chromium, Cr	mg/kg d	10	1 to 60	10	1 to 60	
Copper, Cu	mg/kg d	2	1 to 10	2	1 to 10	
Mercury, Hg	mg/kg d	0,02	< 0,02 to 0,05	0,02	< 0,02 to 0,05	
Nickel, Ni	mg/kg d	1,0	0,2 to 4,0	1,0	0,2 to 4,0	
Lead, Pb	mg/kg d	0,5	0,1 to 3,0	2,0	1,0 to 13,0	
Vanadium, V	mg/kg d	3	1 to 6			
Zinc, Zn	mg/kg d	10	3 to 60	10	5 to 20	

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish, Dutch and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in prEN 15296.

B.6 — Typical values ^a for virgin cereal grain materials

Parameter	Parameter Unit Grain from wheat, rye, bar		vheat, rye, barley	Grains	from rape
		(2	.1.1.3)	(2	.1.1.3)
		Typical value	Typical variation	Typical value	Typical variation
Ash	w-% d	2	1,2 to 4	4,3	3,75 to 5,5
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	18, 0	16,5 -19, 6	28,1	27,5 to 29,0
Net calorific value $q_{ m p,net,d}$	MJ/kg d	16,5	15,0 - 18,1	26,6	
Carbon, C	w-% d	45	42 to 50	60	
Hydrogen, H	w-% d	6,5	5,5 to 6,5	7,1	
Oxygen, O	w-% d	44	43 to 50	23	
Nitrogen, N	w-% d	2		3,8	
Sulphur, S	w-% d	0,16	0,05 to 0,1	0,1	
Chlorine, Cl	w-% d	0,11	0,05 to 0,5	0,07	0,01 to 0,15
Aluminium, Al	mg/kg d		< 20		
Calcium, Ca	mg/kg d	600	100 to 1 200	5 000	3 200 to 6 400
Iron, Fe	mg/kg d	75	15 to 200	93	
Potassium, K	mg/kg d	5 000	3 700 to 6 500	8 400	
Magnesium, Mg	mg/kg d	1 400	1 000 to 2 100	2 600	
Manganese, Mn	mg/kg d	30	9 to 60	39	
Sodium, Na	mg/kg d	100	50 to 120	100	50 to 120
Phosphorus, P	mg/kg d	3 400	2 100 to 4 300	7 300	
Silicate, Si	mg/kg d	50	10 to 200		
Titanium, Ti	mg/kg d		< 50 to 100		
Arsenic, As	mg/kg d	≤ 0,5	0,0 to 0,7		
Cadmium, Cd	mg/kg d	0,01	0,0 to 0,7		
Chromium, Cr	mg/kg d	0,5	< 0,5 to 1,0		
Copper, Cu	mg/kg d	5	1,5 to 12	2,6	
Mercury, Hg	mg/kg d	< 0,02	< 0,02		
Nickel, Ni	mg/kg d	1,0	0,2 to 2,0		
Lead, Pb	mg/kg d	0,9	≤ 0,1 to 1		
Vanadium, V	mg/kg d				
Zinc, Zn	mg/kg d	22	17 to 34		

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish, Dutch, French (including rye) and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in CEN/TS 15296.

B.7 — Typical values ^a for virgin reed canary grass

Parameter	Unit		rvest (July – Oct) 1.2.1)	Delayed harvest (March – May) (2.1.2.1)		
		Typical value	Typical variation	Typical value	Typical variation	
Ash	w-% d	6,5	2,5 to 10	6,9	1,0 to 8,0	
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	17,7		17,8	17,7 to 18,0	
Net calorific value $q_{ m p,net,d}$	MJ/kg d	16,6		16,5	16,5 to 17,0	
Carbon, C	w-% d	46		46	45 to 50	
Hydrogen, H	w-% d	5,7		5,8	5,7 to 6,2	
Oxygen, O	w-% d	40		42	40 to 43	
Nitrogen, N	w-% d	1,3		0,9	0,4 to 2,0	
Sulphur, S	w-% d	0,1	0,1 to 0,2	0,13	0,04 to 0,17	
Chlorine, Cl	w-% d	0,5	0,2 to 0,6	0,025	0,01 to 0,09	
Aluminium, Al	mg/kg d				20	
Calcium, Ca	mg/kg d	3 500	1 300 to 5 700	2 000	800 to 3 200	
Iron, Fe	mg/kg d			140	60 to 220	
Potassium, K	mg/kg d	12 000	3 100 to 22 000	2 700	< 800 to 6 000	
Magnesium, Mg	mg/kg d	1 300	300 to 2 300	500	100 to 900	
Manganese, Mn	mg/kg d			160	< 200	
Sodium, Na	mg/kg d	200	< 100 to 400	200	< 20 to 400	
Phosphorus, P	mg/kg d	1 700	500 to 3 000	1 100	300 to 2 000	
Silicate, Si	mg/kg d	12 000	< 1 000 to 25 000	18 000	2 300 to 30 000	
Arsenic, As	mg/kg d	0,1	< 0,1 to 0,2	0,2	< 0,1 to 0,5	
Cadmium, Cd	mg/kg d	0,04	< 0,04 to 0,10	0,06	< 0,04 to 0,20	
Chromium, Cr	mg/kg d					
Copper, Cu	mg/kg d					
Mercury, Hg	mg/kg d	0,03	< 0,02 to 0,05	0,03	< 0,02 to 0,05	
Nickel, Ni	mg/kg d					
Lead, Pb	mg/kg d	1,0	< 0,5 to 4,0	2,0	< 0,5 to 5,0	

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in CEN/TS 15296.

B.8 — Typical values a for virgin grass in general (hay) and miscanthus

Parameter	Unit Grass, in general		Miscanthus (China reed)		
		(2	(2.1.2.1)		.1.2.1)
		Typical value	Typical variation	Typical value	Typical variation
Ash	w-% d	7	4 to 10	4	1 to 6
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	18,0	18 to 20	19,0	17 to 20
Net calorific value $q_{ m p,net,d}$	MJ/kg d	17,1	16 to 19	17,7	16 to 19
Carbon, C	w-% d	46	45 to 50	47	46 to 52
Hydrogen, H	w-% d	5,9	5 to 7	6,1	5 to 6,5
Oxygen, O	w-% d	40	38 to 48	42	40 to 45
Nitrogen, N	w-% d	1,3	1 to 2	0,7	0,1 to 1,5
Sulphur, S	w-% d	0,2	0 to 0,5	0,2	0,02 to 0,6
Chlorine, Cl	w-% d	0,7	0,02 to 1,3	0,2	0,02 to 0,6
Fluorine, F	w-% d	0,001	0,001 to 0,003	0,002	0,001 to 0,003
Aluminium, Al	mg/kg d	200	20 to 300	100	50 to 200
Calcium, Ca	mg/kg d	3 500	2 500 to 5 500	2 000	900 to 3 000
Iron, Fe	mg/kg d	600	100 to 1 200	100	40 to 400
Potassium, K	mg/kg d	15 000	4 900 to 24 000	7 000	1 000 to 11 000
Magnesium, Mg	mg/kg d	1 700	800 to 2 300	600	300 to 900
Manganese, Mn	mg/kg d	1 000	200 to 2 600	20	10 to 100
Sodium, Na	mg/kg d	3 000	1 400 to 6 300	700	20 to 100
Phosphorus, P	mg/kg d	15 000	3 000 to 25 000	500	200 to 800
Silicate, Si	mg/kg d			8 000	2 000 to 10 000
Titanium, Ti	mg/kg d			5	3 to 10
Arsenic, As	mg/kg d	0,1	< 0,1 to 1,4	1	0,5 to 4
Cadmium, Cd	mg/kg d	0,20	0,03 to 0,60	1	0,4 to 8
Chromium, Cr	mg/kg d	1,0	0,2 to 3,0	2	1 to 10
Copper, Cu	mg/kg d	5	2 to 10	2	1 to 6
Mercury, Hg	mg/kg d	< 0,02	< 0,02 to 0,03	2	0,5 to 5
Nickel, Ni	mg/kg d	2,0	0,5 to 5,0	2	0,5 to 5
Lead, Pb	mg/kg d	1,0	< 0,5 to 2,0	2,0	1 to 20
Vanadium, V	mg/kg d	3	-	< 2	
Zinc, Zn	mg/kg d	25	10 to 60	5	3 to 30

^a Data is obtained from a combination of mainly Swedish, Finnish, Danish, Dutch and German research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in prEN 15296.

B.9 — Typical values a for olive and grape cake

Parameter	Unit		Olive cake		Grap	oe cake
		Crude olive cake	Exhausted olive cake	Olive kernels 3.2.1.2	Crude grape cake	Exhausted grape cake
		3.2.1.4	3.2.2.4		3.2.1.1	3.2.1.1, 3.2.2.1
Ash	w-% d	10	3,4 to 11,3	1,2 to 4,4	4,5 to 11,2	6 to 13
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	19,4 to 21,4	18,1 to 21,6	18,6 to 20,8	19,3 to 22,0	
Net calorific value $q_{ m p,net,d}$	MJ/kg d	18,1 to 20,7	13,9 to 19,2	17,3 to 19,3	16,7	19,0
Carbon, C	w-% d	50	48 to 52	45,7 to 52,3	54	46,0 to 54,4
Hydrogen, H	w-% d	6,9	4,6 to 6,3	6,1 to 6,8	6,8	5,8 to 7,5
Oxygen, O	w-% d	30	33	38,5 to 42,1		
Nitrogen, N	w-% d	1,5	1,4 to 2,7	0,8 to 1,6	1,5	1,9 to 2,4
Sulphur, S	w-% d	0,2	0,0 to 0,5	0,0 to 0,5	0,20	0,03 to 0,18
Chlorine, Cl	w-% d	0,2	0,1 to 0,4	0,1 to 0,4		< 0,05
Aluminium	mg/kg d	1250	2 700	559		
Calcium, Ca	mg/kg d	6 900	17 200	968		
Iron, Fe	mg/kg d	1 000	1 900	391		
Potassium, K	mg/kg d	6 000 to 16 000	17 500	6 950		12 500 to 35 700
Magnesium, Mg	mg/kg d	3 400	4 000	316		
Manganese, Mn	mg/kg d	< 26	17 to 44	12		14 to 36
Sodium, Na	mg/kg d	44 to 1 000	250 to 450	120		34 to 180
Phosphorus, P	mg/kg d	2 450	30 to 1 750	590		
Silicate, Si	mg/kg d	14 to 6 600	20 to 11 850	9 to 3 500		
Titanium,Ti	mg/kg d	53	145	39		
Arsenic, As	mg/kg d	0,4	4	0,8		
Cadmium, Cd	mg/kg d	< 0,1	< 0,5	0,2		0,05 to 0,18
Chromium, Cr	mg/kg d	3	3 to 13	3		0,73 to 1,54
Copper, Cu	mg/kg d	14	10 to 20	9		48 to 190
Mercury, Hg	mg/kg d		0,1			
Nickel, Ni	mg/kg d	2	2 to 17	0,05		0,66 to 1,64
Lead, Pb	mg/kg d	2	15	2,1		0,35 to 2,70
Vanadium, V	mg/kg d		5			
Zinc, Zn	mg/kg d	19	19	7		
Cobalt, Co	mg/kg d		1			
Silver, Ag	mg/kg d		4			
Tin, Sn	mg/kg d		4			

NOTE 1 Crude olive cake is a by-product of the first industrial olive oil extraction process. The chemical composition can vary according to the pressing method utilised.

NOTE 2 Exhausted olive cake is a by-product of the second industrial olive oil extraction process that remains after oil extraction (chemical treatment from the above mentioned crude olive cake).

NOTE 3 Olive kernels is a by-product of the first industrial olive oil extraction process, by which a certain quantity of the olive cake produced is separated, giving as a result this high quality biofuel.

NOTE 4 Crude grape cake is a by-product that remains after the grapes have been pressed.

NOTE 5 Exhausted grape cake is a residual material, which remains after water or chemical treatment from crude grape cake.

^a Data is obtained from a combination of mainly Austrian, Dutch, Italian, Greek and Spanish research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in CEN/TS 15296.

B.10 — Typical values ^a for fruit stones and shells

Parameter	Unit	Fruit stones and shells				
		Apricot, peach, cherry fruit stone 3.2.1.2	Almond, hazelnut, pinenut shells 3.1.3.2			
Ash	w-% d	0,2 to 1,0	0,95 to 3,00			
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d		19 to 20			
Net calorific value $q_{ m p,net,d}$	MJ/kg d	19,5 to 22,9	17,5 to 19,0			
Carbon, C	w-% d	51 to 55	44 to 50			
Hydrogen, H	w-% d	5 to 7	5 to 6			
Oxygen, O	w-% d	43	40 to 45			
Nitrogen, N	w-% d	0,2 to 0,3	0,1 to 1,2			
Sulphur, S	w-% d	0,05 to 0,50	0,04 to 0,22			
Chlorine, Cl	w-% d	0,04	0,004 to 0,09			
Aluminium	mg/kg d		65			
Calcium, Ca	mg/kg d		300 to1200			
Iron, Fe	mg/kg d		58 to 66			
Potassium, K	mg/kg d		1 500 to 1 750			
Magnesium, Mg	mg/kg d		175 to 300			
Manganese, Mn	mg/kg d		3 to 12			
Sodium, Na	mg/kg d		62 to 73			
Phosphorus, P	mg/kg d		79 to 82			
Silicate, Si	mg/kg d		580 to 4 200			
Titanium,Ti	mg/kg d		1 to 6			
Zinc, Zn	mg/kg d		2,3 to 5,3			

^a Data is obtained from a combination of mainly Austrian, Dutch, Italian, Greek and Spanish research. The values only aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in CEN/TS 15296.

B.11 — Typical values ^a for selected types of husks, stalks and trash

Parameter	Unit	Rice husk 2.1.1.4	Cotton stalks 2.1.1.2	Cotton gin trash 2.1.1.2	Sunflower husk 2.1.6.2	Pensylvanian malva 2.1.6.2
Ash	w-% d	13 to 23	6,0 to 6,7	1,6 to 9,4	1,9 to 7,6	2,8
Gross calorific value $q_{ m V,gr,d}$	MJ/kg d	14,7 to 6,6	15,8 to 18,3	16,4 to 17,5	18 to 23	19,0
Net calorific value $q_{ m p,net,d}$	MJ/kg d	14,5 to 16,2			17 to 22	17,7
Carbon, C	w-% d	38 to 43	39,5 to 47,0	39,6 to 43,7	51,5 to 52,9	
Hydrogen, H	w-% d	4,3 to 5,1	5,1 to 5,8	5,3 to 6,1	5,0 to 6,6	5,9
Oxygen, O	w-% d	35 to 47			36 to 43	
Nitrogen, N	w-% d	0,1 to 0,8	0,65 to 1,25	0,2 to 2,9	0,6 to 1,4	
Sulphur, S	w-% d	0,02 to 0,10	0,02 to 0,21		0	0,05
Chlorine, Cl	w-% d	0,03 to 0,3	0,08		0 to 0,1	0,02
Potassium, K	mg/kg d	2 800 to 4 300				
Sodium, Na	mg/kg d	33 to 38				

^a Data is obtained from a combination of mainly Italian, Greek and Finnish research. The values aim to describe properties that can be expected in Europe in general. Formulas how to calculate different bases are given in prEN 15296.

Annex C (informative)

Examples of possible causes for deviant levels for different properties and of consequences of handling and treatments for the properties of biomass

C.1 Examples of possible causes for deviant levels for different properties

Property	Deviation	Possible causes
Ash, d	High value	Contamination with soil/sand
		Higher content of bark than specified
		Inorganic additives
		Chemical treatments such as paint, preservation
Net calorific	Low value	High ash content
value $q_{ m p,net,d}$		Content of combustible material with lower calorific value as e.g. glues
Net calorific	High value	Content of combustible material with higher calorific value as e.g. resin,
value $q_{ m p,net,d}$		vegetable or mineral oils, plastic
N, daf	High value	Higher content of bark than specified
		Glue
<u> </u>		Plastic (laminate)
S, daf	High value	Higher content of bark than specified
		Organic additives as corn flour, potato flour
		Inorganic additives containing sulphur compounds
	ļ	Treatment with chemicals containing sulphur, as sulphuric acid
Cl, daf	High value	Higher content of bark than specified
		Origin of wood from coast near locations and exposed from sea water
		Contamination during storage/transportation by road salting
0: 4	I Pada calona	Preservation chemicals
Si, d	High value	Contamination with soil/sand
T: 4	I limb l	Higher content of bark/needles/leaves than specified
Ti, d	High value	Paint
As, d	High value	Preservation chemicals
Cr, d	High value	Preservation chemicals
	I limb colors	Contamination with soil/sand
Cu, d	High value	Preservation chemicals
	I limb code o	Contamination with soil/sand
Hg, d	High value	Contamination with soil/sand
Cd, d	High value	Paint
		Plastic
1		Fertilizer (e.g. ash, sewage sludge (issued from waste water treatment or
		chemical process))
Ni, d	High value	Contamination from working up machinery
		Mineral oils
Pb, d	High value	Environmental contamination (e.g. traffic)
		Paint
		Plastic
ı		Fertilizer (e.g. ash, sewage sludge (issued from waste water treatment or
NOTE 4	1	chemical process))

NOTE 1 Chemically treated wood waste that may contain halogenated organic compounds or heavy metals, is not included in the scope of the standard. As the presence of such materials or the remains of other materials can occur accidentally, examples for these incidents are given also.

NOTE 2 Chemical treatment before harvesting of biomass does not need to be stated.

C.2 Examples of consequences of handling and treatments for the properties of biomass

Circumstance	Possible consequences
Handling, storage or transportation	 increased content of ash and Si due to contamination with soil/sand (may also lead to decrease of ash melting; DT, especially if alkali (Na, K) present) increased content of Cl due to contamination with road salting
Mechanical contamination	 increased content of metals as Fe, Cr and Ni from the working tools/machinery
Environmental contamination	 increased content of CI due to deposition from the sea spray/fog increased content of heavy metals as Pb and Zn due to exposition to society activities as traffic increased content of Cd, Pb due to fertilizer (e.g. sewage sludge)
Additives (pellets and briquettes)	Possible consequences
Inorganic additives: Limestone Kaolin	increased content of ash and Ca increased content of ash, Si and Al
Organic additives: Other solid biomass Vegetable oils	 changes, depending on type & quality of the particular material. Higher amounts of e.g. corn or potato flour may cause increased content of e.g. ash and S
	increased calorific value
Chemical treatments	Possible consequences
Glue	increased content of Ndecreased calorific value
Lye	 increased content of Na
Paints ^a	 increased content of ash increased content of metals as Pb, Ti and Zn depending of the actual pigments
Plastics (laminate) ^a	 increased calorific value increased content of N (e.g. ABS or celluloid plastics) increased content of Cl or F (e.g. PVC or teflon plastics) increased contents of metals as Cd, Pb, Zn depending of the content of additives in the plastic
Preservations ^a	 increased content of ash increased content of As, B, Cl, Cr, Cu, F, P or Zn depending of the used type of preservation chemical
Sulphur acids	increased content of S

^a Chemical treatments containing halogenated organic compounds (as Cl, F) or heavy metals (as As, Pb) is not included in the scope of the standard.

Annex D

(informative)

Calculation of the net calorific value at different bases and energy density as received

D.1 The net calorific value of dry basis

The net calorific value at a constant pressure for a dry sample (dry basis, in dry matter) is derived from the corresponding gross calorific value at a constant volume according to Equation (EN 14918) (1)

$$q_{p,\text{net, d}} = q_{V,\text{qr,d}} - 212,2 \times w(H)_{\text{d}} - 0,8 \times \left[w(O)_{\text{d}} + w(N)_{\text{d}} \right]$$
 (1)

where

$q_{ m extcolor{p}}$,net, d	is the net calorific value for dry matter at a constant pressure in joules per gram(J/g) or kilojoules per kilogram (kJ/kg);
$q_{ m \ensuremath{\it V},r,d}$	is the gross calorific value for dry matter in joules per gram(J/g) or kilojoules per kilogram (kJ/kg);
$w(H)_d$	is the hydrogen content, in percentage by mass, of the moisture-free (dry) biofuel
	(including the hydrogen from the water of hydration of the mineral matter as well as the hydrogen in the biofuel substance);
$w(O)_d$	is the oxygen content, in percentage by mass, of the moisture-free biofuel;
$w(N)_d$	is the nitrogen content, in percentage by mass, of the moisture-free biofuel.

For the calculation of the net calorific value as received using Equation (2) in D.2, the result from Equation (1) in in joules per gram(J/g) or kilojoules per kilogram (kJ/kg), shall be divided by 1 000 to get the result in megajoules per kilogram (MJ/kg).

NOTE $\left[w(O)_d + w(N)_d\right]$ can be derived by subtracting from 100 (w-%) the percentages of ash, carbon, hydrogen and sulphur.

D.2 The net calorific value as received

a) Calculation from dry basis

The net calorific value (at constant pressure) on as received (the moist biofuel) can be calculated on the net calorific value of the dry basis according to Equation (2).

$$q_{p,\text{net,ar}} = q_{p,\text{net,d}} \times (\frac{100 - M_{\text{ar}}}{100}) - 0.02443 \times M_{\text{ar}}$$
 (2)

where

 $q_{p,{\rm net,ar}}$ is the net calorific value (at constant pressure) as received in megajoules per kilogram (MJ/kg);

 $q_{p,\text{net,d}}$ is the net calorific value (at constant pressure) in dry matter in megajoules per kilogram (MJ/kg);

 $M_{
m ar}$ is the moisture content as received [w-%];

0,024 43 is the correction factor of the enthalpy of vaporization (constant pressure) for water (moisture) at 25 °C (in megajoules per kilogram (MJ/kg) per 1 w-% of moisture).

b) Calculation from dry and ash-free basis

The net calorific value (at constant pressure) on as received (the moist biofuel) can be calculated from a net calorific value of the dry and ash-free basis according to Equation (3).

$$q_{p,\text{net,ar}} = \left[\left(\frac{q_{p,\text{net,daf}} \times (100 - A_{\text{d}})}{100} \right) \times \left(\frac{100 - M_{\text{ar}}}{100} \right) \right] - 0.024 \ 43 \times M_{\text{ar}}$$
 (3)

 $q_{p,{\rm net,ar}}$ is the net calorific value (at constant pressure) as received, in megajoules per kilogram (MJ/kg);

 $q_{p,\text{net},\text{daf}}$ is the net calorific value (at constant pressure) in dry and ash-free basis, in megajoules per kilogram (MJ/kg);

 $M_{\rm ar}$ is the moisture content as received (w-%);

 A_{d} is the ash content in dry basis (w-%);

0,024 43 is the correction factor of the enthalpy of vaporization (constant pressure) for water (moisture) at 25 °C (in megajoules per kilogram (MJ/kg) per 1 w-% of moisture).

In both the above cases a) and b), the calorific value can be either determined for that particular lot or a typical value can be used.

- 1) If the ash content of the fuel is low and rather constant, the calculation can be based on the dry basis equation with a typical value of $q_{p,\text{net. d}}$;
- 2) If the ash content varies quite a lot (or is high) for the specific biofuel then using the equation for dry and ash-free basis with a typical value of $q_{p,\text{net,daf}}$ is preferable.

The result shall be reported to the nearest 0,01 MJ/kg.

D.3 Energy density as received

The wood fuels for small-scale heating plants and households are traded usually on a volume basis and energy content (net calorific value) is informed often as megawatts hour (MWh) per bulk volume. Bulk density and moisture content is measured or estimated.

The energy density as received can be calculated according to Equation (4).

$$\mathsf{E}_{\mathsf{ar}} = \frac{1}{3600} \times q_{p,\mathsf{net},\mathsf{ar}} \times \mathsf{BD}_{\mathsf{ar}} \tag{4}$$

where

E_{ar} is the energy density of the biofuel as received, in megawatts hour per cubic metre (MWh/m³) of bulk volume;

 $q_{
m p,net,ar}$ is the net calorific value (at constant pressure) as received, in megajoules per kilogram (MJ/kg);

BD_{ar} is the bulk density, i.e. volume weight of the biofuel as received, in kilograms per cubic metre (kg/m³) of bulk volume;

 $\frac{1}{3600}$ is the conversion factor for the energy units (megajoules (MJ) to megawatts hour (MWh)).

The result shall be reported to the nearest 0,01 MWh/m³ of bulk volume.

The values of net calorific value and bulk density used in equations can be either measured or based on typical values of biofuels. The typical net calorific values of solid biofuels are reported in Annex B of this European Standard.

Bibliography

- [1] EN 13556:2003, Round and sawn timber Nomenclature of timbers used in Europe
- [2] COMMISSION DECISION of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (notified under document number C(2000) 1147) (Text with EEA relevance) (2000/532/EC); Official Journal of the European Union, 6.9.2000.
- [3] EN 14774-3 Solid biofuels Determination of moisture content Oven dry method Part 3: Moisture in general analysis sample
- [4] CEN/TS 15105, Solid biofuels Methods for determination of the water soluble content of chloride, sodium and potassium
- [5] EN 15148, Solid biofuels Determination of the content of volatile matter

BS EN 14961-1:2010

BSI - British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL

Further information about BSI is available on the BSI website at http://www.bsigroup.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright and Licensing Manager. Tel: $\pm 44~(0)20~8996~7070$ Email: copyright@bsigroup.com

BSI Group Headquarters 389 Chiswick High Road, London, W4 4AL, UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/ standards