
BSI Standards Publication

BS EN 14908-1:2014

Open Data Communication in
Building Automation, Controls
and Building Management —
Control Network Protocol
Part 1: Protocol Stack

BS EN 14908-1:2014 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 14908-1:2014.
It supersedes BS EN 14908-1:2005 which is withdrawn.

The UK participation in its preparation was entrusted to Technical
Committee RHE/16, Performance requirements for control systems.

A list of organizations represented on this committee can be
obtained on request to its secretary.

This publication does not purport to include all the necessary
provisions of a contract. Users are responsible for its correct
application.

© The British Standards Institution 2014. Published by BSI Standards
Limited 2014

ISBN 978 0 580 79424 7

ICS 35.240.99; 91.140.01; 97.120

Compliance with a British Standard cannot confer immunity from
legal obligations.

This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 31 May 2014.

Amendments issued since publication

Date Text affected

http://dx.doi.org/10.3403/30111642

BS EN 14908-1:2014

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

 EN 14908-1

 April 2014

ICS 35.240.99; 91.140.01; 97.120 Supersedes EN 14908-1:2005

English Version

 Open Data Communication in Building Automation, Controls and
Building Management - Control Network Protocol - Part 1:

Protocol Stack

Réseau ouvert de communication de données pour
l'automatisation, la régulation et la gestion technique du
bâtiment - Protocole de contrôle du réseau - Partie 1:

Niveaux du protocole

 Offene Datenkommunikation für die Gebäudeautomation
und Gebäudemanagement - Gebäude-Netzwerk-Protokoll -

Teil 1: Datenprotokollschichtenmodell

This European Standard was approved by CEN on 12 April 2013.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national
standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same
status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United
Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R OP É E N D E N O R M A LI S A T I O N
EUR O P Ä IS C HES KOM I TE E F ÜR NOR M UNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2014 CEN All rights of exploitation in any form and by any means reserved
worldwide for CEN national Members.

Ref. No. EN 14908-1:2014 E

http://dx.doi.org/10.3403/30111642U
http://dx.doi.org/10.3403/30111642

BS EN 14908-1:2014

EN 14908-1:2014 (E)

2

Contents

Foreword ..5

Introduction ...6

1 Scope...7

2 Normative references ..7

3 Terms and definitions ..7

4 Symbols and abbreviations ..9
4.1 Symbols and graphical representations ..9
4.2 Abbreviations .. 10

5 Overview of protocol layering ... 11

6 MAC sublayer .. 13
6.1 General ... 13
6.2 Service provided ... 13
6.3 Interface to the link layer .. 13
6.4 Interface to the physical layer ... 14
6.5 MPDU format ... 15
6.6 Predictive p-persistent CSMA — overview description .. 15
6.7 Idle channel detection .. 16
6.8 Randomising ... 17
6.9 Backlog estimation ... 17
6.10 Optional priority .. 18
6.11 Optional collision detection ... 19
6.12 Beta1, Beta2 and Preamble Timings ... 20

7 Link layer ... 22
7.1 Assumptions ... 22
7.2 Service provided ... 22
7.3 CRC... 22
7.4 Transmit algorithm .. 23
7.5 Receive Algorithm ... 23

8 Network layer ... 23
8.1 Assumptions ... 23
8.2 Service provided ... 25
8.3 Service interface ... 25
8.4 Internal structuring of the network layer .. 26
8.5 NPDU format .. 26
8.6 Address recognition ... 27
8.7 Routers ... 27
8.8 Routing algorithm ... 28
8.9 Learning algorithm — subnets .. 28

9 Transaction control sublayer ... 28
9.1 Assumptions ... 28
9.2 Service provided ... 29
9.3 Service interface ... 29
9.4 State variables ... 30

BS EN 14908-1:2014

EN 14908-1:2014 (E)

3

9.5 Transaction control algorithm ... 30

10 Transport layer .. 31
10.1 Assumptions ... 31
10.2 Service provided ... 31
10.3 Service interface ... 31
10.4 TPDU types and formats .. 32
10.5 Protocol diagram ... 33
10.6 Transport protocol state variables .. 34
10.7 Send algorithm .. 34
10.8 Receive algorithm ... 34
10.9 Receive transaction record pool size and configuration engineering .. 34

11 Session layer ... 37
11.1 Assumptions ... 37
11.2 Service Provided ... 37
11.3 Service interface ... 38
11.4 Internal structure of the session layer .. 38
11.5 SPDU types and formats .. 39
11.6 Protocol timing diagrams ... 40
11.7 Request-response state variables ... 43
11.8 Request-response protocol — client part .. 43
11.9 Request-response protocol — server part ... 43
11.10 Request-response protocol timers ... 44
11.11 Authentication protocol.. 44
11.12 Encryption algorithm .. 44
11.13 Retries and the role of the checksum function .. 44
11.14 Random Number Generation ... 45
11.15 Using Authentication .. 45

12 Presentation/application layer ... 45
12.1 Assumptions ... 45
12.2 Service provided ... 45
12.3 Service interface ... 46
12.4 APDU types and formats .. 47
12.5 Protocol diagrams ... 48
12.6 Application protocol state variables ... 50
12.7 Request - response messaging in offline state ... 50
12.8 Network variables ... 51
12.9 Error notification to the application program .. 52

13 Network management & diagnostics .. 53
13.1 Assumptions ... 53
13.2 Services provided ... 53
13.3 Network management and diagnostics application structure ... 53
13.4 Node states .. 53
13.5 Using the network management services .. 54
13.6 Using router network management commands .. 58
13.7 NMPDU formats and types ... 59
13.8 DPDU types and formats .. 80

Annex A (normative) Reference implementation ... 85

A.1 General ... 85

A.2 Predictive CSMA algorithm .. 85

Annex B (normative) Additional Data Structures .. 380

B.1 General ... 380

BS EN 14908-1:2014

EN 14908-1:2014 (E)

4

B.2 Read-only structures .. 381

B.3 Domain table .. 386

B.4 Address table .. 386

B.5 Network variable tables - informative ... 391

B.6 Self-Identification structures ... 393

B.7 Configuration structure .. 400

B.8 Statistics relative structure .. 402

Annex C (informative) Behavioral characteristics .. 404

C.1 Channel capacity and throughput ... 404

C.2 Network metrics .. 405

C.3 Transaction metrics .. 406

C.4 Boundary conditions — power-up .. 407

C.5 Boundary conditions — high load .. 407

Annex D (normative) PDU summary ... 408

Annex E (normative) Naming and addressing... 410

E.1 Address types and formats .. 410

E.2 Domains ... 410

E.3 Subnets and nodes ... 411

E.4 Groups.. 411

E.5 Unique_Node_ID and node address assignment .. 412

E.6 NPDU addressing .. 413

Bibliography ... 415

BS EN 14908-1:2014

EN 14908-1:2014 (E)

5

Foreword
This document (EN 14908-1:2014) has been prepared by Technical Committee CEN/TC 247 “Building
Automation, Controls and Building Management”, the secretariat of which is held by SNV.

This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by October 2014 and conflicting national standards shall
be withdrawn at the latest by October 2014.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such
patent rights.

This document supersedes EN 14908-1:2005.

This European Standard is part of a series of standards for open data transmission in building
automation, control and in building management systems. The content of this European Standard
covers the data communications used for management, automation/control and field functions.

The following is a list of technical changes since the previous edition:

— EN 14908-5 has been added to the normative references;

— the normative Annex A has been re-worked for a better understanding. The reference
implementation of the standard shows in detail which part is normative and hardware
independent, which one is normative but hardware dependent and which one is not normative
because it is hardware dependent. This information supports the development of a protocol stack
and the understanding of the specified communication services.

EN 14908-1 is part of a series of European Standards under the general title Control Network Protocol
(CNP), which comprises the following parts:

Part 1: Protocol stack;

Part 2: Twisted pair communication;

Part 3: Power line channel specification;

Part 4: IP communication;

Part 5: Implementation;

Part 6: Application elements.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of
Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,
Sweden, Switzerland, Turkey and the United Kingdom.

http://dx.doi.org/10.3403/30111642
http://dx.doi.org/10.3403/30149067U
http://dx.doi.org/10.3403/30111642U

BS EN 14908-1:2014

EN 14908-1:2014 (E)

6

Introduction

This European Standard has been prepared to provide mechanisms through which various vendors of
building automation, control, and building management systems may exchange information in a
standardised way. It defines communication capabilities.

This European Standard will be used by all involved in design, manufacture, engineering, installation
and commissioning activities.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

7

1 Scope

This European Standard applies to a communication protocol for networked control systems in
commercial Building Automation, Controls and Building Management. The protocol provides peer-to-
peer communication for networked control and is suitable for implementing both peer-to-peer and
master-slave control strategies. This specification describes services in layers 2 to 7. In the layer 2
(data link layer) specification, it also describes the MAC sub-layer interface to the physical layer. The
physical layer provides a choice of transmission media. The interface described in this specification
supports multiple transmission media at the physical layer. In the layer 7 specification, it includes a
description of the types of messages used by applications to exchange application and network
management data.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

EN 14908-5, Open Data Communication in Building Automation, Controls and Building Management
Implementation Guideline - Control Network Protocol - Part 5: Implementation

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

For the purposes of this European Standard, the following subclause introduces the basic terminology
employed throughout this European Standard. Most of it is commonly used and the terms have the
same meaning in both the general and the standard context. However, for some terms, there are
subtle differences. For example, in general, bridges do selective forwarding based on the layer 2
destination address. There are no layer 2 addresses in this standard protocol, so bridges forward all
packets, as long as the domain address in the packet matches a domain of which the bridge is a
member. Routers, in general, perform network address modification so that two protocols with the
same transport layer but different network layers can be connected to form a single logical network.
Routers of this standard may perform network address modification, but typically, they only examine
the network address fields and selectively forward packets based on the network layer address fields.

3.1
channel
physical unit of bandwidth linking one or more communication nodes.

Note 1 to entry: Refer to Annex E for further explanation of the relationship between a channel and a subnet.

3.2
physical repeater
device that reconditions the incoming physical layer signal on one channel and retransmits it onto
another channel

3.3
store-and-forward repeater
device that stores and then reproduces data packets onto a second channel

http://dx.doi.org/10.3403/30149067U

BS EN 14908-1:2014

EN 14908-1:2014 (E)

8

3.4
bridge
device that connects two channels (x and y); forwards all packets from x to y and vice versa, as long
as the packets originate on one of the domain(s) that the bridge belongs to

3.5
configuration
non-volatile information used by the device to customise its operation. There is configuration data for
the correct operation of the protocol in each device, and optionally, for application operation. The
network configuration data stored in each device has a checksum associated with the data. Examples
of network configuration data are node addresses, communication media parameters such as priority
settings, etc. Application configuration information is application specific

3.6
domain
virtual network that is the network unit of management and administration. Group and subnet (see
below) addresses are assigned by the administrator responsible for the domain, and they have
meaning only in the context of that domain

3.7
flexible domain
used in conjunction with Unique_Node_ID and broadcast addressing. A node responds to a
Unique_Node_ID-addressed message if the address matches, regardless of the domain on which the
message was sent. To respond so that the sender receives it, the response shall be sent on the
domain in which it was received. Furthermore, this domain shall be remembered for the duration of
the transaction so that duplicate detection of any retries is possible. This transitory domain entry at a
node is called the flexible domain. How many flexible domain entries a node supports depends on the
implementation. However, a minimum of 1 is required

3.8
subnet
set of nodes accessible through the same link layer protocol; a routing abstraction for a channel; in
this standard subnets are limited to a maximum of 127 nodes

3.9
node
abstraction for a physical node that represents the highest degree of address resolvability on a
network. A node is identified (addressed) within a subnet by its (logical) node identifier. A physical
node may belong to more than one subnet; when it does, it is assigned one (logical) node number for
each subnet to which it belongs. A physical node may belong to at most two subnets; these subnets
shall be in different domains. A node may also be identified (absolutely) within a network by its
Unique_Node_ID

3.10
group
uniquely identifiable set of nodes within a domain. Within this set, individual members are identified by
their member number. Groups facilitate one-to-many communication and are intended to support
functional addressing

3.11
router
device that routes data packets to their respective destinations by selectively forwarding from subnet
to subnet; a router always connects two (sets of) subnets; routers may modify network layer address
fields. Routers may be set to one of four modes: repeater mode, bridge mode, learning mode, and
configured mode. In repeater mode, packets are forwarded if they are received with no errors. In
bridge mode, packets are forwarded if they are received with no errors and match a domain that the
router is a member of. Routers in learning mode learn the topology by examining packet traffic, while

BS EN 14908-1:2014

EN 14908-1:2014 (E)

9

routers that are set to configured mode have the network topology stored in their memory and make
their routing decisions solely upon the contents of their configured tables

3.12
(application) gateway
interconnects networks at their highest protocol layers (often two different protocols). Two domains
can also be connected through an application gateway

3.13
Beta1
period immediately following the end of a packet cycle. A node attempting to transmit monitors the
state of the channel, and if it detects no transmission during the Beta1 period, it determines the
channel to be idle

3.14
Beta2
randomising slot. A node wishing to transmit generates a random delay T. This delay is an integer
number of randomising slots of duration Beta2

3.15
network variable
variable in an application program whose value is automatically propagated over the network
whenever a new value is assigned to it

3.16
Standard Network Variable Types (SNVTs)
variables with agreed-upon semantics. These variables are interpreted by all applications in the same
way, and are the basis for interoperability. Definition of specific SNVTs is beyond the scope of this
European Standard

3.17
manual service request message
network management message containing a node’s Unique_Node_ID. Used by a network
management device that receives this message to install and configure the node. May be generated
by application or system code. May be triggered by external hardware event, e.g., driving a “manual
service request” input low

3.18
transaction
sequence of messages that are correlated together. For example, a request and the responses to the
request are all part of a single transaction. A transaction succeeds when all the expected messages
from every node involved in the transaction are received at least once. A transaction fails in this
European Standard if any of the expected messages within the transaction are not received. Retries
of messages within a transaction are used to increase the probability of success of a transaction in
the presence of transient errors

4 Symbols and abbreviations

4.1 Symbols and graphical representations

Figure 1 shows the basic topology of networks based on this protocol and the symbolic
representations used in this European Standard.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

10

Figure 1 — Network topology & symbols

The layering of this protocol is described using standard OSI terminology, as shown in Figure 2.

Figure 2 — Protocol terminology

4.2 Abbreviations

CNP Control Network Protocol

The Protocol Data Unit (PDU) abbreviations used throughout this Standard are:

PPDU Physical Protocol Data Unit, or frame

MPDU MAC Protocol Data Unit, or frame

LPDU Link Protocol Data Unit, or frame

NPDU Network Protocol Data Unit, or packet

TPDU Transport Protocol Data Unit, or a message/ack

BS EN 14908-1:2014

EN 14908-1:2014 (E)

11

SPDU Session Protocol Data Unit, or request/response

NMPDU Network Management Protocol Data Unit

DPDU Diagnostic Protocol Data Unit

APDU Application Protocol Data Unit

FSM Finite State Machine (diagram)
Annex D (PDU Summary) contains the details of these PDUs.

5 Overview of protocol layering

The protocol specified by this Standard consists of the layers shown in Figure 3. Each layer is
described below.

Multiple physical layer protocols and data encoding methods are allowed in systems based on this
European Standard. Each encoding scheme is medium-dependent.

The MAC (Medium Access Control) sublayer employs a collision avoidance algorithm called
Predictive p-persistent CSMA (Carrier Sense, Multiple Access). For a number of reasons, including
simplicity and compatibility with the multicast protocol, the link layer supports a simple connectionless
service. Its functions are limited to framing, frame encoding, and error detection, with no error
recovery by re-transmission.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

12

Figure 3 — Protocol layering

The Network layer handles packet delivery within a single domain, with no provisions for inter-domain
communication. The Network service is connection-less, unacknowledged, and supports neither
segmentation nor re-assembly of messages. The routing algorithms employed by the network layer to
learn the topology assumes a tree-like network topology; routers with configured tables may operate
on topologies with physical loops, as long as the communication paths are logically tree-like. In this
topology, a packet may never appear more than once at the router on the side on which the packet
originated. The unicast routing algorithm uses learning for minimal over-head and no additional
routing traffic. Use of configured routing tables is supported for both unicast and group addresses,
although in many applications a simple flooding of group addressed messages is sufficient.

The heart of the protocol hierarchy is the Transport and Session layers. A common Transaction
Control Sublayer handles transaction ordering and duplicate detection for both. The Transport layer is
connection-less and provides reliable message delivery to both single and multiple destinations.
Authentication of the message sender’s identity is included as a transport layer service, for use when
the security of sender authentication is required. The authentication server requires only the

BS EN 14908-1:2014

EN 14908-1:2014 (E)

13

Transaction Control Sublayer to accomplish its function. Thus Transport and Session layer messages
may be authenticated using all of the addressing modes other than broadcast.

The session layer provides a simple Request-Response mechanism for access to remote servers.
This mechanism provides a platform upon which application specific remote procedure calls can be
built. The network management protocol, for example, depends upon the Request-Response
mechanism in the Session layer.

A transport layer acknowledged message expects indication of message delivery from remote
destination(s). A session layer request message expects indication that application-specific remote
task(s) have been completed. A given message uses only one or the other type of service, but not
both.

This specification includes the Presentation Layer and the lowest level of the Application Layer. These
layers provide services for sending and receiving application messages including network variables,
and other types of messages such as network management and diagnostic messages and foreign
frames (see Clause 13). For a network variable update, the APDU header provides information on
how to interpret the APDU. This application-independent interpretation of the data allows data to be
shared among nodes without prior arrangement.

6 MAC sublayer

6.1 General

In this European Standard the following Media Access Control sublayer is defined. If there is a need
for other MAC sublayers they are defined in additional parts of this European Standard.

6.2 Service provided

The Media Access Control (MAC) sublayer facilitates media access with optional priority and optional
collision detection/collision resolution. It uses a protocol called Predictive p-persistent CSMA (Carrier
Sense, Multiple Access), that has some resemblance to the p-persistent CSMA protocol family.

Predictive p-persistent CSMA is a collision avoidance technique that randomises channel access
using knowledge of the expected channel load. A node wishing to transmit always accesses the
channel with a random delay in the range (0..w). To avoid throughput degradation under high load,
the size of the randomising window, w, is a function of estimated channel backlog BL:

1-) W (BL w base×= , (1)

where

Wbase is the base window size. Wbase is measured in time. Its duration, derived from Beta2 (see 6.8),
equals 16 Beta2 slots.

6.3 Interface to the link layer

The MAC sublayer is closely coupled to the Link layer, described in Clause 7. With the MAC sublayer
being responsible for media access, the Link layer deals with all other layer 2 issues, including
framing and error detection. For explanatory purposes, the interface between the two layers is
described in the form shown in Figure 4.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

14

Figure 4 — Interface between the MAC and the link layers

Although the service interface primitives are defined using a syntax similar to programming language
procedure calls, no implementation technique is implied. Frame reception is handled entirely by the
Link layer, that notifies the MAC sublayer about the backlog increment via the Frame_OK() primitive.

The following service interface primitives facilitate the interface between the Link and the MAC layers:

M_Data_Request (Priority, delta_BL, ALT_Path, LPDU)

This primitive is used by the Link layer to pass an outbound LPDU/MPDU to the MAC sublayer.
Priority defines the priority with which the frame is to be transmitted; delta_BL is the backlog
increment expected as a result of delivering this MPDU. ALT_Path is a binary flag indicating
whether the LPDU is to be transmitted on the primary or alternate channel, baud rate, etc. See
6.5 for how ALT_Path is set.

Frame_OK (delta_BL)

On receiving a frame and verifying that its CRC is correct, the Link layer invokes this primitive to
notify the MAC sublayer about the backlog increment associated with the frame just received.

M_Data_Indication()

The MAC sublayer provides this indication to the link layer once per incoming LPDU/MPDU.

6.4 Interface to the physical layer

The physical layer handles the actual transmission and reception of binary data. Multiple physical
layer protocols are supported by the control network protocol. The bit error rate presented to the link
layer shall be equal to or better than 1 in 10-4. For compatibility with the higher layers, all physical
protocols shall support the defined service interface (see Figure 4):

P_Data_Indication (Frame)

Physical layer provides this indication to the MAC sublayer and the link layer once per in-coming
LPDU/MPDU.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

15

P_Data_Request (Frame)

The MAC sublayer uses this primitive to pass the Frame, the encoded LPDU/MPDU, to the
physical layer for immediate transmission. The bit transmission order is defined in Annex D.

P_Data_Confirm (Status)

The physical layer returns Status as to whether the frame was transmitted. Status has three
possible values: success—indicating the frame was transmitted, request_denied—indicating that
activity was detected on the line prior to transmission, and collision—indicating that transmission
began, but a collision was detected. Whether or not the transmission is aborted depends on
when the collision is detected (see 6.11).

P_Channel_Active ()

The physical layer uses this primitive to pass the status of the channel to the MAC sublayer. This
is an indication of activity, not necessarily of valid data.

6.5 MPDU format

The combined MPDU/LPDU format is shown in Figure 5. (Annex D contains the details of the NPDU
frame).

Figure 5 — MPDU/LPDU format

The MAC sublayer uses the L2Hdr field, that has the following syntax and semantics:

Pri 1-bit field specifying the priority of this MPDU: 0 = Normal, 1 = High.

Alt_Path 1-bit field specifying the channel to use. This is a provision for transceivers that have
the ability to transmit on two different channels and receive on either one without the
need to instruct the transceiver to explicitly receive on a specific channel. The
transport layer sets this bit for the last two attempts (for acknowledged and
request/response services), unless requested to specify the alternate path for every
transmission. For any packet received that has the alt_path bit set and that requires
an acknowledgement, response, challenge, or reply, the alt_path bit shall be set in
the corresponding acknowledgement, response, challenge, or reply.

Delta_BL 6-bit unsigned field (≥ 0); specifies channel backlog increment to be generated as a
result of deliver-ing this MPDU.

6.6 Predictive p-persistent CSMA — overview description

Like CSMA, Predictive p-persistent CSMA senses the medium before transmitting. A node attempting
to transmit monitors the state of the channel (see Figure 6), and determines the channel to be idle if it
detects no transmission during the Beta1 period. Nodes without a packet to transmit during this Beta1

BS EN 14908-1:2014

EN 14908-1:2014 (E)

16

period shall remain in synchronisation for the duration of the priority slots (see 6.11), and at least
Wbase randomising slots. This maintenance of synchronisation allows a packet that arrives in the
output queue of the MAC sublayer after the end of the Beta1 time to be transmitted in a valid slot
according to the other nodes with a packet to transmit.

Next, the node generates a random delay T (transmit) from the interval (0..(BL x Wbase)-1, where Wbase
is the number of randomising slots within the basic randomising window and BL is an estimate of the
current channel backlog. T (transmit) is defined as an integer number of randomising slots of duration
Beta2 (see 6.8 and 6.9). If the channel is idle when the delay expires, the node transmits; otherwise,
the node receives the incoming packet, and then repeats the MAC algorithm. In Figure 6, Dmean is the
average randomisation delay between packets, and, since the random delay T is uniformly distributed,
Dmean is given as (Wbase-1)/2 for small values of BL.

Figure 6 — Predictive p-persistent CSMA concepts and parameters

By adjusting the size of the randomising window as a function of the predicted load, the algorithm
keeps the collision rate constant and independent of the load. Provided that the estimated backlog is
greater than or equal to the real back-log, the following holds:

base2W / 1 Cycles Pkt Free Error / Cycles Pkt Error Rate Collision ≤=

A base window size of 16 is used. This implies that there are an average of 8 randomising slots of
width Beta2 and one slot of width Beta1 between each packet. In addition, the width of the Beta2
period is crucial to efficient utilisation of the channel.

The algorithm for Predictive CSMA is in A.2.

6.7 Idle channel detection

The idle channel condition is asserted whenever the following two conditions are met:

1) The current channel state reported by the physical layer via the P_Data_Indication () primitive is
low; and

2) No transition has been detected during the last period of Beta1. Note that the MAC sublayer may
be configured to ignore transitions during a portion of the Beta1 period. This portion of time that
transitions are ignored (the channel is assumed to be idle during this time even in the presence of
transitions) is called the indeterminate time (see 6.12 for the details).

The length of the Beta1 period is defined by the following constraint:

) Tau Tau (2 bit time 1 Beta1 mp +×+> (2)

The first term assumes a data encoding method that guarantees a transition and/or carrier during
every bit time. If encoding methods are used that do not meet this constraint, then the first term shall

BS EN 14908-1:2014

EN 14908-1:2014 (E)

17

be adjusted to be the longest time that the channel may appear idle without being idle, i.e., the
longest run in legal data transmission without a transition and/or carrier asserted on the medium. The
second term takes care of propagation and turnaround delays:

Taup is the physical propagation delay defined by the media length;

Taum is the detection and turnaround delay within the MAC sublayer; this is the period from
the time the idle channel condition is detected, to the point when the first output
transition appears on the output. On media where there is a carrier, this time shall
include the time between turning on the carrier, and it being asserted as a valid carrier
on the medium.

6.8 Randomising

At the beginning of the randomising period, a node wishing to transmit generates a random delay T
(transmit) from the interval (0.. (BL x Wbase)-1. The node then waits for this period, while continuing to
monitor channel status; if the channel is still idle when the delay expires, the node transmits.

The transmit delay T (transmit) is an integer number of randomising slots of duration Beta2; the length
of the randomising slot shall meet the following constraint:

mp Tau Tau 2 Beta2 +×> (3)

Parameters Taup and Taum are defined in 6.7.

6.9 Backlog estimation

The predictive aspect of the MAC algorithm is based on backlog estimation. Each node maintains an
estimate of the current channel backlog BL, that is incremented as a result of sending or receiving an
MPDU and decrements periodically — once every packet cycle. The increment to the backlog is
encoded into the link layer header, and represents the number of messages that the packet shall
cause to be generated upon reception. The backlog is initially set to one. After sending or receiving a
packet with a non-zero backlog increment, the node’s backlog estimation is incremented by the
backlog increment. The maximum backlog value is 63. If the backlog exceeds 63, then the backlog
overflow statistic is incremented (see 13.7.14 and B.8).

The backlog decrements under one of the following conditions:

— On waiting to transmit: If Wbase randomising slots go by without channel activity.

— On receive: If a packet is received with a backlog increment of ‘0’.

— On transmit: If a packet is transmitted with a backlog increment of ‘0’.

— On idle: If a packet cycle time expires without channel activity.

The packet cycle timer is reset to its initial value whenever the backlog is changed. It is started
(begins counting down at its current value) whenever the MAC layer becomes idle. An idle MAC layer
is defined as:

1) not receiving;

2) not transmitting;

3) not waiting to transmit;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

18

4) not timing Beta1;

5) not waiting for priority slots; and

6) not waiting for the first Wbase randomising window to complete.

On transition from idle to either transmit or receive, the packet cycle timer is halted.

The backlog always has a value ≥ 1. The algorithm post-increments rather than pre-increments the
backlog by the amount associated with the MPDU being transmitted, because the number of expected
responses is of no importance until after transmitting the MPDU.

6.10 Optional priority

On a channel by channel basis, the protocol supports optional priority. Priority slots, if any, follow
immediately after the Beta1 period that follows the transmission of a packet (Figure 7). The number of
priority slots per channel ranges from 0 to 127. Priority slots are typically not contended for, but rather
are uniquely assigned to nodes on the channel. Nodes that have been assigned a priority slot do not
have to use it with every message; the node decides on a message by message basis whether or not
to use the assigned priority slot. This determination is made by examining the priority bit within the
LPDU header (Figure 5).

It is possible to assign all the nodes on the channel the same priority slot. An example of an
architecture where this makes sense would be one where there is a background of peer-to-peer
activity, but a single master that cycles around doing something to each node (such as network
management, polling, etc.). By giving each node the same slot, and having it used only for this
purpose, these transactions (from the single master to multiple slaves) would tend to be completed
ahead of the background traffic.

An application may decide that a message is high priority and attempt to send it as such. If the node
does not have a priority slot assigned to it, the message shall go out in the usual way, except that the
priority bit in the layer 2 header shall be set. If, subsequently, the packet passes through a router that
has a priority slot on its destination channel, the packet shall be sent using the priority of the router. If
the router does not have a priority slot, the message shall be for-warded in the usual way, with the
priority bit in the layer 2 header remaining set.

Figure 7 — Allocation of priority slots within the Busy Channel Packet Cycle

The protocol provides no synchronisation among the nodes. Therefore, if the channel has been idle
for longer than the randomising period (Beta1 + number of priority slots + Dmean above), access to the
link is random without regard to priority. Once the link returns to the busy state, access to the link shall
be in priority order.

If a priority message requires:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

19

— acknowledgement (acknowledged messaging);

— response (request/response messaging);

— challenge (in response to an authenticated acknowledged message or authenticated request); or

— reply (in response to an authentication challenge);

the responding node shall attempt to send a priority acknowledgement/response/challenge/reply by
setting the priority bit in the layer 2 header. If a high priority message is generated within a node, it is
sent prior to any queued packets of normal priority. Multiple high priority packets are sent in FIFO
order. If the application attempts to send a high priority message while its node is sending a packet,
the packet in progress completes first.

If a channel has priority slots and a node has multiple messages queued within it, it shall not send
them in consecutive packet cycles. In the case where a node has a packet to send, and it has sent a
packet in the previous packet cycle, the node does not use its normal medium access algorithm in the
current cycle. Instead it attempts to access the medium using a slightly modified version of the non-
priority MAC algorithm. The modified version of the algorithm is that the transmitter node waits out the
Beta1 time after the priority packet it just transmitted, then it waits for all the priority slots to go by,
then it waits for one window of randomising slots to go by (16 Beta2 slots). At this point it randomises
its access to the network using the current channel backlog estimate. If the node is not successful in
the current packet cycle, it may use its priority slot in the subsequent packet cycle.

6.11 Optional collision detection

The physical layer may optionally notify the MAC sublayer of a detected collision. The MAC sublayer
can be configured to check for collision detection notification any time during packet transmission.

Collision resolution may be implemented by means of collision detection. A bit pattern unique to each
node on the channel may be inserted before the preamble field to resolve collisions. Such a physical
layer shall define a sufficiently long preamble after the arbitration pattern so that transmitting nodes
that lose the arbitration for a packet cycle can turn around and receive the incoming packet from the
node that just won the arbitration.

Collision detection, if used, shall only be enabled upon transmission of a packet. When a collision is
detected in the MAC sublayer, the backlog is incremented. Receivers do not detect collisions, rather
they see them as packets that are too short, or have incorrect CRCs or sometimes they are seen as
just spurious transitions for which bit synchronisation cannot be achieved. When a collision is
detected, the backlog is incremented, and the collision statistic is incremented (see 13.7.14 and B.8).

The MAC sublayer attempts to re-transmit the packet upon notification of a collision. It obeys the
following rules:

1) If a collision is detected on two successive attempts to transmit a priority packet in the node’s
priority slot, the next attempt to transmit the priority packet shall not use the con-figured priority
slot, but rather shall be in a slot picked ac-cording to the non-priority MAC algorithm. The priority
bit in the layer 2 header of the packet shall remain set in this case.

2) Whenever a collision is detected by a transmitting node, that transmitting node increments its
estimate of the channel backlog by 1.

3) Whenever a collision is detected on 256 successive attempts to transmit a packet, the packet is
discarded.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

20

6.12 Beta1, Beta2 and Preamble Timings

A node may be implemented to support one or more media. If implemented to support multiple media,
its preamble length and Beta1 and Beta2 times shall be configurable to support the relevant physical
communication media. Beta2 is the duration in time of a media access time-slot (either randomising or
priority slot). The MAC layer timers for Beta1 are provided for both the transmitter in the previous
packet cycle as well as the receiver. This is to correct for differences in the time base for the end of
the preceding packet between transmitters and receivers. Note that in this family of physical layer
standards the timings are with reference to the timings observable on the medium itself, while these
timings are in reference to the protocol processor’s reference. For example, imagine a transceiver that
added bits of error correction code to the actual packet. From the transmitting protocol processor’s
reference the end of the packet would be sent before these bits were added to the packet, while the
receiving protocol processor’s time reference would show packet end at the end of the packet
including the error correction bits. Thus, the need for the ability to specify a difference in the timing
depending upon whether a node is a transmitter or a receiver for a given packet. In addition there are
two communication configurations (comm_type in B.7) with different formula for calculating Beta1
based on the type.

A node shall be able to generate one of five base time periods to generate Beta1 and Beta2 slots of
the right duration.

The formulae for Beta1, Beta2, and the preamble are shown below.

CT is a time base used to generate Beta1 and Beta2 slots and the preamble. Depending on the media
type(s) supported, each node shall support one or more of the following values for CT: 600 ns, 1,2 µs,
2,4 µs, 4,8 µs, 9,6 µs.

v, a tuning parameter, is in the range 0 to 255 inclusive. There are 3 tuning parameters. These are
represented as v1, v2 and v3 in the formula below.

f(x) is a function that returns a time delay to compensate for other slower nodes on a channel that
may generate actual values of CT below the nominal for a channel.

) v 20 (40 CT Beta2 1×+×= (4)

There are four formulae for computing Beta1. The formula to use depends on a bit field in the
configuration structure, comm_type, listed in B.7, and whether the timing is done immediately
following the receipt or the transmission of a packet Comm_type can have one of two values: 1 or 2.
The selection of the comm_type determines the behaviour of the MAC sublayer in the following ways:

Comm_type = 1:

1) An indeterminate time is defined during the Beta 1 period in which all transitions on the channel
are ignored. This period starts following the end of any packet (transmitted or received). Its
duration is defined below. Following the indeterminate time and before the first Beta2 slot, the
MAC sublayer repeatedly waits for a period of duration of one Beta2 slot to pass with no
transitions on the channel before proceeding (note that if a valid preamble is detected during this
period, an attempt shall be made to receive the incoming packet). This Beta2 slot duration
accounts for the Beta2 slot duration component of the total Beta1 time.

2) The transmitted length of the preamble is under the control of the MAC sublayer.

3) The MAC sublayer ignores collisions occurring during the first 25 % of the transmitted preamble.
It optionally (according to the cd_tail field described in B.7) ignores collisions reported following
the transmission of the CRC but prior to the end of transmission.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

21

4) If a collision is detected during preamble transmission, the MAC sublayer can terminate the
packet if so configured. Collisions detected after the preamble has been sent do not terminate
transmission.

Comm_type = 2:

1) No indeterminate time is defined at the MAC sublayer. If there is an indeterminate time, it shall be
enforced by the physical layer.

2) The MAC sublayer is configured to either control the transmitted length of the preamble or to
have the transmitted length of the preamble controlled by the physical layer.

3) The MAC sublayer shall always terminate the packet upon notification of a collision.

4) The MAC sublayer reconfigures the physical layer prior to transmission, if necessary, to inform it
of a change in transmission path selection (alternate path versus no alternate path).

The formulae for Beta1 for the four cases of transmitting, receiving, comm_type =1 and comm_type =
2 are as follows:

2} comm_type{for Beta2 rpacket)(recv_inte 602 CT reception)r Beta1(afte
 2} comm_type{for Beta2 rpacket))(xmit_inte(624 CT sion)r transmisBeta1(afte

1} comm_type{for Beta2 rpacket))(recv_inte (565 CT reception)r Beta1(afte
1} comm_type{for Beta2 rpacket))(xmit_inte (583 CT sion)r transmisBeta1(afte

=++×=
=++×=
=++×=
=++×=

f
f
f
f

 (5 to 8)

128) - (v 145 :) v (41 ? 128)(v (v) 22 ××<=f (9)

Parameters xmit_interpacket and recv_interpacket have ranges from 0 to 255 and are parameters
stored in the Configuration Structure (B.7).

The two formulae for computing the indeterminate time for the MAC sublayer are as follows:

1} comm_type {for rpacket))(recv_inte (295 * CT) reception (after IDT
1} comm_type {for rpacket))(xmit_inte (313 * CT on)transmissi IDT(after

=+=
=+=

f
f

 (10 to 11)

CT, f(x), xmit_interpacket and recv_interpacket are as defined for the Beta1 calculations. Note that in
all cases the indeterminate time is constrained to be less than the total Beta1 time.

Preamble length is either controlled by the protocol processor or by the transceiver. When the
protocol processor controls the preamble, the formula for all possible values of preamble length is
shown below. For this formula the variable v has a range of from 0 to 253 inclusive. CT is as defined
above.

) v 32 (219 CT Preamble 3×+×= (12)

When the transceiver controls the preamble length (an option available when comm_type = 2), the
minimum preamble length allowed is 181 µs. This is the value corresponding to a protocol processor
with a 600 ns timer value. This value scales with the time base, CT. When the transceiver controls the
preamble length, the maximum preamble length is determined by the transceiver.

Beta1, Beta2 and preamble timings for each transceiver type compatible to this standard are noted in
the relevant physical layer specification.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

22

7 Link layer

7.1 Assumptions

The Link layer assumes that CRC errors due to both collisions and transmission errors occur with
some probability Pe, and that Pe is small enough so that link level error recovery is not needed.

The above assumption means that successful end-to-end communication is only possible when the
sum of error probabilities along the communication path is much less than one.

1)(P SUM e <<

In networks where Pe is constant, the maximum communication distance D (network or group
diameter) shall be:

eP / 1 D <<

7.2 Service provided

The Link layer provides subnet-wide, ordered, unacknowledged LPDU delivery with error detection
but no error recovery. A corrupted frame is discarded as soon as its CRC check fails.

7.3 CRC

The CRC is computed over the entire NPDU including the L2Hdr field. The CRC is generated using
the polynomial:

 1 X X X 51216 +++ (the CCITT CRC-16 standard).

For each NPDU, the CRC register is initialised to all ones. Figure 8 shows an example of the time
behaviour of the CRC shift register that implements the above polynomial. The register bits are
represented by the columns labelled bit 0 to bit 15. The data, over which the CRC is computed,
appears in the column labelled crc_in. The register is initialised to all ones. The data is then presented
serially to the register starting with bit7 of byte 1. Each row of the table shows the register state at a
particular bit time. The register continues to input data and compute the CRC as long as the compute
mode is true (mode compute = 1). The compute mode going false signals the end of data and the end
of the CRC computation.

Following data input, the sixteen (16) bits of CRC data are shifted out serially as shown by the column
labelled nrz_out.

When the link layer receives a packet with a CRC error or a packet that is less than 8 bytes in length,
a transmission error statistic is incremented (see 13.8.2), and the packet cycle timer is started but not
reset first, unlike after the reception of a good packet. If a packet is received but is too long for the
input buffer, or there are no input buffers, the missed packet statistic is incremented (see 13.8.2).

For a normative description of the CRC-16 computation, refer to the pseudocode example in A.3.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

23

Figure 8 — CRC register state behaviour example

7.4 Transmit algorithm

The pseudocode Transmit algorithm is in A.3.

7.5 Receive Algorithm

A valid frame starts with the channel active state, and terminates with the channel idle state. Upon
receipt, valid frames are processed as defined below; invalid frames are discarded. The pseudocode
Receive algorithm is in A.4.

8 Network layer

8.1 Assumptions

This protocol supports a variety of topologies in order that the requirements from many application
areas can be met. Within a single channel, the topology can be a bus, a ring, a star, or “free” (see
Figure 9). Free topology is defined as a total wire specification with no other rules, and a single

BS EN 14908-1:2014

EN 14908-1:2014 (E)

24

termination placed anywhere on the network. Thus, the set of all free topologies includes a ring, a
star, a bus and virtually any other combination of these constructs.

Figure 9 — Single channel topologies

The protocol supports physical layer repeaters as well as store-and-forward repeaters to repeat
packets from one channel to another. The protocol also supports bridges to repeat all packets on the
bridge’s domain(s) from one channel to another. Additionally, both learning and configured routers are
supported to segment traffic and thus increase total system performance.

In networks where there is a possibility of more than one path from one node to another, there is a
danger of packets looping indefinitely. In these networks, configured routers shall be used to impose a
logical tree structured topology on top of the physical looping topology.

If there is a desire to use repeaters, bridges, and learning routers, then control of the topology shall be
maintained so that no loops exist. To avoid routing loops within a domain, domain topology shall be
tree-structured as shown in Figure 10. Store-and-forward repeaters may only be used if they connect
two different channels together; store-and-forward repeaters that repeat on the same channel are not
supported. This restriction is necessary for an order-preserving network.

If any node receives a packet with a protocol version number other than a version number it supports,
the packet is discarded.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

25

Figure 10 — Typical tree-like domain topology

8.2 Service provided

This network layer provides a connection-less network service facilitating domain wide packet delivery
with the following attributes:

— Unacknowledged Unicast, Multicast, and Broadcast. Depending on its destination address, the
packet submitted is delivered to one node, multiple nodes, or all nodes within the domain (or
optionally all nodes on a specified subnet within the domain). This delivery occurs with some
probability p ≤ 1;

— Lossiness. The network layer supports no re-transmissions or acknowledgments. The probability
of delivery decreases with the number of channels traversed;

— Order Preserving. Loop-free topology (accomplished logically with configured routers or
physically via topological control) coupled with the absence of single channel store and forward
repeaters provides natural ordering;

— No Segmentation. No message segmentation and/or message re-assembly are performed
anywhere within the network layer.

When learning routers are used, the routers discover the topology by examining the network layer
address fields in the packets. The learning algorithm imposes no additional traffic overhead on the
network. It assumes that the domain is loop free, and it learns about the location of subnets by
observing the source addresses of NPDUs being routed. NPDUs addressed to groups are routed by
flooding, with the NPDU being propagated through the entire domain.

The network layer suppresses outgoing messages if the node is not in the hard offline state (see 13.4)
or configured state (e.g. unconfigured), except for manual service request messages, responses, and
ACKs. These excepted messages can be sent in any state.

8.3 Service interface

The Network service interface consists of the Send_Packet () service request and the Rcv_Packet ()
indication, as shown in Figure 11. Again this interface is provided for explanation purposes. Actual
implementations may, for example, combine this layer with the transport layer and only expose the
transport layer interface.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

26

Figure 11 — Network service interface

The syntax of these two interface primitives is:

Send_Packet (address_pair, pduType, PDU, priority, delta_BL, Alt_path)
Rcv_Packet (address_pair, pduType, PDU, priority)

8.4 Internal structuring of the network layer

The network layer performs two functions—address recognition and routing—as shown in Figure 12.

Figure 12 — Network layer—internal structure

8.5 NPDU format

NPDU format is shown in Figure 13. An NPDU carries and encapsulates either a TPDU, SPDU,
AuthPDU or APDU. There are no NPDUs defined for internal network layer use. The numbers above
each field in Figure 13 specify the field size in bits. The symbolic field values used in the figure are
assigned in the order shown, as enumerated ranges (0, 1, 2, 3, …, n). For example, a value of 3 in the
PDU_Fmt field signifies that the enclosed PDU is an APDU. For additional details, including the
bit/byte transmission order, refer to Annex D.

Figure 13 — NPDU format

BS EN 14908-1:2014

EN 14908-1:2014 (E)

27

8.6 Address recognition

Each node compliant to this European Standard performs address recognition. Address recognition at
a node depends on the node’s state. In the Unconfigured state, all broadcast messages and
messages that match a node’s Unique_Node_ID are received. In the Configured state, messages
shall either match the Unique_Node_ID or match the domain and be either broadcast, group (i.e.,
multicast) or unicast messages. To match the domain both the domain length and the domain address
shall match. For broadcast messages, the subnet shall match unless the broadcast message is sent
domain-wide. For a group message, the node shall be a member of the group, i.e., one of the group
addresses shall match. For a unicast message, subnet as well as node numbers shall match. The
match of the node number is a comparison of the entire byte even though the node number is defined
as seven bits.

In this subclause the information that shall be kept by every node is identified without specifying the
address-matching algorithm, that is implementation specific. For an example of an actual
implementation of these data structures, refer to A.14.

Any packet received by a node with a protocol version number not supported by the node shall be
discarded.

A packet whose source subnet/node address matches that in the matching domain is discarded.

When not in the configured or the hard-offline state, only broadcast (domain-wide or subnet) or
matching Unique_Node_ID messages are received. The receive transaction source address is saved
based on the actual domain in which the message was received (the flexible domain). Any responses
are returned on that domain with a subnet/node number of 0x00/0x80. Either the implementation shall
support one flexible domain shared among all receive transactions or the implementation shall
support one flexible domain per receive transaction.

8.7 Routers

A router performs the routing function for a specific domain. The routing function is independent of the
network layer address recognition function. Thus, a router also has its own network addresses and
can be addressed like any other node for purposes of network management and diagnostics. A router
connects two sets of subnets. A router is a logical rather than physical entity; more than one router
may be housed within a single physical package. Routers have four modes that may be set with
network management messages: repeater, bridge, learning, and configured. Routers with their mode
set to learning, automatically learn the subnet topology of the network. Routers with their mode set to
configured have their routing tables statically configured with network management messages to
enforce a specific topology and to provide information on group address topology. Similarly, a router
may be set to be a bridge or repeater using the network management messages to set its mode. The
same subnets may exist on both sides of a bridge or repeater.

A router uses three routing functions: ROUTEuc(), ROUTEmc(), and ROUTEbc() to forward NPDUs.
The first function specifies how to forward NPDUs addressed to subnets, the second how to forward
NPDUs addressed to groups, and the third how to forward NPDUs when they are broadcast. The
functions are tables, where each entry has the following form:

 ROUTEuc (DestSubnet) = one of (forward, discard)
 ROUTEmc(DestGroup) = one of (forward, discard)
 ROUTEbc (DestSubnet) = one of (forward, discard)

The entry for an address X specifies whether an NPDU addressed to X should be forwarded or
discarded. These functions are called from the side of the router on which the packet was received—
that is, the algorithm in A.5 executes independently on each side of the router and makes all routing
decisions for packets arriving at the side on which it runs. Each side of the router shall have a different

BS EN 14908-1:2014

EN 14908-1:2014 (E)

28

set of tables that have the information as to whether the packet should be passed across the router or
not. For configured routers, these tables are initialised during the network configuration of the router
and shall be updated if the topology changes. Learning routers discover the contents of their subnet
tables by observing the source addresses of the packets (see A.6), but cannot learn the topology of a
group. Therefore, learning routers always pass group messages to the other side.

8.8 Routing algorithm

The pseudocode for the routing algorithm is in A.5.

8.9 Learning algorithm — subnets

The subnet routing table defining the routing function ROUTEuc() is created by the algorithm in A.6.
Upon initialisation, forwarding is used for all subnet addresses. The algorithm subsequently learns
about the location of subnets by observing the source addresses of NPDUs being routed. Again, this
algorithm executes on each side of the router independently.

9 Transaction control sublayer

9.1 Assumptions

The transaction sequencing protocol described in this clause uses 4-bit transaction numbers that are
allocated by the sender and used by the receiver to detect duplicate packets. This sublayer provides
end to end protocol integrity by allowing the receiver to only act upon a packet once, even if several
retries for the initial packet are correctly received by the receiver. It is assumed that the network is
either order preserving or, if it is not, that packets are delayed approximately uniformly in the multiple
paths that they traverse from source to destination. The difference in packet propagation time when
there are multiple paths from a given source to a destination shall be less than the time it takes for the
source to complete one transaction (via an acknowledgement on the shortest path) and begin a
second transaction to the same destination. Stale acknowledgements and responses are detected as
duplicates, but stale packets that initiate a transaction and arrive after a subsequent transaction has
started will not be detected as duplicates.

The transaction control sublayer may pass a transaction to the higher layers for processing. In some
implementations, it may be possible for the upper layers to never respond to the transaction control
sublayer. If such a situation exists, the transaction control sublayer can defend itself from such poorly
behaved upper layers. During the time that the transaction control sublayer is waiting for a response
from the upper layers, the transaction record can be locked and not be de-allocated even if the
receive transaction timer expires. Such a transaction is only de-allocated when the upper layers finally
respond, or when there are no more transaction records available and one is needed. Then, a locked
transaction record may be used for the new transaction. Use of this mechanism is implementation
dependent.

Generally, the number of concurrent outgoing transactions is restricted to a single priority and a single
non-priority transaction. This restriction is because acknowledgements/responses from either a
subnet/node addressed message/request or a Unique Node ID addressed message/request are
indistinguishable. Implementations that restrict the use of one of these addressing modes may
support multiple, concurrent transactions. Receive transactions are shared among the transport and
session layers. Transactions at either layer can perform duplicate detection.

The transaction timer, receive timer, and retry count interact to establish the reliability of the duplicate
detection mechanism. It is assumed that the receive timer is set to be long enough to cover the
configured number of retries, yet short enough so that the transaction ID does not wrap around

BS EN 14908-1:2014

EN 14908-1:2014 (E)

29

causing a new transaction to be falsely detected as a duplicate transaction. In an implementation, it is
required to have a transaction space for all priority transactions and a second transaction space for all
non-priority transactions. If the sender wishes to send a packet to a given destination and the
transaction ID for the last message sent to that destination is identical to the current transaction ID,
the transaction ID is incremented. An optional enhancement is to have a separate priority and non-
priority transaction space for every destination address. In this second case, the sender remembers
the last transaction ID used per destination address. In any case, an implementation shall defend
against the situation that acknowledgements/responses cannot be differentiated from each other
when using subnet/node addressing or Unique Node ID addressing. Other implementations are
permitted as long as the duplicate detection mechanism remains robust in all of the error cases and
all of the addressing formats in use by the node.

9.2 Service provided

The transaction control sublayer is responsible for the common functions related to transaction
ordering, sequencing, and duplicate detection. It provides the following services:

— Outgoing Sequencing. To guarantee ordering among outgoing transport messages and session
layer requests, the transaction control sublayer controls the allocation of send transaction
numbers. It limits the number of concurrent transactions to any destination to ≤ 1 priority and ≤ 1
non-priority transactions;

— Incoming Sequencing and Duplicate Detection. The transaction control sublayer provides
duplicate detection.

9.3 Service interface

Access to transaction control services is facilitated by the interface depicted in Figure 14.

Figure 14 — Transaction control service interface

The syntax and semantics of the interface primitives are:

 New_Trans (Priority, Dest_addr) -> (Trans_No)
is used to obtain a transaction number for a new outgoing
transaction

 Validate (Priority, Trans_No, Dest_addr) -> (result)
where result = one of (current, not_current), verifies that Trans_No
is in the transmit window

 Trans_Done (Priority, Trans_No, Dest_addr)
 notification of an outgoing transaction completion

BS EN 14908-1:2014

EN 14908-1:2014 (E)

30

 Compare (T1, T2) -> (result)

where result is one of (new, duplicate); defines the relationship
of T1 relative to T2, where both T1 and T2 are receive transaction
numbers

9.4 State variables

To support the allocation of transaction numbers, the transaction control sublayer uses a number of
destination records shown below.

 Transaction_CTRL_Record = record
 PriTX True or False
 Trans_No: (0..15); initial value = 0;
 In_Progress: boolean;
 end;

9.5 Transaction control algorithm

The pseudocode algorithm in A.7 is a version of the transaction control algorithm that provides only
two transaction spaces – one for all priority transactions and one for all non-priority transactions. In
any implementation, the first transaction ID provided by New_Trans() after a reset shall be 0 for every
transaction space provided by the implementation. New_Trans() shall then increment the transaction
ID within the space from 1 to 15 and continue again with 1 so that the transaction ID 0 is used
exclusively by the first transaction per transaction space after a reset.

In general, any transaction control algorithm shall follow the following basic operation:

— When a node has a packet to send using the transaction control algorithm, the sender node picks
a transaction ID and sends the packet.

— Upon receipt of that packet, the receiver node searches its currently active receive transactions
for a transaction that matches the source and destination address of the packet, the priority
attribute, and the transaction ID.

— If there is no match a new record is allocated.

— If everything but the transaction ID matches and the existing transaction is not locked, then the
preceding transaction is assumed to have completed successfully and the receive transaction
record may be reused with the new transaction ID inserted into it. Processing of the incoming
packet cannot proceed until a receive transaction is allocated for it.

— Once the receiver has allocated the transaction record, it starts a receive transaction timer for
that record. The value of the receive transaction timer is 8 s for a Unique_ID addressed
message, the value of the non-group receive timer for a subnet/node addressed message, and,
for group addressed messages, the receive transaction timer configured for the group. The
record will be de-allocated upon the expiration of this timer unless the transaction record
becomes locked (see 9.1).

— Subsequent packets that arrive at the receiver node that match the transaction ID, source
address, destination address and priority attribute of an existing transaction will be considered
duplicates by the receiver node.

— Packets detected as duplicates are responded to according to the protocol service requested, but
are either not delivered to the application, or if they are delivered to the application, they are
delivered along with the notification that they are duplicate packets.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

31

10 Transport layer

10.1 Assumptions

The Transport protocol makes no assumptions apart from relying on the transaction control sublayer
for correct TPDU sequencing and duplicate detection.

10.2 Service provided

The transport layer provides the following services:

— Reliable Multicast and Unicast. The transport protocol supports both multicast within a group, and
multicast to a group with the sender not being a member of the group. If the service requires
acknowledgements or responses, then multicast to a group that the sender is not a member of
requires the transport layer to be told that the group size is the actual group size plus one. All
reliable services have the following attributes:

— (a) reliable delivery with best effort determined by the number of retries;

— (b) assuming the layer 4 timers are set correctly, duplicate detection is provided in all cases
except when the sender or receiver just reset. In this case, the reset node shall start
with transaction number 0. This may result in a transaction in progress between the two
nodes not to be acted upon at all, but acknowledged/responded to by the receiver;

— (c) partial ordering—ordering is preserved but a message is not delivered when delivery fails
within the specified number of retries; and,

— (d) immediate re-synchronisation—following a network partitioning, the very first message is
delivered.

— Unacknowledged-Repeated Multicast and Unicast. These services differ from the reliable ones
described above only in that no acknowledgement is expected, and that the message is sent
repeatedly until the number of repetitions is equal to the retry count. When using this service, the
limit of 64 members in a group does not apply—the only limit on the number of members in a
group addressed via this service is the number of nodes in a domain.

Groups in this European Standard are symmetric in that every member of the group can both send
and receive.

10.3 Service interface

The service interface provided to the session and application layers has the form shown in Figure 15.

Figure 15 — Transport interface to upper layers

The syntax and semantics of the transport layer interface are:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

32

Send_Message (Address, APDU, priority, ServiceType, alt_path) -> (TID)
Trans_Completed (TID, Result)
Rcv_Message (APDU)
TID, above, is a unique identifier for the transaction.

10.4 TPDU types and formats

TPDU syntax is shown in Figure 16; the number above each field specifies the field size in bits. The
symbolic field values shown in the picture are mapped onto numeric ranges (0, 1, 2, 3…) in the order
shown. Additional details, such as the bit/byte transmission order, are defined in Annex D. Timers and
counters used to transmit retries, count retries, and time out transaction IDs, are described in B.4.11.

Figure 16 — TPDU types and formats

The Acknowledged Message (ACKD) TPDU (see Figure 34) is used for the first transmission of a
message. It is used with addressing formats #1, #2a, and to a limited extent #3. Unlike the
Unacknowledged message TPDU, it shall be acknowledged by all addressed recipients, thus the
transport layer provides the number of acknowledgements expected to the link layer for encoding into
the link layer header. This TPDU is used for acknowledged initial TPDUs (both unicast and multicast)
as well as unicast reminders. Multicast reminders are covered below. Refer to Figure 36 or Figure 34
to review the addressing formats.

The Unacknowledged-repeated Message (UnACKD_RPT) TPDU is identical to its acknowledged
counterpart with one exception: upon receipt, no acknowledgements are returned to the sender. This
TPDU is used with no modifications for the unacknowledged-repeated service. For this type of
message the transport layer provides a backlog increment equal to the number of retries on the first
message and a backlog increment of zero on all subsequent transmissions within the transaction.
Simple unacknowledged messages are only sent once, have no TPDU header, and thus have no
duplicate detection.

The Message-Reminder (REM/MSG) TPDU facilitates selective soliciting of acknowledgements for
multicast transactions. REM/MSG type 5 is used when the highest numbered group member from
which the sender has received an acknowledgement is < 16; this TPDU contains both the member list
(M_List []), that is an array of bits, and the APDU. The Length field specifies (in bytes) the size of the
M_List field. A value of 0 in the bit field M_List [X] indicates that member X’s acknowledgement has
not been received by the sender, whereas a value of 1 indicates that the acknowledgement has been
received. Bit locations within a byte are assigned right to left with bit number zero on the right. When
Length = 0, the M_List[] field is absent and the meaning is “all members should acknowledge." The

BS EN 14908-1:2014

EN 14908-1:2014 (E)

33

backlog increment for this message is the number of acknowledgements that have not yet been
received.

Type 4 is a plain reminder, without an APDU (see Figure 16). It is used in cases where the highest
numbered member that has acknowledged the message is ≥ 16. Acknowledgements are solicited
using the TPDU pair (REMINDER, ACKD) and this pair is logically equivalent to a single type 5
REM/MSG TPDU used when the members needing to acknowledge may be encoded within the type
5 format. (This separate solution is provided for large groups because of the need to limit maximum
TPDU size.) This message always has a backlog increment of zero. The ACKD message that
immediately follows its transmission has its backlog increment set to the number of
acknowledgements that are yet to be received.

The Acknowledgement (ACK) TPDU is null. It uses addressing format #2a (unicast
acknowledgement) or #2b (group acknowledgement). The Trans_No field conveys the transaction
being acknowledged. Acknowledgements always inherit the priority and alt_path attributes of the
original message.

Any TPDU that requires an acknowledgement can be flagged as an authenticated packet by setting
the Auth bit to ‘1’.

Codes 3, 6, and 7 are reserved. Packets with these codes are discarded.

10.5 Protocol diagram

The diagram in Figure 17 augments—but does not replace—the protocol description in 10.7 and 10.8.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

34

Figure 17 — Transport protocol diagram for multicast message with a loss of both the
message and the ACK TPDUs

10.6 Transport protocol state variables

The transport protocol consists of two independent functions—Send and Receive. To support the
send function, the transport layer keeps one Transmit record per transaction in progress. A shared
pool of Receive records facilitates message reception. The Transmit and Receive data structures are
described in A.8 and A.9.

10.7 Send algorithm

The simplified transmit FSM is shown in Figure 18, with full details in the algorithm in A.9. The
algorithm resets the re-transmission timer, Xmit_Timer, whenever an acknowledgement or challenge
is received, as opposed to once per Expiration period. The alternate path bit is set in the packet on
the last two attempts by this layer notifying the lower layers of the alternate path attribute for each
attempt.

Figure 18 — Transport protocol—Send FSM

10.8 Receive algorithm

Message reception uses the timer-based mechanism. Figure 19 shows the receive FSM for a single
transaction, while the algorithm in A.9 specifies full details.

Figure 19 — Transport protocol—Receive FSM

10.9 Receive transaction record pool size and configuration engineering

10.9.1 General

Space for the Receive Transaction Record (RTR) pool defined in 9.5 and A.9, may be fixed for an
implementation, or may be allocated at the time the application program is linked with the protocol

BS EN 14908-1:2014

EN 14908-1:2014 (E)

35

code. The size of the RTR pool limits the number of concurrent receive operations on a node
("concurrent” means concurrent within the context of Rcv_Timer) and should be engineered according
to the number of concurrent transactions expected within the receive timer interval. If an attempt is
made to allocate a receive transaction record and none are available, the receive transaction full
statistic is incremented (see 13.8.2).

10.9.2 Number of retries

The number of retries should be large enough to ensure that message delivery is successfully
completed with acceptable probability, e.g., ≥ 99 %. However, the upper bound of the number of
retries in this European Standard is 15.

If the delivery failure probability of a single attempt is p, then the probability that message delivery
within a group of n succeeds in ≤ k attempts is shown in the following formulae. (It is assumed that the
single attempt probability p is the same for all destinations.)

=

P {no retry} = (1–p)
n

p
i
(1–p)

(k–i+1)
1–p

(n–1)Σ
i=0

k
k+1

i() (k–i+1)()
 k ≥ 0, n ≥ 2

P {≤ k retries}

NOTE For a single channel p = (1/2w + pe), where w is the size of the MAC layer randomising window and
pe is the probability of packet loss because of a transmission error.

The above probabilities are graphed in Figure 20. Given a group size and the error probability p, the
required number of retries for, say 99,5 % probability of success, can be read off the graph.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

36

Figure 20 — Probability of transaction completion in k Retries

Pragmatic considerations should be respected in any real system design. For example, there is no
need for a large number of retries with transactions that are repeated periodically. Additionally, when
the acknowledgements to a multicast message would take up a significant percentage of the
bandwidth of the channel, it is more likely that a message will be properly delivered using the
“unacknowledged-repeated” service rather than the acknowledged multicast service. In practice, it is
expected that a Retry_Count in the (2.to.5) range will cover most situations.

10.9.3 Transport layer timers

There are three timers used by the transport layer protocol. They are the:

— Xmit_Timer the layer 4 retransmission timer

— Repeat_Interval_Timer the UNACKD_RPT interval timer

— Rcv_Timer the receive record timer (see A.9 and 10.9)

These timers are active for every transaction. On the sender’s side, either the Repeat_Interval_Timer
or the Xmit_Timer is active, while on the receive side, the Rcv_Timer is active. Xmit_Timer is reset on
every ACK TPDU or Authentication challenge reception, while Rcv_Timer is reset whenever a MSG or
MSG/REM TPDU that has a new transaction number is received for this destination. The
Repeat_Interval_Timer determines the interval between the UNACKD_RPT packets sent by the
sender. The recommended methodology for calculating the timer values is shown in Figure 21. These
recommendations are for unicast transactions across a single channel. For multi-channel networks,
the calculation depends upon the speed of the router and the number of buffers. Multicast
transactions need somewhat longer receive transaction values since multicast transactions take
longer to complete even when there are no retries needed. Since buffering and clock rates are
adjustable, the system designer shall make some measurements to set the timers and retry counts
correctly within each node.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

37

Figure 21 — Methodology for calculating timer values

All messages using the Unique_Node_ID use an 8-second receive timer, regardless of the configured
value of the non-group receive timer. All non-group messages use the non-group receive timer.

11 Session layer

11.1 Assumptions

The session layer makes no assumptions apart from relying on the transaction control sublayer for
correct SPDU sequencing and duplicate detection.

11.2 Service Provided

The session layer provides a single service:

— Request-Response. This service facilitates application communication similar to a remote
procedure call. In particular, it allows a client to make a request to a remote server and receive a
response to this request.

— Non-idempotent transactions are to be executed “at most once” (i.e., exactly once or not at all).
Non-idempotent transactions are those where the action depends on a prior state, such as “open
the valve an additional 10 %.” The protocol considers a transaction to be non-idempotent if and
only if its response length is ≤ 1 byte.

— Requests with response length > 1 byte are considered idempotent; such requests may be
executed “several times” (i.e., zero or more times). Idempotent transactions are those where the
action may be repeated any number of times, and the effect is the same. An example of an
idempotent command is “read the first 10 table values”.

— The distinction between idempotent and non-idempotent transactions is based upon the size of
the response, in order to limit the amount of storage required for transaction records within a
node. If a transaction has a response length > 1 byte but may not be executed more than once, it
is the responsibility of the application to save the response and send it again. The session layer
facilitates this in that notification that the request is a duplicate is provided to the application layer
by the session layer.

— A request-response transaction fails unless the server response is generated within the limit
imposed by the Request-Response timers and re-transmissions (see 10.8).

BS EN 14908-1:2014

EN 14908-1:2014 (E)

38

11.3 Service interface

The service interface to the application layer has the form shown in Figure 22.

Figure 22 — Session layer interface to application layer

The syntax of the service interface primitives is given below. TID is a unique identifier for the
transaction. See A.7 for implementation details. Duplicate is a Boolean that, when true, indicates that
the client is retrying a previously executed request. Result is a Boolean; true and false denotes
success and failure respectively.

Send_Request (Address, APDU, priority) -> (TID) {client}

Partial_Response (TID, APDU, priority)

Trans_Completed (TID, Result)

Rcv_Request (TID, APDU, duplicate, priority) {server}

Send_Response (TID, APDU, priority)

11.4 Internal structure of the session layer

The session layer is internally structured as shown in Figure 23.

Figure 23 — Session layer—internal structuring

BS EN 14908-1:2014

EN 14908-1:2014 (E)

39

The Request-Response protocol accesses the Authentication server via the following three calls
(details in 11.11). The transport layer also accesses the Authentication server with the same three
calls.

Initiate_Challenge(RR,PDU) -> (null) { challenger }

Reply(XR, PDU)-> (null) { challengee }

Process_Request(RR,PDU) -> (pass/fail); { challenger }

11.5 SPDU types and formats

SPDU formats are shown in Figure 24, where the number above each field specifies the field width in
bits. The symbolic values shown in the picture are mapped onto numeric ranges (0, 1, 2, 3, ...) in the
order shown.

Figure 24 — SPDU types and formats

The Request-Response protocol uses three basic PDU types: Request (REQUEST), Response
(RESPONSE), and combined Request-Reminder (REM/MSG). The syntax (packet layout) and
semantics (packet processing) of these three basic SPDU types correspond closely to that of ACKD,
ACK, and REM/MSG TPDUs. Note that although the session layer makes use of the transport layer
features internally, no transport layer encoding exists separately in a packet with an SPDU. For
instance, a packet may have either a TPDU or an SPDU.

The Request (REQUEST) SPDU is used with the first transmission of the request. It employs
addressing formats #1, #2a, and to a limited extent #3 and #0 (see Figure 34). Address format #0 is
used by a special network management command to broadcast a request searching for any nodes
that have not been configured. Address format #3 is then used to configure those nodes that respond

BS EN 14908-1:2014

EN 14908-1:2014 (E)

40

to this special network management command. The session layer provides a backlog increment to the
lower layers equal to the number of responses expected.

The Request-Reminder (REM/MSG) SPDU facilitates selective soliciting of responses. REM/MSG
type 5 is used in groups where the highest member number needing to acknowledge is < 16; this
SPDU contains both the member list (M_List []), that is an array of bits, and the APDU (i.e., the
request itself). The Length field specifies (in bytes) the size of the M_List field. A value of 0 in
M_List [X] indicates that member X’s response has not been received by the requester, whereas a
value of 1indicates that the response has been received. Bit locations are assigned right to left within
each byte with bit 0 being the rightmost bit in the byte. The backlog increment encoded with the
REM/MSG is equal to the number of remaining responses outstanding.

Type 4 is a plain reminder, without a request (see Figure 24). It is used where the highest member
number needing to acknowledge the reminder is ≥ 16; in this case, responses are solicited using the
SPDU pair (REMINDER-type 4, REQUEST-type 0) and this pair is logically equivalent to a single type
4 REM/MSG SPDU used in small groups. (A separate solution is provided for large groups because of
the need to limit maximum SPDU size.) Finally, when Length = 0 the M_List[] field is absent and the
meaning is “all members should acknowledge." The backlog increment for the REMAINDER – type 4
message is always zero, while the REQUEST that immediately follows it contains the backlog
increment for the number of responses that are still outstanding.

The Response (RESPONSE) SPDU uses addressing format #2a (unicast acknowledgement) or #2b
(group acknowledgement). The Trans_No field conveys the transaction being acknowledged. The
length of the APDU implicitly defines the type of transaction: if the response can be stored in a single
byte, the transaction is treated as non-idempotent. Otherwise, the transaction is treated as
idempotent. Responses inherit the priority and alt_path attributes of the Request packet.

Authenticated SPDUs (Auth bit set to ‘1’) identify requests that are to be authenticated by the
recipient. In all other respects, they are identical to the SPDUs that are not authenticated.

Authentication. The authentication server is a single server contained in Layer 4 and available to the
transport and session layer protocols. It provides a one-way authentication service. It is the client’s
responsibility to initiate authenticated transactions when required. Setting the Auth bit in the SPDU or
TPDU does this. When a TPDU or SPDU is received with the Auth bit set, the server shall challenge
using the “challenge” AuthPDU. The FMT field in the authentication PDU shall be set to the same
value as in the address format field of the NPDU header in the message being challenged. The client
then computes a transformation based upon the server's challenge, the original APDU sent by the
client, and the client’s authentication key. The result of this transformation is sent to the server using
the “reply” AuthPDU. The FMT field in the reply shall be set to the same value as the FMT field in the
corresponding challenge AuthPDU. When the server receives the reply, its contents are compared to
the transformation computed by the server. If they match, the transaction is authenticated. In all cases
the SPDU/TPDU is passed to the application layer for processing along with notification as to whether
the authentication failed or succeeded. Note that if the application layer on the server node has no
requirement for authentication of the particular transaction, it may choose to honour the request even
if the authentication failed. If the application layer chooses not to honour the request, it simply
discards the APDU without further processing.

11.6 Protocol timing diagrams

The protocol timing diagrams in Figure 25 and Figure 26 are intended to provide an intuitive feeling for
the session layer protocols and to augment (but not to replace) the protocol specification in 11.7 to
11.13. Note again that for needed acknowledgements from group member numbers < 16, the
REM/MSG SPDU is used and is functionally equivalent to the (REMINDER, REQUEST) pair.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

41

Figure 25 — Non-Idempotent request with multiple SPDU losses

BS EN 14908-1:2014

EN 14908-1:2014 (E)

42

Figure 26 — Secure idempotent request with multiple SPDU losses

BS EN 14908-1:2014

EN 14908-1:2014 (E)

43

11.7 Request-response state variables

Like the Transport protocol, the Request-Response protocol maintains one Transmit record per
transaction in progress, and a shared pool of Receive records facilitates message reception. As
shown in A.9, these records differ in minor details from those used by the Transport protocol.

11.8 Request-response protocol — client part

A simplified FSM for the client part of the Request-Response protocol is shown in Figure 27. The
detailed specification is in A.9.

Figure 27 — Request-response protocol—client FSM

11.9 Request-response protocol — server part

A simplified FSM for the server part of the Request-Response protocol is shown in Figure 28, with the
full description in A.9. The protocol treats all transactions with response size > 1 byte as idempotent,
implying that it may execute them more than once. Transactions with response size of only 1 byte are
never executed more than once.

Figure 28 — Request-response protocol—simplified server FSM

BS EN 14908-1:2014

EN 14908-1:2014 (E)

44

11.10 Request-response protocol timers

The two timers - Xmit_Timer and Rcv_timer - used by the Request-Response protocol follow the
function and the form of Transport timers. The recommended values are identical to those for the
transport layer as defined in 10.9.3, with the exception that if the request takes a significant amount of
processing time on the server (relative to the transaction time), that time should be included in the
calculations.

11.11 Authentication protocol

The authentication server is implemented in the transport layer. It is accessible by the session layer
as well as the transport layer. It is discussed in this subclause to include explanations of the additional
interactions needed for the session layer. It relies on the duplicate detection mechanism in the
transaction control sublayer, and no other transport layer services. Authentication allows a server to
verify the identity of the requester. Use of this service is generally controlled by network management
commands that specify the messages/network variable exchanges to be authenticated. Only
transactions using acknowledged or request/response services may be authenticated. Messages
received on the flex domain are not authenticated. The network management authentication bit is
honoured only when the node is in the configured or hard offline states. A checksum error over the
node’s network configuration memory shall cause the node to go to the unconfigured state.

The Authentication protocol has two asymmetric parts: the challenger and the challengee. The
authentication process is initiated by the challenger by generating a random number X; next, the
challengee responds with Y = E(X, msg), an encryption of X and the original message using a private
key; and finally the challenger compares Y with its own version of E(X, msg), and makes a pass/fail
decision based on the outcome of the comparison. The Authentication algorithm described in A.9
defines both the challenger and the challengee functions. All the server calls are synchronous.

11.12 Encryption algorithm

The encryption algorithm, described in detail in A.9 facilitates one way encoding rather than real
encryption. It uses a 48-bit encryption key, K, a variable length APDU, A[len], and a 64-bit input string,
R, to produce a 64-bit output string, Y. Desirable properties of the random number R are defined in
11.14. Any 48-bit number is a valid encryption key.

11.13 Retries and the role of the checksum function

The checksum function, defined in A.12, is used for validating APDUs in client retries. The client shall
retry if any of the original message, the challenge, the reply, or the acknowledgement/response is lost.
Upon receiving a retry, the action taken by the server is a function of the transaction state as follows:

waiting server is waiting for the authentication record. In this case, server shall
attempt to allocate the record again.

authenticating server has issued a challenge and is waiting for a reply. In case, the server
simply reissues the same challenge (with same random number).

authenticated authentication exchange has completed, with successful verification. If the
original message was acknowledged, then the acknowledgement is reissued
and the retry is discarded. If the original message was a request of an
unknown type, then it is assumed that the application is still composing the
response, so the retry is discarded. If the original message was a non-
idempotent request, the response is reissued and the retry is discarded. If the
original message was an idempotent request, then the retry APDU shall
either be saved, or a checksum shall be computed over it as an alternative to
save memory. The result is compared with that saved from the original

BS EN 14908-1:2014

EN 14908-1:2014 (E)

45

message (actual message contents or checksum). If they do not match, the
retry is marked as not authenticated. In any case, the retry is delivered to the
application.

not authenticated authentication exchange has completed without successful verification. The
action taken is identical to that for the “authenticated” state, except no
encryption/comparison is done for idempotent requests.

Note that messages received on the flexible domain are not authenticated.

11.14 Random Number Generation

The random number generator used by the authentication protocol should have the following
properties:

i) R, the number generated is mathematically random and unpredictable;

ii) generator does not generate predictable values after events such as power failure or rebooting.

11.15 Using Authentication

The authentication scheme shall be correctly used to provide maximum security. One problem that
the user should be aware of is the transportation of authentication keys in the open using a network
management command. This problem can be overcome by using the increment authentication key
network management command (see 13.7.6 and A.11) rather than the network management
command that provides an absolute value for the key (see 13.7.4 and A.30).

12 Presentation/application layer

12.1 Assumptions

The application layer makes no assumptions apart from relying on the transaction control sublayer for
correct TPDU/SPDU sequencing and duplicate detection. The provided functions of the presentation
layer are specified as a part of the APDU header. In particular, when the APDU header indicates that
the APDU is a network variable update, the header has presentation information encoded within it
because it tells the node how to interpret the APDU data.

12.2 Service provided

The presentation/application layer provides six services:

— Network Variable Propagation. This service sends messages that are interpreted by the
receiver(s) as network variable updates. A special two-byte header is used to convey the
presentation layer information that the APDU is to be interpreted as a network variable. Network
variables are propagated using any of the protocol services. Request/Response is used when
network variables are polled.

— Network Variable Aliasing. This service allows multiple network variable inputs or outputs to be
aliased to a primary network variable. Then when the application updates a primary network
variable output, additional packets are also sent for the network variable aliases corresponding to
the primary. When a primary input or an aliased input is updated from the network, the
application receives an event that the primary variable has changed its value.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

46

— Generic Message Passing. An application may construct an arbitrary message, addressed using
any of the addressing modes;

— Network Management Messages. These messages are described in detail in 13.7;

— Network Diagnostic Messages. These messages are typically initiated by a network management
tool to test that nodes are fully operational, and to take corrective action around problem areas.
These messages are described in detail in 13.8;

— Foreign Frame Transmission. These messages originate external to an environment of this
standard, and are destined for nodes also external to the environment. This function is provided
as a means to use this protocol as a gateway between two such external nodes, or to tunnel
other protocols through this protocol.

12.3 Service interface

The service interface to the application program has the form shown in Figure 29.

Figure 29 — Application layer interface

The service primitives at the application layer interface are described in Table 1 below. Most of them
require no parameters. Instead, they operate on the data structures msg_out, msg_in, resp_out and
resp_in, described in A.12.

Table 1 — Application layer primitives

Service interface
primitive

 Description

msg_alloc () This Boolean primitive allocates a non-priority buffer for an outgoing
message. It returns TRUE if a msg_out data structure has been allocated. It
returns FALSE if a msg_out data structure cannot be allocated. If it returns
FALSE, the application program can continue with other processing if
necessary rather than waiting for a free message buffer.

msg_alloc_priority () This Boolean primitive allocates a priority buffer for an outgoing message. It
returns TRUE if a priority msg_out data structure has been allocated. It
returns FALSE if a priority msg_out data structure cannot be allocated. If it
returns FALSE, the application program can continue with other processing if
necessary rather than waiting for a free priority message buffer.

msg_send(msg_out) This primitive sends a message in the msg_out data structure.

msg_cancel() This primitive cancels the message currently being built. It frees the

BS EN 14908-1:2014

EN 14908-1:2014 (E)

47

associated buffer, allowing another message to be constructed.

msg_free() This primitive frees the msg_in data structure for an incoming message.

resp_alloc() This Boolean primitive allocates a buffer for an outgoing response. It returns
TRUE if a resp_out data structure has been allocated. It returns FALSE if a
resp_out data structure cannot be allocated.

resp_send(resp_out) This primitive sends a response in the resp_out data structure.

resp_cancel() This primitive cancels the response currently being built. It frees the
associated resp_out data structure, allowing another response to be
constructed.

resp_free() This primitive frees the resp_in data structure for an incoming response.

msg_receive(msg_in) This primitive receives a message in the msg_in data structure.

resp_receive(resp_in) This primitive receives a response in the resp_in data structure.

msg_completes() This Boolean primitive evaluates to TRUE when an outgoing message
completes (that is, either succeeds or fails).

msg_out and msg_in can have any of the formats described in 12.4.

12.4 APDU types and formats

The APDU consists of a header followed by the application data. The header is a single byte, which is
followed by a second byte only if the header specifies that network variable information is to follow.
The data structure for the APDU is given below:

 struct message
 {
 byte destin_type;
 byte data[];
 };
where data is an open ended array and destin_type is one of the following:

00xxxxxx generic application message (64 codes)
1dxxxxxx a network variable message; “d” indicates direction: 1 for

outgoing, 0 for incoming. The remaining code bits are combined
with the first data byte to form a 14 bit network variable
selector.

011xxxxx a network management message (32 codes)
0101xxxx a diagnostic message (16 codes)
0100xxxx foreign frame (16 codes)
The rest of the APDU is defined with the first byte received as leftmost and the last byte received as
rightmost. Any 2- or 4-byte quantities stored in the APDU are stored with the most significant byte on
the left. The leftmost bit in a byte is the most significant bit. Arrays are stored with the lowest
numbered element on the left. Structure fields are also stored left to right.

Every node compliant to this standard shall be able to receive, as a minimum, an APDU of 16 bytes of
data, plus the destin_type.

The application protocol data unit (APDU) has the format shown in Figure 30:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

48

Figure 30 — APDU format

For description of the network management message codes, see 13.7; for diagnostic message codes,
see 13.8.

12.5 Protocol diagrams

Figure 31 shows a Non-Idempotent multicast transaction with a loss of both the initial APDU and the
ACK TPDU.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

49

Figure 31 — Application protocol diagram for multicast acknowledged transaction

BS EN 14908-1:2014

EN 14908-1:2014 (E)

50

Figure 32 — Application protocol diagram for multicast request/response transaction

Figure 32 shows an Idempotent Multicast Request/Response transaction with a loss of both the
Request and Response.

12.6 Application protocol state variables

The address format data structures are listed in A.14. The msg_out, msg_in, resp_out, and resp_in
structures use these address formats to direct messages to their destinations.

12.7 Request - response messaging in offline state

When using the request/response mechanism either explicitly, or implicitly as with a network variable
poll, it is possible to issue a request to a node where the application program is offline, and thus
unable to respond. When this condition occurs, what happens depends on whether the response is to
a network variable poll or to any other message. If the response is to an application message, the
destin_type in the APDU shall be set to 63. When the response is to a foreign frame, the destin_type
in the APDU shall be set to 79. When the response is to a network variable poll the response shall
contain the network variable selector, but shall not have any associated data. This is also the

BS EN 14908-1:2014

EN 14908-1:2014 (E)

51

response received if one attempts to poll a network variable on a node that has no matching selector,
or if an authenticated poll fails.

12.8 Network variables

12.8.1 General

Network variables are logical inputs and outputs on a node. Multiple network variables may be defined
on any node, thus network variable messaging permits the propagation of a specific data value from
one node to one or more other nodes. Network variables are implemented as a special type of
application message where the most significant bit of the APDU is set to 1. They have properties of
direction (either input or output), properties of propagation (polled, synchronous), and properties of
communication services (priority, acknowledged, unacknowledged, unacknowledged but repeated,
authenticated). Network variables may be in connections. Input network variables are updated with a
new value only when they receive that new value from an output network variable. Polled network
variables are only propagated when the requestor sends a request/response message containing the
network variable selector to the node.

A network variable is propagated at the discretion of the application. For example, the network
variable might be propagated any time the variable is written to or, alternatively, any time it is
changed. In any case, the application shall ensure that the propagated data for a multi-byte network
variable is consistent within itself. A non-polled output network variable may be ‘synchronous.’ In this
case, all values written by the application shall be propagated onto the network. Conversely, a non-
synchronous network variable does not require that all values assigned to the network variable
actually get propagated onto the network. How, an application propagates non-synchronous network
variables is implementation dependent. Network variables are configured when they are connected for
propagation using any of the lower layer protocol services such as priority, authentication,
acknowledgements, etc.

A network variable connection is defined when a network variable on a sender node is configured to
have selector value that matches the selector value of a network variable defined on one or more
receiver nodes and that network variable is bound via an address table entry to the other node or
nodes. A node may have an output network variable defined on it that is connected to one of its own
input network variables. This connection is called a turnaround connection even if the output is also
sent to another receiver node across the network.

Nodes do not send network variable messages when they are in the offline state. The only exception
to this is when a network variable is polled on a node that is offline. In this case, the node responds to
the network variable poll message with the proper selector value for the network variable, but no data
for the value of the network variable.

Network variables may have aliases. An alias network variable inherits the length, direction and type
of the network variable it is aliased to (the primary). Aliased network variables always have a different
network variable selector value, and may have a different destination address than the primary
network variable. This allows, in effect, multiple selector values to be associated with a single network
variable. Multiple selector values are useful to allow network variable connections where the
constraint of a single network variable selector would result in selector conflicts (the same selector
value in use for multiple variables on a single node).

12.8.2 Network variable processing

Whenever an application program updates an output network variable, the application layer first
checks to see if there are any readers of the variable on the network. Checking for the network
variable having an associated address table entry does this. If there is such an entry, the application
layer encodes a packet containing the network variable selector and the network variable value. This

BS EN 14908-1:2014

EN 14908-1:2014 (E)

52

packet is then sent to the lower layers for processing. Next, the application layer checks to see if the
variable has aliases. If aliases exist, then packets are formed with the alias selector values along with
the value of the primary network variable. Each of these packets is also sent to the lower layers for
processing.

When a network variable update arrives at the receiving application layer, the selector value is
compared against the selectors within the receiver node. If there is no match, the update is discarded.
If there is a match, a second check is performed against the matching selector to see if it corresponds
to a primary network variable or an alias. If the selector corresponds to a primary network variable,
then the application layer updates the primary value. If the selector is for a network variable alias, then
the application layer updates the primary network variable’s value.

12.9 Error notification to the application program

12.9.1 General

Regardless of whether the application program is using network variables or sending messages, it
always has available to it the status of the last transaction.

12.9.2 Error notification for messages

Messages have three events associated with them: completion, success, or failure. Completion
means that the transaction has finished (either successfully or not). For acknowledged transactions,
success is defined as all acknowledgements having been received. For request/response
transactions, success is defined as a response having been received from all of the intended
recipients. In this case, it is up to the application to check the response code to see that the intended
node was not offline. For unacknowledged transactions, the transaction succeeds when the
transaction completes (when the message is sent). For unacknowledged-repeated transactions, the
transaction completes and succeeds when the message has been sent the requested number of
times.

This European Standard does not define any failure events for unacknowledged transactions.
However, specific implementations may post failure events for unacknowledged transactions due to
internal errors that may occur during the transmission of a message. Acknowledged transactions
provide failure notification to the application when the expected number of acknowledgements is not
received. Request-response transactions fail when one or more of the responses are not received.

12.9.3 Error notification for network variables

For network variables, the completion event is posted when the transaction completes. This is
identical to messages. Again, as with messages, unacknowledged updates can post failure events
due to error conditions detected on the transmitting node. For acknowledged network variable
updates, success is defined as all expected acknowledgements having been received. Failure is then
defined as one or more expected acknowledgements not being received. Network variables always
use the request-response mechanism when they are polled. Polled network variable updates succeed
when the target nodes have returned all of the values. A failure event is posted to the application
when either:

i) all of the responding targets did not have valid data (no matching network variable or offline), or

ii) one or more of the expected responses did not arrive. Note that for aliases, rule (ii) applies to the
responses for the primary and aliases collectively.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

53

There is a single exception to rule (i): a polled network variable that is connected to another network
variable on the same node and is also in a connection with one or more network variables on other
nodes will post a failure event to the application if all of the other nodes return offline responses to the
poll. This is true even if the node with the turnaround connection responds successfully to its own poll.

13 Network management & diagnostics

13.1 Assumptions

Network Management and Network Diagnostic (NM/ND) services are application level procedures that
use the session layer. This means that network management and diagnosis is only possible when the
session layer (and all the underlying layers) are functioning properly.

With a few exceptions, all NM/ND commands either examine or modify contents of memory locations
in one fashion or another. A portion of the various data elements that reside in non-volatile memory,
such as address assignment, are supported with their own NM/ND commands for reporting and
updating, allowing a more controlled execution of these operations within the protocol processor.
Other areas can be read or written using special addressing modes of the read and write memory
commands. Thus, users of move and change types of commands need not concern themselves with
the physical layout of the non-volatile memory. Those needing to download applications shall
understand the physical layout of non-volatile memory (although even this information can be wholly
contained within a download file).

13.2 Services provided

The Network Management and Diagnostics services provide the following capabilities:

— Address Assignment: the assignment of all address components (except the Unique_Node_ID);

— Node Query: the querying of node status and essential statistics;

— Router table maintenance.

With a few minor exceptions, network management operations are implemented as remote procedure
using the underlying request-response service provided by the session layer. See 11.5.

13.3 Network management and diagnostics application structure

Network Management is a distributed application with multiple clients and multiple servers. Server
functions shall be supported on all nodes, whereas client functions need only be supported on nodes
used as network management devices.

13.4 Node states

A node can be in one of four states. These states are maintained in non-volatile memory and have the
values listed in parenthesis after the state name. These states are reported in the response to the
Query Status network diagnostic command. The numbers in parentheses are enumerated values of
node_state (see 13.8.2).

Applicationless: (3) no application yet loaded, application in process of being loaded, or application
deemed bad due to application checksum error. No application runs in this state. The Node Status

BS EN 14908-1:2014

EN 14908-1:2014 (E)

54

Indicator1) (a diagnostic aid optionally available in nodes based on this European Standard) is on
continuously.

Unconfigured: (2) application loaded but network configuration memory is either not loaded, being
reloaded, or deemed bad due to a network configuration memory checksum error. A specific
implementation of this standard may allow a program to make the node go to the unconfigured state.
The program determines if an application runs in this state. The Node Status Indicator flashes at a
one-second rate. [An application-initiated transition to the unconfigured state shall clear the
authentication keys.]

Hard-offline: (6) application loaded but not running. The network configuration memory is considered
valid in this state; the network management authentication bit is honoured. The Node Status Indicator
is off.

Configured: (4) normal node state. The application is running and the network configuration memory
is considered valid. This is the only state in which messages for the application layer are received. In
all other states, they are discarded. The Node Status Indicator is off. The configured state has an
additional modifier that is the online/offline condition. This condition is not necessarily maintained in
non-volatile memory. The states and online/offline condition are controlled via different mechanisms.
However, they are reported together in the status command.

Note that there is a subtle distinction between being in the configured or unconfigured states and a
node being referred to as either configured or unconfigured. A node in the configured or unconfigured
state is as described above. However, a node is referred to as configured if it is in either the hard-
offline state or the configured state (having valid network configuration memory contents in either
case). A node is referred to as unconfigured if it is either in the applicationless or unconfigured states
(no valid network configuration memory contents in either case). The network management
authentication bit is honoured only when the node is in the configured state or the hard-offline state.

13.5 Using the network management services

13.5.1 General

Most Network Management PDUs (NMPDUs) are conveyed within session layer requests and/or
responses. By default, an NMPDU inherits either the request or the response attribute of the
enveloping SPDU. However, some requests, are conveyed within TPDUs rather than SPDUs.
Commands that use TPDUs are so noted. Some commands, such as Query_ID() may be sent using
broadcast addressing and request/response service. Such a command will succeed when at least one
response is returned from the network.

When configured to do so, most NM/ND transactions shall be authenticated in order to take effect.
Authentication is not possible for messages that are addressed using Unique_Node_ID addressing
where the server is not in the same domain as the one that the client used to initiate the request.
Commands that do not require authentication to be executed are so noted.

If a node does not understand a particular network management request, it shall return a failed
response. See 13.7 for encoding of network management responses.

1) (INFORMATIVE) The standard colour for the Node Status Indicator is yellow.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

55

13.5.2 Addressing considerations

The transmit transaction timer value of the client node shall be extended to handle the lengthy delays
involved with any command that alters non-volatile memory. When Unique_Node_ID addressing is
used, the server node automatically extends the non-group receive transaction timer to about 8 s.
This allows this timer to be tuned for normal application traffic without concern for lengthy network
management transactions.

The recommended addressing mode for initially using these commands on a node is
Unique_Node_ID. Once the node has been assigned an adequate non-group receive timer value (for
duplicate detection) and a domain, subnet, and node field then subnet/node addressing is
recommended.

Unique_Node_ID addressed messages are received regardless of the domain in which they are sent.
Unconfigured nodes shall also accept any subnet or domain wide broadcast regardless of the domain.
In both of these cases, acknowledgements and responses are returned on the domain in which the
message was received with a source subnet/node pair of 0/0. Messages received in a domain in
which the node is not a member (either because the node is unconfigured or not in the domain) are
termed as being received on the Flexible domain. Some commands are not permitted under these
circumstances and are noted in the descriptions of the network management commands starting at
13.7.2.

A significant advantage of using Unique_Node_ID addressing for network management commands is
that if a node accidentally becomes unconfigured (e.g., due to a checksum error resulting from a
power failure while changing the network configuration memory), the network management tool does
not lose its ability to communicate with the node.

13.5.3 Making network configuration changes

The paradigm for making network configuration changes within a node is as follows:

1) alter the node state or condition (optional);

2) perform the change or changes;

3) update the configuration checksum (only necessary if not done in step 2);

4) return to step 2 if more needs to be done;

5) restore the node state or condition if changed in step 1;

6) reset the node if communication parameter changes were made and it is desired that they take
effect.

13.5.4 Downloading an Application Program

The paradigm for downloading applications is as follows:

1) take the node offline;

2) alter the node state to applicationless;

3) send messages to the node that load the application into the node’s memory;

4) reset the node;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

56

5) compute the application checksum.

6) enter the unconfigured state.

At this point, the network configuration memory can be loaded. Note that when loading an application
followed by loading of the network configuration memory, a node comes up in the offline condition.

13.5.5 Error handling conditions (informative)

There are several classes of errors to consider:

— Transaction Failures: If a transaction fails (i.e., the desired acknowledgement or response is not
received), it is best to attempt to get to a known state rather than simply retry the transaction. If
network management authentication is turned on, returning to a known state should include
attempting authenticated transactions using different keys (e.g., the current key, the previous key,
etc.) until success is achieved.

— Node Resets or Power Cycles: if a node resets while a network management command is in
progress, the reset will likely manifest itself as either a communication problem or a transaction
failure. When non-volatile memory writes are involved, depending on the implementing
technology, the location being modified at the time of the reset may become corrupted.

— A reset during a memory refresh command could result in the corruption of the network
configuration memory or application program. Either could be catastrophic depending on the
scope of knowledge in the network management tool. An option here is to put early power down
detection on the network management tool and only issue refresh commands (with no retries)
when the power appears stable (assuming the client and server share a common power source).

— Read/Write Protect Violations: if a node is read/write protected, attempts to write to the
application code area are denied. The client can verify that a write memory attempt failed for this
reason by reading the read_write_protect field of the read_only_data structure.

Other adverse effects, such as address table and domain changes, need to be carefully handled and
understood by the client. A request can produce a response in a new domain, for example.

Every network node maintains two checksums, one over the network configuration memory and one
over the application memory. Following the completion of any of the network addressing commands
that alter the network configuration memory, a new configuration checksum is calculated and updated.
This adds time to the execution of these commands, and the client should take this into account
before sending the next message to the target node. This delay should always take into account the
non-volatile memory write time multiplied by the number of bytes altered. The delay per byte can be
as long as 20 ms. Therefore an update address command should have a transmit transaction timeout
of at least (20 ● 5 + 30) ms, or 130 ms.

Commands that automatically update checksums are noted.

An implementation may choose to validate the parameters to a given network management
command. Not all senders of network management commands actually send commands of the exact
length. This makes validation based upon the length of the command more difficult. Senders of
network management commands shall not exceed the lengths tabulated below.

The response to an invalid NM/ND command should be a failed response. Length validations are
based on the chart below. Note that if there is more than one number listed for a given command,
then a parameter set that is valid for a smaller size shall also be accepted if padded to the larger size.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

57

Escape commands are issued by setting a parameter to the command to 0xFF. The escape
commands and rules are noted in this clause and in the data structures in Annex A.

Command Code(hex) Data Size

Query Status 51 0

Proxy Agent 52 12 (Unique Node ID addressing)
Proxy Agent 52 6 (All other address formats)
Proxy Target 52 1

Clear Status 53 0

Report Transceiver Sts 54 0

Query ID 61 1

Query ID (conditional) 61 5+n (n=number of conditional bytes)
Respond To Query 62 1

Join Domain 63 16

Leave Domain 64 1

Security 65 7

Modify Address 66 5 (turnaround only)
 6 (non-turnaround only)
Report Address 67 1

Report NV 68 1 (non-escaped only)
 3 (escaped only)
Update Address 69 5

Query Domain 6a 1

Modify NV 6b 4 (regular update)
 5 (alias update)
 5 (null alias update, primary==0xff)
 6 (escaped regular)
 7 (escaped alias)
 9 (double escaped alias)
Node Mode 6c 1 (not for state change)
 2 (for state change)
Read Memory 6d 4

Write Memory 6e 5+n, 16 (n=number of bytes to write)
Checksum Recalculate 6f 1

Install 70 0 (basic application wink)
Install 70 1 (For multiple protocol stacks/node)
Install 70 9 (definition of network variables)
Install 70 5 (removal of network variables(nv))
Install 70 7 (query nv self documentation(sd) text)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

58

Command Code(hex) Data Size

Install 70 4 (all other query nv commands)
Install 70 5 (query node information)
Install 70 20 (update nv name)
Install 70 7+N (update nv self documentation text)
Install 70 7 (update network variable rate estimate)
Install 70 5 (update network variable SNVT index)
Install 70 5 (NM_GET_CAPABILITY_INFO)
Install 70 4+N (NM_SET_NV where N is the NV size)
Install 70 4 (NM_NODE::NM_INITIALIZE)
Install 70 7 (NM_DOMAIN::NM_INITIALIZE)
Install 70 20 (NM_DOMAIN:: CREATE / UPDATE)
Install 70 5 (NM_DOMAIN::NM_ENUMERATE reqest)
Install 70 18 (NM_DOMAIN::NM_ENUMERATE resp)
Install 70 12 (NM_DOMAIN::NM_SET_AUTH)
Install 70 7 (NM_ADDRESS::NM_INITIALIZE)
Install 70 12 (NM_ADDRESS::CREATE/ NM_UPDATE)
Install 70 5 (NM_ADDRESS::NM_ENUMERATE)
Install 70 10 (NM_ADDRESS::NM_ENUMERATE resp)
Install 70 7 (NM_NV_CONFIG::NM_INITIALIZE)
Install 70 7 (NM_NV_CONFIG::CREATE/ UPDATE)
Install 70 5 (NM_NV_CONFIG::NM_ENUMERATE)
Install 70 10 (NM_ENUMERATE resp)
Install 70 7 (NM_ALIAS_CONFIG::NM_INITIALIZE)
Install 70 14 (NM_ALIAS_CONFIG::CREATE/UPDATE)
Install 70 5 (NM_ALIAS_CONFIG::NM_ENUMERATE)
Install 70 12 (NM_ALIAS_CONFIG::NM_ENUMERATE resp)
Memory Refresh 71 4

Query SI Data 72 3

NV Fetch 73 1 (non-escaped only)
 3 (escaped only)
13.6 Using router network management commands

The router shall follow the normal protocol processor “states” and shall be in the
Application/Configured state in order to operate fully as a router.

All of the commands that affect the routing tables affect only a single router half. The NM Node Mode
command for OFFLINE, ONLINE, and RESTART shall automatically affect BOTH router halves.

For a router, ONLINE means that the router shall operate normally as described. OFFLINE means
that the router performs no forwarding; all packets not addressed to the router that appear in the

BS EN 14908-1:2014

EN 14908-1:2014 (E)

59

packet buffer circular lists are dropped. Other than the dropping of these packets, an OFFLINE router
continues to perform normally.

A router shall ignore a certain group of Network Management commands. These commands are the
broadcast Node Mode commands. This group of commands are ignored to prevent a broadcast
RESTART or OFFLINE command from stopping the router and preventing the same broadcast
command from reaching destinations on the other side of the router. Routers therefore shall be
RESTARTed or taken OFFLINE individually when desired. To support this, it shall be possible to
initiate a unique Manual Service Request for the router.

13.7 NMPDU formats and types

13.7.1 General

This subclause lists Network Management APDU (NMPDUs), using a notation similar to C structure
definitions. The bit and byte ordering rules defined in Annex D apply, with the most significant bit of
each byte being transmitted first; the first byte of a record is considered the least significant byte of
that record. In the value section of the descriptions, the value corresponds to a command number or a
response code for that message.

The first byte of all NMPDUs contains the Destination/Type data that, for NM requests and
commands, is always (binary):

 011xxxxx

The <xxxxx> field contains the command code.

Responses that have been generated by the execution of these NM commands are directed to the
Application, as specified by the first byte of the APDU:

 00pxxxxx

The <p> field is set to one if the operation succeeded, or zero if it failed. Failures are usually due to
range errors (table boundaries) or non-volatile memory write failures. The <xxxxx> field echoes the
original NM command code.

The first byte of all ND message APDUs contains the Destination/Type data of:

 0101xxxx

The <xxxx> field contains the command code.

ND responses have the following format, where <p> is the same as in NM responses and <xxxx>
mirrors the original command:

 00p1xxxx

The implications of this are that all NM/ND requests are delivered to the NM/ND layer, while all
NM/ND responses are delivered to the application layer. It is assumed that the responses are to be
processed at the application layer.

In this European Standard, only the command field value is described. The <p> field and the
destination code are not included but are assumed to be in place.

Single byte responses are provided for NM operations that are considered non-idempotent.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

60

NOTE 13.7 uses “byte” for 8-bit items and “uint16” for 16-bit items.

13.7.2 Query ID

Query_ID() requests a node, or a set of nodes, to report its Unique_Node_ID to the requester.
Typically this request is addressed on a single domain as a subnet-wide broadcast, implying that the
client has knowledge of at least the domain and may be taking orderly probes at subnet addresses in
order to interrogate a set of nodes. The data structures used are described in A.15.

To query unconfigured nodes, the selector value within the Query_ID_Request record is set to ‘0’. In
order to query nodes whose “respond to query” bit is set (see following command), the selector value
is ‘1’. To query nodes that are unconfigured and whose “respond to query” bit is set, the selector value
is “2”. Either the subnet or domain wide broadcast addressing mode is typically used. This command
never requires authentication to be executed.

If supplied, the address and data fields are used as additional qualifiers. The address mode and
address field are used to form an address (see “read memory” for a description of this process);
“count” bytes (1–11) of data starting at that address are then compared with the supplied data. Only if
they match does the Query ID proceed (as specified by the “selector”).

For this command only, read protect is assumed to be always on. If the address and count fall in a
read protected area (such as where the authentication keys are stored), no response is returned.

13.7.3 Respond to query

This command sets or clears the “respond to query” bit in the target node(s). When set, the target
shall respond to Query_ID()requests that have a selector of ‘1’. It shall continue in this mode until the
node is reset or its bit is cleared via command. This command is used for network topology
interrogation. The “on” version is usually addressed as subnet broadcast, using the unacknowledged-
repeated service. The “off” version is addressed to a specific node once it has been interrogated. This
command never requires authentication to be executed. The data structures are defined in A.16.

13.7.4 Update domain

This command updates one of the domain entries in the server, using the data structures in A.17.
Note that the most significant bit of the node field shall be set. Execution of this command updates the
network configuration memory checksum. If a node can only be in a single domain, attempts to assign
domain index ‘1’ shall return an error. If the domain to be updated is the same as the domain in which
the modify message was sent, and the node is in the “configured” state, then the response shall come
back on the new domain and thus shall not be received by the sender. This command may also be
used to leave a domain by setting the domain length to 0xFF, setting the subnet and node addresses
to zero, and invalidating the authentication key. Note that the side affects of resetting the node and
going to the unconfigured state that automatically occur when using the Leave Domain command will
not occur when the domain is left using this command.

Since the encryption key is propagated in the clear, this request should only be used when physical
network security can be guaranteed (or security is achieved through other means).

13.7.5 Leave domain

The node shall honour this command even if it still has addresses assigned within this domain.
Internally, the node’s domain length is set to 0xFF, and the subnet and node addresses are set to
zero. In addition, the authentication key is cleared. The network configuration memory checksum is
updated during the execution of this command. If the domain to be left is the domain on which the
request was received and the node is configured, no response is sent. If the domain being left is the

BS EN 14908-1:2014

EN 14908-1:2014 (E)

61

last domain in which the node is configured, the node automatically enters the unconfigured state and
resets. The data structures used are shown in A.18.

13.7.6 Update key

This command is used for updating encryption keys, using the data structures in A.19. The domain to
be used is specified in the message. The encrypt_key bytes are added to the existing key in a
bytewise fashion (no carry). The network configuration memory checksum is updated by this
command.

13.7.7 Update address

This command is executed by index. If the address table entry does not exist, the <p> bit in the
response shall be zero. The network configuration memory checksum is updated by this command.
No cross-checking for duplicate addresses or groups is performed.

The form of each address entry in the address table is described in A.20

13.7.8 Query address

This command reports an entry within the node’s address table, given an index. The data structures
used are in A.21.

13.7.9 Query network variable configuration

This command reports the entry in the node’s nv_config table, by index number; the entry shall exist
in the table. The data structures used are in A.22.

This command can also be used to query the node’s alias table. The same data structures are used
for alias queries as for network variable queries (see A.22). When used for aliases, the index in the
command data structure is the alias entry index and the primary index is the index of the primary
network variable corresponding to the indexed alias.

13.7.10 Update group address

This command is used to update a group entry in an address table; it is typically addressed by group.
The group size, timer indices, and retry count are updated. The group member field is left unchanged.
The entry is updated based on the domain in which the command was received because group
addresses are only unique within a specific domain. Therefore, this command is disallowed for the
flexible domain. This command updates the network configuration memory checksum. The data
structures used are in Annex A.23.

This operation shall update only the first matched instance of the group address.

13.7.11 Query domain

This command is used to retrieve the domain information for one of the two domains in a node. If the
second domain is requested and room for only one domain exists, the response contains the
command failure indication. The data structures used are in A.24.

13.7.12 Update network variable configuration

This command is used to add or modify entries to or from the node’s nv_cnfg table, by an index
number. There shall be free space in the nv_cnfg table for the entry. The address table index may be

BS EN 14908-1:2014

EN 14908-1:2014 (E)

62

set to 0 to 15, where 15 indicates that no address table entry is associated with the network variable.
The network configuration memory checksum is updated by this command. For a network variable
with index X, a network variable selector with the value 0x3FFF-X implies that the network variable is
not in a logical connection (i.e., is not bound). The data structures used are in A.25.

This command can also be used to update the node’s alias table. The same data structures are used
for alias configuration table updates as for network variable configuration table updates (see A.25).
When used to update the alias configuration table, the index in the command data structure is the
index of the alias entry index and primary index is the index of the primary network variable
corresponding to the indexed alias.

13.7.13 Set node mode

This request instructs the application to enter either the offline or online condition, to reset the entire
node via an internal reset, or to change the state of a node. When offline, the application program is
halted and NM/ND commands continue to be processed. The online request instructs the application
scheduler to leave the offline condition and resume operation of the application. One use of the offline
condition is for suspending the application during application non-volatile memory downloading.

The service type used for this command varies. For online and offline, no response is ever returned
so request-response cannot be used. The receiver will honour a request using the request-response
service, however, the state transitions for online and offline prevent the response from being sent.
Confirmation of the change in condition is achieved via issuance of a status request. For state
changes, request-response should be used. Since the state is part of the application, the application
checksum is updated. For reset, only the unack’d (or ack’d if authentication is required) service type is
used. This message is confirmed with a sequence of network management commands. First the
node’s status is cleared. Then the node is issued a reset. Finally, the status request command is
issued to the node. Note that failure to confirm the reset may indicate that the initial unack’d message
was lost, necessitating a retry of the exchange. The data structures used are in Annex A.26.

13.7.14 Read memory

This command is used to read memory. If read/write protect is on, only the read_only_data,
config_data, and RAM or non-volatile memory data areas can be read.

The “count” field contains the number of bytes to be read. This number should not exceed 16 unless
the target node has buffers sufficiently large to accommodate the additional data. Addresses to read
may be specified relative to the read-only structure (see B.1), relative to the configuration structure
(B.6), relative to the statistics structure (B.7), or may be absolute addresses. The absolute addressed
memory space that can be read is up to 65 535 bytes in length starting from an implementation
specific physical offset. A read of absolute memory location 0 with a count of 1 byte returns the
original system image version number. This can be used to determine system capabilities when the
firmware version number indicates a custom version. The custom version is assumed to be derived
from the original system image and thus inherits its capabilities. The data structures used are in A.27.

13.7.15 Write memory

There are two forms of this command: one form resets the protocol processor after writing, the other
does not. Confirmation of the reset form shall be performed by reading back memory using read
memory. The non-reset form produces a response and is conveyed via request-response. The reset
form is conveyed using unacknowledged or unacknowledged-repeated service. The network
configuration memory checksum and/or application checksum are optionally updated. A node
compliant to this European Standard is not required to support write memory commands that span
memory technologies. For example, a single write command that writes both flash EPROM memory
and EEPROM memory need not be supported.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

63

If read/write protect is on, only the config_data_struct (see Annex B) can be written. The byte count
should be limited to 11 bytes unless the target node has buffers that are sufficiently large to handle
more. Addresses to write may be specified relative to the configuration structure (see B.6), relative to
the statistics structure (see B.7), or may be absolute addresses. Just like in the Read Memory
command, absolute addresses can be written in a space up to 65 535 bytes in length starting from an
application specific physical offset. The data structures used are in A.28.

13.7.16 Checksum recalculate

This command forces the protocol processor to compute and store a new network configuration
memory or application checksum. It should be used at the end of any Network Management sessions
that alter the network configuration non-volatile memory image or application non-volatile
memory/RAM image (unless those commands have specifically performed this operation already, as
with the address commands). All nodes shall checksum their network configuration non-volatile
memory. A checksum of the application image is optional. Nodes that do not compute application
checksums always report success when commanded to recalculate their application checksums via
this command. The data structures used are in A.29.

13.7.17 Install

This command is used during installation for a variety of purposes. The primary purpose is to force the
execution of an application specific wink function. For example, the wink function may blink a light
attached to the node for positive node identification. The wink function, if implemented, shall execute
even if the node is in an unconfigured state.

A second purpose of this command is to allow multiple protocol processors to exist with a single
application. Each protocol processor would have its own unique node ID and associated domain and
address tables. This second form of the command allows individual queries to the protocol processors
for installation purposes. The scenario of use is that the application is installed by issuing a manual
service request to get the unique node ID. Then this command is used to query the application about
how many protocol processors are attached to it. With each request, the application responds with the
information contained in the manual service response message for the next protocol processor along
with a network interface number. Once all the network interfaces have been identified, commands to
get the next network interface fail. This command is seldom used, and will likely not be used in the
future due to the wide range of protocol processor capabilities enabled by this Standard.

A third purpose of this command is to support the dynamic (run time/install time versus compile time)
creation and deletion of network variables. Support of this feature is optional due to its resource
constraints. These commands, that are an extension of the Install command, provide methods to
query Self Identification/Self Documentation (SI/SD) data, update SI/SD data, inform the node of a
new Network Variable addition, or the removal of an existing Network Variable.

A fourth purpose of this command is to extend the limitations on domain membership and group
membership by increasing the upper limit on domain membership to as many as 65 535
(implementations may support less), and increase address table entries to an upper limit of 65 535
(again, an implementation may support less). Support of this feature is optional due to its resource
constraints.

The general format of the install commands for the first three purposes is:

<Application Command> <Application Specific Data Fields>

To extend the limitations on domain and group membership, the command structure above is
generalised. In this new structure, a node is viewed as having resources (such as network variable
configuration table entries) that are managed with commands. Some commands act upon the entire

BS EN 14908-1:2014

EN 14908-1:2014 (E)

64

class of resource, while others act upon a specific instance of the resource where that instance is
selected by an index parameter (such as an address table index). Resources may have properties
that can be set or read. The general format of the install commands for this family of commands, the
extended network management commands, is:

<Application Command> <Resource> <Resource/Command Specific Data>

The resource field appears with commands 0x20 or greater. Commands 0 to 6 are legacy commands
and do not use the extended format. Commands 7 to 0x1F are for non-resource specific commands,
and do not have the resource field.

For commands that operate on an instance of a resource, a resource index is also required. For
commands that operate on a property of the resource, either a special command or an explicit
property field is required.

Resource

A resource is an object, such as an address table entry, that can be configured or queried. A resource
may be dynamic or static (both exemplified by network variables), and may have properties that can
be acted upon. A resource is specified by an 8-bit resource class id, and a resource index that refers
to a specific instance of a resource. The base and size of the index depends on the resource, but is
typically zero-based and one or two bytes. When a command acts on the entire resource class, the
resource index may be absent. If a command can act on either a resource instance or all instances,
then by convention an all 1’s index indicates all instances.

The resource class id is partitioned into 125 system resources, 125 device-specific (or application-
specific) resources, and 4 values reserved for future expansion. No device-specific resources are
currently defined. The following table defines the range and currently defined resource codes:

Table 2 —Resource codes

Resource Class
ID

Mnemonic Description

System Resources (MSB=0)

0x00 (reserved for future use)

0x01 NM_NODE Node

0x02 NM_DOMAIN Domain Entry

0x03 NM_ADDRESS Address Table Entry

0x04 NM_NV_DEF Network Variables definition (static and
dynamic)

0x05 NM_NV_CONFIG Network Variables Configuration

0x06 NM_ALIAS_CONFIG Alias Configuration

0x07 – 0x7E (undefined)

0x7F (reserved for future use)

Device-Specific Resources (MSB=1)

0x80 (reserved for future use)

0x81-0xFE (undefined)

0xFF (reserved for future use)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

65

Property

A resource generally has properties that may be get or set. The format for specifying a property is to
use the commands NM_SET and NM_GET, and define a 1-byte property ID field following the
resource. The scope of the property depends on the resource. The space of the property ID is
partitioned as follows:

Table 3 —Space of the property ID

0x00 (reserved for future use)

0x01 to
0x7E

Common Properties

0x7F (reserved for future use)

0x80 (reserved for future use)

0x81 to
0xFE

Resource-Specific Properties

0xFF (reserved for future use)

If a resource has a collection of properties of the same type (multiple instances), then an additional
property index shall be defined in the request data structure following the resource index.

All of the resources defined use special command(s) for each property, and the properties are single-
instance.

For both versions of the commands, the first byte of the response to the command shall be either
0x30 to indicate the command was successful, or 0x10 to indicate the command failed. Additional
bytes of the response, if any, depend on the application command type. For application commands
with a command code greater than 0x6, failures are reported by having the first byte of the response
set to 0x10, followed by a one byte cause value:

typedef struct {
 unsigned cause;
} NM_wink_negative_response;

The complete list of application commands for the install message are:

APP_WINK (0) Command the application to perform some visible or
audible action.

APP_INSTALL (1) Find all the network interfaces for an application.

APP_NV_DEFINE (2) Create a new dynamic NV definition.

APP_NV_REMOVE (3) Remove an existing dynamic NV definition.

APP_QUERY_NV_INFO (4) Query SI/SD data for an NV.

APP_QUERY_NODE_INFO (5) Query SI/SD data for the node.

APP_UPDATE_NV_INFO (6) Update SI/SD data for an NV.

NM_GET_CAPABILITY_INFO (7) Query the node capabilites (address table size, etc.).

NM_SET_NV (8) Write a network variable selected by the index.

NM_INITIALIZE (0x20) Remove a dynamic resource or reset a static resource.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

66

NM_CREATE (0x21) Create a dynamic resource at a specified index.

NM_REMOVE (0x22) Remove a resource.

NM_SET (0X23) Set the indicated property.

NM_GET (0x24) Get the indicated property.

NM_UPDATE (0x25) Modify a resource definition or configuration.

NM_ENUMERATE (0x26) Return the specified or next instance.

NM_SET_AUTH (0x81) Update the authentication key and network management
authentication for specified or all domains.

Following are the definitions of the application specific data fields by command type.

APP_NV_DEFINE

This command adds a new or modifies an existing NV definition. If an attempt is made to add or
modify the definition of an NV that is part of the node’s fixed NV interface, or the index exceeds the
maximum supported by the node, the node will report command failed.

After a successful define, the application is responsible for setting the network variable configuration
to default values (unbound selector, correct direction, etc) such that a subsequent NV config query
command shows the correct default attributes for the newly defined NV.

The message data structure contains the following fields:

APP_NV_DEFINE (2) As defined above.

unsigned nvIndexHi The high order byte of the NV index.

unsigned nvIndexLo The low order byte of the NV index.

unsigned arrayLenHi The high order byte of the number of elements in the NV
array. The value is 0 if the NV is not an array.

unsigned arrayLenLo The low order byte of the number of elements in the NV
array. The value is 0 if the NV is not an array.

unsigned nvLen The number of bytes in the NV value (1 to 31).

unsigned nv_dflts Default configurable attributes of the NV. Encoded as a
single byte. Includes direction, priority, authentication,
and service type.

unsigned nv_attr Attributes of the NV. Encoded as a single byte. (See
definition below.)

APP_NV_REMOVE

This command removes one or more existing NV definitions. The NV index shall be within the area of
the interface that is specified to be dynamic. If the NV index specified is within the node’s fixed
interface, the command will fail. The command will succeed even if the specified set of NVs is not
currently defined or exceeds the maximum number of NVs supported by the node. After a successful
remove, the application is responsible for setting the network variable configuration to default values
(unbound selector, correct direction, etc) such that a subsequent NV config query command shows
the correct default attributes for an undefined NV.

The command contains the following fields:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

67

APP_NV_REMOVE(3) As defined above.

unsigned nvIndexHi The high order byte of the NV index of the first NV definition
to be removed.

unsigned nvIndexLo The low order byte of the NV index of the first NV definition
to be removed.

unsigned nvCountHi The high order byte of the number of NVs to remove.

unsigned nvCountLo The low order byte of the number of NVs to remove.
APP_QUERY_NV_INFO

This command queries self-documentation data about a specific NV. It contains the following fields:

APP_QUERY_NV_INFO (4)

unsigned nv_info The self-documentation data being requested.
Current values are:

 NV_INFO_DESC (0) Basic attributes of the NV, array information, how
the NV was defined, and indication of available
additional self-documentation.

 NV_INFO_RATE_EST (1) Average and maximum rate estimates defined for
the NV.

 NV_INFO_NAME (2) The name of the network variable.

 NV_INFO_SD_TEXT (3) The self-documentation text string associated with
the NV.

 NV_INFO_SNVT_INDEX (4) The index of the SNVT.

unsigned nvIndexHi The high order byte of the NV index.

unsigned nvIndexLo The low order byte of the NV index.

unsigned offset_hi If nv_info is NV_INFO_SD_TEXT, the high order
byte of the offset of the requested data.

unsigned offset_lo If nv_info is NV_INFO_SD_TEXT, the low order
byte of the offset of the requested data.

unsigned length If nv_info is NV_INFO_SD_TEXT, the number of
bytes requested. The response data structure
depends upon the data requested.

If the data requested is NV_INFO_DESC, the following response is sent:

unsigned length :5 The length of the NV value, in bytes. Encoded as 0 if the NV
is currently undefined.

unsigned origin :3 How the NV was created. One of the following values:

 NV_UNDEFINED (0) The NV is not currently defined.

 NV_STATIC (1) The NV was statically defined (cannot be removed).

 NV_DYNAMIC (2) The NV was dynamically defined (can be removed).

unsigned nv_dflts Default configurable attributes of the NV. Encoded as a single
byte. Includes direction, priority, authentication, and service
type.

unsigned nv_attr Basic attributes of the NV.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

68

unsigned nv_exten Extension bits. Indicators of additional SI/SD data that are
available.

unsigned nv_array NV array attributes.

unsigned nv_name[16] Optional field. If included, the nm_supplied bit shall also be
set in the ext field. The name of the NV without array
subscripts.

If the requested data is NV_INFO_RATE_EST, the following response is sent:

unsigned nv_rate_est The encoded average rate estimate for the NV.

unsigned nv_rate_est The encoded maximum rate estimate for the NV.

If the requested data is NV_INFO_NAME, the following response is sent:

unsigned nv_name[16] The name of the NV. If NV is part of an array, the name does not
include the array subscript. Zero-terminated if length is less than 16
characters.

If the requested data is NV_INFO_SD_TEXT, the following response is sent:

unsigned length The number of bytes of SD Text data returned.

unsigned text[*] The SD text data segment. The actual text array size is dependent upon the
preceding length value.

If the requested data is NV_INFO_SNVT_INDEX, the following response is sent:

unsigned snvt_type_index The index of the Standard Network Variable Type associated with
the NV. Encoded as zero if the NV is not a SNVT.

APP_QUERY_NODE_INFO

This command queries self-documentation data about the node. It contains the following fields:

APP_QUERY_NODE_INFO (5)

unsigned node_info The self-documentation data being requested. Values
are:

 NODE_INFO_SD_TEXT (3) The self-documentation text string associated with the
node.

unsigned offset_hi If node_info is NODE_INFO_SD_TEXT, the high order
byte of the offset of the requested data.

unsigned offset_lo If node_info is NODE_INFO_SD_TEXT, the low order
byte of the offset of the requested data.

unsigned length If node_info is NODE_INFO_SD_TEXT, the number of
bytes requested.

The response data structure depends upon the data requested. If the requested data is
NODE_INFO_SD_TEXT, the following response is sent:

unsigned length The number of bytes of SD Text data returned.

unsigned text[*] The SD text data segment. The actual text array size is dependent upon the
preceding length value.

APP_UPDATE_NV_INFO

BS EN 14908-1:2014

EN 14908-1:2014 (E)

69

This command updates self-documentation data about a specific NV. In general, update messages
cannot be relied upon to be validated by the target application. The initiator shall perform all
validation. This message contains the following fields:

APP_UPDATE_NV_INFO (6)

unsigned nv_info The self-documentation data being updated. Current
values are:

 NV_INFO_RATE_EST (1) Average and maximum rate estimates defined for the
NV.

 NV_INFO_NAME (2) The name of the network variable.

 NV_INFO_SD_TEXT (3) The self-documentation text string associated with
the NV.

 NV_INFO_SNVT_INDEX (4) The index of the SNVT.

unsigned nvIndexHi The high order byte of the NV index.

unsigned nvIndexLo The low order byte of the NV index.
The remaining data fields are dependent upon the nv_info value specified. If the specified nv_info is
NV_INFO_RATE_EST, the following data is provided:

unsigned clear_mre: 1 If set, clear the NV’s maximum rate estimate value, and indicate
that this data is not available.

unsigned clear_re: 1 If set, clear the NV’s rate estimate value, and indicate that this data
is not available.

unsigned update_mre: 1 If set, update the NV’s maximum rate estimate value. Also, indicate
that the maximum rate estimate data is available.

unsigned update_re: 1 If set, update the NV’s rate estimate value. Also, indicate that the
rate estimate data is available.

unsigned nv_rate_est The encoded average rate estimate for the NV.

unsigned nv_rate_est The encoded maximum rate estimate for the NV.

If the specified nv_info is NV_INFO_NAME, the following data is provided:

unsigned nv_name[16] The null (zero) terminated name of the NV. The name does not
include the array subscripts.

If the specified nv_info is NV_INFO_SD_TEXT, the following data is provided:

unsigned length The number of bytes of SD Text data being updated.

unsigned offset_hi The high order byte of the offset of the data to be updated.

unsigned offset_lo The low order byte of the offset of the data to be updated.

unsigned text[*] The SD text data segment. The actual text array size is dependent upon
the preceding length value.

If the specified nv_info is NV_INFO_SNVT_INDEX, the following data is provided:

unsigned snvt_type_index The index of the Standard Network Variable Type associated with
the NV. Encoded as zero if the NV is not a SNVT.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

70

The following data structures are referenced in the preceding message definitions:

nv_attr This data structure describes the basic attributes
of a specific network variable. It contains the
following fields:

 unsigned nv_sync: 1 If set, all values assigned to the NV are
propagated, in their original order. Mutually
exclusive with nv_polled.

 unsigned nv_polled: 1 If set, the output NV’s value is sent only in
response to a poll. Updates are not generated
when the application updates the NV value.

 unsigned nv_offline: 1 If set, the node should be taken offline before
updating the value of the network variable.

 unsigned nv_service_type_config: 1 If set, the NV’s service type attribute is
configurable.

 unsigned nv_priority_config: 1 If set, the NV’s priority attribute is configurable.

 unsigned nv_auth_config: 1 If set, the NV’s authentication attribute is
configurable.

 unsigned nv_config_class: 1 If set, the NV is a configuration NV.

 unsigned snvt_type_index The index of the Standard Network Variable
Type associated with this NV. Zero if the NV is
not a SNVT.

nv_exten This data structure indicates what additional self-
documenting data is available for a specific network variable.
It contains the following fields:

 unsigned mre: 1 If set, the NV’s maximum rate estimate is available.

 unsigned re: 1 If set, the NV’s average rate estimate is available.

 unsigned nm: 1 If set, the NV’s name is available.

 unsigned sd: 1 If set, the NV has a self-documenting text string.

 unsigned nm_supplied:
1

Applies only to APP_QUERY_NV_INFO response for
NV_INFO_DESC. If this bit is set, then the nv_name is also
provided in the response, following the existing data fields.

nv_array This data structure provides the array attributes for a specific
network variable. It contains the following fields:

 unsigned count_hi Total number of NVs in the array. An unsigned 16 bit number.

 unsigned count_lo

 unsigned element_hi The index of the NV within the array. Encoded as a zero

 unsigned element_lo if the current NV is not a member of an array.

nv_dflts This data structure provides the default values for the
configurable attributes for a specific network variable. It
contains the following fields:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

71

 unsigned nv_direction: 1 The default direction of the NV.

 unsigned nv_auth: 1 The default authentication setting of the NV.

 unsigned nv_priority: 1 The default priority setting of the NV.

 unsigned nv_service: 2 The default service type of the NV.

Extended network management commands

NM_GET_CAPABILITY_INFO

This command returns the capabilities of nodes that support no Self Identification (SI) data, or SI data
versions 0 and 1. It can be viewed as returning the SI data relative to the Alias Record (alias_field).
The purpose of the command is to allow a network manager to obtain the node’s capability
information near the end of the SI data versions 0 and 1 without having to scan the preceding and
variable NV records, or to obtain the information when the node does not have SI data.

The response data has the following subclauses as described in SI Versions 0 and 1. Note that the
Alias Record (alias_field) can be one or three bytes; the network manager shall compute the offset of
the Compatibility Record accordingly.

Alias Record
(1 or 3 bytes)

Compatibility
Record

Capability
Info Record

NM_SET_NV

This command sets a network variable to the value specified in the command. The length of the nv
shall match the defined length on the receiving node otherwise a negative response is returned. The
nv is specified in the command by its nv index. This command is honoured even if the receiving node
is offline. If the receiving node is offline, no update event is posted to the application.

Resource commands

The following set of extended network management commands are the commands to manage node
resources.

Node Commands (NM_NODE)

The node resource supports the following command:

NM_NODE::NM_INITIALIZE

This command clears the configuration data of the node, in the following sequence:

1) Initialises all NV and alias configuration table entries of each class (see
NM_INITIALIZE/NM_NV_CONFIG).

2) Initialises all address table entries (see NM_INITIALIZE/NM_ADDRESS).

3) Initialises all domain table entries (see NM_INITIALIZE/NM_DOMAIN).

4) Clears the network management authentication bit in the config data structure.

5) Sets the node’s priority to zero.

6) Removes all dynamic NVs.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

72

7) Optionally go to a specified state.

The field state is used only if non-zero. When specified, it indicates the state the node is to go to upon
completion of the initialisation.

Domain commands (NM_DOMAIN)

NM_DOMAIN::NM_INITIALIZE

This command initialises a range of domain table entries to the empty value. This is semantically
equivalent to the Leave Domain command described in 13.7.5 except that it never causes a node
reset and it supports many more domain indices. The response is the standard response code format
defined above.

To initialise one entry, specify both index and index_end to the index of the entry. To initialise all
entries, specify index to be 0 and index_end to be all 1’s. To initialise all entries at or greater than an
index, specify index_end to be all 1’s. Invalid indices are ignored and fail silently.

If the command leaves no other domain entries to be configured, the node goes to the unconfigured
state.

NM_DOMAIN::NM_CREATE

This command uses the same data structure and has the same effect as
NM_DOMAIN::NM_UPDATE. The response is the standard response code format defined above.

NM_DOMAIN::NM_UPDATE

This command updates a domain table entry. It is equivalent to the Update Domain command in
13.7.4, but supports a 16-bit domain index. The response is the standard response code format
defined above.

NM_DOMAIN::NM_ENUMERATE

This command queries a domain table entry, or the next entry if the specified entry is empty. See B.2
for this structure.

Enumeration rules

At each successive enumeration, the requestor should specify the request’s index to be 1 greater than
the index returned from the previous response.

Only entries with a valid domain length (0, 1, 3, 6) are returned.

NM_DOMAIN::NM_SET_AUTH

This command is used to set the authentication key. The response is the standard response code
format defined above.

Address table commands (NM_ADDRESS)

Expanded address table structure

To accommodate the larger domain index, the address table entry will be appended with a 2-byte
domain index. The address structures for group, subnet/node, and broadcast are affected.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

73

The structure for the group address contains the new field “restriction”, allowing a node to send or
receive messages to a group for which it is not a member. The response is the standard response
code format defined above.

typedef enum
{
GRP_NORMAL = 0,
GRP_OUTPUT_ONLY = 1,
GRP_INPUT_NO_ACK = 2,
} group_restriction;

GRP_NORMAL – This is the normal node and is the typical default. All legacy implementations of this
European Standard would use this if they did not want to modify the protocol code to support more
address table entries as described in these extended network management commands.

GRP_OUTPUT_ONLY − The group is used for output only; the node shall not use the entry to match
the destination address of incoming addresses. This mode allows a node to send an implicitly
addressed message to a group without being its member. The member id is not used and may be set
to zero.

GRP_INPUT_NO_ACK − The node will receive incoming messages on that group but would not
return ACKS, responses, or issue challenges; the member id may be set to zero. This mode allows a
node to monitor group messages without being a member of the group. The member id is not used
and may be set to zero.

NM_ADDRESS::NM_INITIALIZE

This command initialises a range of address table entries to the “empty” value. The entire entry is
zeroed. The response is the standard response code format defined above.

To initialise all entries, specify index to be 0 and index_end to be all 1’s. To initialise all entries at or
greater than an index, specify index_end to be all 1’s. When some indices are valid and some are
invalid in a range of indices, invalid indices are ignored and fail silently.

NM_ADDRESS::NM_CREATE

This command uses the same data structure and has the same effect as
NM_ADDRESS::NM_UPDATE. The response is the standard response code format defined above.

NM_ADDRESS::NM_UPDATE

This command is used to update an address table entry. Address table entries with an index greater
than 14 shall use this command. The response is the standard response code format defined above.

NM_ADDRESS::NM_ENUMERATE

This command queries an address table entry, or the next entry if the specified entry is empty.

Enumeration rules

At each successive enumeration, the requestor should specify the request’s index to be 1 greater than
the index returned from the previous response.

Only in-use entries are returned. Unused entries are ones whose first two bytes are zero.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

74

NV configuration commands (NM_NV_CONFIG)

The network variable configuration table is used for static, and dynamic NVs, but not aliases. The
table is indexed by a flat nv index corresponding to that used for the NM_NV_DEF command.

NV Configuration Table Entry Structure

The network variable configuration entry nv_struct is expanded to accommodate the extended
network management command features. The new version is nv_struct_ext.

The index of the target nv; used when the nv configuration entry is used to target a single NV. This
field is valid if its value is not 0xFFFF, and either bits nv_read_by_index or nv_write_by_index is set. If
nv_read_by_index is set, the node may use NV_FETCH to fetch the target NV at the indicated index.
If nv_write_by_index is set, the node may use NM_SET_NV to write to the target NV at the indicated
index. The target node’s address is indicated in the address table entry whose index is indicated by
nv_addr_index.

NM_NV_CONFIG::NM_INITIALIZE

This command initialises a range of nv configuration entries to the “unbound” value. Each NV array
element is treated as a separate entry.

To initialize all entries, specify index to be 0 and index_end to be all 1’s. To initialise all entries at or
greater than an index, specify index_end to be all 1’s. Invalid indices are ignored and fail silently. The
response is the standard response code format defined above.

The fields are initialised as follows:

Field Initial Value

nv_priority unchanged

nv_direction unchanged

nv_selector_hi/lo unchanged

nv_turnaround 0

nv_service unchanged

nv_auth unchanged

nv_write_by_index 0

nv_read_by_index 0

nv_remote_nm_auth 0

nv_service unchanged

nv_addr_index 0xFFFF

Unused fields 0

nv_target_index 0xFFFF

NM_NV_CONFIG::NM_CREATE

This command uses the same data structure and has the same effect as
NM_NV_CONFIG::NM_UPDATE. The response is the standard response code format defined above.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

75

NM_NV_CONFIG::NM_UPDATE

This command is used to modify an nv or alias configuration entry. Each NV array element is treated
as a separate entry. The response is the standard response code format defined above.

NM_NV_CONFIG::NM_ENUMERATE

This command queries an nv config table entry, or the next allocated entry if the specified entry is not
allocated. Allocation means the corresponding NV is allocated. Each NV array element is enumerated
as a separate entry.

Enumeration rules

At each successive enumeration, the requestor should specify the request’s index to be 1 greater than
the index returned from the previous response.

The enumeration returns only bound NVs (one with either a bound selector, or whose address table
index is not 0xffff).

Alias configuration commands (NM_ALIAS_CONFIG)

The alias configuration table is used for aliases of primary network variables.

Alias configuration table structures

The alias entry contains the expanded nv_struct_ext and a 16-bit index of the primary NV. Unlike the
structure defined in A.22 and A.25 that has a “short” version with an 8-bit primary index and a “long”
version with a 3 bytes primary index, the alias_struct_ext below will be uniformly used in all platforms
that support the extended command set.

NM_ALIAS_CONFIG::NM_INITIALISE

This command initialises a range of alias entries to the “unbound” value.

To initialise all entries, specify index to be 0 and index_end to be all 1’s. To initialise all entries at or
greater than an index, specify index_end to be all 1’s. Invalid indices are ignored and fail silently. The
index fields in this structure are alias indices. The alias index is relative to the beginning of the alias
table.

The fields are initialised as follows:

Field Initial Value

alias_nv.nv_priority 0

alias_nv.nv_direction 0

alias_nv.nv_selector_hi/lo 0 0xFFFF

alias_nv.nv_turnaround 0

alias_nv.nv_service 0

alias_nv.nv_auth 0

alias_nv.nv_write_by_index 0

alias_nv.nv_remote_nm_auth 0

BS EN 14908-1:2014

EN 14908-1:2014 (E)

76

alias_nv.nv_selection 0

alias_nv.nv_addr_index 0

alias_nv.nv_read_by_index 0

Unused fields 0

alias_primary 0xFFFF

NM_ALIAS_CONFIG::NM_CREATE

This command uses the same data structure and has the same effect as
NM_ALIAS_CONFIG::NM_UPDATE. The response is the standard response code format defined
above.

NM_ALIAS_CONFIG::NM_UPDATE

This command is used to update an alias configuration entry. The response is the standard response
code format defined above.

NM_ALIAS_CONFIG::NM_ENUMERATE

This command queries an alias configuration entry, or the next allocated entry if the specified entry is
not allocated.

Enumeration Rules

At each successive enumeration, the requestor should specify the request’s index to be 1 greater than
the index returned from the previous response.

The data structures used for all the install command messages are in A.30.

Backward Compatibility

A node that supports the extended command set, ECS, shall continue to support the legacy Network
Management commands as defined in this European Standard. However, once a node has been
written by any extended commands, it is considered to operate in the extended mode, and shall return
a negative response to the following legacy commands. The hexadecimal command codes from this
standard are included for reference.

The ECS command set contains spare bits for some of the fields. These are reserved for future use.
In order to provide for backward compatibility in the future, all unused bits shall be set to zero.

ECS implementations built on top of pre-ECS protocol stacks may be able to respond negatively only
to network variable commands. Such nodes would have the
EXTCAP_INCOMING_GROUP_RESTRICTED capability flag set. This is acceptable as long as one
of the following is true:

1) 1. The node has no more than 15 bindable message tags.

2) 2. The node has at least one static network variable.

Commands Requiring a negative response if operating in extended mode:

— NM_query_nv_config (0x68)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

77

— NM_update_nv_config (0x6B)

— NM_update_group_addr command (0x69)

— NM_query_address (0x67)

— NM_update_address (0x66)

— NM_update_domain (0x63)

— NM_query_domain (0x6A)

— NM_leave_domain (0x64)

These restrictions, responding negatively to the legacy commands if a node can, or otherwise living
within the limits of no more than 15 bindable message tags or having at least one static network
variable allows a legacy network manager to perform database recovery on the network without
destroying the operation of the nodes that support the extended network management command set.
Otherwise, the recovery of the network database from the nodes will be inconsistent and could result
in a catastrophic network outage with no backup network database (since database recovery was
invoked to begin with).

Message Handling

Message Size

The node will return failure if a command data is not the exact size as defined. In the future,
extensions to command data or addition of new commands will be signaled by a node via a higher
version number in the field snvt_capability_info.ver_nm_max. In the future, the response to the
NM_GET_CAPABILITY_INFO command may be lengthened in a backward compatible way without
affecting the version number to accommodate new capabilities. In this case, if the requestor receives
a response to the NM_GET_CAPABILITY_INFO command with more information than expected, the
requestor can use the response data that it understands and ignore the rest of the returned response.

13.7.18 Memory refresh

This command causes the node to rewrite the existing contents of non-volatile memory at a specified
address for a specified number of bytes. This can be used to periodically rewrite the contents of non-
volatile memory to extend the retention time of the memory contents. An error is returned if a refresh
of memory is requested and none exists at the specified address. Also, if “offset” falls beyond the end
of the non-volatile memory area, an error is returned. In this way, the sender of these commands can
simply increment the offset until an error is returned. The count should be limited to 8 if the target is
online and could be as high as 38 if the target is offline. The data structures used are in A.31. If the
non-volatile memory can be written by sector only, the count and offset values refer to entire sectors
instead of individual bytes.

13.7.19 Query SI

This command is used to retrieve self-identification (SI) data for a node and for its network variables if
this information is located outside the addressable memory space of the protocol processor (e.g., in
the memory space of a co-processor). The field ‘si’ in the structure described in B.1.1 is a pointer to
the address where a node’s self-identification data is located. A null (0) address indicates that that
node provides no self-identification data. A non-null address that does not consist of all 1’s points to
the address where this data is located. In this case, the data is read directly with a read memory
command. An address consisting of all 1’s indicates that the self-identification information is located

BS EN 14908-1:2014

EN 14908-1:2014 (E)

78

outside the addressable memory space of the protocol processor. The Query SI command shall be
implemented on the protocol processor in that case to read the self-identification data.

The device issuing this command need know nothing about physical addresses on the co-processor;
instead the requester only deals with offsets. The requester starts with an offset of 0 and then bumps
the offset for each subsequent request. The byte count shall be limited to 16 unless the target node
has sufficiently large buffers to handle larger counts. The data structures used are in A.32.

13.7.20 Network variable value fetch

This message is used to poll network variables. It has two advantages over the network variable poll
message: it uses the network variable index and is thus independent of network variable selector
assignments, and it also obtains the value regardless of the node's online/offline condition. The data
structures used are in A.33.

13.7.21 Manual service request message

This message is unlike the other network management messages in that it is an unsolicited message.
It is sent over the network from a node when a Manual Service Request for that node is initiated. The
message is sent as a domain-wide broadcast on domain length 0 with a source subnet 0 and node
address of 0. The data structures used are in A.34.

13.7.22 Network management escape code

One of the network management command codes is reserved as an escape. The value of the escape
code is 0x7D. Sending the escape code as the network management command causes the first two
bytes of the APDU to be interpreted as additional command codes. This capability allows the network
management protocol to be extended in product specific ways.

If a node responds to network management messages that use the network management escape
code, then that node shall always respond to the Product Query command. All other commands are
product specific and are documented with the products. The response to this command has two
forms. The short form contains only a single byte to specify the product. The complete form contains:

— response code,

— product byte (as in the short form),

— two byte field for the model number,

— single byte for the firmware version,

— byte for the device configuration or mode, and

— byte for the transceiver type.

The single byte product specification codes are reserved and shall be allocated to ensure no conflict
among implementations. In the complete response form, the value of the device configuration
options/modes byte returned is zero unless the device can be put into several modes or device
configurations. In this case, the byte contains the current mode or configuration of the device.

Success or failure is reported on the escape code rather than on the subcode or command. The data
structures used are in A.35.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

79

13.7.23 Router mode

This request instructs the router to perform one of several router-related tasks. The “resume”
command returns the router from the “all flood” state. The “init router tables” command copies all
routing tables from non-volatile memory into the RAM tables (if a configured router) or sets all RAM
tables to flood (if a learning router); this is the same action that occurs after node reset. The “mode all
flood” command causes the router to forward all packets in the domain. The Router Mode command
affects both router halves, and is conveyed via the Request-Response protocol. Note that the normal
Network Management Node Mode request may be used to take the entire router offline and online.
The data structures used are in A.36.

13.7.24 Router clear group or subnet table

This request is used to clear all entries in either the group or subnet routing table for a single domain
for a single router half. The command is segmented to cover 8-byte sections in order to prevent
lengthy non-volatile memory write operations. This command is conveyed via the Request-Response
protocol. The network configuration memory checksum in non-volatile memory is updated. The data
structures used are in A.37.

13.7.25 Router group or subnet table download

This request is used to configure the entire group or subnet table in non-volatile memory for the
specified domain for a single router half. The download function is broken into 8-byte sections. This
command is conveyed via the Request-Response protocol. The network configuration memory
checksum in non-volatile memory is updated. The data structures used are described in A.38.

13.7.26 Router group forward

This request sets the forwarding flag in the routing table for a given group in the specified domain.
This command is conveyed via the Request-Response protocol. The network configuration memory
checksum in non-volatile memory is updated if changed. The data structures used are described in
A.39.

13.7.27 Router subnet forward

This request sets the forwarding flag in the routing table for a given subnet in the specified domain.
This command is conveyed via the Request-Response protocol. The network configuration memory
checksum in non-volatile memory is updated if changed. The data structures used are described in
A.40.

13.7.28 Router Do Not forward group

This request clears the forwarding flag in the routing table for a given group in the specified domain.
This command is conveyed via the Request-Response protocol. The network configuration memory
checksum in non-volatile memory is updated if changed. The data structures used are described in
A.41.

13.7.29 Router Do Not forward subnet

This request clears the forwarding flag in the routing table for a given subnet in the specified domain.
This command is conveyed via the Request-Response protocol. The network configuration memory
checksum in non-volatile memory is updated if changed. The data structures used are described in
A.42.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

80

13.7.30 Router group or subnet table report

This request is used to report the current settings of either group or subnet tables in non-volatile
memory or RAM for the specified domain for a single router half. The report function is broken into 8-
byte sections. This command is conveyed via the Request-Response protocol. The data structures
used are described in A.43.

13.7.31 Router status

This request is used to report the router network configuration memory and flood/normal modes. It is
conveyed via the Request-Response protocol. The data structures used are described in A.44.

13.7.32 Router half escape code

Although this is not in itself a network management command, it is included in this subclause for
completeness. When this code is placed at the start of the APDU and is followed by any Network
Management or Network Diagnostic command, that command shall be passed over to the other router
half for processing. Any responses shall be returned in the normal manner.

 byte command; /* Destination: NM, code: 30 */

13.8 DPDU types and formats

13.8.1 General

Most Diagnostic PDUs (DPDUs) are conveyed within session layer Requests and/or Responses. By
default, a DPDU then inherits either the request or the response attribute of the enveloping SPDU.

This subclause lists DPDUs. The bit and byte ordering rules defined in Annex A apply, with the most
significant bit of each byte being transmitted first; the first byte of a record is considered the least
significant byte of that record. In the value section of the descriptions, the value corresponds to a
command number or a response code for that message. In addition, the string “+ pass/fail” means
that a single bit flag is set in the high order bit of the response to indicate that the command was
either successful or that it failed.

13.8.2 Query status

This command gives a snapshot of a node’s health. It conveys error statistics, reset information, the
node state, the error log, the system image version, and the protocol processor model number. The
error statistics, reset cause, and error log can all be cleared via the “clear status” command. Note that
the statistics are also cleared whenever the node resets. This command never requires authentication
to be executed. The data structures used are described in A.45.

The fields are defined as follows:

— transmission_errors: This is a count of the number of transmission errors that have occurred on
the network. A transmission error is detected via a CRC error during packet reception or as a
packet that is less than 8 bytes long. This could result from a collision, a noisy medium, signal
attenuation, etc.;

— transaction_timeouts: This is a count of the number of timeouts that have occurred in attempting
to carry out acknowledged or request/response transactions. A timeout occurs when a node fails
to receive all the expected acknowledgments or responses after retrying the configured number
of times at the configured interval;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

81

— receive_transaction_full: This counter reflects the number of times an incoming unackd_rpt, ackd
or request message was lost because there were no receive transaction records available;

— lost_messages: This is the number of messages that were addressed to the node that were
thrown away because there was no application buffer available for the message;

— missed_messages: This is the number of messages that were on the network but could not be
received because there was no network buffer (packet buffer) available for the message or the
network buffer was too small to receive the message;

— reset_cause: This byte contains the reset cause information. This identifies the source of the
most recent reset. The values for this byte are as follows (X => don’t care):

— Power-up reset 0bXXXXXXX1

— External reset 0bXXXXXX10

— WDT reset 0bXXXX1100

— Software-initiated reset 0bXXX10100

— node_state: This contains both the node state and node condition (as defined in the “Node State”
section in the network management section).

The node_state structure is shown below:

struct node_state
{
 unsigned :4; // application specific
 unsigned offline :1; // 1=>Offline,0=>Online
 unsigned state :3; // 2=>Unconfigured
 // 3=>Applicationless
 // 4=>Configured
 // 6=>Hard offline
};

Generally, a node will only have the offline field set if it is in the configured state. However, if a node is
told to transition from the configured state to another state while it is offline, the node_state may show
both offline as set and a state other than configured.

Examples of node_state values when viewed as a byte field are shown below:

Unconfigured 0x02
Unconfig/App-less 0x03
Configured/online 0x04
Configured/hard-offline 0x06 /* Permanent offline */
Configured/offline 0x0C /* Non-reset retained offline */
 /* (note this is actually an */
 /* encoding of the node state */
 /* of “configured” and the */
 /* offline condition) */
Configured 0x8C /* Non-reset retained bypass- */
 /* mode offline Like config- */
 /* ured/offline except that */
 /* the application went off- */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

82

 /* line in bypass mode */
— version: The version number reflects the version of the protocol implementation residing in the

protocol processor and may be used by a network management tool for computing addresses to
non-volatile memory data fields not supported by the standard NM address assignment/reporting
commands. The version number is 1 to 127 for implementations containing no additional,
application specific customisation, and 128 to 255 for implementations with additional, application
specific features. 255 is a special escape version that means more version number information is
available via other commands;

— error_log: The error log contains the most recent error logged by the system. A value of 0
indicates no error. An error in the range 1..127 is an application error and unique to the
application. An error in the range 128..255 is a system error. While the errors a given instance of
the protocol can detect and report is implementation specific, the following are the currently
allocated error numbers allocated for system errors.

0x81 Bad Event The application processor's scheduler has an event table. It
contains encoded representations of the various when clauses
in the program. If the scheduler encounters a illegal event code,
this error is logged.

0x82 NV Length If an incoming NV update has a length that differs from the
length of the matching input NV in the application, this error is
logged and the NV update is discarded.

0x83 NV Short If an incoming NV update is missing the second byte of the
selector, this error is logged.

0x84 EE Write Fail After each write to EEPROM, the result is read back. If there is
a mismatch, this error is logged.

0x85 Bad Address Type If the type field in the address table is illegal, this error is
logged.

0x88 Sync NV When NVs are written to, a bit array is updated to indicate an
update needs to be transmitted. In "post_events", this bit array
is examined and a message is generated for each NV that is so
marked and its bit is cleared. However, if no buffer is available,
the application goes into preemption mode. If while in
preemption mode, a sync NV whose bit is set is written to by the
application, then this error is logged.

0x8A Invalid Domain An attempt is made to send a message using a domain table
entry that has a length byte that does not yield 0 when AND’ed
with 0xF8. The message is discarded.

0x8D Invalid Address Index An attempt was made to access the address table using an out
of range index. This could occur when using any of the address
table related NM commands, or when sending explicit
messages or NVs using the address table.

0x93 Invalid NV Index An attempt was made to access the NV config or NV alias table
using an out of range index. This could occur when using any of
the NV table related NM commands, or when formulating an NV
update message.

0x9A Illegal Transceiver
Register Address

An attempt was made to access a special purpose mode
transceiver register using an out of range index. This could
occur when accessing a transceiver register using the
"retrieve_xcvr_status" function.

0x9B Transceiver Register A timeout occurred waiting for the MAC layer to get a chance to

BS EN 14908-1:2014

EN 14908-1:2014 (E)

83

Operation Failure query the special purpose mode transceiver.
0xA1 Self-Installation

Semaphore

0xA2 Read/Write Semaphore

0xC0 to
0xDF

State Byte Semaphore The error log byte is used in certain cases for saving state
information across unexpected.

— model_number: The model number is the protocol processor model.

The model and version numbers together can be used to determine the exact firmware image in use
by a node.

13.8.3 Proxy status

This command can be used to deliver a command to one or more target nodes via an agent node.
The proxy command is sent to an agent along with a target address in the APDU. The agent node
relays the command to the target and then relays the response back to the original requester. The
agent repeats the message from the requestor verbatim except for the target address being removed.
The proxy command can only be used to relay a status request or a query id (unconfigured) request.
Although this command never itself requires authentication to be executed, if the original request is
marked to be authenticated, the relayed request to the target shall also be so marked.

The original requester specifies the target address via data in the form of an address table entry in the
APDU. The agent node uses this to determine the destination address and the retry/timeout values
used during the transaction. There is one exception—the domain bit is ignored (the message is
always relayed in the same domain in which it was received). Note that the retry/timeout values
supplied in the target address should result in a transaction duration that is shorter than those used by
the original requester. In general, this command works best if the agent and target are on the same
channel. The data structures used are described in A.46.

The response data received by the original requester shall be identical to that which would have been
received as a result of a direct request to the target. Note that in the case of a query id (unconfigured)
broadcast, a direct message could result in multiple responses, whereas a proxy command sent to a
single agent with a broadcast target would result in only a single response to the original requester.

This command is disallowed if the agent receives the request on a flexible domain.

Finally, if the agent node is in the process of sending outgoing transactions, it may not be able to
deliver the relayed request immediately. Depending on how long this is delayed, the response may
not be received by the original requester in time, even after several retries. Therefore, a transaction
failure for a proxy command is more likely than for other transactions; this should be taken into
account when drawing conclusions from same. Also, in order for the proxy command to work, the
agent node shall have at least two application input buffers.

13.8.4 Clear status

This command clears a subset of the information in the status response. The statistics information,
the extended statistics information, the reset cause register and the error log are cleared by this
command. A node that does a status request on a periodic basis may choose to use a clear command
following each successful status response. The data structures used are described in A.47.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

84

13.8.5 Query transceiver status

This command retrieves the status register information from a transceiver. It fails if there is no
transceiver on the node, or if communication with the transceiver fails. It returns seven registers’ worth
of data regardless of the number of registers that the transceiver actually supports. It is up to the
controller to know how many registers are valid. The data structures used are described in A.48.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

85

Annex A
(normative)

Reference implementation

A.1 General

This annex specifies a reference implementation of this standard. To do so it uses machine-
independent pseudocode algorithms that define functions within the protocol and descriptions of the
related data structures. These algorithms are extracted from a working reference implementation. To
make a working implementation to verify the algorithms, it was necessary to define a boundary and an
interface between the protocol processor and the physical layer as well as a boundary between the
protocol application layer and the actual application. These interfaces are informative. In addition,
there are places in the reference implementation where a particular function could be accomplished in
several ways. These are also noted as informative exceptions.

This reference implementation includes machine-dependent implementation details for a Motorola
MC68360 processor called out in the code.

NOTE The body of this standard has preference in case of functions specified in the body but not included
in this annex and in case of inconsistencies between the body and the annex.

Sections written in Lucida Console underlayed yellow are not normative because they are hardware
dependent.

Sections written in Courier New Italic underlayed in blue are normative but hardware dependent.

Sections written in Courier New underlayed in green are normative and hardware independent.

A.2 Predictive CSMA algorithm

/**
 File: spm.c

 Version: 1.7

 Reference: None

 Purpose: MAC sublayer, comm_type = 2 using SPI port on 360.
 This does not support continuous frame exchange.
 This files also has functions to support
 io buttons for testing purpose such as
 manual service request, reset, io pin, and LEDs.

 Note: None.

 To Do: None.
***/

/* START INFORMATIVE - Direct Mode */
/* This implementation is for transceivers that work with the MAC
 * sublayer configured for comm_type = 2 only.
 * If the implementation needs to support transceivers with the MAC
 * sublayer configured for comm_type = 1,
 * this example serves only as a starting point for such an

BS EN 14908-1:2014

EN 14908-1:2014 (E)

86

 * implemenation. */
/* END INFORMATIVE - Direct Mode */

/**
Section: Includes
**/
#include <string.h>
#include <stdlib.h>

#include <cnp_1.h>
#include <node.h>
#include <link.h>
#include <physical.h>

/***
Section: Constant Definitions
***/
/* Used to indicate how often to check status of i/o buttons */
#define PHYIO_CHECK_INTERVAL 0,1 /* In Seconds */

/* Macro sets bit B of 16 bit word X */
#define SET_BIT(B,X) (((0x0001U << (B)) | (X))

/* Macro Clears bit B of 16 bit word X */
#define CLEAR_BIT(B,X) ((~(0x0001U << (B))) & (X))

/* Dual Port Ram Base on Arnewsh Board */
#define DPRB 0x01000000UL

/* SPI Parameter Ram Base */
#define SPIB (DPRB + 0xD80UL)

/* SCC2 Parameter Ram Base */
#define SCC2B (DPRB + 0xD00UL)

/* Register Base = DPRB + 4 k */
#define REGB (DPRB + 0x1000UL)

/* 16bit CPM Command Register */
#define CR (REGB + 0x5C0UL)

/* 16 bit Serial DMA Config Register */
#define SDCR (REGB + 0x51EUL)

/* 24(32)bit CPM Interrupt Config Reg.*/
#define CICR (REGB + 0x540UL)

/* 32 bit CPM Interrupt Pending Reg. */
#define CIPR (REGB + 0x544UL)

/* 32 bit CPM Interrupt Mask Reg. */
#define CIMR (REGB + 0x548UL)

/* Clear CISR bit by writing a 1*/
/* 32 bit CPM Interrupt Service Register*/
#define CISR (REGB + 0x54CUL)

/* 32 bit SI Clock Route */
#define SICR (REGB + 0x6ECUL)

/* 16 bit SPI Mode Register */
#define SPMODE (REGB + 0x6A0UL)

/* Clear SPIE bit by writing a 1*/
/* 8 bit SPI Event Register */
#define SPIE (REGB + 0x6A6UL)

/* 8 bit SPI Mask Register */
#define SPIM (REGB + 0x6AAUL)

/* 8 bit SPI Command Register */
#define SPCOM (REGB + 0x6ADUL)

/* 32 bit SCC2 general mode register low */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

87

#define GSMRL2 (REGB + 0x620UL)

/* 32 bit SCC2 general mode register high */
#define GSMRH2 (REGB + 0x624UL)

/* 16 bit SCC2 protocol specific mode reg */
#define PSMR2 (REGB + 0x628UL)

/* 16 bit SCC2 transmit on demand */
#define TODR2 (REGB + 0x62CUL)

/* 16 bit SCC2 Data sync register */
#define DSR2 (REGB + 0x62EUL)

/* Clear SCCE bit by writing a 1 */
/* 16 bit SCC2 event register */
#define SCCE2 (REGB + 0x630UL)

/* 16 bit SCC2 mask register */
#define SCCM2 (REGB + 0x634UL)

/* 8 bit SCC2 status register */
#define SCCS2 (REGB + 0x637UL)

/* 32 bit Baud rate gen config register */
#define BRGC2 (REGB + 0x5F4UL)

/* 16 bit port A data direction reg */
#define PADIR (REGB + 0x550UL)

/* 16 bit port A pin assignment reg */
#define PAPAR (REGB + 0x552UL)

/* 16 bit port A open drain register */
#define PAODR (REGB + 0x554UL)

/* 16 bit port A data register */
#define PADAT (REGB + 0x558UL)

/* 32 bit port B direction register */
#define PBDIR (REGB + 0x6B8UL)

/* 32 bit port B pin assignment register */
#define PBPAR (REGB + 0x6BCUL)

/* 16 bit port B open drain register */
#define PBODR (REGB + 0x6C2UL)

/* 32 bit port B data register */
#define PBDAT (REGB + 0x6C4UL)

/* 16 bit port C direction register */
#define PCDIR (REGB + 0x560UL)

/* 16 bit port C pin assignment reg */
#define PCPAR (REGB + 0x562UL)

/* 16 bit port C special options */
#define PCSO (REGB + 0x564UL)

/* 16 bit port C data register */
#define PCDAT (REGB + 0x566UL)

/* 16 bit port C interrupt register */
#define PCINT (REGB + 0x568UL)

/* Timer Related Constants */
/* 16 bit timer general config register */
#define TGCR (REGB + 0x580UL)

/* 16 bit timer reference reg 1 */
/* or 32 bit cascaded 1 & 2 */
#define TRR1 (REGB + 0x594UL)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

88

/* 16 bit timer counter reg 1 */
/* or 32 bit cascaded 1 & 2 */
#define TCN1 (REGB + 0x59CUL)

/* 16 bit timer mode register 4 */
#define TMR2 (REGB + 0x592UL)

/* 16 bit timer reference register 4 */
#define TRR2 (REGB + 0x596UL)

/* 16 bit timer capture register 4 */
#define TCR2 (REGB + 0x59AUL)

/* 16 bit timer counter register 4 */
#define TCN2 (REGB + 0x59EUL)

/* 16 bit timer event register 4 */
#define TER2 (REGB + 0x5B2UL)

/* ISR defines */
/* Interrupt vector base on Arnewsh Board*/
#define VBASE 0x00000000UL

/* User Interrupt vector num 3 MSbits */
#define UIVN_MSB 0x4U

/* SPI Int.vector num 5 LSBits from CPIC table*/
#define SPIVN_LSB 0x5U

/**
8 bit vector number = 3 msb set by user, 5 lsb from CPIC table shift
UIVN_MSB left 5 to bits 7 6 5 then OR with SPIVN_LSB to get vector
number vector address is 4 times vector number + vector base
**/
/* 32 bit SPI Int. vector address */
#define SPIV ((((UIVN_MSB << 5) | SPIVN_LSB) * 4UL) + VBASE)

/* need an ISR for int error since int. error cannot be masked */
/* CPM int. error int. vector. num 5 LSB */
#define CERRVN_LSB 0x0UL

/* cpm error iv */
#define CERRV ((((UIVN_MSB << 5) | CERRVN_LSB) * 4UL) + VBASE)

/* spurious interrupt exception vector */
#define SPURINTV 0x60U + VBASE

/* bus error exception vector */
#define BUSERRV 0x8U + VBASE

/* SPI Channel Number for CPM Command Register Commands */
#define SPI_CH_NUM 0x5U

/* SCC2 channel number for CPM Command Register Command */
#define SCC2_CH_NUM 0x4U

/* Opcode for CPM Com. Reg. to Init Tx Rx Param Ram */
#define INIT_TRP_OPCODE 0x0U

/* number of receive (transmit) BDs for SPI */
#define NUM_BD 0x1U

/* RBD_BASE and TBD_BASE shall be divisible by 8 */
/* receive buffer descriptor base */
#define RBD_BASE (DPRB + 0x500UL)

/* put Transmit buffers right after Receive, 8bytes per BD */
/* transmit buffer descriptor base */
#define TBD_BASE (RBD_BASE + (NUM_BD * 0x8U))

/**

BS EN 14908-1:2014

EN 14908-1:2014 (E)

89

 FCR_INIT
 bits 7 to 5 unused,
 bit 4, Mot big endian = 1
 bits 3 to 0, function code dma = 8
**/
/* SPI Param Function Code Register Init */
#define FCR_INIT 0x18U

/* max length of receive buffers 2 bytes per buffer*/
#define MAX_BUF_LEN 0x2U

/* CP Interrupt Request Level */
#define CPIR_LEVEL 0x4U

#define NUM_BD_SCC2 0x1U

/* scc2 receive buffer descriptor. base */
#define RBD_BASE_SCC2 (DPRB + 0x440UL)

/* scc2 transmit bd base */
#define TBD_BASE_SCC2 (RBD_BASE_SCC2 + (NUM_BD_SCC2 * 8U))

/* max buffer length scc2 */
#define MAX_BL_SCC2 16U

/* length of history arrays */
#define NUM_HIST 512

/* time limit before xcvr resets */
#define RESET_COUNT_LIMIT 0xFFFF

/* number of ticks to delay during restart processing */
#define RESTART_DELAY_TICKS 165000UL

/* Constants related to Channel Access Algorithm */
/* maximum size of backlog for access algorithm */
#define MAX_BACKLOG 63U

/* # of additional slots per backlog increment */
#define W_BASE 16U

/* used in conversion from this specification's
 reference time to clock ticks on the 360 */
#define NICS_TICKS_BASE 480UL

/* used in computation of SPI-SPM bit clock */
#define BIT_CLOCK_BASE 312500UL

/* used in computation of bit clock */
#define RATIO_BASE 3UL

/**
Implementation specific timing adjustments to channel access algorithm
This is where one would add or subtract from the respective times to
account for differences between the implementation specific delays and
latencies and those in this specification.
**/
/* adjustment to the beta1 slot time */
#define BETA1_ADJUST_TICKS 0

/* adjustment to the beta2 slot time */
#define BETA2_ADJUST_TICKS 0

/* adjustment to the cycle timer time */
#define CYCLE_ADJUST_TICKS 0

/* adjustment to the begin of packet tx */
#define WAIT_TX_ADJUST_TICKS 0

/**
Section: Type Definitions
**/
/* 68360 communications processor register definitions */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

90

typedef struct /* CP Command Register 16 bit */
{
 unsigned reset : 1; /* reset CPM */
 unsigned : 3; /* unused */
 unsigned opcode : 4; /* opcode for command */
 unsigned chnum : 4; /* channel number selects which port
 SPI, SCC etc */
 unsigned : 3; /* unused */
 unsigned flag : 1; /* flag, command executes when set,
 cp clears when done */
} CPCommandReg;

typedef struct /* Serial DMA Config Register 16 bit */
{
 unsigned : 1; /* unused */
 unsigned frz : 2; /* freeze */
 unsigned : 2; /* unused */
 unsigned sism : 3; /* SDMA interrupt service mask */
 unsigned : 1; /* unused */
 unsigned said : 3; /* SDMA arbitration ID */
 unsigned : 2; /* unused */
 unsigned inte : 1; /* interrupt error */
 unsigned intb : 1; /* interrupt break point */
} SDMAConfigReg;

typedef struct /* CPM interrupt configuration register 32 bit */
{
 unsigned : 8; /* unused */
 unsigned scdp : 2; /* scc port for priority slot d */
 unsigned sccp : 2; /* scc port for priority slot c */
 unsigned scbp : 2; /* scc port for priority slot b */
 unsigned scap : 2; /* scc port for priority slot a */
 unsigned irl : 3; /* interrupt request level */
 unsigned hpi : 5; /* highest priority interrupt */
 unsigned vba : 3; /* vector base address number offset */
 unsigned : 4; /* reserved */
 unsigned sps : 1; /* spread priority scheme */
} CIConfigReg;

/* CPM interrupt source 32 bit, same type for CIPR CIMR CISR */
typedef struct
{ /* names correspond to sources */
 unsigned pc0 : 1; /* bit 31 */
 unsigned scc1 : 1;
 unsigned scc2 : 1;
 unsigned scc3 : 1;
 unsigned scc4 : 1;
 unsigned pc1 : 1;
 unsigned timer1 : 1;
 unsigned pc2 : 1; /* bit 24 */
 unsigned pc3 : 1; /* bit 23 */
 unsigned sdma : 1;
 unsigned idma1 : 1;
 unsigned idma2 : 1;
 unsigned : 1; /* unused */
 unsigned timer2 : 1;
 unsigned rtt : 1;
 unsigned : 1; /* bit 16 unused */
 unsigned pc4 : 1; /* bit 15 */
 unsigned pc5 : 1;
 unsigned : 1; /* unused */
 unsigned timer3 : 1;
 unsigned pc6 : 1;
 unsigned pc7 : 1;
 unsigned pc8 : 1;
 unsigned : 1; /* bit 8 unused */
 unsigned timer4 : 1; /* bit 7 */
 unsigned pc9 : 1;
 unsigned spi : 1; /* bit 5 */
 unsigned smc1 : 1;
 unsigned smc2 : 1; /* also pip */
 unsigned pc10 : 1;
 unsigned pc11 : 1;
 unsigned : 1; /* bit 0 unused */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

91

} CISourceReg;

/* serial interface clock route register 32 bit*/
typedef struct
{
 unsigned gr4 : 1; /* grant support for scc4*/
 unsigned sc4 : 1; /* connection for scc4*/
 unsigned r4cs : 3; /* receive clock source for scc4*/
 unsigned t4cs : 3; /* transmit clock source for scc4*/
 unsigned gr3 : 1; /* grant support for scc3 */
 unsigned sc3 : 1; /* connection for scc3 */
 unsigned r3cs : 3; /* receive clock source for scc3 */
 unsigned t3cs : 3; /* transmit clock source for scc3 */
 unsigned gr2 : 1; /* grant support for scc2 */
 unsigned sc2 : 1; /* connection for scc2 */
 unsigned r2cs : 3; /* receive clock source for scc2 */
 unsigned t2cs : 3; /* transmit clock source for scc2 */
 unsigned gr1 : 1; /* grant support for scc1 */
 unsigned sc1 : 1; /* connection for scc1 */
 unsigned r1cs : 3; /* receive clock source for scc1 */
 unsigned t1cs : 3; /* transmit clock source for scc1 */
} SIClockRouteReg;

typedef struct /* SPI command register 8 bit*/
{
 unsigned str : 1; /* start transmit and receive */
 unsigned res : 7; /* reserved write with zeros */
} SPICommandReg;

typedef struct /* SPI mode register 16 bit */
{
 unsigned : 1; /* unused */
 unsigned loop : 1; /* local loop back */
 unsigned ci : 1; /* clock invert */
 unsigned cp : 1; /* clock phase */
 unsigned div16 : 1; /* divide brgclk by 16 for spiclk */
 unsigned rev : 1; /* reverse data from big endian to
 little endian */
 unsigned ms : 1; /* master slave */
 unsigned en : 1; /* enable SPI */
 unsigned len : 4; /* number of bits per char = len + 1 */
 unsigned pms : 4; /* prescale modulus select, divide
 down clock */
} SPIModeReg;

typedef struct /* SPI event and mask registers 8 bit */
{
 unsigned : 2; /* unused */
 unsigned mme : 1; /* multi-master error */
 unsigned txe : 1; /* transmit error */
 unsigned : 1; /* unused */
 unsigned bsy : 1; /* busy error */
 unsigned txb : 1; /* transmit buffer complete */
 unsigned rxb : 1; /* receive buffer complete */
} SPIEventMaskReg;

typedef struct /* SPI Parameter RAM 40 bytes*/
{
 uint16 rbase; /* base address of receive BD's, set by user */
 uint16 tbase; /* base address of transmit BD's, set by user */
 uint8 rfcr; /* receive function code, set by user */
 uint8 tfcr; /* transmit function code, set by user */
 uint16 mrblr; /* maximum receive buffer length register,
 set by user */
 uint32 rstate; /* rx internal state */
 uint32 ridp; /* rx internal data ptr */
 uint16 rbptr; /* rx BD ptr */
 uint16 ribc; /* rx internal byte count */
 uint32 rtemp; /* rx temp */
 uint32 tstate; /* tx internal state */
 uint32 tidp; /* tx internal data ptr */
 uint16 tbptr; /* tx BD ptr */
 uint16 tibc; /* tx internal byte count */
 uint32 ttemp; /* tx temp */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

92

} SPIParamRam;

typedef struct /* Receive Buffer Descriptor 8 bytes */
{
 unsigned e : 1; /* empty buffer ready to receive*/
 unsigned : 1; /* unused */
 unsigned w : 1; /* wrap final bd so wrap to top */
 unsigned i : 1; /* interrupt, set rxb bit in spie register
 when filled */
 unsigned l : 1; /* last, if slave then buffer has last bit */
 unsigned : 1; /* unused */
 unsigned cm : 1; /* continuous mode buffer can be overwritten
 e always 1 */
 unsigned : 7; /* unused */
 unsigned ov : 1; /* receiver overrun only when slave */
 unsigned me : 1; /* multiple master error */
 uint16 dataLen; /* data length = number of bytes written
 into buffer */
 SPMRxFrame * dataPtr; /* ptr to buffer of data */
} RBufferDesc;

typedef struct /* Transmit Buffer Descriptor 8 bytes */
{
 unsigned r : 1; /* ready to transmit buffer */
 unsigned : 1; /* unused */
 unsigned w : 1; /* wrap final bd so wrap to top */
 unsigned i : 1; /* interrupt, set txb bit in spie register
 when sent */
 unsigned l : 1; /* last, if slave then buffer has last bit */
 unsigned : 1; /* unused */
 unsigned cm : 1; /* continuous mode buffer can be re-sent
 r always 1 */
 unsigned : 7; /* unused */
 unsigned un : 1; /* transmit underrun only when slave */
 unsigned me : 1; /* multiple master error */
 uint16 dataLen; /* data length = number of bytes to send
 from this buffer */
 SPMTxFrame * dataPtr; /* ptr to buffer of data */
} TBufferDesc;

/* scc structs */

typedef struct /* general scc mode register high 32 bit */
{
 unsigned : 15; /* unused */
 unsigned gde : 1; /* glitch detect enable */
 unsigned tcrc : 2; /* transparent crc */
 unsigned revd : 1; /* reverse data */
 unsigned trx : 1; /* transparent receiver */
 unsigned ttx : 1; /* transparent transmitter */
 unsigned cdp : 1; /* cd pulse */
 unsigned ctsp : 1; /* cts pulse */
 unsigned cds : 1; /* cd sampling */
 unsigned ctss : 1; /* cts sampling */
 unsigned tfl : 1; /* transmit fifo length */
 unsigned rfw : 1; /* receive fifl width */
 unsigned txsy : 1; /* transmitter synchronized to receiver */
 unsigned synl : 2; /* sync length */
 unsigned rtsm : 1; /* rts mode */
 unsigned rsyn : 1; /* receive sync timing */
} GSMRegHigh;

typedef struct /* general scc mode register low 32 bit */
{
 unsigned : 1; /* unused */
 unsigned edge : 2; /* DPLL clock edge */
 unsigned tci : 1; /* transmit clock invert */
 unsigned tsnc : 2; /* transmit sense bits */
 unsigned rinv : 1; /* dpll receive invert data*/
 unsigned tinv : 1; /* dpll transmit invert data */
 unsigned tpl : 3; /* transmit preamble length */
 unsigned tpp : 2; /* transmit preamble pattern */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

93

 unsigned tend : 1; /* transmit frame ending */
 unsigned tdcr : 2; /* transmit divide clock rate */
 unsigned rdcr : 2; /* receive dpll clock rate */
 unsigned renc : 3; /* receiver decoding method */
 unsigned tenc : 3; /* transmitter encoding method */
 unsigned diag : 2; /* diagnostic mode */
 unsigned enr : 1; /* enable receive */
 unsigned ent : 1; /* enable transmit */
 unsigned mode : 4; /* channel protocol mode */
} GSMRegLow;

typedef struct /* SCC event/mask register 16 bit */
{
 unsigned : 3; /* unused */
 unsigned glr : 1; /* glitch on receive */
 unsigned glt : 1; /* glitch on tranmit */
 unsigned dcc : 1; /* dpll carrier sense changed */
 unsigned : 2; /* unused */
 unsigned gra : 1; /* graceful stop complete */
 unsigned : 2; /* unused */
 unsigned txe : 1; /* transmit error */
 unsigned rch : 1; /* receive character or long word */
 unsigned bsy : 1; /* busy condition */
 unsigned tx : 1; /* buffer transmitted */
 unsigned rx : 1; /* buffer received */
} SCCEventMaskReg;

typedef struct /* scc status register 8 bit */
{
 unsigned : 6; /* unused */
 unsigned cs : 1; /* carrier sense */
 unsigned : 1; /* unused */
} SCCStatusReg;

typedef struct /* SCC Parameter RAM Transparent mode 56 bytes */
{
 uint16 rbase; /* base address of receive BD's, set by user */
 uint16 tbase; /* base address of transmit BD's, set by user */
 uint8 rfcr; /* receive function code, set by user */
 uint8 tfcr; /* transmit function code, set by user */
 uint16 mrblr; /* maximum receive buffer length register,
 set by user */
 uint32 rstate; /* rx internal state */
 uint32 ridp; /* rx internal data ptr */
 uint16 rbptr; /* rx BD ptr */
 uint16 ribc; /* rx internal byte count */
 uint32 rtemp; /* rx temp */
 uint32 tstate; /* tx internal state */
 uint32 tidp; /* tx internal data ptr */
 uint16 tbptr; /* tx BD ptr */
 uint16 tibc; /* tx internal byte count */
 uint32 ttemp; /* tx temp */
 uint32 rcrc; /* temp receive crc */
 uint32 tcrc; /* temp transmit crc */
 uint32 crcp; /* crc preset for transparent mode */
 uint32 crcc; /* crc constant for transparent mode */
} SCCParamRam;

typedef struct /* SCC Receive Buffer Descriptor 8 bytes */
{
 unsigned e : 1; /* empty buffer ready to receive*/
 unsigned : 1; /* unused */
 unsigned w : 1; /* wrap final bd so wrap to top */
 unsigned i : 1; /* interrupt, set rxb bit in scce register
 when filled */
 unsigned l : 1; /* this buffer last in frame */
 unsigned f : 1; /* first in frame */
 unsigned cm : 1; /* continuous mode buffer can be overwritten
 e always 1 */
 unsigned : 1; /* unused */
 unsigned de : 1; /* dpll error */
 unsigned : 2; /* unused */
 unsigned no : 1; /* non octet error */
 unsigned : 1; /* unused */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

94

 unsigned cr : 1; /* crc error */
 unsigned ov : 1; /* receiver overrun */
 unsigned cd : 1; /* carrier detect lost */
 uint16 dataLen; /* data length = number of bytes written
 into buffer */
 Byte * dataPtr; /* ptr to buffer of data */
} SCCReceiveBD;

typedef struct /* SCC Transmit Buffer Descriptor 8 bytes */
{
 unsigned r : 1; /* ready to transmit buffer */
 unsigned : 1; /* unused */
 unsigned w : 1; /* wrap final bd so wrap to top */
 unsigned i : 1; /* interrupt, set txb bit in scce register
 when sent */
 unsigned l : 1; /* last byte in frame in this buffer */
 unsigned tc : 1; /* transmit crc */
 unsigned cm : 1; /* continuous mode buffer can be re-sent r always 1 */
 unsigned : 7; /* unused */
 unsigned un : 1; /* transmit underrun */
 unsigned ct : 1; /* cts lost during frame transmission */
 uint16 dataLen; /* data length = number of bytes to send
 from this buffer */
 Byte * dataPtr; /* ptr to buffer of data */
} SCCTransmitBD;

typedef struct /* BRGC baud rate generator config register 32 bit */
{
 unsigned : 14; /* unused */
 unsigned rst : 1; /* reset brg */
 unsigned en : 1; /* enable brg count */
 unsigned extc : 2; /* enable external clock source */
 unsigned atb : 1; /* autobaud */
 unsigned cd : 12; /* clock divider */
 unsigned div16 : 1; /* div 16 clock */
} BRGConfigReg;

typedef struct /* port a direction register 16 bit */
{
 unsigned dr15 : 1; /* pin direction 0 = input 1 = output */
 unsigned dr14 : 1;
 unsigned dr13 : 1;
 unsigned dr12 : 1;
 unsigned dr11 : 1;
 unsigned dr10 : 1;
 unsigned dr9 : 1;
 unsigned dr8 : 1;
 unsigned dr7 : 1;
 unsigned dr6 : 1;
 unsigned dr5 : 1;
 unsigned dr4 : 1;
 unsigned dr3 : 1;
 unsigned dr2 : 1;
 unsigned dr1 : 1;
 unsigned dr0 : 1;
} PADirectionReg;

typedef struct /* port a pin assignment register 16 bit */
{
 unsigned dd15 : 1; /* 0 = general purpose io */
 unsigned dd14 : 1;
 unsigned dd13 : 1;
 unsigned dd12 : 1;
 unsigned dd11 : 1;
 unsigned dd10 : 1;
 unsigned dd9 : 1;
 unsigned dd8 : 1;
 unsigned dd7 : 1;
 unsigned dd6 : 1;
 unsigned dd5 : 1;
 unsigned dd4 : 1;
 unsigned dd3 : 1;
 unsigned dd2 : 1;
 unsigned dd1 : 1;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

95

 unsigned dd0 : 1;
} PAPinAssignmentReg;

typedef struct /* port a open drain register 16 bit */
{
 unsigned : 8; /* unused */
 unsigned od7 : 1; /* 0 = active drive 1 = open drain */
 unsigned od6 : 1;
 unsigned od5 : 1;
 unsigned od4 : 1;
 unsigned od3 : 1;
 unsigned : 1; /* unused */
 unsigned od1 : 1;
 unsigned : 1; /* unused */
} PAOpenDrainReg;

typedef struct /* port a data register 16 bit */
{
 unsigned d15 : 1; /* value of pin */
 unsigned d14 : 1;
 unsigned d13 : 1;
 unsigned d12 : 1;
 unsigned d11 : 1;
 unsigned d10 : 1;
 unsigned d9 : 1;
 unsigned d8 : 1;
 unsigned d7 : 1;
 unsigned d6 : 1;
 unsigned d5 : 1;
 unsigned d4 : 1;
 unsigned d3 : 1;
 unsigned d2 : 1;
 unsigned d1 : 1;
 unsigned d0 : 1;
} PADataReg;

typedef struct /* PBDIR port b direction register 32 bit */
{
 unsigned : 14; /* unused*/
 unsigned dr17 : 1; /* pin with given # */
 unsigned dr16 : 1; /* pin with same # */
 unsigned dr15 : 1; /* pin with same # */
 unsigned dr14 : 1; /* pin with same # */
 unsigned dr13 : 1; /* pin with same # */
 unsigned dr12 : 1; /* pin with same # */
 unsigned dr11 : 1; /* pin with same # */
 unsigned dr10 : 1; /* pin with same # */
 unsigned dr9 : 1; /* pin with same # */
 unsigned dr8 : 1; /* pin with same # */
 unsigned dr7 : 1; /* pin with same # */
 unsigned dr6 : 1; /* pin with same # */
 unsigned dr5 : 1; /* pin with same # */
 unsigned dr4 : 1; /* pin with same # */
 unsigned dr3 : 1; /* pin with same # */
 unsigned dr2 : 1; /* pin with same # */
 unsigned dr1 : 1; /* pin with same # */
 unsigned dr0 : 1; /* pin with same # */
} PBDirectionReg;

typedef struct /* PBPAR port b pin assignment register 32 bit */
{
 unsigned : 14; /* unused*/
 unsigned dd17 : 1; /* pin with given # */
 unsigned dd16 : 1; /* pin with same # */
 unsigned dd15 : 1; /* pin with same # */
 unsigned dd14 : 1; /* pin with same # */
 unsigned dd13 : 1; /* pin with same # */
 unsigned dd12 : 1; /* pin with same # */
 unsigned dd11 : 1; /* pin with same # */
 unsigned dd10 : 1; /* pin with same # */
 unsigned dd9 : 1; /* pin with same # */
 unsigned dd8 : 1; /* pin with same # */
 unsigned dd7 : 1; /* pin with same # */
 unsigned dd6 : 1; /* pin with same # */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

96

 unsigned dd5 : 1; /* pin with same # */
 unsigned dd4 : 1; /* pin with same # */
 unsigned dd3 : 1; /* pin with same # */
 unsigned dd2 : 1; /* pin with same # */
 unsigned dd1 : 1; /* pin with same # */
 unsigned dd0 : 1; /* pin with same # */
} PBPinAssignmentReg;

typedef struct /* PBODR port b open drain register 16 bit */
{
 unsigned od15 : 1; /* pin with same # */
 unsigned od14 : 1; /* pin with same # */
 unsigned od13 : 1; /* pin with same # */
 unsigned od12 : 1; /* pin with same # */
 unsigned od11 : 1; /* pin with same # */
 unsigned od10 : 1; /* pin with same # */
 unsigned od9 : 1; /* pin with same # */
 unsigned od8 : 1; /* pin with same # */
 unsigned od7 : 1; /* pin with same # */
 unsigned od6 : 1; /* pin with same # */
 unsigned od5 : 1; /* pin with same # */
 unsigned od4 : 1; /* pin with same # */
 unsigned od3 : 1; /* pin with same # */
 unsigned od2 : 1; /* pin with same # */
 unsigned od1 : 1; /* pin with same # */
 unsigned od0 : 1; /* pin with same # */
} PBOpenDrainReg;

typedef struct /* PBDAT port b data register 32 bit */
{
 unsigned : 14; /* unused*/
 unsigned d17 : 1; /* pin with given # */
 unsigned d16 : 1; /* pin with same # */
 unsigned d15 : 1; /* pin with same # */
 unsigned d14 : 1; /* pin with same # */
 unsigned d13 : 1; /* pin with same # */
 unsigned d12 : 1; /* pin with same # */
 unsigned d11 : 1; /* pin with same # */
 unsigned d10 : 1; /* pin with same # */
 unsigned d9 : 1; /* pin with same # */
 unsigned d8 : 1; /* pin with same # */
 unsigned d7 : 1; /* pin with same # */
 unsigned d6 : 1; /* pin with same # */
 unsigned d5 : 1; /* pin with same # */
 unsigned d4 : 1; /* pin with same # */
 unsigned d3 : 1; /* pin with same # */
 unsigned d2 : 1; /* pin with same # */
 unsigned d1 : 1; /* pin with same # */
 unsigned d0 : 1; /* pin with same # */
} PBDataReg;

typedef struct /* port c direction register 16 bit */
{
 unsigned : 4; /* unused */
 unsigned dr11 : 1; /* pin direction 0 = input 1 = output */
 unsigned dr10 : 1;
 unsigned dr9 : 1;
 unsigned dr8 : 1;
 unsigned dr7 : 1;
 unsigned dr6 : 1;
 unsigned dr5 : 1;
 unsigned dr4 : 1;
 unsigned dr3 : 1;
 unsigned dr2 : 1;
 unsigned dr1 : 1;
 unsigned dr0 : 1;
} PCDirectionReg;

typedef struct /* port c pin assignment register 16 bit */
{
 unsigned : 4; /* unused */
 unsigned dd11 : 1; /* 0 = general purpose io */
 unsigned dd10 : 1;
 unsigned dd9 : 1;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

97

 unsigned dd8 : 1;
 unsigned dd7 : 1;
 unsigned dd6 : 1;
 unsigned dd5 : 1;
 unsigned dd4 : 1;
 unsigned dd3 : 1;
 unsigned dd2 : 1;
 unsigned dd1 : 1;
 unsigned dd0 : 1;
} PCPinAssignmentReg;

typedef struct /* port c data register 16 bit */
{
 unsigned : 4; /* unused */
 unsigned d11 : 1; /* value of pin */
 unsigned d10 : 1;
 unsigned d9 : 1;
 unsigned d8 : 1;
 unsigned d7 : 1;
 unsigned d6 : 1;
 unsigned d5 : 1;
 unsigned d4 : 1;
 unsigned d3 : 1;
 unsigned d2 : 1;
 unsigned d1 : 1;
 unsigned d0 : 1;
} PCDataReg;

typedef struct /* port c interrupt control register 16 bit */
{
 unsigned : 4; /* unused */
 unsigned edm11 : 1; /* edge detect mode for line*/
 unsigned edm10 : 1;
 unsigned edm9 : 1;
 unsigned edm8 : 1;
 unsigned edm7 : 1;
 unsigned edm6 : 1;
 unsigned edm5 : 1;
 unsigned edm4 : 1;
 unsigned edm3 : 1;
 unsigned edm2 : 1;
 unsigned edm1 : 1;
 unsigned edm0 : 1;
} PCInterruptReg;

typedef struct /* port c special options register 16 bit */
{
 unsigned : 4; /* unused */
 unsigned cd4 : 1; /* Carrier detect */
 unsigned cts4 : 1; /* clear to send */
 unsigned cd3 : 1; /* Carrier detect */
 unsigned cts3 : 1; /* clear to send */
 unsigned cd2 : 1; /* Carrier detect */
 unsigned cts2 : 1; /* clear to send */
 unsigned cd1 : 1; /* Carrier detect */
 unsigned cts1 : 1; /* clear to send */
 unsigned : 4; /* unused */
} PCSpecialOptionsReg;

/* Timer related TypeDefs */

typedef struct /* timer general config register 16 bit */
{
 unsigned cas4 : 1; /* cascade timer 4 */
 unsigned frz4 : 1; /* freeze timer 4 */
 unsigned stp4 : 1; /* stop timer 4 */
 unsigned rst4 : 1; /* reset timer 4 */
 unsigned gm2 : 1; /* gate mode pin 2 */
 unsigned frz3 : 1; /* freeze timer 3 */
 unsigned stp3 : 1; /* stop timer 3 */
 unsigned rst3 : 1; /* reset timer 3 */
 unsigned cas2 : 1; /* cascade timer 2 */
 unsigned frz2 : 1; /* freeze timer 2 */
 unsigned stp2 : 1; /* stop timer 2 */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

98

 unsigned rst2 : 1; /* reset timer 2 */
 unsigned gm1 : 1; /* gate mode pin 1 */
 unsigned frz1 : 1; /* freeze timer 1 */
 unsigned stp1 : 1; /* stop timer 1 */
 unsigned rst1 : 1; /* reset timer 1 */
} TimerGenConfigReg;

typedef struct /* timer mode register 16 bit */
{
 unsigned ps : 8; /* prescaler */
 unsigned ce : 2; /* capture edge */
 unsigned om : 1; /* output mode */
 unsigned ori : 1; /* output ref interrupt enable */
 unsigned frr : 1; /* free run/restart */
 unsigned iclk : 2; /* input clock source */
 unsigned ge : 1; /* gate enable */
} TimerModeReg;

typedef struct /* timer event register 16 bit */
{
 unsigned : 14; /* unused */
 unsigned ref : 1; /* output reference event */
 unsigned cap : 1; /* input capture event */
} TimerEventReg;

/* structure used for byte by byte crc checking on receive */

typedef struct
{
 uint16 poly;
 uint16 crc;
 uint8 crcBit;
 uint8 dataBit;
 uint8 dataByte;
} CRCParam;

/* structures used for debugging purposes */

typedef struct /* contains record of SPM frame */
{
 SPMState state; /* state when received status byte */
 SPMRxFrame rf; /* RX frame */
 SPMTxFrame tf; /* TX frames */
 uint32 duration; /* time to run isr */
 uint32 start; /* start time of isr */
 uint16 rb; /* index to receive buffer */
 uint16 tb; /* index to transmit bufer */
} Record;

typedef struct /* contains history of frame records */
{
 int index; /* current record wraps around when full */
 Record records[NUM_HIST]; /* array of records */
} History;

/**
Section: Local Globals
**/
/* pointers to SPI registers all are constant pointers to volatiles
 volatile is needed to insure mem access occurs at each reference */

static volatile CPCommandReg * const crPtrGbl =
 (volatile CPCommandReg *) CR;
static volatile SDMAConfigReg * const sdcrPtrGbl =
 (volatile SDMAConfigReg *) SDCR;

static volatile CIConfigReg * const cicrPtrGbl =
 (volatile CIConfigReg *) CICR;
static volatile CISourceReg * const ciprPtrGbl =
 (volatile CISourceReg *) CIPR;
static volatile CISourceReg * const cimrPtrGbl =
 (volatile CISourceReg *) CIMR;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

99

static volatile CISourceReg * const cisrPtrGbl =
 (volatile CISourceReg *) CISR;

static volatile SIClockRouteReg * const sicrPtrGbl =
 (volatile SIClockRouteReg *) SICR;

static volatile SPIModeReg * const spmodePtrGbl =
 (volatile SPIModeReg *) SPMODE;
static volatile SPIEventMaskReg * const spiePtrGbl =
 (volatile SPIEventMaskReg *) SPIE;

static volatile SPIEventMaskReg * const spimPtrGbl =
 (volatile SPIEventMaskReg *) SPIM;
static volatile SPICommandReg * const spcomPtrGbl =
 (volatile SPICommandReg *) SPCOM;

static volatile SPIParamRam * const spiParamPtrGbl =
 (volatile SPIParamRam *) SPIB;
static volatile RBufferDesc * const rbdPtrGbl =
 (volatile RBufferDesc *) RBD_BASE;
static volatile TBufferDesc * const tbdPtrGbl =
 (volatile TBufferDesc *) TBD_BASE;

/* SCC2 registers */
static volatile GSMRegLow * const gsmrl2PtrGbl =
 (volatile GSMRegLow *) GSMRL2;
static volatile GSMRegHigh * const gsmrh2PtrGbl =
 (volatile GSMRegHigh *) GSMRH2;
static volatile uint16 * const dsr2PtrGbl =
 (volatile uint16 *) DSR2;
static volatile uint16 * const todr2PtrGbl =
 (volatile uint16 *) TODR2;
static volatile SCCEventMaskReg * const scce2PtrGbl =
 (volatile SCCEventMaskReg *) SCCE2;
static volatile SCCEventMaskReg * const sccm2PtrGbl =
 (volatile SCCEventMaskReg *) SCCM2;
static volatile SCCStatusReg * const sccs2PtrGbl =
 (volatile SCCStatusReg *) SCCS2;
static volatile BRGConfigReg * const brgc2PtrGbl =
 (volatile BRGConfigReg *) BRGC2;

static volatile SCCParamRam * const scc2ParamPtrGbl =
 (volatile SCCParamRam *) SCC2B;
static volatile SCCReceiveBD * const scc2rbdPtrGbl =
 (volatile SCCReceiveBD *) RBD_BASE_SCC2;
static volatile SCCTransmitBD * const scc2tbdPtrGbl =
 (volatile SCCTransmitBD *) TBD_BASE_SCC2;

/* allocate storage for scc transmit and receive buffers,
 init to zeros */
static volatile Byte scc2rBufGbl[NUM_BD_SCC2][MAX_BL_SCC2] = {0};
static volatile Byte scc2tBufGbl[NUM_BD_SCC2][MAX_BL_SCC2] = {0};

/* Port A registers */
static volatile PADirectionReg * const padirPtrGbl =
 (volatile PADirectionReg *) PADIR;
static volatile PAPinAssignmentReg * const paparPtrGbl =
 (volatile PAPinAssignmentReg *) PAPAR;
static volatile PAOpenDrainReg * const paodrPtrGbl =
 (volatile PAOpenDrainReg *) PAODR;
static volatile PADataReg * const padatPtrGbl =
 (volatile PADataReg *) PADAT;

/* Port B registers */
static volatile PBDirectionReg * const pbdirPtrGbl =
 (volatile PBDirectionReg *) PBDIR;
static volatile PBPinAssignmentReg * const pbparPtrGbl =
 (volatile PBPinAssignmentReg *) PBPAR;
static volatile PBOpenDrainReg * const pbodrPtrGbl =
 (volatile PBOpenDrainReg *) PBODR;
static volatile PBDataReg * const pbdatPtrGbl =
 (volatile PBDataReg *) PBDAT;
/* Port C registers */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

100

static volatile PCDirectionReg * const pcdirPtrGbl =
 (volatile PCDirectionReg *) PCDIR;
static volatile PCPinAssignmentReg * const pcparPtrGbl =
 (volatile PCPinAssignmentReg *) PCPAR;
static volatile PCDataReg * const pcdatPtrGbl =
 (volatile PCDataReg *) PCDAT;
static volatile PCSpecialOptionsReg * const pcsoPtrGbl =
 (volatile PCSpecialOptionsReg *) PCSO;
static volatile PCInterruptReg * const pcintPtrGbl =
 (volatile PCInterruptReg *) PCINT;

/* const ptr to ptr to function returning void with void params */
static volatile void (** const spivPtrGbl)(void) =
 (volatile void (**)(void)) SPIV; /* ptr to vector */
static volatile void (** const cerrvPtrGbl)(void) =
 (volatile void (**)(void)) CERRV; /* ptr to vector */
static volatile void (** const spurintvPtrGbl)(void) =
 (volatile void (**)(void)) SPURINTV; /* ptr to vector */
static volatile void (** const buserrvPtrGbl)(void) =
 (volatile void (**)(void)) BUSERRV; /* ptr to vector */

/* Timer 1-2 stuff */
static volatile TimerGenConfigReg * const tgcrPtrGbl =
 (volatile TimerGenConfigReg *) TGCR;

static volatile uint32 * const trr12PtrGbl =
 (volatile uint32 *) TRR1; /* cascaded 32 bit ref */
static volatile uint32 * const tcn12PtrGbl =
 (volatile uint32 *) TCN1; /* cascaded 32 bit timer */

static volatile TimerModeReg * const tmr2PtrGbl =
 (volatile TimerModeReg *) TMR2;
static volatile uint16 * const trr2PtrGbl =
 (volatile uint16 *) TRR2;
static volatile uint16 * const tcr2PtrGbl =
 (volatile uint16 *) TCR2;
static volatile uint16 * const tcn2PtrGbl =
 (volatile uint16 *) TCN2;
static volatile TimerEventReg * const ter2PtrGbl =
 (volatile TimerEventReg *) TER2;

/**
Section: Globals
**/
/* parameters for SPMIsr execution history for debugging purposes */
volatile MACParam macGbl; /* extern in physical.h */
volatile SPMParam spmGbl; /* extern in physical.h */
volatile CRCParam crcGbl;

volatile History hBufGbl = {0}; /* Initialize to zero */

/* exception count for debugging puposes. Incremented in exception
 service routines for bus error and spurious interrupt */
volatile uint32 exceptions = 0;

/* Timer for PHYIO */
MsTimer phyIOTimer;

/*---
Section: Local Function Prototypes
---*/
/* Special Purpose Mode Init */
static int16 SPMInit(void);

/* Special Purpose Mode Int. Service Routine */
static void SPMIsr(void);

/* CPM int error Int. Service Routive */
static void CErrIsr(void);

/* Spurious interrupt error ISR */
static void SpurIntIsr(void);

/* bus error ISR */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

101

static void BusErrIsr(void);

/* Initialize MAC hardware timer */
static uint32 * MACTimerInit(void);

/* delay function waits for delay ticks */
static Boolean DelayTicks(uint32 delay);

/* uses MACTimer hardware timer */
static void UpdateElapsedTimer(TimerData32 * t);
static void StartElapsedTimer(TimerData32 * t);
/* increments backlog */
static void IncrementBacklog(uint8 deltaBacklog);
/* decrement backlog */
static void DecrementBacklog(uint8 deltaBacklog);

/*---
Section: Function Definitions
---*/
/* #define SPM_TEST */ /* To include a main to test SPM only */
/* #define SPM_HISTORY */ /* To debug without break points */

/***
Function: main
Returns:
Reference:
Purpose: To test mac layer only
Comments:
**/

#ifdef SPM_TEST
void main()
{
 long count = 0;

 PHYInitSPM();

 macGbl.tl = 8; /* 5 byte packet */
 macGbl.tc = 0;
 macGbl.tPkt[0] = 1;
 macGbl.tPkt[1] = 2;
 macGbl.tPkt[2] = 3;
 macGbl.tPkt[3] = 4;
 macGbl.tPkt[4] = 5;
 macGbl.tPkt[5] = 6;
 macGbl.tPkt[6] = 7;
 macGbl.tPkt[7] = 8;
 macGbl.tpr = TRUE;

 count = 0;
 while (macGbl.tpr != FALSE)
 {
 count++;
 }

 count = 0;
 while (spmGbl.mode != STOP)
 {
 count++;
 }
 return;
}

#endif

/***
Function: PHYInitSPM
Returns:
Reference:
Purpose: Set up special purpose mode
 SPMInit() initializes all the 68360 registers

BS EN 14908-1:2014

EN 14908-1:2014 (E)

102

 MACTimerInit() starts up a 32 bit hardware timer (25Mhz)
 PHYEnableSPMIsr() configures the Interrupt Service Routine
Comments:
**/
void PHYInitSPM(void)
{
 int16 initOK = 0;

 exceptions = 0; /* for debugging */

 initOK = SPMInit();

 /* initialize and start MAC hardware timer */
 spmGbl.clock = MACTimerInit();

 /* reconfigure SPI SPMODE */
 /* spmodePtrGbl->loop = 1; */ /* local loop back for test */

 hBufGbl.index = 0; /* start history at 0 */

 /* updates communications parameters
 brings out of reset and starts frame exchange
 and loads config regs
 */
 PHYEnableSPMIsr();

 return;
}

/***
Function: SPMInit
Returns: 1 if ok, 0 if error.
Reference:
Purpose: set up special purpose mode
 Basic approach: Use SPI to tx and rx frames from xcvr.
 The spi bit clock is wired externally to clk3 input
 This is used to clock the scc2 port that generates
 the frame clock.
Comments:
**/
static int16 SPMInit()
{
 int16 i; /* for loop counter */
 SDMAConfigReg sdcrTemp; /* scratch to set up sdcr */
 CPCommandReg crTemp; /* scratch to set up cr */
 SCCReceiveBD srbdTemp; /* scratch */
 SCCTransmitBD stbdTemp; /* scratch */
 SCCEventMaskReg scceTemp; /* scratch */
 CIConfigReg cicrTemp; /* scratch to set up cicr */
 SPIEventMaskReg spiemTemp; /* scratch to set up spie or spim*/
 SPIModeReg spmodeTemp; /* scratch to set up spmode */

 /* initialize registers and vectors*/

 /* initialize SDMA Config Register */
 sdcrTemp.frz = 0; /* ignore freeze */
 sdcrTemp.sism = 7; /* level 7 interrupt mask */
 sdcrTemp.said = 4; /* level 4 bus arbitration priority */
 sdcrTemp.inte = 0; /* no error interrupts */
 sdcrTemp.intb = 0; /* no break interrupts */
 sdcrPtrGbl = sdcrTemp; / write out sdcr */

 /* set sicr */
 sicrPtrGbl->sc2 = 0; /* scc2 in nmsi mode */
 sicrPtrGbl->r2cs = 6; /* receive clock from clk3 */
 sicrPtrGbl->t2cs = 6; /* transmit clock from clk3 */

 /**/
 /* initialize SCC2 Port for frame clock*/
 /***/
 /* initialize RBASE and TBASE in SCC2 Param RAM */
 scc2ParamPtrGbl->rbase = (uint16) RBD_BASE_SCC2;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

103

 scc2ParamPtrGbl->tbase = (uint16) TBD_BASE_SCC2;

 /* initialize other parts of SCC2 parameter ram using CP command */
 crTemp.reset =0; /* no cpm reset */
 crTemp.chnum = SCC2_CH_NUM; /* SCC2 Channel */
 crTemp.opcode = INIT_TRP_OPCODE; /* init param ram */
 crTemp.flag = 1; /* start command */
 crPtrGbl = crTemp; / write to command register */

#ifndef SIMULATION
 /* wait for command to finish */
 while (crPtrGbl->flag == 1)
 {
 ; /* Do nothing */
 }
#endif

 /* initialize function codes for param ram and buffer length
 for scc2 */
 /* endian and function code */
 scc2ParamPtrGbl->rfcr = (uint8) FCR_INIT;
 /* endian and function code */
 scc2ParamPtrGbl->tfcr = (uint8) FCR_INIT;
 /* max receive buffer length */
 scc2ParamPtrGbl->mrblr = (uint16) 2;

 /* initialize scc receive buffer descriptors */
 srbdTemp.e = 1; /* 1 = buffer ready to receive */
 srbdTemp.w = 0; /* 0 = don't wrap this bd */
 srbdTemp.i = 0; /* 0 = disable interrupts */
 srbdTemp.l = 0; /* 0 = not last */
 srbdTemp.cm = 1; /* 1 = put in continuous mode */
 srbdTemp.de = 0; /* clear out dpll error*/
 srbdTemp.no = 0; /* clear out non octet error*/
 srbdTemp.cr = 0; /* clear out crc error*/
 srbdTemp.ov = 0; /* clear out receiver overrun error */
 srbdTemp.cd = 0; /* clear out carrier detect lost error */
 srbdTemp.dataLen = 0; /* superfluous set by cp */
 /* set to first buffer but change below */
 srbdTemp.dataPtr = &scc2rBufGbl[0][0];

 for (i = 0; i < NUM_BD_SCC2; i++) /* loop thru buf descriptors */
 {
 scc2rbdPtrGbl[i] = srbdTemp; /* assign defaults from temp */
 /* assign ptr to buffer */
 scc2rbdPtrGbl[i].dataPtr = &scc2rBufGbl[i][0];
 }
 scc2rbdPtrGbl[NUM_BD_SCC2 - 1].w = 1; /* wrap last rbd */

 /* initialize scc transmit buffer descriptors */
 stbdTemp.r = 1; /* 1 = buffer ready to transmit */
 stbdTemp.w = 0; /* 0 = don't wrap this bd */
 stbdTemp.i = 0; /* 0 = disable interrupts */
 stbdTemp.l = 0; /* 0 = not last */
 stbdTemp.tc = 0; /* 0 = don't transmit crc */
 stbdTemp.cm = 1; /* 1 = put in continuous mode */
 stbdTemp.un = 0; /* clear out transmit underrunn error */
 stbdTemp.ct = 0; /* clear out cts lost error */
 stbdTemp.dataLen = 2; /* set to buffer length should be
 2 bytes */
 /* set to first buffer but change below */
 stbdTemp.dataPtr = &scc2tBufGbl[0][0];

 for (i = 0; i < NUM_BD_SCC2; i++) /* loop thru buf descriptors */
 {
 scc2tbdPtrGbl[i] = stbdTemp; /* assign defaults from temp */
 /* assign ptr to buffer */
 scc2tbdPtrGbl[i].dataPtr = &scc2tBufGbl[i][0];
 }
 scc2tbdPtrGbl[NUM_BD_SCC2 - 1].w = 1; /* wrap last tbd */

 /* initialize port A and C for SCC2 Transparent mode operation */
 padirPtrGbl->dr2 = 0; /* RXD for scc2 */
 paparPtrGbl->dd2 = 1; /* rxd connect internal */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

104

 paodrPtrGbl->od3 = 0; /* not open drain for txd */
 padirPtrGbl->dr3 = 0; /* TXD for scc2 */
 paparPtrGbl->dd3 = 1; /* txd connect internal */

 padirPtrGbl->dr10 = 0; /* clk3 sc2 */
 paparPtrGbl->dd10 = 1; /* connect internal */
 /* enable rts for scc2 */
 pcdirPtrGbl->dr1 = 0;
 pcparPtrGbl->dd1 = 1;
 /* general purpose io so CD always asserted */
 pcdirPtrGbl->dr7 = 1;
 pcparPtrGbl->dd7 = 0;
 pcsoPtrGbl->cd2 = 0;
 /* use cts2 to initiate transmission. configure as gen purpose
 io so always asserted low */
 pcdirPtrGbl->dr6 = 1;
 pcparPtrGbl->dd6 = 0;
 pcsoPtrGbl->cts2 = 0; /* configure as low always */

 /* set gsmr */

 gsmrh2PtrGbl->tcrc = 0; /* 16 bit ccitt crc */
 gsmrh2PtrGbl->revd = 1; /* 1= send msbit of each byte out first */
 gsmrh2PtrGbl->trx = 1; /* receiver in transparent mode */
 gsmrh2PtrGbl->ttx = 1; /* transmitter in transparent mode */
 gsmrh2PtrGbl->cdp = 1; /* cd pulse mode */
 gsmrh2PtrGbl->ctsp = 1; /* cts pulse mode */
 gsmrh2PtrGbl->cds = 1; /* cd synchronous mode */
 gsmrh2PtrGbl->ctss = 1; /* cts synchronous mode */
 gsmrh2PtrGbl->synl = 0; /* receive sync on cd not on
 sync pattern */
 gsmrh2PtrGbl->tfl = 1; /* 1 byte fifo for lower transmit
 latency */

 gsmrl2PtrGbl->diag = 1; /* local loop back for test*/

 /* initialize transparent mode crc type */
 scc2ParamPtrGbl->crcp = 0x0000FFFFUL; /* 16 bit CCITT CRC */
 scc2ParamPtrGbl->crcc = 0x0000F0B8UL; /* 16 bit CCITT CRC */

 /* clear any previous scc2 interrupt events, write 1 to clear */
 scceTemp.glr = 1;
 scceTemp.glt = 1;
 scceTemp.dcc = 1;
 scceTemp.gra = 1;
 scceTemp.txe = 1;
 scceTemp.rch = 1;
 scceTemp.bsy = 1;
 scceTemp.tx = 1;
 scceTemp.rx = 1;
 scce2PtrGbl = scceTemp; / write it out to SCCE2 */

 /* enable/disable interrupts write 1 to enable */
 scceTemp.glr = 0;
 scceTemp.glt = 0;
 scceTemp.dcc = 0;
 scceTemp.gra = 0;
 scceTemp.txe = 0;
 scceTemp.rch = 0;
 scceTemp.bsy = 0;
 scceTemp.tx = 0;
 scceTemp.rx = 0;
 sccm2PtrGbl = scceTemp; / write it out to sccm2 */

 /* clear any old scc2 interrupts from CISR */
 /* clear by writing 1, spi interrupt in service */
 cisrPtrGbl->scc2 = 1;

 /* enable/disable system interrupt for spi in CIMR*/
 cimrPtrGbl->scc2 = 0; /* enable by writing 1 */

 /**/
 /* SPI Port Initialization */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

105

 /***/

 /* initialize RBASE and TBASE in SPI Param RAM */
 /* start of Receive BDs */
 spiParamPtrGbl->rbase = (uint16) RBD_BASE;
 /* start of transmit BDs */
 spiParamPtrGbl->tbase = (uint16) TBD_BASE;

 /* initialize other parts of SPI parameter ram using CP command */
 crTemp.reset =0; /* no cpm reset */
 crTemp.chnum = SPI_CH_NUM; /* SPI Channel */
 crTemp.opcode = INIT_TRP_OPCODE; /* init param ram */
 crTemp.flag = 1; /* start command */
 crPtrGbl = crTemp; / write to command register */

#ifndef SIMULATION
 /* wait for command to finish */
 while (crPtrGbl->flag == 1)
 {
 ;
 }
#endif

 /* initialize function codes for param ram and buffer length*/
 /* endian and function code */
 spiParamPtrGbl->rfcr = (uint8) FCR_INIT;
 /* endian and function code */
 spiParamPtrGbl->tfcr = (uint8) FCR_INIT;
 /* maximum buffer length */
 spiParamPtrGbl->mrblr = (uint16) MAX_BUF_LEN;

 /* initialize receive buffer descriptors */
 rbdPtrGbl->e = 1; /* 1 = buffer ready to receive */
 rbdPtrGbl->w = 1; /* 1 = wrap this bd */
 rbdPtrGbl->i = 1; /* 1 = enable interrupts of rxb */
 rbdPtrGbl->cm = 1; /* 1 = continuous mode */
 rbdPtrGbl->l = 0; /* clear out */
 rbdPtrGbl->ov = 0; /* clear out */
 rbdPtrGbl->me = 0; /* clear out */
 rbdPtrGbl->dataLen = 0; /* superfluous set by cp*/
 rbdPtrGbl->dataPtr = &spmGbl.rf; /* assign ptr to buffer */

 /* initialize transmit buffer descriptors */
 tbdPtrGbl->r = 1; /* 1 = buffer ready to transmit */
 tbdPtrGbl->w = 1; /* 1 = wrap this bd */
 tbdPtrGbl->i = 0; /* 0 = don't enable interrupts of txb */
 tbdPtrGbl->cm = 1; /* 1 = continuous mode */
 tbdPtrGbl->l = 1; /* 1 = last */
 tbdPtrGbl->un = 0; /* clear out */
 tbdPtrGbl->me = 0; /* clear out */
 tbdPtrGbl->dataLen = 2; /* set to buffer length should be 2bytes */
 tbdPtrGbl->dataPtr = &spmGbl.tf; /* assign ptr to buffer */

/**
 Initialize Globals Structure for Channel Access Algorithm
 and Special Purpose Mode
**/

 /* initialize receive frame buffers just to prevent garbage
 in case out of sync */
 spmGbl.rf.setTxFlag = 0; /* frame status not transmitting */
 spmGbl.rf.clrTxReqFlag = 0; /* don't clear */
 spmGbl.rf.rxDataValid = 0; /* no valid data this frame */
 spmGbl.rf.txDataCTS = 0; /* no clear to send */
 spmGbl.rf.setCollDet = 0; /* no collision detected */
 spmGbl.rf.rxFlag = 0; /* not receiving */
 spmGbl.rf.rwAck = 0; /* not acknowledged */
 spmGbl.rf.txOn = 0; /* not receiving */
 spmGbl.rf.data = 0; /* */

 /* initialize receive frame buffers just to prevent garbage in case */
 /* out of sync*/
 spmGbl.tf.txFlag = 0; /* frame status not transmitting */
 spmGbl.tf.txReqFlag = 0; /* don't req */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

106

 spmGbl.tf.txDataValid = 0; /* no valid data this frame */
 spmGbl.tf.blank = 0; /* unused */
 spmGbl.tf.txAddrRW = 0; /* write */
 spmGbl.tf.txAddr = 0; /* default address */
 spmGbl.tf.data = 0; /* */

 /* Initialize spm global parameters */

 spmGbl.mode = STOP; /* no errors yet */
 spmGbl.state = IDLE; /* state machine start state */
 macGbl.tpr = FALSE; /* packet not ready to transmit */
 macGbl.tc = 0; /* transmit byte count 0 */
 macGbl.tl = 0; /* last byte is 0 */
 macGbl.rpr = FALSE; /* packet not yet received */
 macGbl.rc = 0; /* receive byte count 0 */
 macGbl.rl = 0; /* last byte is 0 */
 spmGbl.crw = FALSE; /* don't write config register */
 spmGbl.cra = 0; /* address zero nothing */
 spmGbl.crData = 0; /* empty data */
 spmGbl.srr = FALSE; /* don't read from status register */
 spmGbl.sra = 0; /* empty address */
 spmGbl.srData = 0; /* put nothing in */
 spmGbl.resetCount = 0; /* zero to start */
 spmGbl.collisionsThisPkt = 0 ; /* # of collisions this packet */
 macGbl.priorityPkt = FALSE; /* FALSE = not a priority packet */

 /* FALSE = channel access algo not complete */
 spmGbl.accessApproved = FALSE;
 /* TRUE means cycle timer to be reset and started */
 spmGbl.cycleTimerRestart = TRUE;

 spmGbl.backlog = 0; /* current channel backlog */
 /* delta backlog on current transmit packet */
 macGbl.deltaBLTx = 0;
 macGbl.deltaBLRx = 0; /* delta backlog on last receive packet */
 macGbl.altPathBit = 0; /* alternate path bit */
 /* signal to write alternate path bit */
 spmGbl.writeAltPathBit = FALSE;
 /* alt path bit written state for this pkt */
 spmGbl.altPathBitWritten = FALSE;
 spmGbl.nodePriority = 0; /* node's priority slot number */
 /* comm parameters for this node */
 for (i = 0; i < NUM_COMM_PARAMS; i++)
 {
 spmGbl.configData[i] = 0;
 }
 spmGbl.phase = RANDOM_IDLE; /* Idle for a long time */

 spmGbl.kind = POST_RX; /* beta1 time slot type */
 spmGbl.nicsToTicks = 15; /* conversion factor this specification's
 time base to 68 360 ticks */
 spmGbl.bitClockRate = 156 250; /* in units of Hz */
 spmGbl.beta2Ticks = 0; /* length of beta2 in 68 360 ticks
 40ns each */
 spmGbl.beta1Ticks = 0; /* length of beta1 in 68 360 ticks
 40 ns each */
 spmGbl.beta1PostTxTicks = 0; /* length of beta1 in 68 360 ticks
 40 ns each */
 spmGbl.beta1PostRxTicks = 0; /* length of beta1 in 68 360 ticks
 40 ns each */
 spmGbl.baseTicks = 0; /* duration of wbase in 68 360 ticks
 40 ns each */
 spmGbl.cycleTicks = 0; /* duration of avg packet cycle in
 68 360 ticks 40 ns each */
 spmGbl.priorityChPostTxTicks = 0; /* duration of channel priority
 slots */
 spmGbl.priorityChPostRxTicks = 0; /* duration of channel priority
 slots */
 spmGbl.priorityIdleTicks = 0; /* duration of priority idle wait */
 /* duration until node's priority slot */
 spmGbl.priorityNodeTicks = 0;
 spmGbl.randomTicks = 0;
 /* timers for channel access algorithm */
 spmGbl.idleTimerStart = 0;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

107

 spmGbl.baseTimerStart = 0;
 spmGbl.cycleTimerStart = 0;
 spmGbl.transmitTimerStart = 0;
 spmGbl.elapsed = 0;
 spmGbl.stopped = 0;
 spmGbl.lastTime = 0;

 /* initialize crcGbl for good form */
 crcGbl.poly = 0;
 crcGbl.crc = 0;
 crcGbl.crcBit = 0;
 crcGbl.dataBit = 0;
 crcGbl.dataByte = 0;

 /* initialize port B for SPI Master operation */
 /* pin0 = spisel or chip select if single master */
 /* pin1 = spiclk clock*/
 /* pin2 = spimosi master out slave in */
 /* pin3 = spimiso master in slave out */
 /* pin5 = ~`reset */

 pbodrPtrGbl->od0 = 0; /*0=active driven 1=open drain(3 state), if output */
 pbodrPtrGbl->od1 = 0;
 pbodrPtrGbl->od2 = 0;
 pbodrPtrGbl->od3 = 0;
 pbodrPtrGbl->od5 = 0; /* not open drain for reset? */

 pbparPtrGbl->dd0 = 0; /* general purpose pin chip select*/
 pbparPtrGbl->dd1 = 1; /* internal connect spiclk */
 pbparPtrGbl->dd2 = 1; /* internal connect spimosi */
 pbparPtrGbl->dd3 = 1; /* internal connect spimiso */
 pbparPtrGbl->dd5 = 0; /* general purpose i/o */

 pbdirPtrGbl->dr0 = 1; /* output */
 pbdirPtrGbl->dr1 = 1; /* output */
 pbdirPtrGbl->dr2 = 1; /* output */
 /* although input shall config as out else brgo4 */
 pbdirPtrGbl->dr3 = 1;
 pbdirPtrGbl->dr5 = 1; /* output */

 /* initialize port B for IO pins : reset switch, manual service request,
 ioswitch, and LEDs reset-service and IOLED
 pb8 = led reset service
 pb9 = general purpose out led
 pb12 = reset switch
 pb13 = manual service request
 pb14 = general purpose in switch
 */

 pbodrPtrGbl->od8 = 0; /* 0 = active driven not open drain */
 pbodrPtrGbl->od9 = 0;
 /* since input NA, however open drain for pull down */
 pbodrPtrGbl->od12 = 1;
 /* since input NA, however open drain for pull down */
 pbodrPtrGbl->od13 = 1;
 /* since input NA, however no pull down */
 pbodrPtrGbl->od14 = 0;

 pbparPtrGbl->dd8 = 0; /* general purpose pin chip select*/
 pbparPtrGbl->dd9 = 0; /* general purpose pin chip select*/
 pbparPtrGbl->dd12 = 0; /* general purpose pin chip select*/
 pbparPtrGbl->dd13 = 0; /* general purpose pin chip select*/
 pbparPtrGbl->dd14 = 0; /* general purpose pin chip select*/

 pbdirPtrGbl->dr8 = 1; /* output */
 pbdirPtrGbl->dr9 = 1; /* output */
 pbdirPtrGbl->dr12 = 0; /* input */
 pbdirPtrGbl->dr13 = 0; /* input */
 pbdirPtrGbl->dr14 = 0; /* input */

 /* set initial values */
 pbdatPtrGbl->d8 = 0;
 pbdatPtrGbl->d9 = 0;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

108

 pbdatPtrGbl->d12 = 1; /* input so NA */
 pbdatPtrGbl->d13 = 1; /* input so NA */
 pbdatPtrGbl->d14 = 0; /* input so NA */

 /* reset xcvr */
 /* driven low to reset hold in reset until change. */
 pbdatPtrGbl->d5 = 0;

 /* clear any previous spi interrupt events write 1 to clear */
 spiemTemp.mme = 1;
 spiemTemp.txe = 1;
 spiemTemp.bsy = 1;
 spiemTemp.txb = 1;
 spiemTemp.rxb = 1;
 spiePtrGbl = spiemTemp; / write it out to SPIE */

 /* assign address of isr functions to vector table entry */
 spivPtrGbl = &SPMIsr; / spi isr */
 cerrvPtrGbl = &CErrIsr; / comm error isr */
 spurintvPtrGbl = &SpurIntIsr; / spurious interrupt isr */
 /* *buserrvPtrGbl = &BusErrIsr; */ /* spurious interrupt isr */

 /* enable interrupts write 1 to enable */
 spiemTemp.mme = 0;
 spiemTemp.txe = 0;
 spiemTemp.bsy = 0;
 spiemTemp.txb = 0; /* isr will run after transmit */
 spiemTemp.rxb = 1; /* isr will run after receive buffer filled */
 spimPtrGbl = spiemTemp; / write it out to SPIM */

 /* init CICR register */
 cicrTemp.scdp = 3; /* scc4 has priority d */
 cicrTemp.sccp = 2; /* scc3 has priority c */
 cicrTemp.scbp = 1; /* scc2 has priority b */
 cicrTemp.scap = 0; /* scc1 has priority a */
 cicrTemp.irl = CPIR_LEVEL; /* level 4 interrupt request level */
 cicrTemp.hpi = 31; /* default highest priority = 31 = 1F hex*/
 cicrTemp.vba = UIVN_MSB; /* user interrupt vector number offset */
 cicrTemp.sps = 0; /* use grouped priority scheme */
 cicrPtrGbl = cicrTemp; / write to cicr */

 /* clear any old SPI interrupts from CISR */
 cisrPtrGbl->spi = 1; /* clear by writing 1,
 spi interrupt in service */
 /* enable system interrupt for spi in CIMR*/
 cimrPtrGbl->spi = 1; /* enable by writing 1 */

 /* init SPMODE register */
 spmodeTemp.loop = 0; /* 1 = local loop back
 0 = no local loop back */
 spmodeTemp.ci = 0; /* don't invert clock */
 spmodeTemp.cp = 1; /* toggle clock at begin of data transfer */
 spmodeTemp.div16 = 0; /* don't divide brgclk by 16 */
 spmodeTemp.rev = 1; /* use bigendian MSB first */
 spmodeTemp.ms = 1; /* master mode */
 spmodeTemp.len = 7; /* 8 bits per character = len + 1 */
 spmodeTemp.pms = 4; /* prescale modulus select,
 4 gives 1,25 Mbit/s */
 spmodeTemp.en = 1; /* enable spi */
 spmodePtrGbl = spmodeTemp; / write to spmode register */

 /* initialize SPCOM (probably don't need to do */
 spcomPtrGbl->res = 0; /* should never have to change */
 spcomPtrGbl->str = 0; /* superfluous auto cleared one
 clock cycle after set */

 /***
 Enable interrupts by setting interrupt priority mask level
 in Status Register to 0, shall use in line assembly code
 assumes CPU is in supervisor mode, Bits 10 9 8 are
 interrupt priority mask level
 ***/

 asm(" ANDI #~0x0700,SR"); /* sets priority mask to level 000 */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

109

 /* Set up frame clock using scc2*/
 /* put data into transmit buffer */
 scc2tBufGbl[0][0] = 0x01U; /* first byte 7 bit delay
 to sync frame to spi */
 scc2tBufGbl[0][1] = 0x00U; /* second byte */
 scc2tbdPtrGbl[0].dataLen = 2; /* send just two bytes */

 /* enable frame clock */
 gsmrl2PtrGbl->enr = 1; /* receive */
 gsmrl2PtrGbl->ent = 1; /* transmit */

 return(1);
}

/***
Function: MACTimerInit
Returns: pointer to hardware timer counter register
Reference:
Purpose: initialize MAC hardware timer
Comments:
**/

uint32 * MACTimerInit(void)
{
 tgcrPtrGbl->cas2 = 1; /* cascade 1 and 2 */
 tgcrPtrGbl->frz2 = 0; /* ignore freeze pin */
 tgcrPtrGbl->stp2 = 0; /* normal unstopped operation */
 tgcrPtrGbl->rst2 = 0; /* reset timer */

 tmr2PtrGbl->ps = 0; /* prescaler */
 tmr2PtrGbl->ce = 0; /* input capture disabled */
 tmr2PtrGbl->om = 0; /* output mode pulse */
 tmr2PtrGbl->ori = 0; /* diable output reference interrupt */
 tmr2PtrGbl->frr = 0; /* 0= free running counter */
 tmr2PtrGbl->iclk = 1; /* 1 = internal general system clk source */
 tmr2PtrGbl->ge = 0; /* tgate is ignored */

 /* set reference to max all ones */
 *trr12PtrGbl = (uint32) 0xFFFFFFFFU;

 /* writing a 1 resets the reference event bit */
 ter2PtrGbl->ref = 1;
 /* writing a 1 resets the capture event bit */
 ter2PtrGbl->cap = 1;

 tcn12PtrGbl = 0; / start at zero */

 tgcrPtrGbl->rst2 = 1; /* start timer running */

 return(tcn12PtrGbl);
}

/***
Function: DelayTicks
Returns: Boolean state of mac timer running = true stopped = false
Reference:
Purpose: Delay for a "delay" number of ticks
 Used during various startup routines
 to wait for xcvr hardware to respond
Comments:
**/

Boolean DelayTicks(uint32 delay)
{
 uint32 start;

 if (tgcrPtrGbl->rst2 == 0)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

110

 /* timer not running so exit immediately with false */
 return (FALSE);
 }
 else
 {
 start = *tcn12PtrGbl;

 while ((*tcn12PtrGbl - start) < delay)
 {
 ; /* keep waiting */
 }

 return (TRUE);
 }
}

/***
Function: PHYSoftResetSPMXCVR
Returns:
Reference:
Purpose: Software reset Special Purpose Mode XCVR by reading
 from register zero
Comments:
**/

void PHYSoftResetSPMXCVR(void)
{
 uint16 count;

 spmGbl.sra = 0;
 spmGbl.srr = TRUE;

 count = 0;
 while ((spmGbl.srr != FALSE) && (count < 0xFFFF))
 {
 count++;
 }
 spmGbl.srData = 0;

 return;
}

/***
Function: PHYHardResetSPMXCVR
Returns:
Reference:
Purpose: hardware reset Special Purpose Mode XCVR by
 asserting reset pin. then configures xcvr
 this is used when xcvr hangs in tx_on mode
 e.g. spmGbl.resetCount times out
Comments:
**/

void PHYHardResetSPMXCVR(void)
{
 unsigned long count;
 int i;
 Boolean good;

 pbdatPtrGbl->d5 = 0; /* drive xcvr into reset */

 /* wait for a while for everything to settle down */
 good = DelayTicks(RESTART_DELAY_TICKS);

 pbdatPtrGbl->d5 = 1; /* bring xcvr out of reset */

 /* initialize config registers on PLT-20 transceiver */

 /* load in reverse order */
 i = NUM_COMM_PARAMS - 1; /* should be 6 */
 while (i >= 0)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

111

 {
 spmGbl.crData = spmGbl.configData[i];
 /* config registers start at 7 down to 1 */
 spmGbl.cra = (Byte) i + 1;
 spmGbl.crw = TRUE;
 count = 0;
 /* wait for ack but time out so not infinite loop */
 while ((spmGbl.crw != FALSE) && (count < 0xFFFFF))
 {
 count++;
 }
 if (spmGbl.crw == TRUE) /* xcvr never acked try again */
 {
 pbdatPtrGbl->d5 = 0; /* reset xcvr */

 /* wait for a while for everything to settle down */
 good = DelayTicks(RESTART_DELAY_TICKS);

 pbdatPtrGbl->d5 = 1; /* bring xcvr out of reset */
 i = NUM_COMM_PARAMS - 1; /* start over again */
 } /* NOTE!!! if the xcvr never acks this code will hang */
 else
 {
 i--;
 }
 }

 spmGbl.crData = 0;
 spmGbl.cra = 0;

 return;
}

/***
Function: PHYDisableSPMIsr
Returns:
Reference:
Purpose: To diable the Isr temporarily on node reset.
 Shall use PHYEnableIsr to reenable correctly.
Comments:
**/

void PHYDisableSPMIsr(void)
{
 /* once the first line below is executed, the ISR will stop
 running. the next time it runs */
 spmGbl.mode = STOP;

 pbdatPtrGbl->d5 = 0; /* drive xcvr into reset */

 spmGbl.state = DEBUG;

 macGbl.tpr = FALSE;
 macGbl.tc = 0;
 macGbl.tl = 0;
 macGbl.rpr = FALSE;
 macGbl.rc = 0;
 macGbl.rl = 0;
 spmGbl.crw = FALSE;
 spmGbl.srr = FALSE;
 spmGbl.sra = 0;

 return;
}

/***
Function: PHYEnableSPMIsr
Returns:
Reference:
Purpose: To Enable the Isr after Being disabled on node reset
 Also to enable on powerup etc.
 Computes clock rates etc based on node comm parameters

BS EN 14908-1:2014

EN 14908-1:2014 (E)

112

Comments:
**/

void PHYEnableSPMIsr(void)
{
 long i;
 uint32 inputClock;
 uint32 commClock;
 uint32 rxPad;
 uint32 txPad;
 uint32 beta2;
 Boolean good;

 /* compute conversion factor nics_To_Tick */
 /* converts from this specification's time base to 683 660 ticks */
 inputClock = (uint32) eep->configData.inputClock;
 commClock = (uint32) eep->configData.commClock;
 spmGbl.nicsToTicks = NICS_TICKS_BASE >> inputClock;

 /* compute channel access algorithm parameters */

 beta2 = (eep->configData.reserved[2] * 20) + 40;

 /* compute beta1 = postpacket + networkidlewait +
 interpacketpad + prepacket */

 if (eep->configData.reserved[4] < 128)
 {
 rxPad = eep->configData.reserved[4] * 41;
 }
 else
 {
 rxPad = (eep->configData.reserved[4] - 128) * 145;
 }

 if (eep->configData.reserved[3] < 128)
 {
 txPad = eep->configData.reserved[3] * 41;
 }
 else
 {
 txPad = (eep->configData.reserved[3] - 128) * 145;
 }

 /* set beta1 time as per formula with implementation
 specific adjustment BETA1_ADJUST_TICKS */
 spmGbl.beta1PostRxTicks =
 (285 + beta2 + rxPad + 317) * spmGbl.nicsToTicks +
 BETA1_ADJUST_TICKS;
 spmGbl.beta1PostTxTicks =
 (307 + beta2 + txPad + 317) * spmGbl.nicsToTicks +
 BETA1_ADJUST_TICKS;

 /* set beta2 time as per formula with implementation
 specific adjustment BETA2_ADJUST_TICKS */
 spmGbl.beta2Ticks =
 beta2 * spmGbl.nicsToTicks + BETA2_ADJUST_TICKS;
 spmGbl.baseTicks = spmGbl.beta2Ticks * W_BASE;
 /* set cycle time as per formula with implementation
 specific adjustment CYCLE_ADJUST_TICKS */
 spmGbl.cycleTicks =
 eep->configData.reserved[1] * 1794 * spmGbl.nicsToTicks;

 spmGbl.beta1Ticks = 0; /* this is set by isr to either post rx or
 post tx beta1 as appropriate */

 spmGbl.nodePriority =
 eep->configData.nodePriority; /* set node's priority slot # */

 /* Add W_Base slots to wait time for post tx access only when there

BS EN 14908-1:2014

EN 14908-1:2014 (E)

113

 are non zero number of channel priority slots */
 if (eep->configData.channelPriorities > 0)
 {
 /* duration of channel priority slots */
 spmGbl.priorityChPostTxTicks = (eep->configData.channelPriorities +
 W_BASE) * spmGbl.beta2Ticks;
 /* duration of channel priority slots */
 spmGbl.priorityChPostRxTicks = eep->configData.channelPriorities
 * spmGbl.beta2Ticks;
 }
 else
 {
 /* duration of channel priority slots */
 spmGbl.priorityChPostTxTicks = 0;
 spmGbl.priorityChPostRxTicks = 0;
 }
 /* duration of priority idle wait */
 spmGbl.priorityIdleTicks = spmGbl.priorityChPostTxTicks;

 /* set time of nodes priority slot. If eep->configData.nodePriority is 0,
 then this field will be negative, but it is not used in this case. */
 spmGbl.priorityNodeTicks =
 (eep->configData.nodePriority - 1) * spmGbl.beta2Ticks;
 spmGbl.randomTicks = 0;
 spmGbl.bitClockRate = (BIT_CLOCK_BASE << inputClock) >>
 (RATIO_BASE + commClock);

 /* make local copy of xcvr parameters so can reset xcvr free of changes to eep
 without following node reset. Needed in case xcvr locks up, See
 PHYHardResetSPMXCVR(void)
 */
 for (i = 0; i < NUM_COMM_PARAMS; i++)
 {
 spmGbl.configData[i] = eep->configData.param.xcvrParams[i];
 }

 /* reinitialize remainder of spmGbl */
 spmGbl.mode = RUN; /* get ready to go */
 spmGbl.state = IDLE; /* state machine start state */
 macGbl.tpr = FALSE; /* packet not ready to transmit */
 macGbl.tc = 0; /* transmit byte count 0 */
 macGbl.tl = 0; /* last byte is 0 */
 macGbl.rpr = FALSE; /* packet not yet received */
 macGbl.rc = 0; /* receive byte count 0 */
 macGbl.rl = 0; /* last byte is 0 */
 spmGbl.crw = FALSE; /* don't write config register */
 spmGbl.cra = 0; /* address zero nothing */
 spmGbl.crData = 0; /* empty data */
 spmGbl.srr = FALSE; /* don't read from status register */
 spmGbl.sra = 0; /* empty address */
 spmGbl.srData = 0; /* put nothing in */
 spmGbl.resetCount = 0; /* zero to start */
 spmGbl.collisionsThisPkt = 0 ; /* # of collisions this packet */
 macGbl.altPathBit = 0; /* alternate path bit */
 spmGbl.writeAltPathBit = FALSE; /* signal to write
 alternate path bit */
 spmGbl.altPathBitWritten = FALSE; /* alt path bit written
 state for this pkt */
 macGbl.priorityPkt = FALSE; /* FALSE = not a priority packet */

 spmGbl.accessApproved = FALSE; /* FALSE = channel access algo
 not complete */
 spmGbl.cycleTimerRestart = TRUE; /* indicates whether cycle
 timer can be updated */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

114

 spmGbl.backlog = 0; /* current channel backlog */
 macGbl.deltaBLTx = 0; /* delta backlog on curr transmit packet */
 macGbl.deltaBLRx = 0; /* delta backlog on last receive packet */
 spmGbl.phase = RANDOM_IDLE; /* Idle for a long time */

 spmGbl.kind = POST_RX; /* beta1 time slot type */
 spmGbl.idleTimerStart = 0;
 spmGbl.baseTimerStart = 0;
 spmGbl.transmitTimerStart = 0;
 spmGbl.elapsed = 0;
 /* spmGbl.clock is initialized in PHYInitSPM */
 spmGbl.stopped = *(spmGbl.clock);
 spmGbl.cycleTimerStart = spmGbl.stopped; /* start up 1st time */
 spmGbl.lastTime = spmGbl.stopped;

 /* configure bit clock */
 /* div16 = 1 and pms = 4 gives 78,125 kHz */
 /* div16 = 1 and pms = 3 gives 97,656 kHz */
 /* div16 = 1 and pms = 2 gives 130,208 kHz */
 /* div16 = 1 and pms = 1 gives 195,312 kHz */
 /* div16 = 1 and pms = 0 gives 390,625 kHz */
 /* div16 = 0 and pms = 9 gives 625,000 kHz */

/**
 Since this implementation runs in noncontinuous mode the
 effective frame period is the actual frame period plus the
 processing time for the ISR at the end of the frame. Therefore
 we need to run at a higher bit clock than specified by the
 network management so that the effective frame rate is the same
 or better than the network manager specifies. For a bit rate of
 156,25 kHz the frame period is 16 * 6,4 µs = 102,4 µs
 Suppose the worst case time for ISR is 58 micro seconds
 then the time left over for the actual frame is 102,4 - 58 =
 44,4 µs. This corresponds to a bit rate of 16 * 1/(44,4 µs)
 = 360,36 kHz. The closest bit rate greater than this that the
 360 supports is 390,625 kHz. The effective frame period becomes
 58 µs + (16 * (1/390,625 kHz)) = 98,96 µs. This is faster so
 OK. Effective bit rate is 16 * 1/(98,96 µs) = 161,68 kHz.
 Unless we can more than half the time for the ISR to run we
 can't run fast enough to make the next step that is the 312,5
 kHz bit rate.
**/

 switch (spmGbl.bitClockRate)
 {
 case 78125:
 /* run at 130 kHz to get same or faster effective rate */
 spmodePtrGbl->div16 = 1; /* divide by 16 */
 spmodePtrGbl->pms = 2; /* prescale modulus select */
 break;
 case 156250:
 /* run at 390 kHz to get same or faster effective rate */
 spmodePtrGbl->div16 = 1; /* divide by 16 */
 spmodePtrGbl->pms = 0; /* prescale modulus select */
 break;
 default:
 /* 156 250 */
 /* run at 390 kHz to get same or faster eff rate */
 spmodePtrGbl->div16 = 1; /* divide by 16 */
 spmodePtrGbl->pms = 0; /* prescale modulus select */
 break;
 }

 /* reinitialize receive frame buffers */
 spmGbl.rf.setTxFlag = 0; /* frame status not transmitting */
 spmGbl.rf.clrTxReqFlag = 0; /* don't clear */
 spmGbl.rf.rxDataValid = 0; /* no valid data this frame */
 spmGbl.rf.txDataCTS = 0; /* no clear to send */
 spmGbl.rf.setCollDet = 0; /* no collision detected */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

115

 spmGbl.rf.rxFlag = 0; /* not receiving */
 spmGbl.rf.rwAck = 0; /* not acknowledged */
 spmGbl.rf.txOn = 0; /* not receiving */
 spmGbl.rf.data = 0; /* */

 /* reinitialize receive frame buffers */
 spmGbl.tf.txFlag = 0; /* frame status not transmitting */
 spmGbl.tf.txReqFlag = 0; /* don't req */
 spmGbl.tf.txDataValid = 0; /* no valid data this frame */
 spmGbl.tf.blank = 0; /* unused */
 spmGbl.tf.txAddrRW = 0; /* write */
 spmGbl.tf.txAddr = 0; /* default address */
 spmGbl.tf.data = 0; /* */

 /* initialize crcGbl for good form */
 crcGbl.poly = 0;
 crcGbl.crc = 0;
 crcGbl.crcBit = 0;
 crcGbl.dataBit = 0;
 crcGbl.dataByte = 0;

 /* Send First Frame ISR keeps it going */
 tbdPtrGbl->r = 1; /* buffer ready to transmit */
 spcomPtrGbl->str = 1;

 /* wait for a while for everything to settle down */
 good = DelayTicks(RESTART_DELAY_TICKS);

 PHYHardResetSPMXCVR(); /* this also writes config registers */

 return;

}

/***
Function: PHYIOInit
Returns: None
Reference: None
Purpose: To Init variables related to PHYIO function.
Comments: None
**/
void PHYIOInit(void)
{
 SetMsTimer(&phyIOTimer, (uint16)(PHYIO_CHECK_INTERVAL * 1 000));
 gp->resetPinPrevState = 1; /* Allow Reset Button Push */
 gp->manualServiceRequestPrevState = 1; /* Allow Manual Service Request Push */
 gp->ioInputPin0PrevState = 1;
}

/***
Function: PHYIO
Returns: None
Reference: None
Purpose: To handle Input switches (reset service and IO) and
 to set value of ouput leds
 Manual Service Request and Reset pin share same LED to indicate
 switch pushed
Comments: None
**/
void PHYIO(void)
{

 /* Perform Pin related checks only on timer expiry
 to avoid bounce problem */
 if (MsTimerExpired(&phyIOTimer))
 {
 /* check reset switch */
 /* reset pulled low &&
 reset not enabled so need to enable &&
 have not yet set this pin push */
 if ((pbdatPtrGbl->d12 == 0) &&
 !gp->resetNode &&

BS EN 14908-1:2014

EN 14908-1:2014 (E)

116

 (gp->resetPinPrevState != 0))
 {
 gp->resetNode = TRUE; /* signal scheduler there is reset */
 nmp->resetCause = EXTERNAL_RESET;
 /* NodeReset function will clear when reset is finished */
 /* prevents sending more than 1 reset until pin is toggled */
 gp->resetPinPrevState = 0;
 }

 /* reset pin high */
 if (pbdatPtrGbl->d12 == 1)
 {
 gp->resetPinPrevState = 1;
 }

 if ((pbdatPtrGbl->d13 == 0) && /* manual service request pulled low */
 !gp->manualServiceRequest && /* manualServiceRequest not enabled */
 (gp->manualServiceRequestPrevState != 0)) /* have not yet set
 this pin push */
 {
 gp->manualServiceRequestPrevState = 0;
 gp->manualServiceRequest = TRUE; /* notify stack that
 manual service request enabled */
 }

 if (pbdatPtrGbl->d13 == 1) /* manual service request high */
 {
 gp->manualServiceRequestPrevState = 1; /* manual service request toggled
 so next press will allow push */
 }

 if(pbdatPtrGbl->d14 == 1 &&
 (gp->ioInputPin0PrevState != 0)) /* debouncer, check
 gen purpose io input */
 {
 gp->ioInputPin0 = 1;
 }
 else
 {
 gp->ioInputPin0 = 0;
 }

 if (pbdatPtrGbl->d14 == 1) /* io pin high */
 {
 gp->ioInputPin0PrevState = 1; /* io pin toggled so next
 press will allow push */
 }

 SetMsTimer(&phyIOTimer,
 (uint16)(PHYIO_CHECK_INTERVAL * 1 000));
 }

 if (gp->resetNode || gp->manualServiceRequest || gp->ioOutputPin0)
 {
 pbdatPtrGbl->d8 = 1; /* turn on reset-service light */
 }
 else
 {
 pbdatPtrGbl->d8 = 0; /* turn off reset-service light */
 }

 if(gp->ioOutputPin1 == 0) /* set io output pin */
 {
 pbdatPtrGbl->d9 = 0;
 }
 else
 {
 pbdatPtrGbl->d9 = 1;
 }

 return;
}

BS EN 14908-1:2014

EN 14908-1:2014 (E)

117

/***
Function: IncrementBacklog
Returns:
Reference:
Purpose: increments backlog and handles backlog overflow
Comments:
**/

static void IncrementBacklog(uint8 deltaBacklog)
{
 if (deltaBacklog > MAX_BACKLOG)
 {
 return; /* Erroneous deltaBacklog value */
 }
 /* spmGbl.backlog size shall allow 2 * MAX_BACKLOG without
 wrap around */
 spmGbl.backlog += deltaBacklog;
 if (spmGbl.backlog > MAX_BACKLOG)
 {
 spmGbl.backlog = MAX_BACKLOG;
 INCR_STATS(nmp->stats.backlogOverflow);
 }
}

/***
Function: DecrementBacklog
Returns:
Reference:
Purpose: decrements backlog and handles backlog underflow
Comments:
**/

static void DecrementBacklog(uint8 deltaBacklog)
{
 if (deltaBacklog > MAX_BACKLOG)
 {
 return; /* Erroneous deltaBacklog value */
 }
 if (spmGbl.backlog <= deltaBacklog)
 {
 spmGbl.backlog = 0;
 }
 else
 {
 spmGbl.backlog -= deltaBacklog;
 }
}

/***
Function: SPMIsr
Returns: none, no arguments allowed either
Reference:
Purpose:
 Interrupt Service Routine

 This ISR serves two primary functions. the first is to execute the
 channel access algorithm. the second is to performs the special
 purpose mode transfers with the XCVR. For the channel access
 algorithm a single hardware timer is used as reference for a set
 of global values that are the expire times for the various
 channel access algorithm timers. The ISR polls the hardware timer
 each time the ISR runs and checks for expiration of the various
 timers. The ISR has two coupled state machines. the first

BS EN 14908-1:2014

EN 14908-1:2014 (E)

118

 indicated by spmGbl.phase controls the channel access algorithm
 and the second indicated by spmGbl.state controls the SPM
 transfers.

 The ISR runs after each 16 SPI transfers or clock transitions.
 An Interrupt is generated by an rxb event when a receive buffer
 is full.

Comments: shall use interrupt pragma
**/
/* interrupt pragma informs compiler to make next function
 an interrupt handler with RTE and saved state of registers */

#pragma interrupt()

static void SPMIsr()
{
 SPIEventMaskReg spieTemp; /* local copy of event register */
 int j; /* for loop index */

 spieTemp = *spiePtrGbl; /* read SPIE into local copy */

 /* clear spie ASAP so as not to miss any events while in isr */
 /* write all ones to clear */
 *((uint8 *) spiePtrGbl) = (uint8) 0xFFU;

 /* each event handled by this isr needs a separate if statement */
 if (spieTemp.rxb == 1)
 {
 /* handle interrupt for receive buffer filled */
 /* transfer can be stopped by physical layer or for error */
 if (spmGbl.mode == STOP) /* stop spm exchanges */
 {
 spmGbl.state = DEBUG;
 macGbl.tc = 0;
 macGbl.tl = 0;
 macGbl.tpr = FALSE;
 macGbl.rc = 0;
 macGbl.rl = 0;
 macGbl.rpr = FALSE;
 spmGbl.crw = FALSE;
 spmGbl.srr = FALSE;
 }
 else /* State Machines for Transmit and Receive */
 {

 /* debug */
 /* last received frame is in spmGbl.rf */
 /* update history for debugging purposes*/
#ifdef SPM_HISTORY
 hBufGbl.records[hBufGbl.index].rf = spmGbl.rf;
 hBufGbl.records[hBufGbl.index].state = spmGbl.state;
 hBufGbl.records[hBufGbl.index].rb = spiParamPtrGbl->rbptr;
 hBufGbl.records[hBufGbl.index].tb = spiParamPtrGbl->tbptr;

 hBufGbl.records[hBufGbl.index].start = *(spmGbl.clock);
#endif
 /***/
 /* state machine for channel access algorithm */
 /**/
 switch (spmGbl.phase)
 {
 case BUSY: /* some node is transmitting */
 /* waits here until channel is idle */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

119

 if ((spmGbl.rf.rxFlag == 0) &&
 (spmGbl.rf.txOn == 0))
 {
 /* channel has become idle neither receive or transmit */
 /* start idle timer */
 spmGbl.idleTimerStart = *(spmGbl.clock);

 /* set beta1 duration based on last packet,
 either rx or tx */
 if (spmGbl.kind == POST_RX)
 {
 spmGbl.beta1Ticks = spmGbl.beta1PostRxTicks;
 spmGbl.priorityIdleTicks = spmGbl.priorityChPostRxTicks;
 }
 else
 {
 spmGbl.beta1Ticks = spmGbl.beta1PostTxTicks;
 spmGbl.priorityIdleTicks = spmGbl.priorityChPostTxTicks;
 }

 /* Previous Packet has ended so reset altPathBit flags.
 Once tpr goes true then we will know to write
 altPathBit once before tx */
 spmGbl.writeAltPathBit = FALSE;
 spmGbl.altPathBitWritten = FALSE;

 /* start waiting out beta1 time */
 spmGbl.phase = BETA1_IDLE;
 }
 else /* channel still busy */
 {
 if (spmGbl.rf.rxFlag == 1)
 {
 /* busy receiving packet */
 spmGbl.kind = POST_RX;
 }
 else
 {
 /* busy transmitting packet */
 spmGbl.kind = POST_TX;
 }

 spmGbl.phase = BUSY;
 }
 break;
 case BETA1_IDLE: /* waits out beta1 time */

 if ((spmGbl.rf.rxFlag == 1) ||
 (spmGbl.rf.txOn == 1))
 {
 /* channel is now busy */
 /* other node shall have used channel or
 xcvr is in error with bad txOn*/

 spmGbl.phase = BUSY;
 }
 else if ((macGbl.tpr == TRUE) &&
 (spmGbl.writeAltPathBit == FALSE) &&
 (spmGbl.state == IDLE)) /*in case doing status register
 read*/
 {
 /* tx packet is ready */
 /* always do unconfirmed write
 of altPathBit before tx */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

120

 spmGbl.writeAltPathBit = TRUE;

 /* wait until next frame before begin channel
 access */
 spmGbl.phase = BETA1_IDLE;
 }
 else
 {
 /* check idle timer to see if beta1 time expired */
 spmGbl.elapsed =
 *(spmGbl.clock) - spmGbl.idleTimerStart;

 if (spmGbl.elapsed >= spmGbl.beta1Ticks)
 {
 /* idle timer expired */
 /* check if transmit packet is still ready and
 set priority access type */
 /* conditions for priority access
 Packet marked as priority
 Collisions less than 2
 Node has a priority slot
 Only after received packet
 only after valid crc on last received pkt
 */
 if ((macGbl.tpr == TRUE) &&
 (macGbl.priorityPkt == TRUE) &&
 (spmGbl.kind == POST_RX) && /* only after rx */
 (spmGbl.collisionsThisPkt <= 1) &&
 (spmGbl.nodePriority > 0) &&
 (spmGbl.state == IDLE)) /* in case doing status */
 /* register read */
 {

 /* attempt priority slot access */
 spmGbl.transmitTimerStart = spmGbl.idleTimerStart +
 spmGbl.beta1Ticks;

 spmGbl.phase = PRIORITY_WAIT_TX;
 }
 else
 {

 /* do not attempt priority slot access */
 /* start waiting out priority slots */
 spmGbl.phase = PRIORITY_IDLE;

 }
 }
 else
 {
 spmGbl.phase = BETA1_IDLE; /* keep waiting */
 }
 }
 break;
 case PRIORITY_IDLE:
 if ((spmGbl.rf.rxFlag == 1) ||
 (spmGbl.rf.txOn == 1)) /* busy */
 {
 /* other node shall have used channel or
 xcvr is in error with bad txOn*/

 spmGbl.phase = BUSY;
 }
 else if ((macGbl.tpr == TRUE) &&

BS EN 14908-1:2014

EN 14908-1:2014 (E)

121

 (spmGbl.writeAltPathBit == FALSE) &&
 (spmGbl.state == IDLE)) /*in case doing status register
 read*/
 {
 /* tx packet is ready */
 /* always do unconfirmed write of altPathBit
 before tx */
 spmGbl.writeAltPathBit = TRUE;

 /* have to wait until next frame before
 access channel */
 spmGbl.phase = PRIORITY_IDLE;
 }
 else
 {
 /* check idle timer for priority slots to end */
 spmGbl.elapsed =
 *(spmGbl.clock) - spmGbl.idleTimerStart;
 if (spmGbl.elapsed >=
 (spmGbl.priorityIdleTicks + spmGbl.beta1Ticks)) /* idle */
 /* timer expired */
 {
 /* timer expired so check if transmit packet ready */
 if ((macGbl.tpr == TRUE) &&
 (spmGbl.state == IDLE)) /*in case doing status register
 read*/
 {
 /* start transmit timer */
 spmGbl.transmitTimerStart = spmGbl.idleTimerStart +
 spmGbl.beta1Ticks +
 spmGbl.priorityIdleTicks;
 /* start base timer */
 /* base timer runs when waiting for randomized */
 /* tx access */

 /* spmGbl.baseTimerStart = spmGbl.idleTimerStart +
 spmGbl.beta1Ticks +
 spmGbl.priorityIdleTicks; */

 spmGbl.baseTimerStart = spmGbl.transmitTimerStart;
 /* faster way */

 /* change seed */
 srand((unsigned int) spmGbl.transmitTimerStart);

 /* attempt random slot access */
 /* random slot between 0 and backlog * wbase - 1*/

 spmGbl.randomTicks = (rand() % ((spmGbl.backlog + 1) *
 W_BASE)) * spmGbl.beta2Ticks ;

 spmGbl.phase = RANDOM_WAIT_TX; /* go wait for slot */
 }
 else /* priority idle timer has expired but transmit */
 /* packet is not ready */
 {
 spmGbl.phase = RANDOM_IDLE; /* go wait */
 }
 }
 else /*timer not elapsed so keep waiting for end of priority
 slots*/
 {
 spmGbl.phase = PRIORITY_IDLE;
 }
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

122

 break;
 case RANDOM_IDLE:
 if ((spmGbl.rf.rxFlag == 1) || (spmGbl.rf.txOn == 1)) /* busy */
 {
 /* other node shall have used channel or
 xcvr is in error with bad txOn*/
 spmGbl.phase = BUSY;
 }
 else if ((macGbl.tpr == TRUE) && /* tx packet ready */
 (spmGbl.writeAltPathBit == FALSE) &&
 (spmGbl.state == IDLE)) /*in case doing status register
 read*/
 {
 /* always do unconfirmed write of altPathBit before tx */
 spmGbl.writeAltPathBit = TRUE;

 /* have to wait until next frame to start channel access */
 spmGbl.phase = RANDOM_IDLE;
 }
 else
 {
 /* check if transmit packet still ready */
 if ((macGbl.tpr == TRUE) &&
 (spmGbl.state == IDLE)) /* in case doing status register
 read /
 {
 spmGbl.transmitTimerStart = *(spmGbl.clock); /* start */
 /* transmit */
 /* timer */

 /* base timer runs when waiting for randomized tx access */
 /* start base timer */
 spmGbl.baseTimerStart = spmGbl.transmitTimerStart;

 srand((unsigned int) spmGbl.transmitTimerStart); /*change */
 /* seed*/

 /* attempt random slot access */
 /* random slot between 0 and backlog * wbase - 1*/
 spmGbl.randomTicks = (rand() % ((spmGbl.backlog + 1) *
 W_BASE)) * spmGbl.beta2Ticks ;

 spmGbl.phase = RANDOM_WAIT_TX; /* go wait for slot */
 }
 else
 {
 spmGbl.phase = RANDOM_IDLE; /* nothing to send keeping */
 /* waiting */
 }
 }
 break;
 case PRIORITY_WAIT_TX:
 if ((spmGbl.rf.rxFlag == 1) || (spmGbl.rf.txOn == 1)) /* busy */
 {
 /* other node shall have used channel or
 xcvr is in error with bad txOn*/
 spmGbl.phase = BUSY;
 }
 else
 {
 /* check tx timer wait for our priority slot to come up*/
 spmGbl.elapsed = *(spmGbl.clock) - spmGbl.transmitTimerStart;
 if (spmGbl.elapsed >= spmGbl.priorityNodeTicks)
 {
 /* approve transmission */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

123

 spmGbl.accessApproved = TRUE; /* enable spm state machine */
 /* to begin tx */
 spmGbl.phase = START_TX;
 }
 else
 {
 spmGbl.phase = PRIORITY_WAIT_TX;
 }
 }
 break;
 case RANDOM_WAIT_TX:
 if ((spmGbl.rf.rxFlag == 1) || (spmGbl.rf.txOn == 1)) /* busy */
 {
 /* other node shall have used channel or
 xcvr is in error with bad txOn*/
 spmGbl.phase = BUSY;
 }
 else
 {

 /* Get current time. Since used for two checks we want */
 /* to be synchronized */
 spmGbl.stopped = *(spmGbl.clock);

 /* check tx timer wait for out random slot to come up */
 spmGbl.elapsed = spmGbl.stopped - spmGbl.transmitTimerStart;
 if (spmGbl.elapsed >= spmGbl.randomTicks)
 {
 /* approve transmission */
 spmGbl.accessApproved = TRUE; /* enable spm state machine to
 begin tx */
 spmGbl.phase = START_TX;
 }
 else
 {
 spmGbl.phase = RANDOM_WAIT_TX;
 }

 /* check base timer, base timer running when we do random */
 /* slot access */
 /* remember baseTimerStart is the same as transmitTimerStart */
 /*only on the first iteration */
 spmGbl.elapsed = spmGbl.stopped - spmGbl.baseTimerStart;
 if (spmGbl.elapsed >= spmGbl.baseTicks)
 {
 spmGbl.baseTimerStart = spmGbl.stopped; /* restart base */
 /* timer */
 DecrementBacklog(1); /* decrement back log */
 }

 }
 break;
 case START_TX:
 if ((spmGbl.rf.rxFlag == 1) || (spmGbl.rf.txOn == 1)) /* channel */
 /* busy */
 {
 /* other node shall have used channel or packet has started */

 spmGbl.accessApproved = FALSE;
 spmGbl.phase = BUSY;
 }
 else
 {
 if (macGbl.tpr == FALSE) /* macGbl.tpr == FALSE packet */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

124

 /* cancelled */
 {
 spmGbl.accessApproved = FALSE; /* deny access */
 spmGbl.phase = RANDOM_IDLE; /* back to idle */
 }
 else
 {

 spmGbl.phase = START_TX;
 }

 /* check base timer on more time in case expires while waiting
 for txOn. only if non priority slot access */

 spmGbl.stopped = *(spmGbl.clock);
 spmGbl.elapsed = spmGbl.stopped - spmGbl.baseTimerStart;
 if (spmGbl.elapsed >= spmGbl.baseTicks)
 {
 spmGbl.baseTimerStart = spmGbl.stopped; /* restart base */
 /*timer */
 DecrementBacklog(1); /* decrement back log */
 }

 }
 break;
 default:
 spmGbl.phase = RANDOM_IDLE;
 break;
 } /* End access algo switch */

 /* Cycle Timer only runs when the Mac Layer is Idle that is when
 the node is not tranmitting or receiving or waiting to transmit
 or counting down beta1 or counting down priority slots or counting
 down the extra 16 beta2 slots after a transmission
 This directly corresponds to the Phase RANDOM_IDLE

 Anytime the MAC layer is busy ie in some phase other than RANDOM_IDLE
 then the cycle timer stops. The cycle timer will then resume when the
 mac layer returns to the RANDOM_IDLE phase. The cycle timer is reset
 when spmGbl.cycleTimerRestart == TRUE. This is set to true
 1) following a successful transmission
 2) following a valid crc receive

 We use a time difference between the current value of the hardware
 timer and the stored value when we started the cycleTimer to determine
 when the cycleTimer expires.
 Since the hardware timer is free running and does not stop when
 the cycle timer stops , we shall keep shifting the
 cycleTimerStart forward whenever the cycleTimer is stopped. This keeps
 the relative time difference correct so that when it resumes
 the expiration calculation will be valid.
 */

 spmGbl.stopped = *(spmGbl.clock);
 if ((spmGbl.phase == RANDOM_IDLE)) /* cycle timer is running */
 {
 spmGbl.elapsed = spmGbl.stopped - spmGbl.cycleTimerStart;

 if (spmGbl.cycleTimerRestart) /* cycle timer needs to be restarted */
 {
 spmGbl.cycleTimerStart = spmGbl.stopped;
 spmGbl.cycleTimerRestart = FALSE;
 }
 else if (spmGbl.elapsed >= spmGbl.cycleTicks)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

125

 {
 spmGbl.cycleTimerStart = spmGbl.stopped; /* restart */
 DecrementBacklog(1);
 }
 }
 else /* shift cycleTimerStart forward since cycle timer stopped */
 {
 spmGbl.cycleTimerStart += spmGbl.stopped - spmGbl.lastTime;
 }
 spmGbl.lastTime = spmGbl.stopped; /* save last stopped value */

 /**
 End Channel Access Algorithm State machine
 ***/

 /**
 Begin SPM Transfer State Machine
 ***/
 /* state machine for handshaking with xcvr*/
 switch (spmGbl.state)
 {

 case IDLE:
 if (spmGbl.rf.rxFlag == 1) /* XCVR has detected packet to */
 /* receive */
 {
 macGbl.rc = 0; /* init receive byte count */
 macGbl.rl = 0;
 if (macGbl.rpr == TRUE) /* last packet not copied out */
 {
 spmGbl.mode = OVERWRITE; /* stepped on last packet */
 macGbl.rpr = FALSE;/* what else to do ? */
 }

 /* initialize crc stuff */
 crcGbl.poly = 0x1 021;
 crcGbl.crc = 0xffff;
 crcGbl.crcBit = 0;
 crcGbl.dataBit = 0;
 crcGbl.dataByte = 0;

 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */
 spmGbl.state = RECEIVE;
 }
 else if (spmGbl.rf.txOn == 1) /* XCVR xmitting on network so */
 /* don't do anything */
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

126

 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 /* increment reset count */
 spmGbl.resetCount ++;
 if (spmGbl.resetCount >= RESET_COUNT_LIMIT)
 {
 PHYHardResetSPMXCVR();
 }

 spmGbl.state = IDLE;
 }
 else if ((spmGbl.writeAltPathBit) && (!spmGbl.altPathBitWritten))
 {
 /* need to write alt path bit unacked write */
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 1;
 spmGbl.tf.data = spmGbl.configData[0];
 */

 *((uint8 *)&(spmGbl.tf)) = (uint8) 1; /* fast way */
 if (macGbl.altPathBit == 1)
 {
 *((uint8 *)&(spmGbl.tf.data)) =
 (uint8) (0x80 | spmGbl.configData[0]); /* fast way */
 }
 else
 {
 *((uint8 *)&(spmGbl.tf.data)) = (uint8) (0x7F &

 spmGbl.configData[0]);
 }
 spmGbl.altPathBitWritten = TRUE;
 spmGbl.state = IDLE;
 }
 else if ((macGbl.tpr == TRUE) && /* transmit packet ready */
 (spmGbl.accessApproved == TRUE)) /* channel access */
 /* approved */
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 1;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x4 000U; /* fast way */

 macGbl.tc = 0;
 spmGbl.state = REQ_TX;
 }

 else if ((spmGbl.crw == TRUE) && /* config register write */
 (spmGbl.cra > 0) && /* 0< config reg address <=7 */
 (spmGbl.cra <= 7))

BS EN 14908-1:2014

EN 14908-1:2014 (E)

127

 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = spmGbl.cra;
 spmGbl.tf.data = spmGbl.crData;
 */

 *((uint8 *)&(spmGbl.tf)) = (uint8) spmGbl.cra; /* fast way */
 *((uint8 *)&(spmGbl.tf.data)) = (uint8) spmGbl.crData; /*fast */
 /* way */

 spmGbl.state = WRITE;
 }
 else if ((spmGbl.srr == TRUE) && /* status register read */
 (spmGbl.sra >= 0) && /* 0< status reg address <=7 */
 (spmGbl.sra <= 7))
 {
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 1;
 spmGbl.tf.txAddr = spmGbl.sra;
 spmGbl.tf.data = 0;

 spmGbl.state = READ;
 }
 else /* Nothing can be done just wait */
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */
 spmGbl.state = IDLE;
 }
 break;
 case RECEIVE:
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 if (spmGbl.rf.rxFlag == 0) /* packed ended */
 {
 macGbl.rl = macGbl.rc; /* set last byte count */
 /* is packet of valid length */
 if ((macGbl.rl >= 8) && /* minimum valid packet is 8 bytes */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

128

 (macGbl.rl < PKT_BUF_LEN)) /* shall be less than buffer */
 {
 /* do last step of crc */
 crcGbl.crc = crcGbl.crc ^ 0xffff;

 /* is crc valid */
 if (crcGbl.crc == (*((uint16 *) &macGbl.rPkt[macGbl.rl -
2])))
 {
 /* copy out backlog */
 macGbl.deltaBLRx = macGbl.rPkt[0] & 0x3F;

 /* update cycle timer and set flag */
 if (macGbl.deltaBLRx <= 0)
 {
 DecrementBacklog(1);
 }
 else
 {
 IncrementBacklog(macGbl.deltaBLRx);
 }
 /* Cycle Timer needs to be restarted after valid crc rx */
 spmGbl.cycleTimerRestart = TRUE;

 /* Attempt to copy packet into Link Layer receive Queue */
 if ((*gp->lkInQTailPtr == 0) && /* == 0 means free */
 /* buffer big enough for packet */
 (gp->lkInBufSize >= macGbl.rl + 3))
 {
 /* Copy the packet to link layer input queue */
 *(uint16 *)(gp->lkInQTailPtr + 1) = (uint16) macGbl.rl;
 /* copy length */
 memcpy(gp->lkInQTailPtr + 3, macGbl.rPkt, macGbl.rl);
 /* Update Link Layer Input Queue Fields */
 *gp->lkInQTailPtr = 1; /*lets link layer know packet */
 /* is ready to process */
 gp->lkInQTailPtr += gp->lkInBufSize;
 if (gp->lkInQTailPtr ==
 gp->lkInQ + gp->lkInBufSize * gp->lkInQCnt)
 {/* past end of queue */
 gp->lkInQTailPtr = gp->lkInQ; /* wrap to */
 /* beginning */
 }
 }
 else /* packet discarded */
 {
 /* Discard packet as either there is no buffer */
 /* available or it is too big for buffer */
 INCR_STATS(nmp->stats.missedMessages); /* update */
 /*stats */
 }
 }
 else /* invalid crc */
 {
 /* update stats for bad crc packet */
 INCR_STATS(nmp->stats.transmissionErrors);
 }
 }
 else /* update stats invalid packet length */
 {
 INCR_STATS(nmp->stats.transmissionErrors);
 }

 /* Reset macGbl's receive packet fields */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

129

 macGbl.rc = 0; /* reinit to be safe */
 macGbl.rl = 0;
 macGbl.rpr = FALSE; /* ready to receive another packet */

 spmGbl.state = IDLE; /* all done */
 }
 else if (spmGbl.rf.rxDataValid == 1) /* valid byte this frame */
 {
 if(macGbl.rc < PKT_BUF_LEN) /* don't go past end of buffer */
 {
 macGbl.rPkt[macGbl.rc] = spmGbl.rf.data; /* copy out byte */
 macGbl.rc++; /* increment counter */

 /* do 1 byte of crc. Delay by two bytes so we do not computer
 crc on the two crc bytes in the packet itself */
 if (macGbl.rc >= 3)
 {
 /* make copy of byte */
 crcGbl.dataByte = macGbl.rPkt[macGbl.rc - 3];
 for (j = 0; j < 8; j++)
 {
 crcGbl.crcBit = (crcGbl.crc & 0x8 000) ? 1 : 0;
 crcGbl.dataBit = (crcGbl.dataByte & 0x80) ? 1 : 0;
 crcGbl.dataByte = crcGbl.dataByte << 1;
 crcGbl.crc = crcGbl.crc << 1;
 if (crcGbl.crcBit != crcGbl.dataBit)
 {
 crcGbl.crc = crcGbl.crc ^ crcGbl.poly;
 }
 }
 }
 }

 spmGbl.state = RECEIVE; /* look for more */
 }
 else /* no valid data but still receiving */
 {
 spmGbl.state = RECEIVE; /* keep looking */
 }
 break;
 case WRITE:
 if (spmGbl.rf.rxFlag == 1) /* XCVR has detected packet to */
 /* receive */
 {
 macGbl.rc = 0; /* init receive byte count */
 macGbl.rl = 0;
 if (macGbl.rpr == TRUE) /* last packet not copyied out */
 {
 spmGbl.mode = OVERWRITE; /* stepped on last packet */
 macGbl.rpr = FALSE;/* what else to do ? */
 }

 /* initialize crc stuff */
 crcGbl.poly = 0x1 021;
 crcGbl.crc = 0xffff;
 crcGbl.crcBit = 0;
 crcGbl.dataBit = 0;
 crcGbl.dataByte = 0;

 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

130

 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 spmGbl.state = RECEIVE;
 }
 else if ((spmGbl.rf.rwAck == 0) && /* still not written */
 (spmGbl.crw == TRUE) &&
 (spmGbl.cra > 0) && /* 0< config reg address */
 /* <=7 */
 (spmGbl.cra <= 7))
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = spmGbl.cra;
 spmGbl.tf.data = spmGbl.crData;
 */

 *((uint8 *)&(spmGbl.tf)) = (uint8) spmGbl.cra; /* fast way */
 *((uint8 *)&(spmGbl.tf.data)) = (uint8) spmGbl.crData; /*fast */
 /* way */

 spmGbl.state = WRITE; /* try again */
 }
 else /* write successful or recalled */
 {
 spmGbl.crw = FALSE;

 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 spmGbl.state = IDLE;
 }
 break;
 case READ:
 if (spmGbl.rf.rxFlag == 1) /* XCVR has detected packet to */
 /* receive */
 {
 macGbl.rc = 0; /* init receive byte count */
 macGbl.rl = 0;
 if (macGbl.rpr == TRUE) /* last packet not copied out */
 {
 spmGbl.mode = OVERWRITE; /* stepped on last packet */
 macGbl.rpr = FALSE;/* what else to do ? */
 }

 /* initialize crc stuff */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

131

 crcGbl.poly = 0x1 021;
 crcGbl.crc = 0xffff;
 crcGbl.crcBit = 0;
 crcGbl.dataBit = 0;
 crcGbl.dataByte = 0;

 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 spmGbl.state = RECEIVE;
 }
 else if ((spmGbl.rf.rwAck == 0) && /* still not read */
 (spmGbl.srr == TRUE) &&
 (spmGbl.sra >= 0) && /* 0< config reg address */
 /* <=7 */
 (spmGbl.sra <= 7))
 {

 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 1;
 spmGbl.tf.txAddr = spmGbl.sra;
 spmGbl.tf.data = 0;

 spmGbl.state = READ; /* keep trying */
 }
 else if (spmGbl.rf.rwAck == 1)
 {
 spmGbl.srData = spmGbl.rf.data;
 spmGbl.srr = FALSE;

 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */
 spmGbl.state = IDLE;
 }
 else
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

132

 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */
 spmGbl.state = IDLE;
 }
 break;
 case REQ_TX:
 if (spmGbl.rf.rxFlag == 1 /* XCVR has detected packet to */
 /* receive */
 {
 macGbl.rc = 0; /* init receive byte count */
 macGbl.rl = 0;
 if (macGbl.rpr == TRUE) /* last packet not copied out */
 {
 spmGbl.mode = OVERWRITE; /* stepped on last packet */
 macGbl.rpr = FALSE;/* what else to do ? */
 }

 /* initialize crc stuff */
 crcGbl.poly = 0x1021;
 crcGbl.crc = 0xffff;
 crcGbl.crcBit = 0;
 crcGbl.dataBit = 0;
 crcGbl.dataByte = 0;

 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 spmGbl.state = RECEIVE;
 }
 else if (spmGbl.rf.clrTxReqFlag == 1) /* either accept or deny */
 {
 if ((spmGbl.rf.setTxFlag == 1) && /* request accepted */
 (spmGbl.rf.txDataCTS == 1))
 {
 /*
 spmGbl.tf.txFlag = 1;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 1;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = macGbl.tPkt[macGbl.tc];
 */

 *((uint8 *)&(spmGbl.tf)) = (uint8) 0xA0; /* fast way */
 *((uint8 *)&(spmGbl.tf.data)) = (uint8)
 macGbl.tPkt[macGbl.tc];

 macGbl.tc++; /* increment count */

 spmGbl.state = TRANSMIT; /* accepted */
 }
 else /* request denied */
 {
 /*

BS EN 14908-1:2014

EN 14908-1:2014 (E)

133

 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 spmGbl.state = IDLE; /* dont want to tx anymore */

 }
 }
 else /* wait for xcvr to respond to request */
 {
 /* typically there is one blank frame from xcvr
 after REQ_TX bit is set but before CTS or ClrTxReqFlag
*/

 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 spmGbl.state = REQ_TX; /* Wait for response */
 }
 break;
 case TRANSMIT:
 if (spmGbl.rf.setCollDet == 1) /* collision so start over */
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 macGbl.tc = 0;

 IncrementBacklog(1); /* collision so increment backlog */

 spmGbl.collisionsThisPkt++; /*increment collison count this */
 /* packet*/

 INCR_STATS(nmp->stats.collisions);/* increment collision */
 /* stats */

 if (spmGbl.collisionsThisPkt >= 255)
 {
 /* throw away packet */
 macGbl.tc = 0;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

134

 spmGbl.resetCount = 0; /* reset count for txOn */
 spmGbl.collisionsThisPkt = 0;
 macGbl.tpr = FALSE;
 }

 spmGbl.state = IDLE; /* start over */
 }
 else if (spmGbl.rf.txDataCTS == 1)
 {
 /*
 spmGbl.tf.txFlag = 1;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 1;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = macGbl.tPkt[macGbl.tc];
 */

 *((uint8 *)&(spmGbl.tf)) = (uint8) 0xA0; /* fast way */
 *((uint8 *)&(spmGbl.tf.data)) = (uint8) macGbl.tPkt[macGbl.tc];
 /* fast way */

 macGbl.tc++; /* increment count */

 if(macGbl.tc >= macGbl.tl) /* last byte sent this frame */
 {
 spmGbl.state = DONE_TX; /* dont want to tx anymore */
 }
 else
 {
 spmGbl.state = TRANSMIT;
 }
 }
 else if ((spmGbl.rf.txOn == 1) &&
 (macGbl.tpr == TRUE) &&
 (macGbl.tc < macGbl.tl)) /* wait for cts */
 {
 /*
 spmGbl.tf.txFlag = 1;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint8 *)&(spmGbl.tf)) = (uint8) 0x80; /* fast way */
 *((uint8 *)&(spmGbl.tf.data)) = (uint8) 0; /* fast way */

 spmGbl.resetCount++;
 if (spmGbl.resetCount >= RESET_COUNT_LIMIT)
 {
 PHYHardResetSPMXCVR();
 spmGbl.state = IDLE;
 }
 else
 {
 spmGbl.state = TRANSMIT;
 }
 }
 else /* something wrong here throw away packet and get out */
 {
 /*

BS EN 14908-1:2014

EN 14908-1:2014 (E)

135

 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 macGbl.tc = 0;
 spmGbl.resetCount = 0; /* reset count for txOn */
 spmGbl.collisionsThisPkt = 0;
 macGbl.tpr = FALSE;
 spmGbl.state = IDLE;
 }
 break;
 case DONE_TX: /* wait for tx_on to go off */
 if (spmGbl.rf.setCollDet == 1) /* collision so start over */
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

 macGbl.tc = 0;

 IncrementBacklog(1); /* collision so increment backlog */

 spmGbl.collisionsThisPkt++; /* increment collision count */
 /* this packet */

 INCR_STATS(nmp->stats.collisions);/* increment collision */
 /* stats */

 if (spmGbl.collisionsThisPkt >= 255)
 {
 /* throw away packet */
 macGbl.tc = 0;
 spmGbl.resetCount = 0; /* reset count for txOn */
 spmGbl.collisionsThisPkt = 0;
 macGbl.tpr = FALSE;
 }

 spmGbl.state = IDLE; /* start over */
 }
 else if (spmGbl.rf.txOn == 1) /* still sending last byte(s) */
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

136

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0; /* fast way */

 spmGbl.resetCount++;
 if (spmGbl.resetCount >= RESET_COUNT_LIMIT)
 {
 PHYHardResetSPMXCVR();
 spmGbl.state = IDLE;
 }
 else
 {
 spmGbl.state = DONE_TX;
 }
 }
 else /* (spmGbl.rf.txOn == 0) done sending */
 {
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0; /* fast way */

 /* successful transmission so update backlog */
 if (macGbl.deltaBLTx <= 0)
 {
 DecrementBacklog(1);
 }
 else
 {
 IncrementBacklog(macGbl.deltaBLTx);
 }

 /* Cycle Timer needs to be restarted after valid tx */

 spmGbl.cycleTimerRestart = TRUE;

 /* clean up */
 macGbl.tc = 0;
 spmGbl.resetCount = 0; /* reset count for txOn */
 spmGbl.collisionsThisPkt = 0;
 macGbl.tpr = FALSE;
 spmGbl.state = IDLE; /* dont want to tx anymore */
 }
 break;
 case DEBUG:
 default:
 /*
 spmGbl.tf.txFlag = 0;
 spmGbl.tf.txReqFlag = 0;
 spmGbl.tf.txDataValid = 0;
 spmGbl.tf.blank = 0;
 spmGbl.tf.txAddrRW = 0;
 spmGbl.tf.txAddr = 0;
 spmGbl.tf.data = 0;
 */

 *((uint16 *)&(spmGbl.tf)) = (uint16) 0x0U; /* fast way */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

137

 spmGbl.state = DEBUG;
 } /* end switch spm state machine */

#ifdef SPM_HISTORY
 hBufGbl.records[hBufGbl.index].tf = spmGbl.tf;
 /* time period of isr */
 /* C unsigned math is congruent mod 2^n so negatives wrap around OK */
 hBufGbl.records[hBufGbl.index].duration = *(spmGbl.clock) -
 hBufGbl.records[hBufGbl.index].start;

 hBufGbl.index = (hBufGbl.index + 1) % NUM_HIST;
#endif
 /* Send Frame */
 tbdPtrGbl->r = 1; /* buffer ready to transmit */
 spcomPtrGbl->str = 1;
 } /* end if spmGbl.mode == STOP */
 } /* endif rxb event */

 cisrPtrGbl->spi = 1; /* clear spi bit in CISR by writing a 1 */
 return;
}

/***
Function: CErrIsr
Returns: none, no arguments allowed either
Reference:
Purpose: interrupt service routine for CPM Int. Error
Comments: shall use interrupt pragma
**/
/* interrupt pragma informs compiler to make next function
 an interrupt handler with RTE and saved state of registers */

#pragma interrupt()

static void CErrIsr(void)
{

 return;
}

/***
Function: SpurIntIsr
Returns: none, no arguments allowed either
Reference:
Purpose: interrupt service routine for spurious interrupt Error
Comments: shall use interrupt pragma
**/
/* interrupt pragma informs compiler to make next function
 an interrupt handler with RTE and saved state of registers */

#pragma interrupt()

static void SpurIntIsr(void)
{
 exceptions++;

 return;
}

/***
Function: BusErrIsr
Returns: none, no arguments allowed either
Reference:
Purpose: interrupt service routine for Bus errors
Comments: shall use interrupt pragma
**/
/* interrupt pragma informs compiler to make next function
 an interrupt handler with RTE and saved state of registers */

#pragma interrupt()

BS EN 14908-1:2014

EN 14908-1:2014 (E)

138

static void BusErrIsr(void)
{
 exceptions++;

 return;
}

/***
Function: GetTransceiverStatus
Returns: none
Purpose: To determine the status of transceiver registers.
 The status registers are different from config registers.
Comments: The array should have space for all the register values.
**/
void GetTransceiverStatus(Byte transceiverStatusOut[])
{
 int i;
 unsigned long count;
 Boolean good;

 /* read config registers on PLT-20 transceiver */

 /* read in reverse order */
 i = NUM_COMM_PARAMS - 1; /* should be 6 */
 while (i >= 0)
 {
 /* read status registers starting at 7 down to 1 */
 spmGbl.sra = (Byte) i + 1;
 spmGbl.srr = TRUE;
 count = 0;
 /* wait for ack but time out so not infinite loop */
 while ((spmGbl.srr != FALSE) && (count < 0xFFFFF))
 {
 count++;
 }
 if (spmGbl.srr == TRUE) /* xcvr never acked try again */
 {
 pbdatPtrGbl->d5 = 0; /* first reset xcvr */

 /* wait for a while for everything to settle down */
 good = DelayTicks(RESTART_DELAY_TICKS);

 pbdatPtrGbl->d5 = 1; /* bring xcvr out of reset */
 i = NUM_COMM_PARAMS - 1; /* start over again */
 } /* NOTE!!! if the xcvr never acks this code will hang */
 else
 {
 transceiverStatusOut[i] = spmGbl.srData;
 i--;
 }
 }

 spmGbl.srData = 0;
 spmGbl.sra = 0;

 return;

}

/*************************End of spm.c*************************/

BS EN 14908-1:2014

EN 14908-1:2014 (E)

139

A.3 LPDU transmit algorithm

/***
Function: LKSend
Returns: None
Reference: None
Purpose: To take the NPDU from link layer's output queue and put it
 in the queue for the physical layer.
Comments: We assume that there will be sufficient space as we
 allocated the extra bytes based on header size etc.
***/
void LKSend(void)
{
 LKSendParam *lkSendParamPtr;
 Queue *lkSendQueuePtr;
 Byte *npduPtr;
 Byte *phyQItemPtr, *phyQPtr, *tempPtr;
 Byte **phyQTailPtrPtr;
 uint16 queueCnt, itemSize;
 uint16 *pduSizePtr;
 LPDUHeader *lpduHeaderPtr;
 Boolean priority;

 /* First, make variables point to the right queue. */
 if (!QueueEmpty(&gp->lkOutPriQ))
 {
 priority = TRUE;
 lkSendQueuePtr = &gp->lkOutPriQ;
 phyQPtr = gp->phyOutPriQ;
 phyQItemPtr = gp->phyOutPriQTailPtr;
 phyQTailPtrPtr = &gp->phyOutPriQTailPtr;
 queueCnt = gp->phyOutPriQCnt;
 itemSize = gp->phyOutPriBufSize;
 }
 else if (!QueueEmpty(&gp->lkOutQ))
 {
 priority = FALSE;
 lkSendQueuePtr = &gp->lkOutQ;
 phyQPtr = gp->phyOutQ;
 phyQItemPtr = gp->phyOutQTailPtr;
 phyQTailPtrPtr = &gp->phyOutQTailPtr;
 queueCnt = gp->phyOutQCnt;
 itemSize = gp->phyOutBufSize;
 }
 else
 {
 return; /* Nothing to send. */
 }

 lkSendParamPtr = QueueHead(lkSendQueuePtr);
 npduPtr = (Byte *) (lkSendParamPtr + 1);

 /* Check if there is space in the physical layer's queue. */
 if (*phyQItemPtr == 1)
 {
 return; /* No space in the physical layer queue. */
 }

 /* Fill the PDU size so that the physical layer knows about it. */
 pduSizePtr = (uint16 *) ((char *)phyQItemPtr + 1);
 *pduSizePtr = lkSendParamPtr->pduSize + 3;

 /* First fill the data. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

140

 tempPtr = phyQItemPtr + 3;

 /* Form the header. */
 lpduHeaderPtr = (LPDUHeader *)tempPtr;
 lpduHeaderPtr->priority = priority;
 lpduHeaderPtr->altPath = lkSendParamPtr->altPath;
 lpduHeaderPtr->deltaBL = lkSendParamPtr->deltaBL;
 tempPtr++;

 /* Copy the NPDU. */
 if (lkSendParamPtr->pduSize <= itemSize)
 {
 memcpy(tempPtr, npduPtr, lkSendParamPtr->pduSize);
 }
 else
 {
 ErrorMsg("LKSend: NPDU seems too large to fit.\n");
 }

 /* Compute the CRC value. */
 CRC16(phyQItemPtr+3, lkSendParamPtr->pduSize + 1);

 /* Turn the flag on so that physical layer can send it. */
 *phyQItemPtr = 1;

 /* Increment tail pointer taking care of wraparound. */
 *phyQTailPtrPtr = *phyQTailPtrPtr + itemSize;
 if (*phyQTailPtrPtr == (phyQPtr + queueCnt * itemSize))
 {
 phyQTailPtrPtr = phyQPtr; / wrap around. */
 }

 DeQueue(lkSendQueuePtr);

 return;
}

/***
Function: CRC16
Returns: 16 bit CRC computed.
Purpose: To compute the 16 bit CRC for a given buffer.
Comments: None.
***/
void CRC16(Byte bufInOut[], uint16 sizeIn)
{
 uint16 poly = 0x1021; /* Generator Polynomial. */
 uint16 crc = 0xffff;
 uint16 i,j;
 unsigned char byte, crcbit, databit;

 for (i = 0; i < sizeIn; i++)
 {
 byte = bufInOut[i];
 for (j = 0; j < 8; j++)
 {
 crcbit = crc & 0x8000 ? 1 : 0;
 databit = byte & 0x80 ? 1 : 0;
 crc = crc << 1;
 if (crcbit != databit)
 {
 crc = crc ^ poly;
 }
 byte = byte << 1;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

141

 }
 crc = crc ^ 0xffff;
 bufInOut[sizeIn] = (crc >> 8);
 bufInOut[sizeIn + 1] = (crc & 0x00FF);

 return;
}

A.4 LPDU receive algorithm

/***
Function: LKReceive
Returns: None
Reference: None
Purpose: To receive the incoming LPDUs and process them.
Comments: Each item of the queue gp->lkInQ has the following form:
 flag pduSize LPDU
 flag is 1 byte long.
 pduSize is 2 bytes long.
 LPDU has header followed by the rest of the LPDU and then CRC.
 The LPDU header is 1 byte long. CRC uses 2 bytes.
 If a packet is in lkInQ then it should fit into nwInQ.
***/
void LKReceive(void)
{
 NWReceiveParam *nwReceiveParamPtr;
 Byte *npduPtr;
 LPDUHeader *lpduHeaderPtr;
 Byte *tempPtr;
 uint16 lpduSize;

 if (*(gp->lkInQHeadPtr) == 0)
 {
 /* There is nothing to receive. */
 return;
 }
 lpduSize = *(uint16 *)(gp->lkInQHeadPtr + 1);
 lpduHeaderPtr = (LPDUHeader *)(gp->lkInQHeadPtr + 3);

 /* Throw away packets that are smaller than 8 bytes long. */
 /* this check is now made in the mac sublayer */
 /* Do CRC check. */
 /* this check is now made in the mac sublayer */
 /* Only packets with valid CRC and >= 8 bytes are placed
 in the lkInQ by mac sublayer. */

 INCR_STATS(nmp->stats.layer2Received); /* Got a good packet. */

 /* We need to receive this message. */
 if (QueueFull(&gp->nwInQ))
 {
 /* We are losing this packet. */
 INCR_STATS(nmp->stats.missedMessages);
 }
 else
 {
 nwReceiveParamPtr = QueueTail(&gp->nwInQ);
 npduPtr = (Byte *)(nwReceiveParamPtr + 1);

 nwReceiveParamPtr->priority = lpduHeaderPtr->priority;
 nwReceiveParamPtr->altPath = lpduHeaderPtr->altPath;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

142

 tempPtr = (Byte *)((char *)lpduHeaderPtr + 1);
 nwReceiveParamPtr->pduSize = lpduSize - 3;

 /* Copy the NPDU. */
 /* if it was in link layer's queue, then the size should be
 sufficient in network layer's queue as they differ by 3.
 However, let us play safe by checking the size first. */
 if (nwReceiveParamPtr->pduSize <= gp->nwInBufSize)
 {
 memcpy(npduPtr, tempPtr, nwReceiveParamPtr->pduSize);
 }
 else
 {
 ErrorMsg("LKReceive: NPDU size seems too large.\n");
 }
 EnQueue(&gp->nwInQ);
 }
 *(gp->lkInQHeadPtr) = 0;
 gp->lkInQHeadPtr = gp->lkInQHeadPtr + gp->lkInBufSize;
 if (gp->lkInQHeadPtr ==
 (gp->lkInQ + gp->lkInBufSize * gp->lkInQCnt))
 {
 gp->lkInQHeadPtr = gp->lkInQ; /* wrap around. */
 }

 return;
}

A.5 Routing algorithm

Input:
 NPDU the NPDU to be routed

Output:
 Decision one of (Forward, Drop)

Uses:
 My_Domain the domain this router is assigned to
 My_Subnet the subnet within the domain that this side of the router is assigned to
 ROUTEuc () routing table
 ROUTEmc() routing table
 ROUTEbc() routing table
 RouterType one of: Configured, Learning, Bridge, Repeater

Begin { routingalgorithm }

 If RouterType = Repeater Then Begin
 Decision := Forward;
 Return;
 end;

 If RouterType = Learning Then
 Execute ROUTING_EVENT of learning algorithm;

 If NPDU.Domain <> My_Domain Then
 If RouterType = Bridge or RouterType = Learning Then Begin
 Decision := Drop;
 Return;
 end;
 If NPDU.Domain <> Null_Domain Then Begin
 Decision := Drop;
 Return;
 end;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

143

 Else If RouterType = Bridge Then Begin
 Decision := Forward;
 Return;
 end;

 Case NPDU.DestAddrFmt Of
 Subnet/Node: Decision := ROUTEuc (NPDU.DestSubnet);
 Group: Decision := ROUTEmc (NPDU.DestGroup);
 Broadcast: Decision := ROUTEbc (NPDU.DestSubnet);
 end case;

 Return;
end { routing algorithm};

A.6 Learning algorithm

Inputs:

 INIT_EVENT
 always occurs on system reboot; may also occur periodically, allowing the
router to adapt to changes in network topology

 ROUTING_EVENT
 NPDU the NPDU to be routed
 MySubnet the subnet the router is configured on for this side of the router

Output:
 Defines routing function ROUTEuc ()

begin { learning algorithm }
 case event of
 INIT_EVENT:
 Set ROUTEuc () := Forward for all subnet addresses;
 Set ROUTEuc (MySubnet) := Drop;
 Set ROUTEmc () := Forward for all group addresses;

 ROUTING_EVENT:
 ROUTEuc (NPDU.SrcSubnet) := Drop
 end case;
end { learning algorithm };

A.7 Transaction control algorithm

/***
 Reference: Section 9.5, Transaction Control Algorithm

 File: tcs.c

 Version: 1.7

 Purpose: Interface file for transaction control sublayer.
 Outgoing sequencing.
 Incoming sequencing and duplicate detection.

 Note: For assigning TIds, a table is used. We
 remember the last TID for each unique destination
 address. When a new TId is requested for a
 destination, this table is searched for that
 destination. If found, we make sure that we
 don't assign the same TId used for that

BS EN 14908-1:2014

EN 14908-1:2014 (E)

144

 destination. If the destination is not
 found, we make a new entry in the table.

 We have an entry in the table for each
 subnet/node, group, broadcast, subnet
 broadcast, unique node id. When a table entry
 is assigned, we remember the time stamp too.
 If the table does not have space for a new
 destination address, we get rid of one that has
 remained more than 24 seconds. If there is no
 such entry, then we fail to allocate the new
 transaction ID. The table size is configurable.

 To Do: None
***/

/* *** START INFORMATIVE - Transaction ID Allcation *** */
/* These functions represent an example means of allocating transaction IDs.
 * There are in fact several valid mechanisms for allocating transaction IDs.
 * In addition to the mechanism below, there are at least two other accepted means
 * for allocating transaction IDs.
 * 1. Allocate a transaction ID per unique destination address. This method
 * should not be used if acknowledged or request/response using unique ID or
 * broadcast addressing are using in time proximity with the other addressing.
.* modes
.* Note that such combinations can be accomplished in this scheme if guardbands
 * are placed around expected arrivals of acks/responses per transaction ID.
 * 2. Allocate all transaction IDs from a single transaction ID space without
 * conflict checking. If this simple scheme is used, it is recommended that
 * conflict checking be performed by the application. */

/*--
Section: Includes
--*/
#include <stdio.h>
#include <string.h>
#include <cnp_1.h>
#include <node.h>
#include <tcs.h>

/*--
Section: Constant Definitions
--*/
/* Minimum amount of time in seconds a record in the priTbl or
 non-priTbl should stay before it can be replaced with a new
 entry. i.e., if the table is full and a new entry is needed,
 we look for an entry that has remained in the table for
 at least MIN_TABLE_TIME seconds. */
#define MIN_TABLE_TIME 24

/*--
Section: Type Definitions
--*/
/* None */

/*---
Section: Globals
---*/
/* None */

/*---
Section: Function Prototypes
---*/
/***
Function: TCSReset

BS EN 14908-1:2014

EN 14908-1:2014 (E)

145

Returns: None
Reference: Section 9, Transaction control sublayer.
Purpose: To initialize all globals to proper values.
Comments: None.
**/
void TCSReset(void)
{
 gp->priTransID = 0; /* On node reset, transaction id 0 is used. */
 gp->nonpriTransID = 0;
 gp->priTransCtrlRec.inProgress = FALSE;
 gp->nonpriTransCtrlRec.inProgress = FALSE;
 /* Reset the tables that keep track of (destination address
 transaction id) pairs only duing powerup or external reset.
 When resetCause is software reset or cleared, we keep this
 table to ensure that we don't send a message to a destination
 with tid same as the one used last time for that destination.
 For power-up or external reset, we also need to ensure that
 using some other technique. We will delay transport or session
 layer sends by a small amount so that no messages are pending in
 target nodes. If we don't follow these guidelines, the target
 node may throw away messages sent after a reset as duplicates. */
 if (nmp->resetCause == POWER_UP_RESET || nmp->resetCause == EXTERNAL_RESET)
 {
 gp->priTblSize = 0;
 gp->nonpriTblSize = 0;
 }
}

/***
Function: NewTrans
Returns: SUCCESS if a transaction id can be assigned.
 FAILURE if it is not possible to assign an id.
Purpose: To get a new transaction id.
Comments: This function implements a new algorithm to assign the
 transaction id. It does not use the one in protocol specification.
Alg Idea: For each of the following categories, we have an
 entry in the table.
 1. Subnet/Node
 2. group
 3. broadcast (domainwide or subnet)
 4. unique node id
 When a new id is requested, we increment the tid from
 the single space. We then search the table for this
 entry. If a matching entry is found, then we check
 if that tid was used last time for the same destination.
 If so, we bump it up by one. If not we use it. In
 either case, we record this tid in the table.
 If there was no such entry, we create a new one.
 If there is no space for the new entry, we release one
 that has remained more than MIN_TABLE_TIME seconds.
 If no such entry, then we fail to assign a tid.
**/
Status NewTrans(Boolean priorityIn, DestinationAddress addrIn,
 TransNum *transNumOut)
{
 uint16 i;
 TransCtrlRecord *transRecPtr;
 TransNum *transNumPtr;
 TIDTableEntry *tbl;
 uint16 *tblSize;
 Boolean found;

 /* Point to the appropriate control record & table. */
 if (priorityIn)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

146

 transRecPtr = &gp->priTransCtrlRec;
 transNumPtr = &gp->priTransID;
 tbl = gp->priTbl;
 tblSize = &gp->priTblSize;
 }
 else
 {
 transRecPtr = &gp->nonpriTransCtrlRec;
 transNumPtr = &gp->nonpriTransID;
 tbl = gp->nonpriTbl;
 tblSize = &gp->nonpriTblSize;
 }

 /* Check if transaction already in progress. */
 if (transRecPtr->inProgress)
 {
 /* We can't allow a new transaction. Return failure. */
 return(FAILURE);
 }

 /* We can allow the transaction. Allocate a new TID. */
 transRecPtr->transNum = *transNumPtr;

 /* Make sure that this dest did not use this TID last time.
 If it did, increment the TID. */
 /* Note: addrIn.addressMode can never be MULTICAST_ACK
 for transactions initiated by a node. */
 found = FALSE;
 for (i = 0; i < *tblSize; i++)
 {
 /* Update timer for this i whether match or not. */
 UpdateMsTimer(&tbl[i].timer);

 /* If domainId does not match, skip entry. */
 if (addrIn.domainIndex != FLEX_DOMAIN &&
 (eep->domainTable[addrIn.domainIndex].len == 0xFF ||
 tbl[i].len != eep->domainTable[addrIn.domainIndex].len ||
 memcmp(eep->domainTable[addrIn.domainIndex].domainId,
 tbl[i].domainId,
 eep->domainTable[addrIn.domainIndex].len) != 0)
)
 {
 continue; /* Not flex domain but domain mismatch. */
 }

 if (addrIn.domainIndex == FLEX_DOMAIN &&
 (tbl[i].len != addrIn.flexDomainLen ||
 memcmp(addrIn.flexDomainId,
 tbl[i].domainId,
 addrIn.flexDomainLen) != 0)
)
 {
 continue; /* Flex domain but domain mismatch. */
 }

 switch(addrIn.addressMode)
 {
 case SUBNET_NODE:
 if (tbl[i].addressMode == SUBNET_NODE &&
 memcmp(&tbl[i].addr.subnetNode, &addrIn.addr.addr2a,
 sizeof(SubnetAddress)) == 0)
 {
 found = TRUE;
 }
 break;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

147

 case UNIQUE_NODE_ID:
 if (tbl[i].addressMode == UNIQUE_NODE_ID &&
 memcmp(tbl[i].addr.uniqueNodeId,
 addrIn.addr.addr3.uniqueId,
 UNIQUE_NODE_ID_LEN) == 0)
 {
 found = TRUE;
 }
 break;
 case MULTICAST:
 if (tbl[i].addressMode == MULTICAST &&
 tbl[i].addr.group == addrIn.addr.addr1)
 {
 found = TRUE;
 }
 break;
 case BROADCAST:
 if (tbl[i].addressMode == BROADCAST &&
 tbl[i].addr.subnet == addrIn.addr.addr0)
 {
 found = TRUE;
 }
 break;
 default:
 ErrorMsg("NewTrans: Unexpected addressMode.\n");
 /* Should not come here. */
 }
 if (found)
 {
 break; /* Need to leave for loop with matched i value. */
 }
 }

 if (found)
 {
 /* Found a match. Check if last TID is same or not. */
 /* We can reuse this entry and reinitialize timer. */
 if (tbl[i].tid == *transNumPtr)
 {
 /* Increment TID. */
 (*transNumPtr)++;
 if (*transNumPtr == 16)
 {
 transNumPtr = 1; / Wrap around. */
 }
 transRecPtr->transNum = *transNumPtr;
 }
 tbl[i].tid = *transNumPtr;
 SetMsTimer(&tbl[i].timer,
 (uint16)(MIN_TABLE_TIME * 1000));
 *transNumOut = *transNumPtr;
 transRecPtr->inProgress = TRUE;
 return(SUCCESS);
 }

 /* No match. Make a new entry. If no space. get a space. */
 /* All the timers shall have been updated in the for loop above. */
 if (*tblSize == TID_TABLE_SIZE)
 {
 /* Table is full. See if any entry can be replaced. */
 found = FALSE;
 for (i = 0; i < *tblSize; i++)
 {
 if (tbl[i].timer.curTimerValue == 0) /* Expired */
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

148

 found = TRUE;
 break;
 }
 }
 if (found)
 {
 /* Replace this entry with last entry of table. */
 (*tblSize)--;
 tbl[i] = tbl[*tblSize];

 /* Fall through to code below. */
 }
 else
 {
 /* Unable to find an entry. */
 return(FAILURE);
 }
 }

 /* Now we have space for an entry. Add new entry. */
 /* Store the domain len and domain id in table */
 if (addrIn.domainIndex == FLEX_DOMAIN)
 {
 memcpy(tbl[*tblSize].domainId,
 addrIn.flexDomainId,
 addrIn.flexDomainLen);
 tbl[i].len = addrIn.flexDomainLen;
 }
 else
 {
 memcpy(tbl[*tblSize].domainId,
 eep->domainTable[addrIn.domainIndex].domainId,
 eep->domainTable[addrIn.domainIndex].len);
 tbl[i].len = eep->domainTable[addrIn.domainIndex].len;
 }

 tbl[*tblSize].addressMode = addrIn.addressMode;
 if (addrIn.addressMode == MULTICAST)
 {
 tbl[*tblSize].addr.group = addrIn.addr.addr1;
 }
 else if (addrIn.addressMode == SUBNET_NODE)
 {
 tbl[*tblSize].addr.subnetNode = addrIn.addr.addr2a;
 }
 else if (addrIn.addressMode == UNIQUE_NODE_ID)
 {
 memcpy(tbl[*tblSize].addr.uniqueNodeId,
 addrIn.addr.addr3.uniqueId,
 UNIQUE_NODE_ID_LEN);
 }
 else if (addrIn.addressMode == BROADCAST)
 {
 tbl[*tblSize].addr.subnet = addrIn.addr.addr0;
 }
 else
 {
 /* Should not come here as addressMode was checked before too. */
 ErrorMsg("NewTrans: Invalid addressMode at unexpected place\n");
 }
 SetMsTimer(&tbl[*tblSize].timer, (uint16)(MIN_TABLE_TIME * 1000));
 tbl[*tblSize].tid = *transNumPtr;
 *transNumOut = *transNumPtr;
 (*tblSize)++;
 transRecPtr->inProgress = TRUE;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

149

 return(SUCCESS);
}

/***
Function: TransDone
Returns: None
Reference: Section 9, Transcation control sublayer
Purpose: To release the transaction record for future assignments.
Comments: None
**/
void TransDone(Boolean priorityIn)
{
 TransCtrlRecord *transRecPtr;
 TransNum *transNumPtr;

 /* Point to the appropriate control record & table. */
 if (priorityIn)
 {
 transRecPtr = &gp->priTransCtrlRec;
 transNumPtr = &gp->priTransID;
 }
 else
 {
 transRecPtr = &gp->nonpriTransCtrlRec;
 transNumPtr = &gp->nonpriTransID;
 }

 /* Mark transaction as available. */
 transRecPtr->inProgress = FALSE;

 /* Increment the corresponding transaction id. */
 (*transNumPtr)++;
 if (*transNumPtr == 16)
 {
 transNumPtr = 1; / Wrap Around to 1. */
 }
}

/***
Function: ValidateTrans
Returns: TRANS_CURRENT if the transNumIn matches transaction
 in progress.
 TRANS_NOT_CURRENT othewise.
Reference: Section 9, Transaction control sublayer.
Purpose: To check if a given transNumIn is current or not.
Comments: None
**/
TransStatus ValidateTrans(Boolean priorityIn,
 TransNum transNumIn)
{
 TransCtrlRecord *transRecPtr;

 /* Point to the appropriate control record & table. */
 if (priorityIn)
 {
 transRecPtr = &gp->priTransCtrlRec;
 }
 else
 {
 transRecPtr = &gp->nonpriTransCtrlRec;
 }

 if (transRecPtr->inProgress &&
 transRecPtr->transNum == transNumIn)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

150

 return(TRANS_CURRENT);
 }
 else
 {
 return(TRANS_NOT_CURRENT);
 }
}

/* *** END INFORMATIVE - Transaction ID Allcation *** */

/*------------------------End of tcs.c------------------------*/

A.8 Network layer algorithm

/***
 Reference: Section 8, Network layer

 File: network.c

 Version: 1.7

 Purpose: To implement network layer functions.

 Note: Reference implementation does not support
 special nodes such as routers and bridges.
 Extra code is needed to implement these.

 To Do: None
***/
/*--
Section: Includes
--*/
#include <stdio.h>
#include <string.h>

#include <cnp_1.h>
#include <node.h>
#include <queue.h>
#include <network.h>

/*--
Section: Constants
--*/
/* #define DEBUG */

/*--
Section: Type Definitions
--*/
/***
 Byte data[1] is used so that variable data has address assigned by
 the compiler. Once we know the size of the record, we will use
 data[0], data[1], etc.

 data[0] is source subnet.
 data[1] is source node.
 Based on the addrFmt field and 1st bit of data[1], the rest of
 the data array is used appropriately.
***/
#pragma maxalign(1)
typedef struct
{
 Bits protocolVersion :2;
 Bits pduType :2;
 Bits addrFmt :2;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

151

 Bits domainLength :2;
 Byte data[1]; /* Variable part */
} NPDU;
#pragma maxalign()

/*--
Section: Globals
--*/
/* None */

/*--
Section: Local Function Prototypes
--*/
static Byte DecodeDomainLength(Byte lengthCode);
static Byte EncodeDomainLength(Byte length);

/*--
Section: Function Definitions
--*/
/***
Function: NWReset
Returns: None
Reference: None
Purpose: To initialize the queues used by the network layer.
Comments: None.
***/
void NWReset(void)
{
 uint16 queueItemSize;

 /* Allocate and initialize the input queue. */
 gp->nwInBufSize =
 DecodeBufferSize((uint8)eep->readOnlyData.nwInBufSize);
 gp->nwInQCnt = DecodeBufferCnt((uint8)eep->readOnlyData.nwInBufCnt);
 queueItemSize = gp->nwInBufSize + sizeof(NWReceiveParam);

 if (QueueInit(&gp->nwInQ, queueItemSize, gp->nwInQCnt) != SUCCESS)
 {
 ErrorMsg("NWReset: Unable to init the input queue.\n");
 gp->resetOk = FALSE;
 return;
 }

 /* Allocate and initialize the output queue. */
 gp->nwOutBufSize =
 DecodeBufferSize((uint8)eep->readOnlyData.nwOutBufSize);
 gp->nwOutQCnt = DecodeBufferCnt((uint8)eep->readOnlyData.nwOutBufCnt);
 queueItemSize = gp->nwOutBufSize + sizeof(NWSendParam);

 if (gp->nwOutQCnt < 2)
 {
 ErrorMsg("NWReset: Network non-pri buffers count should be >= 2.\n");
 gp->resetOk = FALSE;
 return;
 }

 if (QueueInit(&gp->nwOutQ, queueItemSize, gp->nwOutQCnt)
 != SUCCESS)
 {
 ErrorMsg("NWReset: Unable to init the output queue.\n");
 gp->resetOk = FALSE;
 return;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

152

 /* Allocate and initialize the priority output queue. */
 gp->nwOutPriBufSize = gp->nwOutBufSize;
 gp->nwOutPriQCnt =
 DecodeBufferCnt((uint8)eep->readOnlyData.nwOutBufPriCnt);
 queueItemSize = gp->nwOutPriBufSize + sizeof(NWSendParam);

 if (gp->nwOutPriQCnt < 2)
 {
 ErrorMsg("NWReset: Network pri buffers count should be >= 2.\n");
 gp->resetOk = FALSE;
 return;
 }

 if (QueueInit(&gp->nwOutPriQ, queueItemSize, gp->nwOutPriQCnt)
 != SUCCESS)
 {
 ErrorMsg("NWReset: Unable to init the priority output queue.\n");
 gp->resetOk = FALSE;
 return;
 }

 return;
}

/***
Function: NWSend
Returns: None
Reference: None. No algorithms in protocol specification.
Purpose: To send outgoing PDUS (APDU or SPDU or TPDU or AuthPDU)
 waiting on the queue (pri or nonpri) for network layer.
 Network layer forms the NPDU and the parameters for
 sending the NPDU and writes to the queue for the
 link/mac layer.
Comments: Network buffer size is guaranteed to be at least
 20 bytes long as the encoding table's minimum value is 20.
 The NPDU's header's worst case size is 16. So, we are
 OK. No need to check for space when writing headers.
***/
void NWSend(void)
{
 NWSendParam *nwSendParamPtr; /* Param in nwOutQ or nwPriOutQ. */
 LKSendParam *lkSendParamPtr; /* Param in lkOutQ or lkPriOutQ. */
 APPReceiveParam *appReceiveParamPtr;
 NPDU *npduPtr; /* Pointer to NPDU being formed. */
 Byte *pduPtr; /* Pointer to PDU etc being sent. */
 Boolean priority; /* TRUE if processing pri msg. */
 Byte selField; /* 0 or 1. Used to form NPDU. */
 uint8 j; /* For temporary use. */
 uint16 npduSize; /* Size of NPDU formed. */
 uint8 numDomains; /* Number of domains for this node.*/
 Boolean flexDomain; /* True if sending in flex domain. */
 uint8 domainLength; /* Length of domain value sent. */
 Byte domainId[DOMAIN_ID_LEN]; /* Value of domain. */

 /* Check if there is work to do and set pointers */
 if (!QueueEmpty(&gp->nwOutPriQ) && !QueueFull(&gp->lkOutPriQ))
 {
 /* Process priority message if there is one and it can be processed. */
 priority = TRUE;
 nwSendParamPtr = QueueHead(&gp->nwOutPriQ);
 lkSendParamPtr = QueueTail(&gp->lkOutPriQ);
 }
 else if (!QueueEmpty(&gp->nwOutQ) && !QueueFull(&gp->lkOutQ))
 {
 /* Process non-priority message if there is one and can be processed */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

153

 priority = FALSE;
 nwSendParamPtr = QueueHead(&gp->nwOutQ);
 lkSendParamPtr = QueueTail(&gp->lkOutQ);
 }
 else
 {
 /* Either there is nothing to send or there is no space in link layer */
 return;
 }

 /* For application layer messages, we need to give completion event
 using the tag given. This is for consistency with transport/session
 layers. Thus completiong events are streamlined in one place in
 application layer rather than lots of places. */
 if (nwSendParamPtr->pduType == APDU_TYPE && QueueFull(&gp->appInQ))
 {
 /* Can't deliver the indication. Wait until we can send indication */
 return;
 }

 /* Process the waiting PDU, form the NPDU and send it */

 /* ptr to APDU or TPDU or SPDU or AuthPDU. */
 pduPtr = (Byte *)(nwSendParamPtr + 1);

 /* ptr to NPDU constructed. */
 npduPtr = (NPDU *)(lkSendParamPtr + 1);

 /* Write the NPDU header. */
 npduPtr->protocolVersion = PROTOCOL_VERSION; /* See cnp_1.h */
 npduPtr->pduType = nwSendParamPtr->pduType;
 switch (nwSendParamPtr->destAddr.addressMode)
 {
 case BROADCAST:
 npduPtr->addrFmt = 0;
 break;
 case MULTICAST:
 npduPtr->addrFmt = 1;
 break;
 case SUBNET_NODE:
 case MULTICAST_ACK:
 npduPtr->addrFmt = 2;
 break;
 case UNIQUE_NODE_ID:
 npduPtr->addrFmt = 3;
 break;
 default:
 ErrorMsg("NWSend: Unknown address mode.\n");
 /* Discard the packet as addrmode is wrong */
 nmp->errorLog = BAD_ADDRESS_TYPE;
 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 }
 else
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

154

 DeQueue(&gp->nwOutQ);
 }
 return;
 }

 /* Write the domain length. */
 /* First determine the number of domains for this node */
 if (eep->readOnlyData.twoDomains == 1)
 {
 numDomains = 2;
 }
 else
 {
 numDomains = 1;
 }

 /* if a node is in in unconfigured state and the message is not in flex
 domain, then we discard the message. We should not use the domain table
 in unconfigured state, irrespective of whether they are valid or not.
 However, we allow acks, response, challenge and reply. The field
 dropIfUnconfigured indicates whether this check is done or not. */
 if (nwSendParamPtr->dropIfUnconfigured &&
 nwSendParamPtr->destAddr.domainIndex != FLEX_DOMAIN &&
 NodeUnConfigured())
 {
 /* drop this packet. */
 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 }
 else
 {
 DeQueue(&gp->nwOutQ);
 }
 return;
 }

 /* If the domain used is not in use, it cannot send any packet */
 if (nwSendParamPtr->destAddr.domainIndex < numDomains &&
 eep->domainTable[nwSendParamPtr->destAddr.domainIndex].len
 == 0xFF)
 {
 if (!nwSendParamPtr->dropIfUnconfigured)
 {
 /* It is not ACK, RESP etc. Don't log domain error in this case.
 LNS might use join domain to leave a domain with ACKD. So, the
 ACK send by the transport layer will be in an invalid domain
 but should be ignored. */

 /* Discard the packet as the domain table entry is not in use */
 nmp->errorLog = INVALID_DOMAIN;
 }
 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

155

 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 }
 else
 {
 DeQueue(&gp->nwOutQ);
 }
 return;
 }

 /* Use destAddr to determine the domain and write it.
 compute and store domainLength and domainId for later use. */
 if (nwSendParamPtr->destAddr.domainIndex < numDomains)
 {
 /* One of this node's domains. */
 domainLength =
 eep->domainTable[nwSendParamPtr->destAddr.domainIndex].len;
 npduPtr->domainLength =
 EncodeDomainLength(
 eep->domainTable[nwSendParamPtr->destAddr.domainIndex].len
);
 if (domainLength <= DOMAIN_ID_LEN)
 {
 memcpy(domainId,
 eep->domainTable[
 nwSendParamPtr->destAddr.domainIndex].domainId,
 domainLength); /* Save id for now */
 }
 flexDomain = FALSE;
 }
 else if (nwSendParamPtr->destAddr.domainIndex == FLEX_DOMAIN)
 {
 /* Flex domain message. */
 domainLength = nwSendParamPtr->destAddr.flexDomainLen;
 npduPtr->domainLength =
 EncodeDomainLength(
 nwSendParamPtr->destAddr.flexDomainLen
);
 if (domainLength <= DOMAIN_ID_LEN)
 {
 memcpy(domainId,
 nwSendParamPtr->destAddr.flexDomainId,
 domainLength); /* Save the id for now */
 }
 flexDomain = TRUE;
 }
 else
 {
 ErrorMsg("NWSend: Domain index is not valid.\n");
 nmp->errorLog = INVALID_DOMAIN;
 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

156

 /* Discard the packet as the domain index is invalid. */
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 }
 else
 {
 DeQueue(&gp->nwOutQ);
 }
 return;
 }

 if (domainLength != 0 && domainLength != 1 &&
 domainLength != 3 && domainLength != 6)
 {
 /* Protocol specification indicates that domainLength has to be
 one of the above values. If not, it is a bad value. */
 ErrorMsg("NWSend: Domain length is not valid.\n");
 nmp->errorLog = INVALID_DOMAIN;
 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }
 /* Discard the packet as the domain length is invalid. */
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 }
 else
 {
 DeQueue(&gp->nwOutQ);
 }
 return;
 }

 /* Write the address. It goes into data[0] onwards. */

 /* First, write source subnet. */
 if (flexDomain)
 {
 npduPtr->data[0] = 0; /* It is 0 for flex domain response. */
 }
 else
 {
 npduPtr->data[0] =
 eep->domainTable[nwSendParamPtr->destAddr.domainIndex].subnet;
 }

 /* Determine the selField value. */
 /* Only MULTICAST_ACK has selector field as 0. For all others, it is 1. */
 if (nwSendParamPtr->destAddr.addressMode == MULTICAST_ACK)
 {
 selField = 0;
 }
 else
 {
 selField = 1;
 }

 /* Write the source node. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

157

 /* Node value is only 7 bits. The high order bit is selField. */
 if (flexDomain)
 {
 npduPtr->data[1] = selField << 7; /* SrcNode is 0. */
 }
 else
 {
 npduPtr->data[1] = selField << 7 |
 eep->domainTable[nwSendParamPtr->destAddr.domainIndex].node;
 }

 /* Write the destination address. */
 /* Set j to the index for writing the domain field. */
 switch (nwSendParamPtr->destAddr.addressMode)
 {
 case BROADCAST:
 npduPtr->data[2] = nwSendParamPtr->destAddr.addr.addr0;
 j = 3;
 break;
 case MULTICAST:
 npduPtr->data[2] = nwSendParamPtr->destAddr.addr.addr1;
 j = 3;
 break;
 case SUBNET_NODE:
 nwSendParamPtr->destAddr.addr.addr2a.selField = 1;
 memcpy(&npduPtr->data[2],
 &nwSendParamPtr->destAddr.addr.addr2a,
 2);
 j = 4;
 break;
 case MULTICAST_ACK:
 nwSendParamPtr->destAddr.addr.addr2b.subnetAddr.selField = 1;
 memcpy(&npduPtr->data[2],
 &nwSendParamPtr->destAddr.addr.addr2b,
 4);
 j = 6;
 break;
 case UNIQUE_NODE_ID:
 memcpy(&npduPtr->data[2],
 &nwSendParamPtr->destAddr.addr.addr3,
 7);
 j = 9;
 break;
 default:
 ErrorMsg("NWSend: Unknown address format.\n");
 /* Discard the packet as the address Mode is wrong. */
 nmp->errorLog = BAD_ADDRESS_TYPE;
 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 }
 else
 {
 DeQueue(&gp->nwOutQ);
 }
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

158

 }

 /* Now, j has the index of data field in which domain goes. */
 /* Write the domain. We saved this information earlier. */
 memcpy(&npduPtr->data[j], domainId, domainLength);
 j += domainLength;

 /* Write the enclosed PDU. */
 if (1 + j + nwSendParamPtr->pduSize > gp->nwOutBufSize)
 {
 /* Discard the packet as it is too long. */
 nmp->errorLog = WRITE_PAST_END_OF_NET_BUFFER;
 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 }
 else
 {
 DeQueue(&gp->nwOutQ);
 }
 return;
 }

 memcpy(&npduPtr->data[j], pduPtr, nwSendParamPtr->pduSize);
 /* NPDU size is header_size + enclosed PDU size. */
 npduSize = 1 + j + nwSendParamPtr->pduSize;

 /* Write the parameters for the link layer. */
 lkSendParamPtr->deltaBL = nwSendParamPtr->deltaBL;
 lkSendParamPtr->altPath = nwSendParamPtr->altPath;
 lkSendParamPtr->pduSize = npduSize;

 /* Update both queues. */
 if (priority)
 {
 DeQueue(&gp->nwOutPriQ);
 EnQueue(&gp->lkOutPriQ);
#ifdef DEBUG
 DebugMsg("NWSend: Sending a priority packet.");
#endif
 }
 else
 {
 DeQueue(&gp->nwOutQ);
 EnQueue(&gp->lkOutQ);
#ifdef DEBUG
 DebugMsg("NWSend: Sending a non-priority packet.");
#endif
 }

 INCR_STATS(nmp->stats.layer3Transmitted);

 /* Send completion event if it was an APDU */
 if (nwSendParamPtr->pduType == APDU_TYPE)
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

159

 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = TRUE;
 appReceiveParamPtr->tag = nwSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 }

 return;
}

/***
Function: NWReceive
Returns: None
Reference: None. No receive algorithms in protocol specification.
Purpose: To receive packets waiting for the network layer
 from the link layer. The NPDU is retrieved, processed
 and the enclosed PDU is sent to the proper destination queue.
 If the NPDU is not for this node, it is discarded.
Comments: Discard packets originated from this node itself.
 It might receive such packets in the presence of repeaters.

 Discard packets in which version field is not correct.

 Discard packets that match a domain but not
 subnet or group.

 When a node is not in configured state and not in
 hard-offline state, it can only receive broadcast
 or matching Unique Node ID messages. In such a case,
 the domain on which it is received need not match its
 own domain. If it does not match, then the message is
 said to be received in a flex domain.
***/
void NWReceive(void)
{
 NWReceiveParam *nwReceiveParamPtr; /* Param in gp->nwInQ. */
 APPReceiveParam *appReceiveParamPtr;
 TSAReceiveParam *tsaReceiveParamPtr;
 SourceAddress srcAddr; /* Address of source node. */
 NPDU *npduPtr; /* ptr to NPDU being received. */
 Byte *pduPtr; /* ptr to item in target queue. */
 uint16 pduSize; /* Size of enclosed PDU. */
 Boolean flexDomain; /* TRUE => NPDU in flexdomain. */
 uint8 numDomains; /* # of domains of this node. */
 uint8 domainLength; /* Domain length */
 Byte domainId[DOMAIN_ID_LEN]; /* Temp. */
 Byte uniqueNodeId[UNIQUE_NODE_ID_LEN]; /* Temp. */
 SubnetAddress destAddr; /* Temp. */
 uint8 j; /* Temp. */

 /* First, check if we have any packets to process. */
 if (QueueEmpty(&gp->nwInQ))
 {
 return; /* Nothing to process. */
 }

 /* Until we determine what type of PDU we have, we cannot
 check for space availability in destination queue.
 Also, it is possible that the NPDU may very well be
 discarded. */

 /* Set the pointer to NPDU in nwInQ. */
 nwReceiveParamPtr = QueueHead(&gp->nwInQ);
 npduPtr = (NPDU *)(nwReceiveParamPtr + 1);

 /* Discard NPDU if version is not PROTOCOL_VERSION */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

160

 if (npduPtr->protocolVersion != PROTOCOL_VERSION)
 {
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg(" NWReceive: Discard packet. Wrong version.\n");
#endif
 return;
 }

 /* Determine the source address. */
 memcpy(&srcAddr.subnetAddr, npduPtr->data, 2);

 /* Determine the destination address used and set srcAddr properly. */
 /* For MULTICAST and MULTICAST_ACK address modes, the
 group and/or member values are copied into srcAddr.group
 or srcAddr.ackNode. For BROADCAST and SUBNET_NODE address
 modes, destAddr is used to store subnet and/or node
 values. For UNIQUE_NODE_ID, uniqueNodeId is used & subnet is ignored */
 /* Also, set j to domain field's index. */
 switch (npduPtr->addrFmt)
 {
 case 0:
 srcAddr.addressMode = BROADCAST;
 destAddr.subnet = npduPtr->data[2];
 j = 3;
 break;
 case 1:
 srcAddr.addressMode = MULTICAST;
 srcAddr.group = npduPtr->data[2];
 j = 3;
 break;
 case 2:
 if (srcAddr.subnetAddr.selField == 1)
 {
 srcAddr.addressMode = SUBNET_NODE;
 memcpy(&destAddr, &npduPtr->data[2], 2);
 j = 4;
 }
 else
 {
 srcAddr.addressMode = MULTICAST_ACK;
 memcpy(&destAddr, &npduPtr->data[2], 2);
 memcpy(&srcAddr.ackNode.subnetAddr, &destAddr, 2);
 memcpy(&srcAddr.ackNode.groupAddr, &npduPtr->data[4], 2);
 j = 6;
 }
 break;
 case 3:
 srcAddr.addressMode = UNIQUE_NODE_ID;
 destAddr.subnet = npduPtr->data[2]; /* Routing Purpose */
 memcpy(uniqueNodeId, &npduPtr->data[3], UNIQUE_NODE_ID_LEN);
 j = 3 + UNIQUE_NODE_ID_LEN;
 break;
 default:
 /* Discard it as the address format is wrong. */
 ErrorMsg("NWReceive: Unknown addFmt.\n");
 nmp->errorLog = BAD_ADDRESS_TYPE;
 DeQueue(&gp->nwInQ);
 return;
 }

 /* Determine the domain. */
 domainLength = DecodeDomainLength(npduPtr->domainLength);
 if (domainLength != 0 && domainLength != 1 &&
 domainLength != 3 && domainLength != 6)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

161

 {
 ErrorMsg("NWReceive: Domain length is not valid.\n");
 nmp->errorLog = INVALID_DOMAIN;
 /* Discard the packet as the domain length is invalid. */
 DeQueue(&gp->nwInQ);
 return;
 }

 /* domainLength is good. Safe to use memcpy now. */
 memcpy(domainId, &npduPtr->data[j], domainLength);

 j += domainLength; /* Now j points to enclosed PDU. */

 /* Determine the number of domains for this node. */
 if (eep->readOnlyData.twoDomains)
 {
 numDomains = 2;
 }
 else
 {
 numDomains = 1;
 }

 /* Check if the NPDU is received in flexDomain.
 If domainId does not match any of this node's domains,
 then the msg is said to have been received in flex domain. */

 flexDomain = FALSE; /* Assume it is not flex domain. */
 if (NodeConfigured() && eep->domainTable[0].len != 0xFF &&
 domainLength == eep->domainTable[0].len &&
 memcmp(domainId, eep->domainTable[0].domainId,
 domainLength) == 0)
 {
 /* Matches domainId in index 0 */
 srcAddr.domainIndex = 0;
 }
 else if (NodeConfigured() && numDomains == 2 &&
 eep->domainTable[1].len != 0xFF &&
 domainLength == eep->domainTable[1].len &&
 memcmp(domainId, eep->domainTable[1].domainId,
 domainLength) == 0)
 {
 /* Matches domainId in index 1 */
 srcAddr.domainIndex = 1;
 }
 else
 {
 /* Shall be a flex domain. */
 srcAddr.domainIndex = FLEX_DOMAIN;
 srcAddr.flexDomainLen = domainLength;
 memcpy(srcAddr.flexDomainId, domainId, domainLength);
 flexDomain = TRUE;
 }

 /* Determine if the packet was sent by myself. If so, drop. */
 /* We can do this check only in non-flexdomain as
 src subnet and node are 0 in flex domain. */
 if (! flexDomain &&
 memcmp(&srcAddr.subnetAddr,
 &eep->domainTable[srcAddr.domainIndex].subnet, 2)
 == 0)
 {
 /* Not flex domain and source addr matches. */
 DeQueue(&gp->nwInQ); /* Discard packet. */
#ifdef DEBUG

BS EN 14908-1:2014

EN 14908-1:2014 (E)

162

 DebugMsg("NWReceive. Discarding Self Pck\n");
#endif
 return;
 }

 /* Drop packet in various address modes if not for us. */
 switch(srcAddr.addressMode)
 {
 case BROADCAST:
 if (!flexDomain &&
 destAddr.subnet != 0 && /* subnet broadcast. */
 memcmp(&destAddr.subnet,
 &eep->domainTable[srcAddr.domainIndex].subnet,
 1) != 0)
 {
 /* Domain matches but destAddr does not. Not for us. */
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard BC pck. Not my subnet.\n");
#endif
 return;
 }
 srcAddr.broadcastSubnet = destAddr.subnet;
 break;
 case MULTICAST:
 if (!flexDomain &&
 !IsGroupMember(srcAddr.domainIndex,
 srcAddr.group, NULL))
 {
 /* Domain matches but group does not. Not for us. */
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard MC pck. Not my group.\n");
#endif
 return;
 }
 break;
 case SUBNET_NODE:
 if (!flexDomain &&
 memcmp(&destAddr,
 &eep->domainTable[srcAddr.domainIndex].subnet,
 2) != 0)
 {
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard unicast logical packet. "
 "Not my subnet (or subnode).\n");
#endif
 return;
 }
 break;
 case MULTICAST_ACK:
 /* Make sure the destination subnet/node matches. */
 if (!flexDomain &&
 memcmp(&destAddr,
 &eep->domainTable[srcAddr.domainIndex].subnet,
 2) != 0)
 {
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard multicast ack packet. "
 "Not my subnet (or subnode).\n");
#endif
 return;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

163

 /* Also make sure that group matches. */
 if (!flexDomain &&
 !IsGroupMember(srcAddr.domainIndex,
 srcAddr.ackNode.groupAddr.group,
 NULL))
 {
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard multicast ack packet. "
 "Not my group.\n");
#endif
 return;
 }
 break;
 case UNIQUE_NODE_ID:
 if (memcmp(uniqueNodeId,
 eep->readOnlyData.uniqueNodeId,
 UNIQUE_NODE_ID_LEN) != 0)
 {
 /* Unique Node Id message but not for our id. */
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard Unique Node ID packet. Not my Id.\n");
#endif
 return;
 }
 break;
 default:
 ; /* Null statement. */
 /* Error message has been already printed in the previous switch. */
 /* Control should not come here. But, let us play safe. */
 DeQueue(&gp->nwInQ);
 return;
 }

 /* If a node is in unconfigured state,
 only broadcast and Unique Node ID messages can be received. */
 if (NodeUnConfigured() &&
 srcAddr.addressMode != BROADCAST &&
 srcAddr.addressMode != UNIQUE_NODE_ID)
 {
 /* Drop the packet. */
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard packet. We are not online.\n");
#endif
 return;
 }

 /* Drop packets received on flexDomain if the state
 is not unconfigured and it is not Unique Node ID addressed. */
 /* Unique Node ID addressed packets are always received. */
 /* i.e if node is configured, flexdomain is not possible
 unless it is Unique Node ID addressed. */
 if (flexDomain &&
 NodeConfigured() &&
 srcAddr.addressMode != UNIQUE_NODE_ID)
 {
 /* Drop the packet. */
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard packet. Flex domain & not Neu. Id.\n");
#endif
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

164

 }

 /* We now got a packet that shall be received. */
 INCR_STATS(nmp->stats.layer3Received);

 /* pduSize = npduSize - npduHeaderSize. */
 /* j is length of the variable part header of NPDU. */
 /* The fixed portion of NPDU header is always 1 byte. */
 pduSize = nwReceiveParamPtr->pduSize - j - 1;

 /* Set the pdu pointer properly. */
 switch (npduPtr->pduType)
 {
 case APDU_TYPE:
 if (QueueFull(&gp->appInQ) ||
 pduSize > gp->appInBufSize)
 {
 /* No space or insufficient space. Discard packet. */
 if (pduSize > gp->appInBufSize)
 {
 nmp->errorLog = WRITE_PAST_END_OF_APPL_BUFFER;
 }
 INCR_STATS(nmp->stats.lostMessages);
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard packet. Insufficient space.\n");
#endif
 return;
 }
 /* Queue is not full and buffer has sufficient space. */
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 pduPtr = (Byte *) appReceiveParamPtr +
 sizeof(APPReceiveParam);

 appReceiveParamPtr->indication = MESSAGE;
 appReceiveParamPtr->srcAddr = srcAddr;
 appReceiveParamPtr->priority = nwReceiveParamPtr->priority;
 appReceiveParamPtr->altPath = nwReceiveParamPtr->altPath;
 appReceiveParamPtr->pduSize = pduSize;
 appReceiveParamPtr->auth = FALSE;
 appReceiveParamPtr->service = UNACKD;
 memcpy(pduPtr, &npduPtr->data[j], pduSize);
 EnQueue(&gp->appInQ);
 INCR_STATS(nmp->stats.layer6_7MsgsRcvd);
 DeQueue(&gp->nwInQ);
 return;
 case TPDU_TYPE: /* Fall through. */
 case SPDU_TYPE: /* Fall through. */
 case AUTHPDU_TYPE:
 if (QueueFull(&gp->tsaInQ) ||
 pduSize > gp->tsaInBufSize)
 {
 /* No space or insufficient space. Discard packet. */
 if (pduSize > gp->tsaInBufSize)
 {
 /* Buffer sizes are based on app buf sizes. See
 TSAReset function. */
 nmp->errorLog = WRITE_PAST_END_OF_APPL_BUFFER;
 }
 INCR_STATS(nmp->stats.lostMessages);
 DeQueue(&gp->nwInQ);
#ifdef DEBUG
 DebugMsg("NWReceive: Discard packet. Insufficient space.\n");
#endif
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

165

 }
 /* Queue is not full and buffer has sufficient space. */
 tsaReceiveParamPtr = QueueTail(&gp->tsaInQ);
 pduPtr = (Byte *) tsaReceiveParamPtr +
 sizeof(TSAReceiveParam);
 tsaReceiveParamPtr->pduType = npduPtr->pduType;
 tsaReceiveParamPtr->srcAddr = srcAddr;
 tsaReceiveParamPtr->priority = nwReceiveParamPtr->priority;
 tsaReceiveParamPtr->altPath = nwReceiveParamPtr->altPath;
 tsaReceiveParamPtr->pduSize = pduSize;
 memcpy(pduPtr, &npduPtr->data[j], pduSize);
 EnQueue(&gp->tsaInQ);
 DeQueue(&gp->nwInQ);
 return;
 default:
 ErrorMsg("NWReceive: Unknown PDU was received.\n");
 nmp->errorLog = UNKNOWN_PDU;
 DeQueue(&gp->nwInQ);
 return;
 }

 /* Should not come here. */
}

/***
Function: DecodeDomainLength
Returns: Decoded value of domain length code.
Reference: None.
Purpose: To compute the actual domain length from code.
Comments: None.
***/
static Byte DecodeDomainLength(Byte lengthCodeIn)
{
 switch(lengthCodeIn)
 {
 case 0:
 return(0);
 case 1:
 return(1);
 case 2:
 return(3);
 case 3:
 return(6);
 default:
 /* Impossible to come here as lengthCode is 2 bits. */
 ;
 }
 return(0); /* To silence the compiler from complaining. */
}

/***
Function: EncodeDomainLength
Returns: Encode value of domain length.
Reference: None
Purpose: To compute the encoded value of domain length given.
Comments:
***/
static Byte EncodeDomainLength(Byte lengthIn)
{
 switch(lengthIn)
 {
 case 0:
 return(0);
 case 1:
 return(1);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

166

 case 3:
 return(2);
 case 6:
 return(3);
 default:
 return(0); /* should not come here. But has to return
 something. Chose 0 arbitrarily */
 }
}

/*-------------------------------End of network.c-----------------------------*/
_

A.9 TPDU and SPDU send algorithm with authentication

/***
 Reference: Sections 9 and 10

 File: tsa.c (Transport Session Authentication)

 Version: 1.7

 Purpose: Transport, Session and Authentication Layers.

 Note: None.

 To Do: None.
***/
/*--
Section: Includes
--*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cnp_1.h>
#include <node.h>
#include <queue.h>
#include <tcs.h>
#include <tsa.h>
#include <app.h> /* For TAG related macros and constants */

/*--
Section: Constant Definitions.
--*/
/* #define DEBUG */
/* The last few tries for a message are sent using alternate path.
 The following constant determines how many are sent like this.
 A message is sent on alternate path if retries_left <= ALT_PATH_COUNT.
 Thus actual # of messages sent on alternate path is ALT_PATH_COUNT + 1 */
#define ALT_PATH_COUNT 1

/*---
Section: Type Definitions.
---*/
typedef enum
{
 TRANSPORT,
 SESSION
} Layer;

typedef enum
{

BS EN 14908-1:2014

EN 14908-1:2014 (E)

167

 ACKD_MSG = 0, /* for Transport */
 REQUEST_MSG = 0, /* for Session */
 CHALLENGE_MSG = 0, /* for Authentication */
 UNACK_RPT_MSG = 1, /* for Transport */
 ACK_MSG = 2, /* for Transport */
 RESPONSE_MSG = 2, /* for Session */
 REPLY_MSG = 2, /* for Authentication */
 REMINDER_MSG = 4, /* for Transport and Session */
 REM_MSG_MSG = 5 /* for Transport and Session */
} PDUMsgType; /* Type of msg sent in the PDU
 (TPDU or SPDU or AuthPDU) */

#pragma maxalign(1)
typedef struct
{
 Bits auth :1; /* Needs authentication? */
 Bits pduMsgType :3; /* See PDUMsgType above */
 Bits transNum :4;
 Byte data[1]; /* Variable length field */
} TSPDU; /* Transport or Session PDU */

typedef TSPDU *TSPDUPtr;

typedef struct
{
 Bits fmt :2; /* Same as addrfmt. */
 Bits pduMsgType :2; /* Type of AuthPDU. See PDUMsgType.*/
 Bits transNum :4; /* Transaction number. */
 union {
 Byte randomBytes[8]; /* Random number for challenge. */
 Byte cryptoBytes[8]; /* Encrypted value in response. */
 } value;
 Byte group; /* Present only if fmt = 1. */
} AuthPDU;
#pragma maxalign()

typedef AuthPDU *AuthPDUPtr;

/*---
Section: Globals.
---*/
/* None */

/* Array to convert address format to address mode. If format is 2,
 we convert to SUBNET_NODE instead of MULTICAST_ACK */
static Byte addrFmtToMode[4] =
{
 BROADCAST, /* 0 */
 MULTICAST, /* 1 */
 SUBNET_NODE, /* 2 */
 UNIQUE_NODE_ID /* 3 */
};

/* Array to convert address mode to format. For example,
 BROADCAST to 0 MULTICAST to 1 etc. */
static Byte addrModeToFmt[6] =
{
 0,
 2, /* SUBNET_NODE */
 3, /* UNIQUE_NODE_ID*/
 0, /* BROADCAST */
 1, /* MULTICAST */
 2 /* MULTICAST_ACK */
};

BS EN 14908-1:2014

EN 14908-1:2014 (E)

168

/*---
Section: Local Function Prototypes.
---*/
/* Authentication related functions. */
static void InitiateChallenge(uint16 rrIndexIn);
static void SendReplyToChallenge(void);
static void ProcessReply(void);

/* Transport layer related functions. */
static void TPSendAck(uint16 rrIndexIn);
static void TPReceiveAck(void);

/* Session layer related functions. */
static void SNSendResponse(uint16 rrIndexIn, Boolean nullResponse);
static void SNReceiveResponse(void);

/* Functions that are common to both transport and session layers. */
static void XmitTimerExpiration(Layer layerIn, Boolean priorityIn);
static void TerminateTrans(Boolean priorityIn);
static void SendNewMsg(Layer layerIn, Boolean priorityIn);
static void ReceiveNewMsg(Layer layerIn);
static void ReceiveRem(Layer layerIn);
static void Deliver(uint16 rrIndexIn);

static int16 AllocateRR(void);
static int16 RetrieveRR(SourceAddress srcAddrIn, Boolean priorityIn);

static uint16 ComputeRecvTimerValue(AddrMode addrModeIn,
 MulticastAddress group);
static void Encrypt(Byte rand[], APDU *apdu, uint16 apduSize,
 Byte domainIndex, Byte encryptValue[]);

/*---
Section: Function Definitions.
---*/
/***
Function: TSAReset
Returns: None
Reference: None
Purpose: To initialize the queues used by the transport and session
 layers and to initialize transmit and receive records.
Comments: Sets gp->resetOk to FALSE if unable to reset properly.
**/
void TSAReset(void)
{
 uint16 queueItemSize;
 uint16 i;

 /* Allocate and initialize the input queue. */

 /* Some TSPDUs have APDU attached and others do not.
 The max # bytes for TSPDU with no APDU is 10 (REMINDER).
 The max header size for those with APDU is 4 (REM/MSG). */
 gp->tsaInBufSize =
 DecodeBufferSize((uint8)eep->readOnlyData.appInBufSize) + 4;
 gp->tsaInBufSize = MAX(gp->tsaInBufSize, 10);
 gp->tsaInQCnt = DecodeBufferCnt((uint8)eep->readOnlyData.appInBufCnt);
 queueItemSize = gp->tsaInBufSize + sizeof(TSAReceiveParam);

 if (QueueInit(&gp->tsaInQ, queueItemSize, gp->tsaInQCnt)
 != SUCCESS)
 {
 ErrorMsg("TSAReset: Unable to initialize the input queue.");
 gp->resetOk = FALSE;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

169

 return;
 }

 /* Allocate and initialize the output queue. */
 gp->tsaOutBufSize =
 DecodeBufferSize((uint8)eep->readOnlyData.appOutBufSize) + 4;
 gp->tsaOutBufSize = MAX(gp->tsaOutBufSize, 10);
 gp->tsaOutQCnt =
 DecodeBufferCnt((uint8)eep->readOnlyData.appOutBufCnt);
 queueItemSize = gp->tsaOutBufSize + sizeof(TSASendParam);

 if (QueueInit(&gp->tsaOutQ, queueItemSize, gp->tsaOutQCnt)
 != SUCCESS)
 {
 ErrorMsg("TSAReset: Unable to initialize the output queue.");
 gp->resetOk = FALSE;
 return;
 }

 /* Allocate and initialize the priority output queue. */
 gp->tsaOutPriBufSize = gp->tsaOutBufSize;
 gp->tsaOutPriQCnt =
 DecodeBufferCnt((uint8)eep->readOnlyData.appOutBufPriCnt);
 queueItemSize = gp->tsaOutPriBufSize + sizeof(TSASendParam);

 if (QueueInit(&gp->tsaOutPriQ, queueItemSize, gp->tsaOutPriQCnt)
 != SUCCESS)
 {
 ErrorMsg("TSAReset: Unable to initialize the priority output queue.");
 gp->resetOk = FALSE;
 return;
 }

 /* Allocate and initialize the responses queue. */
 gp->tsaRespBufSize = gp->tsaOutBufSize;
 gp->tsaRespQCnt = gp->tsaOutQCnt;
 queueItemSize = gp->tsaRespBufSize + sizeof(TSASendParam);

 if (QueueInit(&gp->tsaRespQ, queueItemSize, gp->tsaRespQCnt)
 != SUCCESS)
 {
 ErrorMsg("TSAReset: Unable to initialize the responses queue.");
 gp->resetOk = FALSE;
 return;
 }

 /* Initialize the transmit records. */
 gp->xmitRec.status = UNUSED_TX;
 gp->priXmitRec.status = UNUSED_TX;

 /* Initialize the receive records. */
 gp->recvRecCnt = RECEIVE_TRANS_COUNT;
 gp->recvRec = AllocateStorage((uint16)(gp->recvRecCnt *
 sizeof(ReceiveRecord)));
 if (gp->recvRec == NULL)
 {
 ErrorMsg("TSAReset: Insufficient space for allocating receive records.");
 gp->resetOk = FALSE;
 return;
 }

 for (i = 0; i < gp->recvRecCnt; i++)
 {
 gp->recvRec[i].response =
 AllocateStorage(DecodeBufferSize((uint8) eep-

BS EN 14908-1:2014

EN 14908-1:2014 (E)

170

>readOnlyData.appOutBufSize));
 gp->recvRec[i].apdu =
 AllocateStorage(DecodeBufferSize((uint8) eep->readOnlyData.appInBufSize));
 if (gp->recvRec[i].response == NULL ||
 gp->recvRec[i].apdu == NULL)
 {
 ErrorMsg("TSAReset: Insufficient space for response or apdu.");
 gp->resetOk = FALSE;
 return;
 }
 gp->recvRec[i].status = UNUSED_RR;
 }

 /* Initialize the running count for request id assignment. */
 gp->reqId = 0;

 return;
}

/***
Function: TPSend
Returns: None
Reference: Section 10, Transport layer.
Purpose: To implement send algorithm for transport layer.
 If there is anything to be sent by transport layer,
 it processes that message and calls the right function
 that sends it.
Comments: Update the priority transaction timer, if it exists.
 Update the non-priority transaction timer, if it exists.
 If the priority transaction timer expired then
 process this event.
 else if there is a priority message to be sent and there is space
 in priority queue of the network layer then
 process the priority message.
 else if non-priority transaction timer expired then
 process that event.
 else if there is a non-priority message to be sent and there
 is space in the non-priority queue of the network layer then
 process the non-priority message.
 else
 there is nothing to do. return.
Note:
**/
void TPSend(void)
{

 /* Delay TPSend after power-up or external reset. */
 if (gp->tsDelayTimer.curTimerValue > 0 &&
 (nmp->resetCause == POWER_UP_RESET ||
 nmp->resetCause == EXTERNAL_RESET)
)
 {
 UpdateMsTimer(&gp->tsDelayTimer);
 return; /* Do nothing */
 }

 /* Update transmit timers, if they do exist. */
 if (gp->priXmitRec.status == TRANSPORT_TX &&
 gp->priXmitRec.xmitTimer.curTimerValue > 0)
 {
 UpdateMsTimer(&gp->priXmitRec.xmitTimer);
 }
 if (gp->xmitRec.status == TRANSPORT_TX &&
 gp->xmitRec.xmitTimer.curTimerValue > 0)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

171

 UpdateMsTimer(&gp->xmitRec.xmitTimer);
 }

 /***
 Priority transaction timer expired event.
 **/
 if (gp->priXmitRec.status == TRANSPORT_TX &&
 gp->priXmitRec.xmitTimer.curTimerValue == 0)
 {
 XmitTimerExpiration(TRANSPORT, TRUE);
 return;
 }
 /***
 Send a new priority message event.
 **/
 else if (gp->priXmitRec.status == UNUSED_TX &&
 ! QueueEmpty(&gp->tsaOutPriQ) &&
 ! QueueFull(&gp->nwOutPriQ))
 {
 SendNewMsg(TRANSPORT, TRUE);
 return;
 }
 /***
 Non-priority transaction timer expired event.
 ***/
 else if (gp->xmitRec.status == TRANSPORT_TX &&
 gp->xmitRec.xmitTimer.curTimerValue == 0)
 {
 XmitTimerExpiration(TRANSPORT, FALSE);
 }
 /***
 Send a new non-priority message.
 **/
 else if (gp->xmitRec.status == UNUSED_TX &&
 ! QueueEmpty(&gp->tsaOutQ) &&
 ! QueueFull(&gp->nwOutQ))
 {
 SendNewMsg(TRANSPORT, FALSE);
 }
 else
 {
 /* Either there is no work or there is no space. */
 return;
 }

 return;

}

/***
Function: TerminateTrans
Returns: None
Reference: None
Purpose: To terminate a transaction for transport or session
 layer and send the completion indication to application
 layer. If the application layer's input queue is full,
 we don't terminate the transaction.
Comments: layerIn is not passed as it is not needed.
**/
static void TerminateTrans(Boolean priorityIn)
{
 Queue *tsaQPtr; /* Pointer to source queue */
 TSASendParam *tsaSendParamPtr;
 APPReceiveParam *appReceiveParamPtr;
 TransmitRecord *xmitRecPtr; /* Ptr to xmit rec (pri or nonpri)*/

BS EN 14908-1:2014

EN 14908-1:2014 (E)

172

 Boolean success;

 if (QueueFull(&gp->appInQ))
 {
 return; /* Can't send the indication. Come back later. */
 }

 if (priorityIn)
 {
 tsaQPtr = &gp->tsaOutPriQ;
 tsaSendParamPtr = QueueHead(tsaQPtr);
 xmitRecPtr = &gp->priXmitRec;
 }
 else
 {
 tsaQPtr = &gp->tsaOutQ;
 tsaSendParamPtr = QueueHead(tsaQPtr);
 xmitRecPtr = &gp->xmitRec;
 }

 appReceiveParamPtr = QueueTail(&gp->appInQ);

 if (tsaSendParamPtr->service == UNACK_RPT ||
 xmitRecPtr->destCount == xmitRecPtr->ackCount ||
 (xmitRecPtr->nwDestAddr.addressMode == BROADCAST &&
 xmitRecPtr->ackCount >= 1)
)
 {
 /* UNACK_RPT or ACK and got all acks(or resp). */
 success = TRUE;
 }
 else
 {
 INCR_STATS(nmp->stats.transmitTXFailures);
 success = FALSE; /* REQUEST or ACK and did not get all acks. */
 }
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = success;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 EnQueue(&gp->appInQ);

 TransDone(priorityIn); /* Call to TCS. */
 xmitRecPtr->status = UNUSED_TX;
#ifdef DEBUG
 if (success)
 {
 DebugMsg("Debug: TermTran: Terminated the transaction. Success.");
 }
 else
 {
 DebugMsg("Debug: TermTran: Terminated the transaction. Fail.");
 }
#endif
 /* Remove the transaction from the queue. */
 DeQueue(tsaQPtr);
 return;
}

/***
Function: XmitTimerExpiration
Returns: None
Reference: None
Purpose: To process the XmitTimer expiration event (pri or nonpri).
 Retranmission and termination of transaction are
 handled. Retransmission might be reply to already

BS EN 14908-1:2014

EN 14908-1:2014 (E)

173

 initiated challenge or it might be the APDU itself.
 If there is no space for retransmission, the retry is
 lost.
Comments: None
**/
static void XmitTimerExpiration(Layer layerIn, Boolean priorityIn)
{
 TSASendParam *tsaSendParamPtr;/* Param in tsaQ (Pri or nonPri). */
 NWSendParam *nwSendParamPtr; /* Param in nwQ (Pri or nonPri). */
 TransmitRecord *xmitRecPtr; /* Ptr to xmit rec (pri or nonpri). */
 Queue *tsaQPtr; /* Pointer to source queue. */
 Queue *nwQPtr; /* Pointer to target queue. */
 TSPDUPtr pduPtr; /* Pointer to TSPDU being formed. */
 uint8 deltaBL;
 uint16 pduSize;
 int8 i;
 uint8 length; /* For length of reminder in bytes. */
 uint16 queueSpace;

 if (priorityIn)
 {
 tsaQPtr = &gp->tsaOutPriQ;
 tsaSendParamPtr = QueueHead(tsaQPtr);
 nwQPtr = &gp->nwOutPriQ;
 nwSendParamPtr = QueueTail(nwQPtr);
 xmitRecPtr = &gp->priXmitRec;
 }
 else
 {
 tsaQPtr = &gp->tsaOutQ;
 tsaSendParamPtr = QueueHead(tsaQPtr);
 nwQPtr = &gp->nwOutQ;
 nwSendParamPtr = QueueTail(nwQPtr);
 xmitRecPtr = &gp->xmitRec;
 }

 /* First, check if we really need to retry the message. */
 if (xmitRecPtr->retriesLeft == 0 ||
 xmitRecPtr->destCount == xmitRecPtr->ackCount ||
 (xmitRecPtr->nwDestAddr.addressMode == BROADCAST &&
 xmitRecPtr->ackCount >= 1)
)
 {
 /* No More retries left or all acks have been received.
 Terminate the transaction. Send indication to the application
 layer. */
 TerminateTrans(priorityIn);
 return;
 }

 /* Check if there is space in the network buffer for retransmission */
 if (QueueFull(nwQPtr))
 {
 /* We are losing a retry chance locally due to lack of space
 in network queue. If we don't want to lose the retry, we
 simply delete the next two lines of code */
 xmitRecPtr->retriesLeft--;
 /* Start the transmit timer */
 SetMsTimer(&xmitRecPtr->xmitTimer, xmitRecPtr->xmitTimerValue);
#ifdef DEBUG
 DebugMsg("XmitTimerExp: Retry failure due to no space in net");
#endif
 return;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

174

 /* Now, we need to retransmit the message again. */
 /* Form the PDU to be sent directly in the target queue. */
 pduPtr = (TSPDUPtr) (nwSendParamPtr + 1);
 pduPtr->auth = tsaSendParamPtr->auth;
 pduPtr->transNum = xmitRecPtr->transNum;

 if (tsaSendParamPtr->service == UNACK_RPT)
 {
 pduPtr->pduMsgType = UNACK_RPT_MSG;
 memcpy(pduPtr->data, xmitRecPtr->apdu,
 xmitRecPtr->apduSize);
 pduSize = xmitRecPtr->apduSize + 1;
#ifdef DEBUG
 DebugMsg("XmitTimerExp: Resending UNACK_RPT packet.");
#endif
 }
 else if (xmitRecPtr->nwDestAddr.addressMode != MULTICAST)
 {
 if (layerIn == TRANSPORT)
 {
 pduPtr->pduMsgType = ACKD_MSG;
#ifdef DEBUG
 DebugMsg("XmitTimerExp: Resending ACKD packet.");
#endif
 }
 else if (tsaSendParamPtr->service == REQUEST)
 {
 pduPtr->pduMsgType = REQUEST_MSG;
#ifdef DEBUG
 DebugMsg("XmitTimerExp: Resending REQUEST packet.");
#endif
 }
 else
 {
 /* Response Messages are retried. Something is wrong. */
 /* Force retriesLeft to 0 so that next time we will
 terminate the transaction. */
 xmitRecPtr->retriesLeft = 0;
#ifdef DEBUG
 DebugMsg("XmitTimerExp: Response Message??. What is wrong?");
#endif
 return;
 }
 memcpy(pduPtr->data, xmitRecPtr->apdu,
 xmitRecPtr->apduSize);
 pduSize = xmitRecPtr->apduSize + 1;
 }
 else
 {
 /* Multicast Retry */
 /* Compute the highest numbered group member that has
 acknowledged and form the M_LIST up to that. Since the
 rest of the nodes have not acknowledged, they will
 respond when they see that their bit is missing.
 However, the last byte of M_LIST should be padded with
 0 as those members need to acknowledge. Note that a node
 will respond if its member number is not even present
 in the M_List. */
 /* Group members are 0..MAX_GROUP_NUMBER */
 if (xmitRecPtr->ackCount == 0)
 {
 length = 0;
 }
 else
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

175

 /* ackCount > 0, So, we have at least one ack.
 Find the highest member who have responded. */
 for (i = MAX_GROUP_NUMBER; i >= 0; i--)
 {
 if (xmitRecPtr->ackReceived[i])
 {
 break;
 }
 }
 if (i == -1)
 {
 /* There should have been at least one ack. */
 ErrorMsg("XmitTimerExpiration: Something is wrong."
 " Check code. Atleast one ack member expected.");
 xmitRecPtr->retriesLeft = 0;
 return;
 }
 length = i / 8 + 1; /* Number of bytes in M_List. */
 }

 if (length <= 2)
 {
 pduPtr->pduMsgType = REM_MSG_MSG;
 pduPtr->data[0] = length; /* # of bytes in M_List. */
 /* Copy the M_LIST. See Fig 8.2 in Protocol Specification. */
 /* We use the fact that ackReceived[i] is 0 or 1. */
 /* The padding of 0's of last byte is automatic as
 ackReceived[i] for those are anyway 0. */
 pduPtr->data[1] = 0; /* Init anyway even if not used. */
 pduPtr->data[2] = 0; /* Init anyway even if not used. */
 for (i = 0; i < 8*length; i++)
 {
 pduPtr->data[1 + i / 8] |=
 (xmitRecPtr->ackReceived[i] << (i % 8));
 }
 /* Copy APDU. */
 memcpy(&pduPtr->data[1+length],
 xmitRecPtr->apdu,
 xmitRecPtr->apduSize);
 /* TSPDU = 1 byte header + 1 byte for length + M_LIST. */
 pduSize = xmitRecPtr->apduSize + 2 + length;
#ifdef DEBUG
 DebugMsg("XmitTimerExp: Resending REMINDER packet.");
#endif
 }
 else
 {
 /* Length > 2 */
 /* A Pair is sent in this case. First, send the REMINDER
 and then send the ACKD or REQUEST message. */
 /* In this case, we are going to send two msgs.
 So, we need to make sure that the queue has space
 for 2 msgs. If not, return and come back later to
 do this case. */
 queueSpace = QueueCnt(nwQPtr) - QueueSize(nwQPtr);
 if (queueSpace < 2)
 {
 /* We are losing a retry chance locally due to lack
 of space in network queue. */
 xmitRecPtr->retriesLeft--;
 /* Start the transmit timer. */
 SetMsTimer(&xmitRecPtr->xmitTimer,
 xmitRecPtr->xmitTimerValue);
#ifdef DEBUG
 DebugMsg("XmitTimerExp: Retry failure due to no"

BS EN 14908-1:2014

EN 14908-1:2014 (E)

176

 " space in network buffer.");
#endif
 return; /* Not enough space in the queue. Come back. */
 }
 /* Send the REMINDER message. */
 if (tsaSendParamPtr->service == ACKD ||
 tsaSendParamPtr->service == REQUEST)
 {
 nwSendParamPtr = QueueTail(nwQPtr);
 nwSendParamPtr->dropIfUnconfigured = TRUE;
 pduPtr = (TSPDUPtr)
 ((char *)nwSendParamPtr + sizeof(NWSendParam));

 pduPtr->auth = tsaSendParamPtr->auth;
 pduPtr->pduMsgType = REMINDER_MSG;
 pduPtr->transNum = xmitRecPtr->transNum;
 pduPtr->data[0] = length;

 /* Copy the M_LIST. See Fig 8.2 in Protocol Specification. */
 /* First, initialize all the M_LIST fields to 0. */
 for (i = 1; i <= length; i++)
 {
 pduPtr->data[i] = 0;
 }
 /* Set the bits for M_LIST field based on received acks. */
 for (i = 0; i < 8*length; i++)
 {
 pduPtr->data[1 + i / 8] |=
 (xmitRecPtr->ackReceived[i] << (i % 8));
 }

 pduSize = 2 + length; /* REMINDER has no APDU. */

 /* Fill in the NWSendParam structure. */
 nwSendParamPtr->destAddr = xmitRecPtr->nwDestAddr;
 if (layerIn == TRANSPORT)
 {
 nwSendParamPtr->pduType = TPDU_TYPE;
 }
 else
 {
 nwSendParamPtr->pduType = SPDU_TYPE;
 }
 nwSendParamPtr->deltaBL = 0; /* REMINDER has deltaBL 0. */
 nwSendParamPtr->pduSize = pduSize;

 /* UnAck_rpt packets do not use alt path. */
 if (tsaSendParamPtr->service != UNACK_RPT)
 {
 nwSendParamPtr->altPath =
 (xmitRecPtr->retriesLeft <= (ALT_PATH_COUNT + 1));
 }
 else
 {
 nwSendParamPtr->altPath = FALSE;
 }

 /* if altPath has override, use it */
 if (tsaSendParamPtr->altPathOverride)
 {
 nwSendParamPtr->altPath = tsaSendParamPtr->altPath;
 }

 /* Add TSPDU into the queue. */
 EnQueue(nwQPtr);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

177

 }

 /* Send the ACKD or REQUEST. */
 nwSendParamPtr = QueueTail(nwQPtr);
 nwSendParamPtr->dropIfUnconfigured = TRUE;
 pduPtr = (TSPDUPtr)
 ((char *)nwSendParamPtr + sizeof(NWSendParam));
 pduPtr->auth = tsaSendParamPtr->auth;
 pduPtr->transNum = xmitRecPtr->transNum;
 if (tsaSendParamPtr->service == ACKD)
 {
 pduPtr->pduMsgType = ACKD_MSG;
 }
 else
 {
 pduPtr->pduMsgType = REQUEST_MSG;
 }
 memcpy(pduPtr->data,
 xmitRecPtr->apdu,
 xmitRecPtr->apduSize);
 pduSize = xmitRecPtr->apduSize + 1;

#ifdef DEBUG
 DebugMsg("XmitTimerExp: Resending REM/MSG pair.");
#endif
 }
 }

 if (tsaSendParamPtr->service != UNACK_RPT)
 {
 INCR_STATS(nmp->stats.transmitTXRetries);
 }

 /* Compute the delta backlog value. */
 deltaBL = 1; /* for subnet and unique id messages. */
 if (tsaSendParamPtr->service == UNACK_RPT)
 {
 deltaBL = 0; /* Only on first attempt, deltaBL is retries left. */
 }
 else if (xmitRecPtr->nwDestAddr.addressMode == BROADCAST)
 {
 /* Domainwide or subnet BROADCAST. */
 /* If there is no override value for deltaBL, then it is 15. */
 if (tsaSendParamPtr->destAddr.bcast.backlog)
 {
 deltaBL = tsaSendParamPtr->destAddr.bcast.backlog;
 }
 else
 {
 deltaBL = 15;
 }
 }
 else if (xmitRecPtr->nwDestAddr.addressMode == MULTICAST)
 {
 /* deltaBL is outstanding responses or acknowledgements. */
 deltaBL = xmitRecPtr->destCount - xmitRecPtr->ackCount;
 }

 /* Fill in the NWSendParam structure */
 nwSendParamPtr->destAddr = xmitRecPtr->nwDestAddr;
 if (layerIn == TRANSPORT)
 {
 nwSendParamPtr->pduType = TPDU_TYPE;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

178

 else
 {
 nwSendParamPtr->pduType = SPDU_TYPE;
 }
 nwSendParamPtr->deltaBL = deltaBL;

 /* UnAck_rpt packets do not use alt path. */
 if (tsaSendParamPtr->service != UNACK_RPT)
 {
 nwSendParamPtr->altPath =
 (xmitRecPtr->retriesLeft <= (ALT_PATH_COUNT + 1));
 }
 else
 {
 nwSendParamPtr->altPath = FALSE;
 }
 /* if altPath has override, use it */
 if (tsaSendParamPtr->altPathOverride)
 {
 nwSendParamPtr->altPath = tsaSendParamPtr->altPath;
 }

 nwSendParamPtr->pduSize = pduSize;

 xmitRecPtr->retriesLeft--;

 /* Add TSPDU into the queue. */
 EnQueue(nwQPtr);

 /* Start the transmit timer. */
 SetMsTimer(&xmitRecPtr->xmitTimer, xmitRecPtr->xmitTimerValue);

 return;
}

/***
Function: SendNewMsg
Returns: None
Reference: None
Purpose: To process a new request from the application layer that
 is in the tsa output queue (pri or nonpri). Request or ACKD.
Comments: This fn is called only if there is space in the
 corresponding queue of the network layer.
**/
static void SendNewMsg(Layer layerIn, Boolean priorityIn)
{
 Queue *tsaQPtr; /* Pointer to the source queue. */
 TSASendParam *tsaSendParamPtr;/* Param in tsaQ (Pri or non-pri). */
 Queue *nwQPtr; /* Pointer to target queue. */
 NWSendParam *nwSendParamPtr; /* Param in nwQ (Pri or non-pri). */
 TransmitRecord *xmitRecPtr; /* Ptr to xmit rec. */
 DestinationAddress nwDestAddr; /* Destination address. */
 TSPDUPtr pduPtr; /* Pointer to TSPDU being formed. */
 APPReceiveParam *appReceiveParamPtr;
 Status status;
 uint16 rptTimer;
 uint8 retryCount;
 uint16 txTimer;
 uint8 deltaBL;
 uint16 nwBufSize;
 int8 i;

 if (priorityIn)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

179

 tsaQPtr = &gp->tsaOutPriQ;
 tsaSendParamPtr = QueueHead(tsaQPtr);
 nwQPtr = &gp->nwOutPriQ;
 nwSendParamPtr = QueueTail(nwQPtr);
 nwBufSize = gp->nwOutPriBufSize;
 xmitRecPtr = &gp->priXmitRec;
 }
 else
 {
 tsaQPtr = &gp->tsaOutQ;
 tsaSendParamPtr = QueueHead(tsaQPtr);
 nwQPtr = &gp->nwOutQ;
 nwSendParamPtr = QueueTail(nwQPtr);
 nwBufSize = gp->nwOutBufSize;
 xmitRecPtr = &gp->xmitRec;
 }

 /* If processing a new message, make sure that it is for this
 layer. If not, we are done. */

 if (layerIn == TRANSPORT &&
 tsaSendParamPtr->service != ACKD &&
 tsaSendParamPtr->service != UNACK_RPT)
 {
 return;
 }

 if (layerIn == TRANSPORT && NV_LAST_TAG(tsaSendParamPtr->tag))
 {
 if (QueueFull(&gp->appInQ))
 {
 return;
 }
 /* Special tag used by application layer for synchronization.
 Send completion indication right away. */
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = TRUE;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 DeQueue(tsaQPtr);
 return;
 }

 if (layerIn == SESSION && tsaSendParamPtr->service != REQUEST)
 {
 /* Responses are placed in the response queue. */
 return;
 }

 /* Make sure that large group size is not used for ack
 or request service. */
 if (tsaSendParamPtr->destAddr.group.groupFlag &&
 tsaSendParamPtr->destAddr.group.groupSize == 0 &&
 tsaSendParamPtr->service != UNACK_RPT)
 {
 /* Large groups can only use unack or unack_rpt services. */
 /* Indicate failure of this message to application layer. */
 if (!QueueFull(&gp->appInQ))
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 EnQueue(&gp->appInQ);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

180

 DeQueue(tsaQPtr);
 }
 else
 {
 /* We wait until appInQ has space for the indication. */
 }
 return;
 }
 /* Make sure that groupSize is in the proper range. */
 /* *** START INFORMATIVE - Group Size *** */
 /* See "START INFORMATIVE - Group Size" below. */
#ifdef GROUP_SIZE_COMPATIBILITY
 if (tsaSendParamPtr->destAddr.group.groupFlag &&
 (tsaSendParamPtr->destAddr.group.groupSize == 1 ||
 tsaSendParamPtr->destAddr.group.groupSize > MAX_GROUP_NUMBER+1))
#else
 if (tsaSendParamPtr->destAddr.group.groupFlag &&
 tsaSendParamPtr->destAddr.group.groupSize > MAX_GROUP_NUMBER)
#endif
 /* *** END INFORMATIVE - Group Size *** */
 {
 /* Indicate failure of this message to application layer. */
 if (!QueueFull(&gp->appInQ))
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 DeQueue(tsaQPtr);
 }
 else
 {
 /* We wait until appInQ has space for indication. */
 }
 return;
 }

 /* Make sure there is space in network buffer. If not, we fail. */
 /* apdu + (tran or session header of 1 byte) should fit. */
 if ((tsaSendParamPtr->apduSize + 1) > nwBufSize)
 {
 /* We can't send this message as it is too big for
 the network layer's buffer. */
 /* Right now, we haven't allocated any transmit record. */
 /* So, we directly give the indication to application. */
 if (!QueueFull(&gp->appInQ))
 {
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 DeQueue(tsaQPtr);
 }
 else
 {
 /* We wait until appInQ has space for indication. */
 }
 return;
 }

 /* First, compute nwDestAddr from destAddr. */
 /* First, initialize domainIndex. Only if it is COMPUTE_DOMAIN_INDEX,
 we need to recompute it based on destAddr field value. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

181

 nwDestAddr.domainIndex = tsaSendParamPtr->domainIndex;
 switch (tsaSendParamPtr->destAddr.noAddress)
 {
 case UNBOUND:
 /* Not in use or turnaround format. */
 if (!QueueFull(&gp->appInQ))
 {
 ErrorMsg("SendNewMsg: UNBOUND destination address is invalid.");
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 DeQueue(tsaQPtr);
 }
 else
 {
 /* We wait until appInQ has space for indication. */
 }
 return;
 case SUBNET_NODE:
 nwDestAddr.addressMode = SUBNET_NODE;
 if (tsaSendParamPtr->domainIndex == COMPUTE_DOMAIN_INDEX)
 {
 /* Use the domainIndex from destAddr. */
 nwDestAddr.domainIndex =
 tsaSendParamPtr->destAddr.snode.domainIndex;
 }
 nwDestAddr.addr.addr2a.subnet =
 tsaSendParamPtr->destAddr.snode.subnetID;
 nwDestAddr.addr.addr2a.selField = 1; /* always 1 */
 nwDestAddr.addr.addr2a.node =
 tsaSendParamPtr->destAddr.snode.node;
 txTimer =
 DecodeTxTimer((uint8) tsaSendParamPtr->destAddr.snode.txTimer);
 rptTimer =
 DecodeRptTimer((uint8) tsaSendParamPtr->destAddr.snode.rptTimer);
 retryCount =
 tsaSendParamPtr->destAddr.snode.retryCount;
 break;
 case UNIQUE_NODE_ID:
 nwDestAddr.addressMode = UNIQUE_NODE_ID;
 if (tsaSendParamPtr->domainIndex == COMPUTE_DOMAIN_INDEX)
 {
 nwDestAddr.domainIndex =
 tsaSendParamPtr->destAddr.uniqueNodeId.domainIndex;
 }
 nwDestAddr.addr.addr3.subnet =
 tsaSendParamPtr->destAddr.uniqueNodeId.subnetID;
 memcpy(nwDestAddr.addr.addr3.uniqueId,
 tsaSendParamPtr->destAddr.uniqueNodeId.uniqueId,
 UNIQUE_NODE_ID_LEN);
 txTimer =
 DecodeTxTimer((uint8) tsaSendParamPtr->destAddr.uniqueNodeId.txTimer);
 rptTimer =
 DecodeRptTimer((uint8) tsaSendParamPtr-
>destAddr.uniqueNodeId.rptTimer);
 retryCount =
 tsaSendParamPtr->destAddr.uniqueNodeId.retryCount;
 break;
 case BROADCAST:
 /* The following field is not used in this mode by
 application. It is however used in BROADCAST_GROUP. */
 tsaSendParamPtr->destAddr.bcast.maxResponses = 1;
 /* Fall Through */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

182

 /* *** START INFORMATIVE - Broadcast Group */
 /* Broadcast group addressing is optional. It can not be assumed that all
devices
 * support this form of addressing. */
 case BROADCAST_GROUP:
 nwDestAddr.addressMode = BROADCAST;
 if (tsaSendParamPtr->domainIndex == COMPUTE_DOMAIN_INDEX)
 {
 nwDestAddr.domainIndex =
 tsaSendParamPtr->destAddr.bcast.domainIndex;
 }
 nwDestAddr.addr.addr0 =
 tsaSendParamPtr->destAddr.bcast.subnetID;
 txTimer =
 DecodeTxTimer((uint8) tsaSendParamPtr->destAddr.bcast.txTimer);
 rptTimer =
 DecodeRptTimer((uint8) tsaSendParamPtr->destAddr.bcast.rptTimer);
 retryCount =
 tsaSendParamPtr->destAddr.bcast.retryCount;
 break;
 /* *** END INFORMATIVE - Broadcast Group */
 default:
 /* Shall be group format unless it is an invalid value. */
 if (tsaSendParamPtr->destAddr.group.groupFlag != 1)
 {
 /* It shall be some invalid value. Let us fail. */
 nmp->errorLog = BAD_ADDRESS_TYPE;
 if (!QueueFull(&gp->appInQ))
 {
 ErrorMsg("SendNewMsg: Invalid group format addr.");
 appReceiveParamPtr = QueueTail(&gp->appInQ);
 appReceiveParamPtr->indication = COMPLETION;
 appReceiveParamPtr->success = FALSE;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 EnQueue(&gp->appInQ);
 DeQueue(tsaQPtr);
 }
 else
 {
 /* We wait until appInQ has space for indication. */
 }
 return;
 }
 nwDestAddr.addressMode = MULTICAST;
 if (tsaSendParamPtr->domainIndex == COMPUTE_DOMAIN_INDEX)
 {
 nwDestAddr.domainIndex =
 tsaSendParamPtr->destAddr.group.domainIndex;
 }
 nwDestAddr.addr.addr1 =
 tsaSendParamPtr->destAddr.group.groupID;
 txTimer =
 DecodeTxTimer((uint8) tsaSendParamPtr->destAddr.group.txTimer);
 rptTimer =
 DecodeRptTimer((uint8) tsaSendParamPtr->destAddr.group.rptTimer);
 retryCount =
 tsaSendParamPtr->destAddr.group.retryCount;
 } /* switch */

 if (nwDestAddr.domainIndex == FLEX_DOMAIN)
 {
 /* flex domain. Copy the domain id. */
 nwDestAddr.flexDomainLen = tsaSendParamPtr->flexDomainLen;
 if (tsaSendParamPtr->flexDomainLen <= DOMAIN_ID_LEN)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

183

 memcpy(nwDestAddr.flexDomainId,
 tsaSendParamPtr->flexDomainId,
 tsaSendParamPtr->flexDomainLen);
 }
 }
 /* Get transaction number using nwDestAddr. */
 status = NewTrans(priorityIn, nwDestAddr, &xmitRecPtr->transNum);
 if (status == FAILURE)
 {
 /* Unable to get the transaction number. Give up. Try later. */
 return;
 }

 /* Initialize the xmit record. */
 if (layerIn == TRANSPORT)
 {
 xmitRecPtr->status = TRANSPORT_TX;
 }
 else
 {
 xmitRecPtr->status = SESSION_TX;
 }
 xmitRecPtr->nwDestAddr = nwDestAddr; /* Save it for future use. */
 for (i = 0; i <= MAX_GROUP_NUMBER; i++)
 {
 xmitRecPtr->ackReceived[i] = FALSE;
 }

 if (nwDestAddr.addressMode == MULTICAST)
 {
 /* If the node is a member of the group, then groupsize
 field is set to 1 more than actual group size
 by in app layer or app pgm.
 However, provide an option to set this to the
 true group size and transport and session layers
 will take care of this. */
 xmitRecPtr->destCount =
 tsaSendParamPtr->destAddr.group.groupSize - 1;
 /* *** START INFORMATIVE - Group Size *** */
 /* To be fully compatible with all applications, you shall use the
 GROUP_SIZE_COMPATIBILITY option. This behavior only affects explicitly
 addressed messages originated by the application. */
#ifndef GROUP_SIZE_COMPATIBILITY
 if (!IsGroupMember(tsaSendParamPtr->destAddr.group.domainIndex,
 tsaSendParamPtr->destAddr.group.group,
 &groupMember))
 {
 /* node is not a member & group size is true size */
 xmitRecPtr->destCount =
 tsaSendParamPtr->destAddr.group.groupSize;
 }
#endif
 /* *** END INFORMATIVE - Group Size *** */
 if (xmitRecPtr->destCount == 0)
 {
 /* If the value is incorrect, set it to 1. We need at least
 one acknowledgement or response. */
#ifdef DEBUG
 DebugMsg("SendNewMsg: groupSize incorrect. Default assumed.");
#endif
 xmitRecPtr->destCount = 1;
 }
 }
 else
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

184

 xmitRecPtr->destCount = 1;
 }

 xmitRecPtr->retriesLeft = retryCount;
 xmitRecPtr->ackCount = 0;
 xmitRecPtr->apdu = (APDU *) (tsaSendParamPtr + 1);
 xmitRecPtr->apduSize = tsaSendParamPtr->apduSize;
 if (tsaSendParamPtr->service == UNACK_RPT)
 {
 xmitRecPtr->xmitTimerValue = rptTimer;
 }
 else
 {
 xmitRecPtr->xmitTimerValue = txTimer;
 }

 /* Form the TSPDU to be sent directly in queue. */
 pduPtr = (TSPDUPtr)
 ((char *)nwSendParamPtr + sizeof(NWSendParam));
 pduPtr->auth = tsaSendParamPtr->auth;
 /* Save auth status so that if a challenge comes later on
 we can at least verify that it was legitimate challenge */
 xmitRecPtr->auth = tsaSendParamPtr->auth;
 if (tsaSendParamPtr->service == UNACK_RPT)
 {
 pduPtr->pduMsgType = UNACK_RPT_MSG;
#ifdef DEBUG
 DebugMsg("SendNewMsg: Sending a new UNACK_RPT packet.");
#endif
 }
 else if (layerIn == TRANSPORT)
 {
 pduPtr->pduMsgType = ACKD_MSG;
#ifdef DEBUG
 DebugMsg("SendNewMsg: Sending a new ACKD packet.");
#endif
 }
 else if (tsaSendParamPtr->service == REQUEST)
 {
 pduPtr->pduMsgType = REQUEST_MSG;
#ifdef DEBUG
 DebugMsg("SendNewMsg: Sending a new REQ packet.");
#endif
 }
 else
 {
#ifdef DEBUG
 DebugMsg("SendNewMsg: Something is wrong. Unknown service.");
#endif
 }
 pduPtr->transNum = xmitRecPtr->transNum;
 memcpy(pduPtr->data, xmitRecPtr->apdu,
 xmitRecPtr->apduSize);

 /* Compute the delta backlog value. */
 deltaBL = 1; /* For subnet and unique node id messages. */
 if (tsaSendParamPtr->service == UNACK_RPT_MSG)
 {
 deltaBL = xmitRecPtr->retriesLeft;
 }
 else if (nwDestAddr.addressMode == BROADCAST)
 {
 if (tsaSendParamPtr->destAddr.bcast.backlog)
 {
 deltaBL = tsaSendParamPtr->destAddr.bcast.backlog;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

185

 }
 else
 {
 deltaBL = 15;
 }
 }
 else if (nwDestAddr.addressMode == MULTICAST)
 {
 deltaBL = xmitRecPtr->destCount;
 }

 /* Fill in the NWSendParam structure. */
 nwSendParamPtr->dropIfUnconfigured = TRUE;
 nwSendParamPtr->destAddr = nwDestAddr;
 if (layerIn == TRANSPORT)
 {
 nwSendParamPtr->pduType = TPDU_TYPE;
 }
 else
 {
 nwSendParamPtr->pduType = SPDU_TYPE;
 }
 nwSendParamPtr->deltaBL = deltaBL;

 /* UnAck_rpt packets do not use alternate path. */
 if (tsaSendParamPtr->service != UNACK_RPT)
 {
 nwSendParamPtr->altPath = (retryCount <= ALT_PATH_COUNT);
 }
 else
 {
 nwSendParamPtr->altPath = FALSE;
 }

 /* if altPath has override, use it */
 if (tsaSendParamPtr->altPathOverride)
 {
 nwSendParamPtr->altPath = tsaSendParamPtr->altPath;
 }

 nwSendParamPtr->pduSize = xmitRecPtr->apduSize + 1;

 /* Add the TSPDU into the queue. */
 EnQueue(nwQPtr);

 /* Start the transmit timer. */
 SetMsTimer(&xmitRecPtr->xmitTimer, xmitRecPtr->xmitTimerValue);

 return;
}

/***
Function: TPReceive
Returns: None
Reference: None
Purpose: To receive and process incoming TPDU's by calling
 apprpriate functions. Also handle receive timers.
Comments: None
**/
void TPReceive(void)
{
 TSAReceiveParam *tsaReceiveParamPtr;/* Param in tsaQ. */
 TSPDUPtr pduInPtr; /* Pointer to TPDU received. */
 int16 i;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

186

 /* Update all the receive timers, if they do exist */
 for (i = 0; i < gp->recvRecCnt; i++)
 {
 if (gp->recvRec[i].status == TRANSPORT_RR)
 {
 if (gp->recvRec[i].recvTimer.curTimerValue > 0)
 {
 UpdateMsTimer(&gp->recvRec[i].recvTimer);
 }
 if (gp->recvRec[i].recvTimer.curTimerValue == 0)
 {
 /* Timer expired. See if RR can be released. */
#ifdef DEBUG
 DebugMsg("TPReceive: Receive timer expired.");
#endif

 /* Deliver the message if it has not been delivered. */
 /* Deliver fn checks for authentication */
 if (gp->recvRec[i].transState == DELIVERED ||
 gp->recvRec[i].transState == DONE)
 {
 gp->recvRec[i].status = UNUSED_RR; /* Release the RR */
 }
 else
 {
 Deliver(i);
 if (gp->recvRec[i].serviceType == ACKD &&
 gp->recvRec[i].transState == DELIVERED)
 {
 TPSendAck(i); /* may get lost due to no space. */
 }
 }
 }
 else if ((gp->recvRec[i].transState == JUST_RECEIVED &&
 !gp->recvRec[i].needAuth) ||
 gp->recvRec[i].transState == AUTHENTICATED)
 {
 /* The request does not need authentication and just received
 or it has been authenticated */
 Deliver(i);
 if (gp->recvRec[i].serviceType == ACKD &&
 gp->recvRec[i].transState == DELIVERED)
 {
 TPSendAck(i); /* may get lost due to no space. */
 }
 /* We can't release RR as it is not expired yet. */
 }
 }
 }

 /* Check if there is TPDU to be processed. */
 if (QueueEmpty(&gp->tsaInQ))
 {
 /* There is nothing to process. */
 return;
 }

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 pduInPtr = (TSPDUPtr) (tsaReceiveParamPtr + 1);

 /* Check if the PDU is for transport layer. If not, we are done. */
 if (tsaReceiveParamPtr->pduType != TPDU_TYPE)
 {
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

187

 }

 /* We have a TPDU to be processed. Check the type and
 process accordingly. */
 switch (pduInPtr->pduMsgType)
 {
 case ACK_MSG:
 TPReceiveAck();
 return;
 case ACKD_MSG:
 /* Fall through. */
 case UNACK_RPT_MSG:
 ReceiveNewMsg(TRANSPORT);
 return;
 case REMINDER_MSG:
 /* Fall through. */
 case REM_MSG_MSG:
 ReceiveRem(TRANSPORT);
 return;
 default:
 ErrorMsg("TPReceive: Unknown TPDU type received.");
 DeQueue(&gp->tsaInQ);
 nmp->errorLog = UNKNOWN_PDU;
 }

 return;
}

/***
Function: TPReceiveAck
Returns: None
Reference: None
Purpose: To process ACK message received by the transport layer.
Comments: ACK might correspond to a transmit record or it may be
 stale, in which case we ignore it.
**/
static void TPReceiveAck(void)
{
 TSAReceiveParam *tsaReceiveParamPtr;
 TSPDUPtr pduPtr;
 TransmitRecord *xmitRecPtr; /* Ptr to xmit rec (pri or nonpri). */

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 pduPtr = (TSPDUPtr) (tsaReceiveParamPtr + 1);

 /* Set the corresponding transmit pointer. */
 if (tsaReceiveParamPtr->priority)
 {
 xmitRecPtr = &gp->priXmitRec;
 }
 else
 {
 xmitRecPtr = &gp->xmitRec;
 }

 if (ValidateTrans(tsaReceiveParamPtr->priority, pduPtr->transNum)
 == TRANS_NOT_CURRENT)
 {
 /* Stale ACK. Ignore it. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: TPReceiveAck: Stale Ack Discarded");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

188

 }

 /* Check if the ACK really corresponds to the transaction in progress. */
 if (xmitRecPtr->status != TRANSPORT_TX ||
 xmitRecPtr->nwDestAddr.domainIndex !=
 tsaReceiveParamPtr->srcAddr.domainIndex)
 {
 /* Transmit record is not ours or the domain index for Ack
 and the transaction do not match. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: TPReceiveAck: Stale ack discarded.");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;
 }

 if (xmitRecPtr->nwDestAddr.addressMode == SUBNET_NODE &&
 (xmitRecPtr->nwDestAddr.addr.addr2a.subnet !=
 tsaReceiveParamPtr->srcAddr.subnetAddr.subnet ||
 xmitRecPtr->nwDestAddr.addr.addr2a.node !=
 tsaReceiveParamPtr->srcAddr.subnetAddr.node))
 {
 /* Source address of ACK does not match destination address of
 transmit record. */
 /* ACK does not seem to correspond to what we are expecting. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: TPReceiveAck: Stale Ack discarded.");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;
 }

 if (xmitRecPtr->nwDestAddr.addressMode == MULTICAST &&
 (tsaReceiveParamPtr->srcAddr.addressMode != MULTICAST_ACK ||
 xmitRecPtr->nwDestAddr.addr.addr1 !=
 tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.group))
 {
 /* MULTICAST message but not MULTICAST_ACK or the ack's group
 # does not match that of xmitRecord. */
 /* ACK does not seem to correspond to what we are expecting. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: TPReceiveAck: Stale ack discarded.");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;
 }

 /* For broadcast messages, ACK can come back with subnet value of 0
 from unconfigured nodes. We should accept these acks too. */
 if (xmitRecPtr->nwDestAddr.addressMode == BROADCAST &&
 tsaReceiveParamPtr->srcAddr.subnetAddr.subnet != 0 &&
 xmitRecPtr->nwDestAddr.addr.addr0 != 0 &&
 xmitRecPtr->nwDestAddr.addr.addr0 !=
 tsaReceiveParamPtr->srcAddr.subnetAddr.subnet)
 {
 /* Subnet broadcast but the ACK's subnet does not match .*/
 /* ACK does not seem to correspond to what we are expecting. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: TPReceiveAck: Stale ack discarded.");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

189

 return;
 }

 switch (xmitRecPtr->nwDestAddr.addressMode)
 {
 case BROADCAST: /* Fall Through. */
 case SUBNET_NODE: /* Fall Through. */
 case UNIQUE_NODE_ID:
 /* Normally the first ack should have terminated the transaction.
 If it did not, we can try to terminate again. There is no
 harm in doing this. Also, there is no harm in increment
 ackCount as XmitTimerExpiration checks for ackCount >= 1. */
 xmitRecPtr->ackCount++; /* Got one more ack. */
 TerminateTrans(tsaReceiveParamPtr->priority);
 break;
 case MULTICAST:
 /* Group acknowledgement. */
 if (tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.member
 > MAX_GROUP_NUMBER)
 {
 ErrorMsg("TPReceiveAck: Invalid group number.");
 break;
 }
 if (!xmitRecPtr->ackReceived[
 tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.member])
 {
 /* We did not receive this ack in past. */
 xmitRecPtr->ackReceived[
 tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.member]
 = TRUE;
 xmitRecPtr->ackCount++;
#ifdef DEBUG
 DebugMsg("TPReceiveAck: A new multicast ACK recvd.");
#endif
 }
 else
 {
 /* Else, it is a duplicate Ack. Ignore it. */
#ifdef DEBUG
 DebugMsg("TPReceiveAck: A Duplicate Mul. ACK ignored");
#endif
 }
 if (xmitRecPtr->destCount == xmitRecPtr->ackCount)
 {
 TerminateTrans(tsaReceiveParamPtr->priority);
 }
 break;
 default:
 nmp->errorLog = BAD_ADDRESS_TYPE;
 ErrorMsg("TPReceiveAck: Invalid address mode");
 }

#ifdef DEBUG
 DebugMsg("TPReceiveAck: Ack was received.");
#endif

 DeQueue(&gp->tsaInQ);

 /* Restart the Xmit Timer if the Xmit record is still active. */
 if (xmitRecPtr->status != UNUSED_TX)
 {
 SetMsTimer(&xmitRecPtr->xmitTimer, xmitRecPtr->xmitTimerValue);
 }

 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

190

}

/***
Function: SNReceiveResponse
Returns: None
Reference: None
Purpose: To process response message received by the session layer.
Comments: Response should correspond to current transaction in
 progress Or else it is thrown away.
**/
static void SNReceiveResponse(void)
{
 TSAReceiveParam *tsaReceiveParamPtr;
 TSASendParam *tsaSendParamPtr;
 TSPDUPtr pduPtr;
 TransmitRecord *xmitRecPtr; /* Ptr to xmit rec (pri or nonpri). */
 APPReceiveParam *appReceiveParamPtr;
 APDU *apduPtr;

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 pduPtr = (TSPDUPtr) (tsaReceiveParamPtr + 1);

 /* Set the corresponding transmit pointer. */
 if (tsaReceiveParamPtr->priority)
 {
 xmitRecPtr = &gp->priXmitRec;
 tsaSendParamPtr = QueueHead(&gp->tsaOutPriQ);
 }
 else
 {
 xmitRecPtr = &gp->xmitRec;
 tsaSendParamPtr = QueueHead(&gp->tsaOutQ);
 }

 if (ValidateTrans(tsaReceiveParamPtr->priority, pduPtr->transNum)
 == TRANS_NOT_CURRENT)
 {
 /* Unsolicited response. Ignore it. */
#ifdef DEBUG
 DebugMsg("SNReceiveResponse: Unsolicited response ignored.");
#endif
 DeQueue(&gp->tsaInQ);
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;
 }

 /* Check if possible if the Response really corresponds to the
 transaction in progress. */
 if (xmitRecPtr->status != SESSION_TX ||
 xmitRecPtr->nwDestAddr.domainIndex !=
 tsaReceiveParamPtr->srcAddr.domainIndex)
 {
 /* Transmit record is not ours or the domain indices for
 the response and the transaction record do not match. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: SNReceiveResponse: Stale response discarded.");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;
 }

 if (xmitRecPtr->nwDestAddr.addressMode == SUBNET_NODE &&
 (xmitRecPtr->nwDestAddr.addr.addr2a.subnet !=

BS EN 14908-1:2014

EN 14908-1:2014 (E)

191

 tsaReceiveParamPtr->srcAddr.subnetAddr.subnet ||
 xmitRecPtr->nwDestAddr.addr.addr2a.node !=
 tsaReceiveParamPtr->srcAddr.subnetAddr.node))
 {
 /* Source address of response does not match dest addr of
 transmit record. */
 /* Response does not seem to correspond to what we are expecting. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: SNReceiveResponse: Stale response discarded.");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;
 }

 if (xmitRecPtr->nwDestAddr.addressMode == MULTICAST &&
 (tsaReceiveParamPtr->srcAddr.addressMode != MULTICAST_ACK ||
 xmitRecPtr->nwDestAddr.addr.addr1 !=
 tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.group))
 {
 /* MULTICAST message but not MULTICAST_ACK or the response's group
 # does not match that of xmitRecord. */
 /* Response does not seem to correspond to what we are expecting. */
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("Debug: SNReceiveResponse: Stale response discarded.");
#endif
 INCR_STATS(nmp->stats.lateAcknowledgements);
 return;
 }

 /* For brodacast messages, the subnet in the response can be 0 from
 unconfigured nodes. Another possibility is that the response might
 come through a router in a scenerio where the router replaces the
 subnet with its own. Thus the response can be valid even if the
 subnet does not match. So, we should skip this test. */

 /* Check if there is space in application layer's input queue. */
 if (QueueFull(&gp->appInQ))
 {
 return; /* Can't give the response yet. Come back later. */
 }

 appReceiveParamPtr = QueueTail(&gp->appInQ);
 apduPtr = (APDU *)(appReceiveParamPtr + 1);

 /* Deliver the partial response to application layer. */
 appReceiveParamPtr->indication = MESSAGE;
 appReceiveParamPtr->srcAddr = tsaReceiveParamPtr->srcAddr;
 appReceiveParamPtr->service = RESPONSE;
 appReceiveParamPtr->priority = tsaReceiveParamPtr->priority;
 appReceiveParamPtr->pduSize = tsaReceiveParamPtr->pduSize - 1;
 appReceiveParamPtr->auth = FALSE;
 appReceiveParamPtr->tag = tsaSendParamPtr->tag;
 memcpy(apduPtr, pduPtr->data, tsaReceiveParamPtr->pduSize - 1);
 /* Don't deliver the response to application yet. It could be
 a duplicate. */
 switch (xmitRecPtr->nwDestAddr.addressMode)
 {
 case BROADCAST:
 /* We deliver up to N responses to app layer where N =
 tsaSendParamPtr->destAddr.bcast.maxResponses.
 But we succeed if at least one resp is received. */
 if (xmitRecPtr->ackCount <

BS EN 14908-1:2014

EN 14908-1:2014 (E)

192

 tsaSendParamPtr->destAddr.bcast.maxResponses)
 {
 EnQueue(&gp->appInQ);
 INCR_STATS(nmp->stats.layer6_7RespRcvd);
 xmitRecPtr->ackCount++;
 if (xmitRecPtr->ackCount ==
 tsaSendParamPtr->destAddr.bcast.maxResponses)
 {
 TerminateTrans(tsaReceiveParamPtr->priority);
 }
 }
 /* else, we don't want this response. Ignore it. */
 break;
 case SUBNET_NODE: /* Fall through. */
 case UNIQUE_NODE_ID:
 if (xmitRecPtr->ackCount == 0)
 {
 EnQueue(&gp->appInQ);
 INCR_STATS(nmp->stats.layer6_7RespRcvd);
 xmitRecPtr->ackCount++; /* First response. */
 TerminateTrans(tsaReceiveParamPtr->priority);
 }
 /* else, it is a duplicate response. Ignore it. */
 break;
 case MULTICAST:
 /* Group request message. Check response address mode. */
 if (tsaReceiveParamPtr->srcAddr.addressMode
 != MULTICAST_ACK)
 {
 ErrorMsg("SNReceiveResponse: RESPONSE should be "
 "MULTICAST_ACK.");
 break;
 }
 if (tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.member
 > MAX_GROUP_NUMBER)
 {
 ErrorMsg("SNReceiveResponse: Invalid group number.");
 break;
 }
 if (!xmitRecPtr->ackReceived[
 tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.member])
 {
#ifdef DEBUG
 DebugMsg("SNReceiveResp: A multicast resp delivered.");
#endif
 EnQueue(&gp->appInQ);
 INCR_STATS(nmp->stats.layer6_7RespRcvd);
 xmitRecPtr->ackReceived[
 tsaReceiveParamPtr->srcAddr.ackNode.groupAddr.member]
 = TRUE;
 xmitRecPtr->ackCount++;
 }
 else
 {
 /* Else, it is a duplicate response. Ignore it */
#ifdef DEBUG
 DebugMsg("SNReceiveResp: A duplicate multicast response ignored.");
#endif
 }
 if (xmitRecPtr->destCount == xmitRecPtr->ackCount)
 {
 TerminateTrans(tsaReceiveParamPtr->priority);
 }
 break;
 default:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

193

 nmp->errorLog = BAD_ADDRESS_TYPE;
 ErrorMsg("SNReceiveResponse: Invalid address mode.");
 }

 DeQueue(&gp->tsaInQ);

 /* Restart the timer if the xmit rec is still active. */
 if(xmitRecPtr->status != UNUSED_TX)
 {
 SetMsTimer(&xmitRecPtr->xmitTimer, xmitRecPtr->xmitTimerValue);
 }

 return;
}

/***
Function: ReceiveNewMsg
Returns: None
Reference: None
Purpose: To process either a new message received by transport
 (ACKD or UNACK_RPT) or session layer (REQUEST).
Comments: The message could be new or a duplicate. If new, we
 need to allocate a RR. If not, we use the existing RR.
**/
static void ReceiveNewMsg(Layer layerIn)
{
 TSAReceiveParam *tsaReceiveParamPtr;
 TSPDUPtr pduPtr;
 uint16 recvTimerValue;
 int16 i;
 Boolean initRR; /* Used to check if RR needs to init. */

 /* We have a new msg in TSA In queue. */

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 pduPtr = (TSPDUPtr) (tsaReceiveParamPtr + 1);

 /* First retrieve associated RR, if it exists. */
 /* Since we can receive at most one message from a node
 (one for priority & one for non-priority), we can reuse
 receive records if the sender determines that a message
 transmission is over by transmitting a new message with a
 new transaction number or different service (i.e layer) or
 a new APDU. */

 i = RetrieveRR(tsaReceiveParamPtr->srcAddr,
 tsaReceiveParamPtr->priority);
 if (i == -1)
 {
 /* No Associated RR found. We need to allocate a new one. */
 i = AllocateRR();
 if (i == -1)
 {
 /* Unable to allocate a new RR. */
 INCR_STATS(nmp->stats.receiveTXFull);
#ifdef DEBUG
 DebugMsg("ReceiveNewMsg: Unable to allocate RR. Msg is lost.");
#endif
 DeQueue(&gp->tsaInQ); /* Remove item from queue. */
 return;
 }
 /* We did allocate a new RR. We need to init this RR. */
 initRR = TRUE;
 }
 else if (gp->recvRec[i].transNum != pduPtr->transNum ||

BS EN 14908-1:2014

EN 14908-1:2014 (E)

194

 gp->recvRec[i].status != (layerIn ==
TRANSPORT?TRANSPORT_RR:SESSION_RR)
 || tsaReceiveParamPtr->pduSize - 1 !=
 gp->recvRec[i].apduSize ||
 /* *** START INFORMATIVE - APDU Contents and Duplicate Detection *** */
 /* This check causes the contents of the APDU to always be factored I
 * the duplicate detection algorithm.
 * It is considered a requirement that the APDU contents be
 * factored into the duplicate detection algorithm only in the case where
the
 * message is authenticated and the request is idempotent (because retries
 * are not re-authenticated). Whether this is done by storing the entire
 * APDU for comparison or storing only the APDU length and a checksum of
the
 * APDU data is implementation dependent. If a checksum method is used,
the
 * checksum should be at least 24 bits in length. In the case where a
 * non-matching APDU vectors into an existing authenticated transaction,
two
 * choices are possible:
 * a. Treat the message as if it were not a duplicate (as is done here).
 * b. Treat the message as a duplicate but mark it as not authenticated
 * (if it is necessary to deliver the retry to the application - see
 * "START INFORMATIVE - Saved Response Length" below). */
 memcmp(pduPtr->data, gp->recvRec[i].apdu,
 gp->recvRec[i].apduSize) != 0)
 /* *** END INFORMATIVE - APDU Contents and Duplicate Detection *** */
 {
 /* Something does not match. Shall be a new message from
 the sender. Let us reuse this RR, even if it is a
 request. If it is a request and response comes later,
 it won't match this record anyway due to reqid. */
 initRR = TRUE;
 /* If the old message was not deliverd, increment lost msg stat */
 if (gp->recvRec[i].transState != DELIVERED &&
 gp->recvRec[i].transState != DONE &&
 gp->recvRec[i].transState != RESPONDED)
 {
 INCR_STATS(nmp->stats.lostMessages);
 }
 }
 else
 {
 /* It is an existing RR with everything matching. */
 /* Nothing to do. We use the information in existing RR. */
 /* Set the alternate path bit based on new message so that
 acks, challenge etc will use the same path. Change only if
 it is not already using alternate path. */
 if (! gp->recvRec[i].altPath)
 {
 gp->recvRec[i].altPath = tsaReceiveParamPtr->altPath;
 }
 initRR = FALSE;
 }

 if (initRR)
 {
 if (layerIn == TRANSPORT)
 {
 gp->recvRec[i].status = TRANSPORT_RR;
 }
 else
 {
 gp->recvRec[i].status = SESSION_RR;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

195

 gp->recvRec[i].srcAddr = tsaReceiveParamPtr->srcAddr;
 gp->recvRec[i].transNum = pduPtr->transNum;
 gp->recvRec[i].transState = JUST_RECEIVED;
 gp->recvRec[i].priority = tsaReceiveParamPtr->priority;
 gp->recvRec[i].altPath = tsaReceiveParamPtr->altPath;
 gp->recvRec[i].auth = FALSE;
 gp->recvRec[i].reqId = 0; /* Init to invalid reqid. */
 if (layerIn == TRANSPORT)
 {
 gp->recvRec[i].serviceType =
 pduPtr->pduMsgType == ACKD_MSG? ACKD: UNACK_RPT;
 }
 else
 {
 gp->recvRec[i].serviceType = REQUEST;
 /* reqId can wrap around. Never use 0 as reqId so that
 a valid reqId will never match a receive record that
 does not correspond to corresponding request. */
 if (gp->reqId == 0)
 {
 gp->reqId++;
 }
 gp->recvRec[i].reqId = gp->reqId++;
 }
 gp->recvRec[i].apduSize = tsaReceiveParamPtr->pduSize - 1;
 memcpy(gp->recvRec[i].apdu,
 pduPtr->data,
 gp->recvRec[i].apduSize); /* Store the APDU. */
 /* Compute the recvTimer value to be used. */
 recvTimerValue = ComputeRecvTimerValue(
 tsaReceiveParamPtr->srcAddr.addressMode,
 tsaReceiveParamPtr->srcAddr.group);
 SetMsTimer(&gp->recvRec[i].recvTimer, recvTimerValue);
 }

 DeQueue(&gp->tsaInQ); /* Remove item from queue. */

 /* Now, we have a RR for this message. */
 /* Determine if the msg needs authentication and store. */
 /* Allow authentication for UnAck_Rpt. */
 /* flexDomain messages cannot be authenticated. Force it. */

 if (pduPtr->auth && tsaReceiveParamPtr->srcAddr.domainIndex != FLEX_DOMAIN)
 {
 gp->recvRec[i].needAuth = TRUE;
 }
 else
 {
 gp->recvRec[i].needAuth = FALSE;
 }

 /* Authentication is performed if it is a new message or
 in the process of authenticating and it needs to be
 autheneticated. */
 if ((gp->recvRec[i].transState == JUST_RECEIVED ||
 gp->recvRec[i].transState == AUTHENTICATING) &&
 gp->recvRec[i].needAuth)
 {
 /* The message needs authentication. Initiate Challenge. */
 /* Or ReInitiate Challenge as the prev one is probably lost. */
#ifdef DEBUG
 DebugMsg("ReceiveNewMsg: Initiating Challenge.");
#endif
 InitiateChallenge(i);
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

196

 }

 if (gp->recvRec[i].transState != DELIVERED &&
 gp->recvRec[i].transState != RESPONDED &&
 gp->recvRec[i].transState != DONE)
 {
 /* Deliver the message to the application layer. */
 Deliver(i);
 }
 else
 {
#ifdef DEBUG
 DebugMsg("ReceiveNewMsg: Msg received was already delivered.");
#endif
 }

 if (layerIn == TRANSPORT)
 {
 if (gp->recvRec[i].transState == DELIVERED &&
 gp->recvRec[i].serviceType == ACKD)
 {
 /* Compose and send the acknowledgement. */
 TPSendAck(i);
 }
 }
 else if (gp->recvRec[i].transState == RESPONDED)
 {
 /* Shall be a request that was already responded. */
 /* We already have a resp. Simply send it. */
 SNSendResponse(i, FALSE); /* It can't be a null response. */
 }
 else if (gp->recvRec[i].transState == DONE)
 {
#ifdef DEBUG
 DebugMsg("ReceiveNewMsg: Nothing to do.");
#endif
 }
 return;
}

/***
Function: ReceiveRem
Returns: None
Reference: None
Purpose: To process REMINDER and REM/MSG messages.
 We either do nothing or send an ack (for Transport)
 or a response(for Session) if possible.
Comments: None
**/
static void ReceiveRem(Layer layerIn)
{
 TSAReceiveParam *tsaReceiveParamPtr;
 TSPDUPtr pduPtr;
 int16 i;
 APDU *apduPtr;
 uint16 apduSize;
 uint8 length;
 uint8 member;
 uint8 mlistIndex, mlistOffset;
 Byte *mlistPtr;
 uint16 recvTimerValue;

 /* We have a REMINDER or REM/MSG in TSA input queue. */

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

197

 pduPtr = (TSPDUPtr) (tsaReceiveParamPtr + 1);
 length = pduPtr->data[0];

 if (pduPtr->pduMsgType == REMINDER_MSG)
 {
 apduSize = 0;
 apduPtr = NULL;
 }
 else
 {
 /* Shall be REM_MSG_MSG. */
 /* TSPDU header size before APDU is actual 1 byte header,
 1 byte length field and the length of M_List field. */
 apduSize = tsaReceiveParamPtr->pduSize - 2 - length;
 apduPtr = (APDU *)&pduPtr->data[1 + length];
 }

 /* First retrieve the associated RR, if it exists. */
 i = RetrieveRR(tsaReceiveParamPtr->srcAddr,
 tsaReceiveParamPtr->priority);

 /* Check if the REMINDER msg has an associated RR. */
 if (i == -1 && pduPtr->pduMsgType == REMINDER_MSG)
 {
 /* No associated RR. Discard this REMINDER msg. */
#ifdef DEBUG
 DebugMsg("ReceiveRem: REMINDER msg has no associated RR");
#endif
 DeQueue(&gp->tsaInQ);
 return;
 }

 if (i != -1 &&
 (gp->recvRec[i].srcAddr.addressMode != MULTICAST ||
 gp->recvRec[i].transNum != pduPtr->transNum ||
 gp->recvRec[i].status != (layerIn == TRANSPORT?TRANSPORT_RR:SESSION_RR) ||
 (apduPtr && apduSize != gp->recvRec[i].apduSize) ||
 (apduPtr &&
 /* *** START INFORMATIVE - APDU Contents and Duplicate Detection *** */
 /* See "START INFORMATIVE - APDU Contents and Duplicate Detection". */
 memcmp(apduPtr, gp->recvRec[i].apdu, apduSize) != 0))
 /* *** END INFORMATIVE - APDU Contents and Duplicate Detection *** */
)

 {
 /* Associate RR does not match properly. Either it is not
 a multicast message or transNum does not match or
 APDU does not match. This is not OK for REMINDER_MSG.
 If it is however REM_MSG_MSG, we want to treat it as a
 new message. */
 if (pduPtr->pduMsgType == REMINDER_MSG)
 {
#ifdef DEBUG
 DebugMsg("ReceiveRem: Associated RR does not match.");
#endif
 DeQueue(&gp->tsaInQ);
 return;
 }
 if (gp->recvRec[i].transState == DELIVERED ||
 gp->recvRec[i].transState == DONE)
 {
 /* Reuse this receive record. We will free this record and allocate
 a new one. */
 gp->recvRec[i].status = UNUSED_RR;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

198

 i = -1;
 }
 else
 {
 i = -1; /* Allocate new one. */
 }
 }

 if (i != -1 && gp->recvRec[i].serviceType == UNACK_RPT)
 {
 if (pduPtr->pduMsgType == REMINDER_MSG)
 {
 /* We should not have gotton this REMINDER as the original
 message was UNACK_RPT. So, ignore this message. */
#ifdef DEBUG
 DebugMsg("ReceiveRem: Original msg is UNACK_RPT.");
#endif
 DeQueue(&gp->tsaInQ);
 return;
 }
 /* Treat REM_MSG_MSG as new one. Fack this by setting i to -1. */
 i = -1;
 }

 if (i != -1)
 {
 /* We have already received the corresponding APDU. */
 /* Probably the ack or response sent earlier was lost. */
 /* Sent the ack or response again. */
 if (!IsGroupMember(gp->recvRec[i].srcAddr.domainIndex,
 gp->recvRec[i].srcAddr.group,
 &member))
 {
 /* We are not member of the group used for this msg.
 Strange! Ignore this msg too!
 Network layer should not have delivered such msg
 to upper layers. */
#ifdef DEBUG
 DebugMsg("ReceiveRem: Strange! Not a group member!!.");
#endif
 DeQueue(&gp->tsaInQ);
 return;
 }
 mlistIndex = member / 8;
 mlistOffset = member % 8;
 mlistPtr = &pduPtr->data[1];
 if (
 length == 0
 ||
 mlistIndex >= length
 ||
 (mlistPtr[mlistIndex] & (1 << mlistOffset)) == 0
)
 {
 /* We are asked to respond. Server did not get our ack or response. */

 /* If it is a REMINDER_MSG, it will be followed by the retry.
 So, we simply ignore it. */
 if (pduPtr->pduMsgType == REMINDER_MSG)
 {
 DeQueue(&gp->tsaInQ);
 return;
 }

 if (gp->recvRec[i].needAuth &&

BS EN 14908-1:2014

EN 14908-1:2014 (E)

199

 (gp->recvRec[i].transState == JUST_RECEIVED ||
 gp->recvRec[i].transState == AUTHENTICATING)
)
 {
 /* Need authentication. Either a new msg or prev challenge
 was lost. */
#ifdef DEBUG
 DebugMsg("ReceiveRem: Initiating Challenge.");
#endif
 InitiateChallenge(i);
 DeQueue(&gp->tsaInQ);
 return;
 }
 if (gp->recvRec[i].transState != DELIVERED &&
 gp->recvRec[i].transState != RESPONDED &&
 gp->recvRec[i].transState != DONE)
 {
 /* Deliver the message to application layer. */
 Deliver(i);
 }

 /* Send ack or response. */
 if (gp->recvRec[i].transState == DELIVERED ||
 gp->recvRec[i].transState == RESPONDED)
 {
 DeQueue(&gp->tsaInQ);
 if (layerIn == TRANSPORT)
 {
 /* Compose and send the acknowledgement. */
 TPSendAck(i);
 }
 else if (gp->recvRec[i].transState == RESPONDED)
 {
 SNSendResponse(i, FALSE); /* can't be null resp. */
 }
 else
 {
 /* we are still waiting for a response. */
#ifdef DEBUG
 DebugMsg("ReceiveRem: Don't have response yet"
 " or have null response.");
#endif
 }
 }
 else
 {
 /* We are still waiting for resp & so can't respond
 or in DONE state indicating server already received
 the ack or response. */
#ifdef DEBUG
 DebugMsg("ReceiveRem: Can't respond or no need to respond.");
#endif
 DeQueue(&gp->tsaInQ);
 }
 }
 else
 {
 /* We are not asked to acknowledege or respond. Ignore msg. */
 if (gp->recvRec[i].transState == DELIVERED ||
 gp->recvRec[i].transState == RESPONDED)
 {
 /* Note down the fact that the ack or resp has been received */
 gp->recvRec[i].transState = DONE;
 }
#ifdef DEBUG

BS EN 14908-1:2014

EN 14908-1:2014 (E)

200

 DebugMsg("ReceiveRem: We are not asked to ack or respond.");
#endif
 DeQueue(&gp->tsaInQ);
 }
 return;
 }

 /* Now we shall have a REM_MSG_MSG with no associated RR. */
 /* REMINDER msg with no associated record was taken care of
 earlier. */
 i = AllocateRR();
 if (i == -1)
 {
 /* Unable to allocate a new RR. Give up. */
 return;
 }
 if (layerIn == TRANSPORT)
 {
 gp->recvRec[i].status = TRANSPORT_RR;
 }
 else
 {
 gp->recvRec[i].status = SESSION_RR;
 }
 gp->recvRec[i].srcAddr = tsaReceiveParamPtr->srcAddr;
 gp->recvRec[i].transNum = pduPtr->transNum;
 gp->recvRec[i].transState = JUST_RECEIVED;
 gp->recvRec[i].priority = tsaReceiveParamPtr->priority;
 gp->recvRec[i].altPath = tsaReceiveParamPtr->altPath;
 gp->recvRec[i].auth = FALSE; /* Not authenticated yet. */
 if (layerIn == TRANSPORT)
 {
 /* We have REM/MSG. So service type shall be ACKD. */
 gp->recvRec[i].serviceType = ACKD;
 }
 else
 {
 gp->recvRec[i].serviceType = REQUEST;
 /* reqId can wrap around. Never use 0 as reqId so that
 a valid reqId will never match a receive record that
 does not correspond to corresponding request. */
 if (gp->reqId == 0)
 {
 gp->reqId++;
 }
 gp->recvRec[i].reqId = gp->reqId++;
 }
 gp->recvRec[i].apduSize = apduSize;
 memcpy(gp->recvRec[i].apdu, apduPtr, apduSize);
 /* Compute the recvTimer value to be used. */
 recvTimerValue =
 ComputeRecvTimerValue(
 tsaReceiveParamPtr->srcAddr.addressMode,
 tsaReceiveParamPtr->srcAddr.group
);
 DeQueue(&gp->tsaInQ); /* Remove the item from queue. */

 SetMsTimer(&gp->recvRec[i].recvTimer, recvTimerValue);

 /* Flex domain messages cannot be authenticated. */
 if (pduPtr->auth &&
 tsaReceiveParamPtr->srcAddr.domainIndex != FLEX_DOMAIN)
 {
 gp->recvRec[i].needAuth = TRUE; /* Remember that we need auth. */
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

201

 else
 {
 gp->recvRec[i].needAuth = FALSE;
 }

 /* Now, we have a RR for this message. */
 if (gp->recvRec[i].needAuth)
 {
 /* The message needs authentication. Initiate Challenge. */
#ifdef DEBUG
 DebugMsg("ReceiveRem: Initiating Challenge.");
#endif
 InitiateChallenge(i);
 return;
 }

 /* Deliver the message to the application layer. */
 Deliver(i);

 if (layerIn == TRANSPORT)
 {
 if (gp->recvRec[i].transState == DELIVERED)
 {
 /* Compose and send the acknowledgement. */
 TPSendAck(i);
 }
 }
 else
 {
 /* We just delivered. Can't have a response yet. */
 }
 return;
}

/***
Function: TPSendAck
Returns: None
Reference: None
Purpose: To Send an ACK message for ACKD msg received by the
 transport layer. If there is no space in network
 output queue, then nothing is sent.
Comments: None.
**/
static void TPSendAck(uint16 rrIndexIn)
{
 NWSendParam *nwSendParamPtr; /* Ptr to NW Send Param. */
 TSPDUPtr pduPtr; /* Ptr to TPDU sent. */
 Queue *nwQueuePtr;
 DestinationAddress destAddr;

 if (gp->recvRec[rrIndexIn].priority)
 {
 nwQueuePtr = &gp->nwOutPriQ;
 }
 else
 {
 nwQueuePtr = &gp->nwOutQ;
 }

 if (QueueFull(nwQueuePtr))
 {
 return; /* Can't send the acknowledgement now. */
 }

 nwSendParamPtr = QueueTail(nwQueuePtr);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

202

 pduPtr = (TSPDUPtr) (nwSendParamPtr + 1);

 /* Form the TPDU directly in the network layer's queue. */
 pduPtr->auth = FALSE; /* Acks are not authenticated. */
 pduPtr->pduMsgType = ACK_MSG;
 pduPtr->transNum = gp->recvRec[rrIndexIn].transNum;

 /* Fill in the details for the network layer. */

 /* First, form sender's (i.e our) address. */
 destAddr.domainIndex = gp->recvRec[rrIndexIn].srcAddr.domainIndex;
 if (destAddr.domainIndex == FLEX_DOMAIN)
 {
 /* Flex domain was used. Copy flex domain information. */
 destAddr.flexDomainLen =
 gp->recvRec[rrIndexIn].srcAddr.flexDomainLen;
 /* Make sure we have a good length field. */
 if (destAddr.flexDomainLen <= DOMAIN_ID_LEN)
 {
 memcpy(destAddr.flexDomainId,
 gp->recvRec[rrIndexIn].srcAddr.flexDomainId,
 destAddr.flexDomainLen);
 }
 }

 /* We send unicast ACK or multicast ACK depending on msg recvd. */
 if (gp->recvRec[rrIndexIn].srcAddr.addressMode == MULTICAST)
 {
 /* Send ACK in address format 2b. */
 destAddr.addressMode = MULTICAST_ACK;
 destAddr.addr.addr2b.subnetAddr =
 gp->recvRec[rrIndexIn].srcAddr.subnetAddr;
 destAddr.addr.addr2b.groupAddr.group =
 gp->recvRec[rrIndexIn].srcAddr.group;
 if (!IsGroupMember(destAddr.domainIndex, destAddr.addr.addr2b.groupAddr.group,
 &destAddr.addr.addr2b.groupAddr.member))
 {
 ErrorMsg("SendACKTPDU: Ack msg for a non-existing group.");
 return;
 }
 }
 else
 {
 /* Send Ack in address format 2a. */
 destAddr.addressMode = SUBNET_NODE;
 destAddr.addr.addr2a =
 gp->recvRec[rrIndexIn].srcAddr.subnetAddr;
 }

 nwSendParamPtr->dropIfUnconfigured = FALSE; /* acks are not dropped */
 nwSendParamPtr->destAddr = destAddr;
 nwSendParamPtr->pduType = TPDU_TYPE;
 nwSendParamPtr->deltaBL = 0;
 nwSendParamPtr->altPath = gp->recvRec[rrIndexIn].altPath;
 nwSendParamPtr->pduSize = 1;

#ifdef DEBUG
 DebugMsg("Debug: TPSendAck. Sending an ACK.");
#endif
 EnQueue(nwQueuePtr);
}

/***
Function: SNSendResponse
Returns: None

BS EN 14908-1:2014

EN 14908-1:2014 (E)

203

Reference: None
Purpose: To send a response message for REQUEST msg received by the
 session layer. If there is no space in network
 output queue, then nothing is sent.
 If it is a null response, then the receive record is freed
 and no response goes out.
Comments: This function is called only when the application layer
 has already given the response. (Or else how can this
 function know about how to respond anyway?)
**/
static void SNSendResponse(uint16 rrIndexIn, Boolean nullResponse)
{
 NWSendParam *nwSendParamPtr; /* Ptr to NW Send Param. */
 TSPDUPtr pduPtr; /* Ptr to TPDU sent. */
 Queue *nwQueuePtr;
 DestinationAddress destAddr;

 if (gp->recvRec[rrIndexIn].priority)
 {
 nwQueuePtr = &gp->nwOutPriQ;
 }
 else
 {
 nwQueuePtr = &gp->nwOutQ;
 }

 if (QueueFull(nwQueuePtr) && !nullResponse)
 {
 return; /* Can't sent the response now. */
 }

 if (gp->recvRec[rrIndexIn].transState != RESPONDED &&
 gp->recvRec[rrIndexIn].transState != DONE)
 {
 ErrorMsg("SNSendResponse: How can I be called without "
 " atleast one resp?");
 return;
 }

 if (nullResponse)
 {
 /* Set state to DONE and do not send the response. */
#ifdef DEBUG
 DebugMsg("SendResponse: Null response. Nothing goes out.");
#endif
 gp->recvRec[rrIndexIn].transState = DONE;
 return;
 }

 nwSendParamPtr = QueueTail(nwQueuePtr);
 pduPtr = (TSPDUPtr) (nwSendParamPtr + 1);

 if (gp->nwOutBufSize < gp->recvRec[rrIndexIn].rspSize + 1)
 {
 ErrorMsg("SNSendResponse: Network buf too small for response.");
 return;
 }
 pduPtr->auth = FALSE; /* Responses are not authenticated. */
 pduPtr->pduMsgType = RESPONSE_MSG;
 pduPtr->transNum = gp->recvRec[rrIndexIn].transNum;
 /* Copy the existing response from RR */
 if (gp->recvRec[rrIndexIn].rspSize <=
 DecodeBufferSize((uint8) eep->readOnlyData.appOutBufSize))
 {
 /* *** START INFORMATIVE - Saved Response Length *** */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

204

/* This implementation saves the entire response in the receive transaction record.
 * Thus, if and when a retry of the request is received, the response can be
 * re-transmitted without re-delivering the request to the application for
 * construction of a response. It is acceptable to save only responses of certain
 * length (e.g., as little as 1 byte) in order to minimize RAM use.
 * Under these conditions, a retry of a request that illicited a response of
 * length greater than that minimium length is considered to be idempotent (can be
 * safely executed again) and may be re-delivered to the application for
 * reformulation of the response. It is also required that under these conditions
 * that the application be informed of the duplicate nature of the request in case
 * the application chooses to treat the request as non-idempotent by saving the
 * response for retransmission without recomputation. In this case a key shall
* also be provided for the application to use to map the request to a saved
* response. */
 memcpy(pduPtr->data, gp->recvRec[rrIndexIn].response,
 gp->recvRec[rrIndexIn].rspSize);
 /* *** END INFORMATIVE - Saved Response Length *** */
 }
 else
 {
#ifdef DEBUG
 DebugMsg("SNSendResponse: Discarding a long response.");
#endif
 return;
 }
 /* Fill in the details for the network layer. */

 destAddr.domainIndex = gp->recvRec[rrIndexIn].srcAddr.domainIndex;
 if (destAddr.domainIndex == FLEX_DOMAIN)
 {
 /* Flex domain was used. Copy flex domain information. */
 destAddr.flexDomainLen =
 gp->recvRec[rrIndexIn].srcAddr.flexDomainLen;
 if (destAddr.flexDomainLen <= DOMAIN_ID_LEN)
 {
 memcpy(destAddr.flexDomainId,
 gp->recvRec[rrIndexIn].srcAddr.flexDomainId,
 destAddr.flexDomainLen);
 }
 }

 /* We send unicast response or multicast response depending on
 the request received. */
 if (gp->recvRec[rrIndexIn].srcAddr.addressMode == MULTICAST)
 {
 /* Send the response in address format 2b. */
 destAddr.addressMode = MULTICAST_ACK;
 destAddr.addr.addr2b.subnetAddr =
 gp->recvRec[rrIndexIn].srcAddr.subnetAddr;
 destAddr.addr.addr2b.groupAddr.group =
 gp->recvRec[rrIndexIn].srcAddr.group;
 if (!IsGroupMember(destAddr.domainIndex, destAddr.addr.addr2b.groupAddr.group,
 &destAddr.addr.addr2b.groupAddr.member))
 {
 ErrorMsg("SNSendResponse: Response for a non-existing group.");
 return;
 }
 }
 else
 {
 /* Send response in address format 2a. */
 destAddr.addressMode = SUBNET_NODE;
 destAddr.addr.addr2a =
 gp->recvRec[rrIndexIn].srcAddr.subnetAddr;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

205

 nwSendParamPtr->dropIfUnconfigured = FALSE; /* responses are not dropped */
 nwSendParamPtr->destAddr = destAddr;
 nwSendParamPtr->pduType = SPDU_TYPE;
 nwSendParamPtr->deltaBL = 0;
 nwSendParamPtr->altPath = gp->recvRec[rrIndexIn].altPath;
 nwSendParamPtr->pduSize = gp->recvRec[rrIndexIn].rspSize + 1;

#ifdef DEBUG
 DebugMsg("SNSendResponse: Sending a response.");
#endif
 EnQueue(nwQueuePtr);
}

/***
Function: Deliver
Returns: None
Reference: None
Purpose: To deliver a message received by tranport or session layer
 to the application layer.
Comments: layerIn is not needed as it is not used.
**/
static void Deliver(uint16 rrIndexIn)
{
 APPReceiveParam *appReceiveParamPtr;
 char *apduInPtr;
 uint16 i = rrIndexIn; /* Use i instead of rrIndexIn. */

 if (gp->recvRec[i].needAuth && gp->recvRec[i].transState != AUTHENTICATED)
 {
 /* The message needs authentication but was not authenticated. */
 gp->recvRec[i].transState = DONE;
 return;
 }

 if (QueueFull(&gp->appInQ))
 {
 /* We can wait, but then we may not be able to guarantee delivery in
 sequence from a given source node. So, it is better to drop the
 message and let the retry mechanism take care of redelivery. */
 INCR_STATS(nmp->stats.lostMessages);
 gp->recvRec[i].transState = DONE; /* indicate that this one is done */
 return;
 }

 appReceiveParamPtr = QueueTail(&gp->appInQ);
 apduInPtr = (char *)(appReceiveParamPtr + 1);

 appReceiveParamPtr->indication = MESSAGE;
 appReceiveParamPtr->srcAddr = gp->recvRec[i].srcAddr;
 appReceiveParamPtr->service = gp->recvRec[i].serviceType;
 appReceiveParamPtr->priority = gp->recvRec[i].priority;
 appReceiveParamPtr->altPath = gp->recvRec[i].altPath;
 appReceiveParamPtr->auth = gp->recvRec[i].auth;
 appReceiveParamPtr->pduSize = gp->recvRec[i].apduSize;
 appReceiveParamPtr->reqId = gp->recvRec[i].reqId;

 if (gp->appInBufSize < gp->recvRec[i].apduSize)
 {
 ErrorMsg("Deliver: APDU size too big");
 /* We can never deliver this APDU. So, make it look like
 it was delivered so that it can be discarded. We don't
 want to send any ACK or response for this message. */
 gp->recvRec[i].transState = DONE;
 nmp->errorLog = WRITE_PAST_END_OF_APPL_BUFFER;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

206

 return;
 }
 /* Now it should be safe to do memcpy. */
 memcpy(apduInPtr, gp->recvRec[i].apdu, gp->recvRec[i].apduSize);
 EnQueue(&gp->appInQ);
 INCR_STATS(nmp->stats.layer6_7MsgsRcvd);
 gp->recvRec[i].transState = DELIVERED;
#ifdef DEBUG
 DebugMsg("Debug: Deliver: Packet has been delivered"
 " to the application layer.");
#endif
}

/***
Function: RetrieveRR
Returns: Index of RR Table that matches given input parameters.
 -1 if none exists.
Reference: None
Purpose: To retrieve the receive record from the RR table
 that corresponds to a message received. For matching,
 we use priority, domainIndex, addressMode, and source address.
 We also match subnet if the message is broadcast
 or group if the message is multicast.
Comments: None
**/
static int16 RetrieveRR(SourceAddress srcAddrIn,
 Boolean priorityIn)
{
 int16 i;

 /* Search through all the receive records for a match. */

 for (i = 0; i < gp->recvRecCnt; i++)
 {
 if (
 priorityIn == gp->recvRec[i].priority
 &&
 /* Destination subnet/node match is based on domainIndex. */
 srcAddrIn.domainIndex == gp->recvRec[i].srcAddr.domainIndex
 &&
 (srcAddrIn.addressMode == gp->recvRec[i].srcAddr.addressMode)
 &&
 /* Source node address should always match. */
 (memcmp(&srcAddrIn.subnetAddr,
 &gp->recvRec[i].srcAddr.subnetAddr,
 sizeof(SubnetAddress)) == 0)
 &&
 /* Make sure BROADCAST address matches for broadcast messages. */
 (srcAddrIn.addressMode != BROADCAST ||
 srcAddrIn.broadcastSubnet == gp->recvRec[i].srcAddr.broadcastSubnet)
 &&
 /* Make sure MULTICAST address matches for multicast messages. */
 (srcAddrIn.addressMode != MULTICAST ||
 srcAddrIn.group == gp->recvRec[i].srcAddr.group)
)

 {
 break;
 }
 }

 if (i == gp->recvRecCnt)
 {
 return(-1); /* Matching RR was not found. */
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

207

 return(i); /* Found matching RR. */
}

/***
Function: AllocateRR
Returns: Index of RR table that can be used for a new msg.
Reference: None
Purpose: To find an index in the RR table that is UNUSED.
Comments: None
**/
static int16 AllocateRR(void)
{
 int16 i;

 /* First search for one that is unused. */
 for (i = 0; i < gp->recvRecCnt; i++)
 {
 if (gp->recvRec[i].status == UNUSED_RR)
 {
 return(i); /* Found one that is unused. */
 }
 }

 return(-1);
}

/***
Function: ComputeRecvTimerValue
Returns: Receive Timer value in milli seconds.
Reference: None
Purpose: To compute the value to be used for receive timer
 based on the address format of the received message
 and group id.
Comments: None
**/
static uint16 ComputeRecvTimerValue(AddrMode addrModeIn,
 MulticastAddress groupIdIn)
{
 uint16 i, max = 0, temp;

 if (addrModeIn == UNIQUE_NODE_ID)
 {
 return((uint16)(NGTIMER_SPCL_VAL * 1 000,0));
 }
 if (addrModeIn == MULTICAST)
 {
 /* Search through the address table to find the receiver timer val. */
 /* If there is more than one entry with the same group,
 use the one with the max rcv timer value */
 for (i = 0; i < NUM_ADDR_TBL_ENTRIES; i++)
 {
 if (eep->addrTable[i].addrFormat >= 128 &&
 eep->addrTable[i].groupEntry.groupID == groupIdIn)
 {
 /* Group format match */
 temp = DecodeRcvTimer((uint8)
 eep->addrTable[i].groupEntry.rcvTimer);
 /* *** START INFORMATIVE - Multicast Receive Timer *** */
 /* Using the maximum receive timer for the group is not required. It
 * is acceptable to use the receive timer for the first group entry
 * found in the table. */
 if (temp > max)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

208

 max = temp;
 }
 /* *** END INFORMATIVE - Multicast Receive Timer *** */
 }
 }
 return(max);
 }
 /* All other messages use non-group timer value. */
 return(DecodeRcvTimer((uint8) eep->configData.nonGroupTimer));
}

/***
Function: SNSend
Returns: None
Reference: Section 10, Transport layer
Purpose: To implement Send algorithm for the session layer.
 If there is anything to be sent by the session layer,
 this function will process that message and sends it.
 If there is any ongoing message, it might need some
 processing such as retry, timer expiry etc. This
 function will process such events too.
Comments: Update the priority transmit timer, if it exists.
 Update the non-priority transmit timer, if it exists.
 If the priority transmit timer expired then
 process this event.
 else if there is priority message to be sent and there is space
 in priority queue of the network layer then
 process the priority message.
 else if the non-priority transmit timer expired then
 process that event.
 else if there is non-priority message to be sent and there is space
 in non-priority queue of network layer then
 process the non-priority message.
 else
 nothing to do. return.
Note:
**/
void SNSend(void)
{
 TSASendParam *tsaSendParamPtr;
 uint16 i;

 /* Delay SNSend after power-up or external reset. */
 if (gp->tsDelayTimer.curTimerValue > 0 &&
 (nmp->resetCause == POWER_UP_RESET ||
 nmp->resetCause == EXTERNAL_RESET)
)
 {
 UpdateMsTimer(&gp->tsDelayTimer);
 return; /* Do nothing */
 }

 /**
 Send response, if any, first. Responses are not like transactions
 and hence it is better to send it first.
 **/
 if (!QueueEmpty(&gp->tsaRespQ) &&
 !QueueFull(&gp->nwOutQ))
 {
 /* We have a response to be sent out.
 Make sure the response is not stale.
 Response should have a reqId.
 If there is no RR for this reqId, then it is stale.
 Throw the response away, if it is stale. */
 tsaSendParamPtr = QueueHead(&gp->tsaRespQ);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

209

 if (tsaSendParamPtr->service != RESPONSE)
 {
 /* Throw away this message. Only responses are
 allowed in this queue. */
#ifdef DEBUG
 DebugMsg("SNSend: Response queue is only for responses.");
#endif
 DeQueue(&gp->tsaRespQ);
 return;
 }

 /* Search for the associated RR for this response. */
 for (i = 0; i < gp->recvRecCnt; i++)
 {
 if (gp->recvRec[i].status == SESSION_RR &&
 gp->recvRec[i].reqId == tsaSendParamPtr->reqId)
 {
 break;
 }
 }
 if (i == gp->recvRecCnt ||
 gp->recvRec[i].serviceType != REQUEST ||
 gp->recvRec[i].transState != DELIVERED)
 {
 /* Stale or duplicate response. Ignore it. */
 DeQueue(&gp->tsaRespQ);
#ifdef DEBUG
 DebugMsg("SNSend: Discarding stale or duplicate response.");
#endif
 INCR_STATS(nmp->stats.lateResponses);
 return;
 }
 /* Copy the response to the receive record and send response. */
 gp->recvRec[i].rspSize = tsaSendParamPtr->apduSize;
 /* Resp should fit in response field as it was found to be
 fit in the TSA queue. */
 memcpy(gp->recvRec[i].response,
 (char *) (tsaSendParamPtr + 1),
 gp->recvRec[i].rspSize);
 gp->recvRec[i].transState = RESPONDED;
 SNSendResponse(i, tsaSendParamPtr->nullResponse);
 INCR_STATS(nmp->stats.layer6_7RespSent);
 DeQueue(&gp->tsaRespQ);
 return;
 }

 /* Update transmit timers, if they do exist */
 if (gp->priXmitRec.status == SESSION_TX &&
 gp->priXmitRec.xmitTimer.curTimerValue > 0)
 {
 UpdateMsTimer(&gp->priXmitRec.xmitTimer);
 }
 if (gp->xmitRec.status == SESSION_TX &&
 gp->xmitRec.xmitTimer.curTimerValue > 0)
 {
 UpdateMsTimer(&gp->xmitRec.xmitTimer);
 }

 /***
 Priority transmit timer expired event.
 **/
 if (gp->priXmitRec.status == SESSION_TX &&
 gp->priXmitRec.xmitTimer.curTimerValue == 0)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

210

 XmitTimerExpiration(SESSION, TRUE);
 return;
 }
 /***
 Send a new priority message event.
 **/
 else if (gp->priXmitRec.status == UNUSED_TX &&
 ! QueueEmpty(&gp->tsaOutPriQ) &&
 ! QueueFull(&gp->nwOutPriQ))
 {
 SendNewMsg(SESSION, TRUE);
 return;
 }
 /***
 Non-priority timer expired event.
 ***/
 else if (gp->xmitRec.status == SESSION_TX &&
 gp->xmitRec.xmitTimer.curTimerValue == 0)
 {
 XmitTimerExpiration(SESSION, FALSE);
 }
 /***
 Send a new non-priority message.
 **/
 else if (gp->xmitRec.status == UNUSED_TX &&
 ! QueueEmpty(&gp->tsaOutQ) &&
 ! QueueFull(&gp->nwOutQ))
 {
 SendNewMsg(SESSION, FALSE);
 }
 else
 {
 /* Either there is no work or there is no space. */
 return;
 }

 return;

}

/***
Function: SNReceive
Returns: None
Reference: None
Purpose: To receive and process incoming SPDU's.
Comments: None
**/
void SNReceive(void)
{
 TSAReceiveParam *tsaReceiveParamPtr;/* Param in tsa input queue. */
 TSPDUPtr spduInPtr; /* Pointer to SPDU received. */
 int16 i;

 /* Update Receive Timers, if they do exist */
 for (i = 0; i < gp->recvRecCnt; i++)
 {
 if (gp->recvRec[i].status == SESSION_RR)
 {
 if (gp->recvRec[i].recvTimer.curTimerValue > 0)
 {
 UpdateMsTimer(&gp->recvRec[i].recvTimer);
 }
 if (gp->recvRec[i].recvTimer.curTimerValue == 0)
 {
 /* Timer expired. Release the receive record. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

211

#ifdef DEBUG
 DebugMsg("SNReceive: Receive timer expired.");
#endif
 /* Deliver the request if it has not been delivered.
 Deliver fn checks for authentication. */
 if (gp->recvRec[i].transState == DELIVERED ||
 gp->recvRec[i].transState == DONE ||
 gp->recvRec[i].transState == RESPONDED)
 {
 gp->recvRec[i].status = UNUSED_RR; /* Release the RR */
 }
 else
 {
 Deliver(i);
 }
 }
 else if ((gp->recvRec[i].transState == JUST_RECEIVED &&
 !gp->recvRec[i].needAuth) ||
 gp->recvRec[i].transState == AUTHENTICATED)
 {
 /* The request does not need authentication and was just received
 or it has been authenticated. */
 Deliver(i);
 }
 }
 }

 /* Check if there is SPDU to be processed. */
 if (QueueEmpty(&gp->tsaInQ))
 {
 /* There is nothing to process. */
 return;
 }

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 spduInPtr = (TSPDUPtr) ((char *)tsaReceiveParamPtr
 + sizeof(TSAReceiveParam));

 /* Check if the PDU is for session layer. If not, we are done. */
 if (tsaReceiveParamPtr->pduType != SPDU_TYPE)
 {
 return;
 }

 /* We have a SPDU to be processed. Check the type and
 process accordingly. */
 switch (spduInPtr->pduMsgType)
 {
 case RESPONSE_MSG:
 SNReceiveResponse();
 return;
 case REQUEST_MSG:
 ReceiveNewMsg(SESSION);
 return;
 case REMINDER_MSG:
 /* Fall through. */
 case REM_MSG_MSG:
 ReceiveRem(SESSION);
 return;
 default:
 nmp->errorLog = UNKNOWN_PDU;
 ErrorMsg("SNReceive: Unknown SPDU type received.");
 DeQueue(&gp->tsaInQ);
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

212

 return;
}

/***
Function: AuthSend
Returns: None
Reference: None
Purpose: To send challenges that are pending in receive records.
 These are challenges that could not be sent earlier due
 to unavailable space in network queue.
Comments: None
**/
void AuthSend(void)
{
 int16 i;

 /* Only thing the authentication layer can do here is to check if any
 challenges need to be sent. */
 for (i = 0; i < gp->recvRecCnt; i++)
 {
 if (gp->recvRec[i].status != UNUSED_RR &&
 gp->recvRec[i].needAuth &&
 gp->recvRec[i].transState == JUST_RECEIVED)
 {
 InitiateChallenge(i);
 }
 }

 return;
}

/***
Function: AuthReceive
Returns: None
Reference: None
Purpose: To receive an incoming AUTH_PDU packet and process.
Comments: None
**/

void AuthReceive(void)
{
 TSAReceiveParam *tsaReceiveParamPtr; /* Parameter in tsa input queue. */
 AuthPDUPtr pduInPtr; /* Ptr to PDU received. */

 /* Check if there is AuthPDU to be processed. */
 if (QueueEmpty(&gp->tsaInQ))
 {
 /* There is nothing to process. */
 return;
 }

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 pduInPtr = (AuthPDUPtr) (tsaReceiveParamPtr + 1);

 /* Check if the PDU is for session layer. If not, we are done. */
 if (tsaReceiveParamPtr->pduType != AUTHPDU_TYPE)
 {
 return;
 }

 /* We have a AuthPDU to be processed. Check the type and
 process accordingly. */
 if (pduInPtr->pduMsgType == CHALLENGE_MSG)
 {
 SendReplyToChallenge();

BS EN 14908-1:2014

EN 14908-1:2014 (E)

213

 }
 else if (pduInPtr->pduMsgType == REPLY_MSG)
 {
 ProcessReply();
 }
 else
 {
 ErrorMsg("AuthReceive: Unknown pdu type received.");
 nmp->errorLog = UNKNOWN_PDU;
 DeQueue(&gp->tsaInQ);
 return;
 }

}

/***
Function: InitiateChallenge
Returns: None
Reference: None
Purpose: To send a challenge message for a message received.
Comments: None
**/
static void InitiateChallenge(uint16 rrIndexIn)
{
 AuthPDUPtr pduOutPtr; /* Ptr to PDU sent. */
 NWSendParam *nwSendParamPtr;
 Queue *nwQueuePtr;
 Byte randomValue[8];
 uint8 i;

 /* Since authentication is not allowed in flex domain, if
 this fn is called when a message received is in flex domain,
 let us force the authentication to be a failure */
 if (gp->recvRec[rrIndexIn].srcAddr.domainIndex == FLEX_DOMAIN)
 {
 gp->recvRec[rrIndexIn].auth = FALSE;
 gp->recvRec[rrIndexIn].transState = AUTHENTICATED;
 return;
 }

 if (gp->recvRec[rrIndexIn].priority)
 {
 nwQueuePtr = &gp->nwOutPriQ;
 }
 else
 {
 nwQueuePtr = &gp->nwOutQ;
 }

 if (QueueFull(nwQueuePtr))
 {
 /* No space to send challenge anyway. Come back later. */
 return;
 }

 nwSendParamPtr = QueueTail(nwQueuePtr);
 pduOutPtr = (AuthPDU *)(nwSendParamPtr + 1);

 /* First compute the random bytes to be sent */
 if (gp->recvRec[rrIndexIn].transState != AUTHENTICATING)
 {
 /* Generate random number only the first time we are called
 for this message. subsequent calls use the same rand. */
 for (i = 0; i < 8; i++)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

214

 randomValue[i] = (Byte)((gp->prevChallenge[i] + rand() % 256 +
 GetCurrentTime() % 256) % 256);
 gp->prevChallenge[i] = randomValue[i];
 }
 memcpy(gp->recvRec[rrIndexIn].rand, randomValue, 8); /* Save */
 }

 /* Form the challenge AuthPDU. */
 pduOutPtr->fmt = addrModeToFmt[gp->recvRec[rrIndexIn].srcAddr.addressMode];
 if (gp->recvRec[rrIndexIn].srcAddr.addressMode == MULTICAST)
 {
 /* For Multicast message, send the group info with AuthPDU. */
 nwSendParamPtr->pduSize = 10;
 pduOutPtr->group = gp->recvRec[rrIndexIn].srcAddr.group;
 }
 else
 {
 nwSendParamPtr->pduSize = 9;
 }
 pduOutPtr->pduMsgType = CHALLENGE_MSG;
 pduOutPtr->transNum = gp->recvRec[rrIndexIn].transNum;
 memcpy(pduOutPtr->value.randomBytes,
 gp->recvRec[rrIndexIn].rand,
 8);

 /* Now fill in the NWSendParam structure. */
 nwSendParamPtr->dropIfUnconfigured = FALSE; /* Challenges are not dropped */
 /* Challenge shall have come from a particular node.
 Use format 2b for multicast and format 2a for others. */
 nwSendParamPtr->destAddr.domainIndex =
 gp->recvRec[rrIndexIn].srcAddr.domainIndex;
 if (gp->recvRec[rrIndexIn].srcAddr.addressMode == MULTICAST)
 {
 nwSendParamPtr->destAddr.addressMode = MULTICAST_ACK;
 nwSendParamPtr->destAddr.addr.addr2b.subnetAddr =
 gp->recvRec[rrIndexIn].srcAddr.subnetAddr;
 nwSendParamPtr->destAddr.addr.addr2b.groupAddr.group =
 gp->recvRec[rrIndexIn].srcAddr.group;
 if (!IsGroupMember(gp->recvRec[rrIndexIn].srcAddr.domainIndex,
 gp->recvRec[rrIndexIn].srcAddr.group,
 &nwSendParamPtr->destAddr.addr.addr2b.groupAddr.member))
 {
 ErrorMsg("InitiateChallenge: Strange: We are not member of group???.");
 return; /* Don't challenge. This case should not happen. */
 }
 }
 else
 {
 nwSendParamPtr->destAddr.addressMode = SUBNET_NODE;
 nwSendParamPtr->destAddr.addr.addr2a =
 gp->recvRec[rrIndexIn].srcAddr.subnetAddr;
 }

 nwSendParamPtr->pduType = AUTHPDU_TYPE;
 nwSendParamPtr->deltaBL = 0;
 nwSendParamPtr->altPath = gp->recvRec[rrIndexIn].altPath;
 gp->recvRec[rrIndexIn].transState = AUTHENTICATING;
 EnQueue(nwQueuePtr);
#ifdef DEBUG
 DebugMsg("InitiateChallenge: Sending a challenge.");
#endif
 return;
}

/***

BS EN 14908-1:2014

EN 14908-1:2014 (E)

215

Function: SendReplyToChallenge
Returns: None
Reference: None
Purpose: To send a reply to a challenge just received.
Comments: None
**/
static void SendReplyToChallenge(void)
{
 TSAReceiveParam *tsaReceiveParamPtr; /* Parameter in tsa input queue. */
 AuthPDUPtr pduInPtr; /* Ptr to PDU received. */
 AuthPDUPtr pduOutPtr; /* Ptr to PDU sent. */
 NWSendParam *nwSendParamPtr;
 Queue *nwQueuePtr;
 TransmitRecord *xmitRecPtr;
 Byte encryptValue[8];

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 pduInPtr = (AuthPDUPtr) (tsaReceiveParamPtr + 1);

 if (tsaReceiveParamPtr->srcAddr.domainIndex == FLEX_DOMAIN)
 {
 /* Challenge was received in flex domain that is not
 possible. We don't initiate challenge in flex domain.
 Ignore the challenge. */
 DeQueue(&gp->tsaInQ);
 return;
 }

 if (tsaReceiveParamPtr->priority)
 {
 nwQueuePtr = &gp->nwOutPriQ;
 xmitRecPtr = &gp->priXmitRec;
 }
 else
 {
 nwQueuePtr = &gp->nwOutQ;
 xmitRecPtr = &gp->xmitRec;
 }

 /* Make sure that this challenge for current transaction
 in progress. If not, it is stale. Ignore it. */
 /* Also do not reply if we did not set auth bit or
 the group value in challenge msg, if present,
 does not match the one in transmit record. */
 if (
 xmitRecPtr->status == UNUSED_TX ||
 ! xmitRecPtr->auth ||
 pduInPtr->transNum != xmitRecPtr->transNum ||
 addrFmtToMode[pduInPtr->fmt] != xmitRecPtr->nwDestAddr.addressMode ||
 (pduInPtr->fmt == 1 &&
 xmitRecPtr->nwDestAddr.addr.addr1 != pduInPtr->group)
)
 {
 DeQueue(&gp->tsaInQ);
 INCR_STATS(nmp->stats.lateChallenges);
 return;
 }

 if (QueueFull(nwQueuePtr))
 {
 /* No Space to send reply anyway. Come back later. */
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

216

 }
 nwSendParamPtr = QueueTail(nwQueuePtr);
 pduOutPtr = (AuthPDU *)(nwSendParamPtr + 1);

 /* First compute the cryptoBytes to be sent. */
 Encrypt(pduInPtr->value.randomBytes,
 xmitRecPtr->apdu, xmitRecPtr->apduSize,
 tsaReceiveParamPtr->srcAddr.domainIndex,
 encryptValue);

 /* Form the reply AuthPDU. */
 pduOutPtr->fmt = pduInPtr->fmt;
 if (pduInPtr->fmt == 1)
 {
 pduOutPtr->group = pduInPtr->group;
 nwSendParamPtr->pduSize = 10;
 }
 else
 {
 nwSendParamPtr->pduSize = 9;
 }
 pduOutPtr->pduMsgType = REPLY_MSG;
 pduOutPtr->transNum = xmitRecPtr->transNum;
 memcpy(pduOutPtr->value.cryptoBytes, encryptValue, 8);

 /* Now fill in the NWSendParam structure */
 nwSendParamPtr->dropIfUnconfigured = FALSE; /* Replies are not dropped */
 /* Challenge shall have come from a particular node.
 Use subnet addressing to send to that node. */
 nwSendParamPtr->destAddr.domainIndex =
 tsaReceiveParamPtr->srcAddr.domainIndex;
 nwSendParamPtr->destAddr.addressMode = SUBNET_NODE;
 nwSendParamPtr->destAddr.addr.addr2a =
 tsaReceiveParamPtr->srcAddr.subnetAddr;
 nwSendParamPtr->pduType = AUTHPDU_TYPE;
 nwSendParamPtr->deltaBL = 0;
 nwSendParamPtr->altPath = tsaReceiveParamPtr->altPath;
 EnQueue(nwQueuePtr);
 DeQueue(&gp->tsaInQ);
#ifdef DEBUG
 DebugMsg("SendReply: Sending a reply msg.");
#endif
 /* Restart the transmit timer. */
 SetMsTimer(&xmitRecPtr->xmitTimer, xmitRecPtr->xmitTimerValue);
 return;
}

/***
Function: ProcessReply
Returns: None
Reference: None
Purpose: To process a reply msg received to see if it meets the
 challenge sent earlier.
Comments: None
**/
static void ProcessReply(void)
{
 TSAReceiveParam *tsaReceiveParamPtr; /* Parameter in tsa input queue. */
 AuthPDUPtr pduInPtr; /* Ptr to PDU received. */
 int16 i;
 Byte encryptValue[8];
 Byte domainIndex;

 tsaReceiveParamPtr = QueueHead(&gp->tsaInQ);
 pduInPtr = (AuthPDUPtr) (tsaReceiveParamPtr + 1);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

217

 if (tsaReceiveParamPtr->srcAddr.domainIndex == FLEX_DOMAIN)
 {
 /* Reply received in flex domain. Ignore it. */
 DeQueue(&gp->tsaInQ);
 return;
 }

 /* If the reply indicates that the original address format is
 multicast, then make sure that the receive record matches
 this group number. Force it so that RetriveRR will do the
 match. */
 tsaReceiveParamPtr->srcAddr.group = pduInPtr->group;

 /* The address format of the reply will be different from the address
 format of the original message. The original address format is in
 the Reply PDU. Change the addressmode in source address before
 calling RetrieveRR. */
 tsaReceiveParamPtr->srcAddr.addressMode = addrFmtToMode[pduInPtr->fmt];

 /* Retrieve the associated record.

 If the original address format is broadcast, we don't have
 the subnet number in the current reply(as the reply itself does
 not use broadcast address mode) and hence we can't match
 subnet number. So, we don't support authentication in
 broadcast mode. */

 i = RetrieveRR(tsaReceiveParamPtr->srcAddr,
 tsaReceiveParamPtr->priority);

 if (i == -1)
 {
 /* We did not find an associated RR. Ignore reply. */
 DeQueue(&gp->tsaInQ);
 INCR_STATS(nmp->stats.lateReplies);
 return;
 }

 /* We have a RR. */

 /* Check if we have already authenticated. */
 if (gp->recvRec[i].transState != AUTHENTICATING)
 {
 /* Ignore this reply as it is probably a duplicate. */
 DeQueue(&gp->tsaInQ);
 return;
 }

 /* Check if other things match to make sure that we are
 authenticating the right RR. */
 if (pduInPtr->fmt == 1 &&
 pduInPtr->group != gp->recvRec[i].srcAddr.group)
 {
 /* Group in AuthPDU does not match one in RR. */
#ifdef DEBUG
 DebugMsg("ProcessReply: Group does not match. Ignore reply.");
#endif
 DeQueue(&gp->tsaInQ);
 return;
 }

 if (pduInPtr->transNum != gp->recvRec[i].transNum)
 {
 /* Transaction Number does not match. Ignore reply. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

218

#ifdef DEBUG
 DebugMsg("ProcessReply: TId does not match. Ignore reply.");
#endif
 DeQueue(&gp->tsaInQ);
 return;
 }

 /* Now check if the reply matches our encryption. */
 /* First compute the value of E(range, apdu) */

 domainIndex = gp->recvRec[i].srcAddr.domainIndex;
 if (domainIndex == FLEX_DOMAIN)
 {
 /* We should not have initiated challenge in flexDomain. */
 /* Somthing is wrong. Ignore this reply. */
#ifdef DEBUG
 DebugMsg("ProcessReply: Oops! Challenge was unnecessary.");
#endif
 gp->recvRec[i].auth = FALSE; /* Flex Domain? Force it */
 DeQueue(&gp->tsaInQ);
 return;
 }

 Encrypt(gp->recvRec[i].rand,
 gp->recvRec[i].apdu, gp->recvRec[i].apduSize,
 domainIndex, encryptValue);

 if (memcmp(encryptValue, pduInPtr->value.cryptoBytes, 8) == 0)
 {
 /* Matches */
#ifdef DEBUG
 DebugMsg("ProcessReply: Reply matches.");
#endif
 gp->recvRec[i].auth = TRUE;
 }
 else
 {
#ifdef DEBUG
 DebugMsg("ProcessReply: Reply Does not match");
#endif
 nmp->errorLog = AUTHENTICATION_MISMATCH;
 gp->recvRec[i].auth = FALSE;
 }
 gp->recvRec[i].transState = AUTHENTICATED;

 /* Deliver the message now to the application layer. */
 Deliver(i);

 /* Send ack message if it is for transport layer and ackd msg. */
 if (gp->recvRec[i].status == TRANSPORT_RR &&
 gp->recvRec[i].serviceType == ACKD &&
 gp->recvRec[i].transState == DELIVERED)
 {
 TPSendAck(i);
 }

 DeQueue(&gp->tsaInQ);
 return;
}

/***
Function: Encrypt
Returns: None
Reference: 11.12 of this European Standard
Purpose: To compute the encryption key based on authentication

BS EN 14908-1:2014

EN 14908-1:2014 (E)

219

 key in the domain table, the APDU, and the random
 number given.
Comments: None
**/
static void Encrypt(Byte randIn[], APDU *apduIn, uint16 apduSizeIn,
 Byte domainIndexIn, Byte encryptValueOut[])
{
 int8 i,j,k;
 Byte m, n;
 Byte *apduBytes = (Byte *)apduIn;
 uint16 apduSize = apduSizeIn;

 for (i = 0; i < 8; i++)
 {
 encryptValueOut[i] = randIn[i];
 }

 do
 {
 for (i = 0; i <= 5; i++)
 {
 for (j = 7; j >= 0; j--)
 {
 k = (j + 1) % 8;
 if (apduSize > 0)
 {
 m = apduBytes[--apduSize];
 }
 else
 {
 m = 0;
 }
 n = ~(encryptValueOut[j] + j);
 if (eep->domainTable[domainIndexIn].key[i] &
 (1 << (7 - j)))
 {
 encryptValueOut[j] =
 encryptValueOut[k] + m + ((n << 1) + (n >> 7));
 }
 else
 {
 encryptValueOut[j] =
 encryptValueOut[k] + m - ((n >> 1) + (n << 7));
 }
 }
 }
 } while (apduSize > 0);
}
/*------------------------End of tsa.c------------------------*/
_

A.10 Application Layer

/***
 Reference: Section 12, Presentation/Application layer

 File: app.c

 Version: 1.7

 Purpose: To implement session/application layer.

 Note: None

BS EN 14908-1:2014

EN 14908-1:2014 (E)

220

 To Do: None
***/

/***

 Overview:

 All messages coming into the application layer are handled by
 the APPReceive() function, that dispatches messages to the
 appropriate "Handle" function. Some of the functions explained here
 are local to the application layer and are not available to the application
 program. See "Local Function Prototypes" section below.

 HandleNormal(): Handles normal messages bound to the application program.
 These are messages from other nodes that are bound to the
 application program.

 HandleResponse(): Handles normal responses bound to the application program.
 These are responses due to requests generated by the
 application program.

 ProcessNV(): Handles incoming NV update and poll messages.
 These are messages from other nodes or responses for
 requests generated by the application layer.

 SendVar(): Takes care of network variable updates waiting to be sent.
 i.e implicit messages generated due to output network variable
 updates in the application program.

 PollVar(): Takes care of network variable polls waiting to be dispatched.
 These are messages explicitly generated by the application
 program by calling various forms of poll functions.
 The corresponding variables are input network variables.

 HandleNM(): Processes network management messages. Defn is in netmgmt.c.

 HandleND(): Processes network diagnostic messages. Defn is in netmgmt.c.

 HandleProxyResponse(): Handles responses from proxy messages. Defn is in
 netmgmt.c. i.e responses received from the target node
 are relayed back to the original node.

 HandleMsgCompletion(): Handles transaction completion indications from
 transport, session, and network layers. Some of them
 are for transactions originated by the application
 layer itself. Others are for transactions originated
 by the application program. In that case, the
 application program is notified of these completion
 events by a call to MsgCompletes or NVUpdateCompletes
 function.

 TryMsgSend(): Helper function that moves messages in the application queue
 to lower layer queues as appropriate.

 All messages generated by the application program (implicit or explicit)
 are buffered and then sent to lower layers by the APPSend() function.

 APPReset(): Takes care of the application layer reset operations. Allocates
 memory for all queue structures used by the application. Also,
 performs some initialization that are done after each reset.

 APPInit(): Takes care of initializations that are done only during
 power up.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

221

 AddNV(): Takes care of network variable declarations in the application
 program. This function is normally called during power up
 to register all network variables in application program.
 This is done using the function AppInit(). Note that APPInit()
 is application layer function whereas AppInit() is application
 program function.

 RefImpToAlt(), AltToRefImp(): Functions to transform data between a format
 often used by CNP applications (such as msg_in, msg_out, resp_in etc) and
 the corresponding structures for reference implementation (msgIn, msgOut, etc).

 The functions in this file also support the API interface used by application
 programs. e.g. msg_send, resp_send, propagate() etc.

 There is no implicit way of sending network variable updates in the reference
 implementation. The application program should call Propagate or one
 of its variants to actually propagate network variable updates.
***/
/*--
Section: Includes
--*/
#include <stdio.h>
#include <string.h>

#include <cnp_1.h>
#include <node.h>
#include <queue.h>
#include <app.h>
#include <api.h>
#include <netmgmt.h>

/*--
Section: Constant and Macro Definitions
--*/
#define MAX_NV_SELF_DOC_LENGTH 1 023

/* Depending on whether ALTERNATE_STRUCTURES are used in application
 program or not, define the macros REF_IMP_TO_ALT and ALT_TO_REF_IMP
 accordingly. */
#if defined(ALTERNATE_STRUCTURES_NEEDED)
#define REF_IMP_TO_ALT(a,b) RefImpToAlt(a,b)
#define ALT_TO_REF_IMP(a,b) AltToRefImp(a,b)
#else
#define REF_IMP_TO_ALT(a,b)
#define ALT_TO_REF_IMP(a,b)
#endif

/*--
Section: Type Definitions
--*/
/* None */

/*--
Section: Globals
--*/
/* None */

/*--
Section: Local Function Prototypes
--*/
static void ProcessNV(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);
static void ProcessNVUpdate(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);
static void ProcessNVPoll(APPReceiveParam *appReceiveParamPtr,

BS EN 14908-1:2014

EN 14908-1:2014 (E)

222

 APDU *apduPtr);

static void HandleMsgCompletion(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);
static void HandleResponse(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);
static void HandleNormal(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

static Status TryMsgSend(APPSendParam *appSendParamPtr,
 APDU *apduPtr,
 Queue *tsaOutQPtr,
 Queue *nwOutQPtr);

static void ReinitMsgOut();
static void ReinitRespOut();

static Status PropagateThisIndex(int16 nvIndexIn, int16 primaryIndex);
static void PropagateThisPrimary(int16 nvIndexIn);
static void SendVar(void);

static Status PollThisIndex(int16 nvIndexIn);
static void PollThisPrimary(int16 nvIndexIn);
static void PollVar(void);

static Boolean IsArrayNV(int16 nvIndexIn,
 uint16 *dimOut, int16 *indexOut);

static void ReinitMsgOut(void);
static void ReinitRespOut(void);
/*--
Section: Function Definitions
--*/

/***
Function: APPInit
Returns: None
Reference: None
Purpose: To perform initializations that should be done only
 once when the node is powered on. These are not
 done during node reset.
Comments: None.
***/
void APPInit(void)
{
 uint16 len;

 gp->unboundSelector = 0x3FFF; /* Countdown as we assign */
 gp->nvArrayTblSize = 0;
 gp->nextBindableMsgTag = 0;
 gp->nextNonbindableMsgTag = NUM_ADDR_TBL_ENTRIES;

 /**
 The SNVT area has the following layout (as expected by Network
 management tools):

 Header:
 uint16 length;
 uint8 numNetvars;
 uint8 version;
 uint8 msbNumNetvars;
 uint8 mtagCount;

 SNVT Desc:
 SNVTdescStruct[]; One struct (2 bytes) per var

BS EN 14908-1:2014

EN 14908-1:2014 (E)

223

 Node Self Doc String:
 char[]; Null terminated; just "\0" if empty

 SNVT Extension Records:
 one byte + various lengths

 Alias Field
 three bytes

 In the reference implementation, the SNVT information is
 stored in nmp->snvt, of type SNVTstruct. It can be
 stored in EEPROM too.

 In SNVTstruct the header fields are stored in explicit
 structure members, but the remaining information is stored
 in the 'sb' member that is simply a buffer of type char.

 When a network variable is added via AddNV():
 1. The Alias Field is saved.
 2. Room is made for the new SNVT Desc by moving all data
 past the last SNVT Desc forward by sizeof(SNVTdesc).
 The descPtr pointer indicates where the move starts.
 3. The new SNVT Desc is added (and descPtr is incremented).
 4. The new extension records are appended after the
 existing extension records.
 5. The Alias Field is restored (placed after the last
 extension record, and pointed to by aliasPtr).

 **/

 /* Initialize SNVT area */
 nmp->snvt.version = 1;
 nmp->snvt.numNetvars = 0;
 nmp->snvt.msbNumNetvars = 0;
 nmp->snvt.mtagCount = 0;

 /* Copy NODE_DOC info if there is sufficient space */
 /* If not, init to null string. */
 len = strlen(NODE_DOC) + 1;
 if (len <= SNVT_SIZE - sizeof(AliasField))
 {
 strcpy((char *)&nmp->snvt.sb[0], NODE_DOC);
 }
 else
 {
 nmp->snvt.sb[0] = '\0';
 len = 1;
 }

 /* Initially, there is no network var related info */
 nmp->snvt.length = 6 + len + sizeof(AliasField);
 nmp->snvt.descPtr = (SNVTdescStruct *)&nmp->snvt.sb[0];
 nmp->snvt.aliasPtr = (AliasField *)&nmp->snvt.sb[len];
 nmp->snvt.aliasPtr->bindingII = TRUE;
 nmp->snvt.aliasPtr->queryStats = TRUE;
 nmp->snvt.aliasPtr->aliasCount = 0x3F;
 nmp->snvt.aliasPtr->hostAlias = NV_ALIAS_TABLE_SIZE;

 nmp->nvTableSize = 0;
}

/***
Function: APPReset
Returns: None

BS EN 14908-1:2014

EN 14908-1:2014 (E)

224

Reference: None
Purpose: To initialize the Queues used by the application layer.
 May be some more.
Comments: None.
***/
void APPReset(void)
{
 uint16 queueItemSize;

 /* Allocate and Initialize Input Queue */
 gp->appInBufSize =
 DecodeBufferSize((uint8)eep->readOnlyData.appInBufSize);
 gp->appInQCnt = DecodeBufferCnt((uint8)eep->readOnlyData.appInBufCnt);
 queueItemSize = gp->appInBufSize + sizeof(APPReceiveParam);

 if (QueueInit(&gp->appInQ, queueItemSize, gp->appInQCnt)
 != SUCCESS)
 {
 ErrorMsg("APPReset: Unable to init Input Queue.\n");
 gp->resetOk = FALSE;
 return;
 }

 /* Allocate and Initialize Output Queue */
 gp->appOutBufSize =
 DecodeBufferSize((uint8)eep->readOnlyData.appOutBufSize);
 gp->appOutQCnt =
 DecodeBufferCnt((uint8)eep->readOnlyData.appOutBufCnt);
 queueItemSize = gp->appOutBufSize + sizeof(APPSendParam);

 if (QueueInit(&gp->appOutQ, queueItemSize, gp->appOutQCnt)
 != SUCCESS)
 {
 ErrorMsg("APPReset: Unable to init Output Queue.\n");
 gp->resetOk = FALSE;
 return;
 }

 /* Allocate and Initialize Pri Output Queue */
 gp->appOutPriBufSize = gp->appOutBufSize;
 gp->appOutPriQCnt =
 DecodeBufferCnt((uint8)eep->readOnlyData.appOutBufPriCnt);
 queueItemSize = gp->appOutPriBufSize + sizeof(APPSendParam);

 if (QueueInit(&gp->appOutPriQ, queueItemSize, gp->appOutPriQCnt)
 != SUCCESS)
 {
 ErrorMsg("APPReset: Unable to init Priority Output Queue.\n");
 gp->resetOk = FALSE;
 return;
 }

 /* Allocate Queue for NV output variable scheduling */
 gp->nvOutIndexQCnt = MAX_NV_OUT;
 gp->nvOutIndexBufSize = 2 + MAX_NV_LENGTH;
 if (QueueInit(&gp->nvOutIndexQ, gp->nvOutIndexBufSize,
 gp->nvOutIndexQCnt) != SUCCESS)
 {
 ErrorMsg("APPReset: Unable to init NV Out Index Queue.\n");
 gp->resetOk = FALSE;
 return;
 }
 gp->nvOutStatus = SUCCESS; /* Propagate succeeds if all the scheduled
 transactions complete successfully. */
 gp->nvOutCanSchedule = TRUE;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

225

 gp->nvOutIndex = 0; /* Not relevant initially */

 /* Allocate Queue for NV input variable scheduling */
 gp->nvInIndexQCnt = MAX_NV_IN;
 if (QueueInit(&gp->nvInIndexQ, 2, gp->nvInIndexQCnt)
 != SUCCESS)
 {
 ErrorMsg("APPReset: Unable to init NV In Index Queue.\n");
 gp->resetOk = FALSE;
 return;
 }
 gp->nvInDataStatus = FAILURE; /* See node.h for usage */
 gp->nvInTranStatus = SUCCESS; /* See node.h for usage */
 gp->nvInCanSchedule = TRUE;
 gp->nvInIndex = 0; /* Not relevant initially */

 /* Set flags to correct state */
 gp->msgReceive = FALSE; /* TRUE if data is in gp->msgIn */
 gp->respReceive = FALSE; /* TRUE if data is in gp->respIn */
 gp->callMsgFree = FALSE;
 gp->callRespFree = FALSE;
 gp->selectQueryFlag = FALSE; /* FALSE until selected */

 /* Init msg and resp */
 memset(&gp->msgIn, 0, sizeof(gp->msgIn));
 memset(&gp->msgOut, 0, sizeof(gp->msgOut));
 memset(&gp->respIn, 0, sizeof(gp->respIn));
 memset(&gp->respOut, 0, sizeof(gp->respOut));
 memset(&gp->nvInAddr, 0, sizeof(gp->nvInAddr));
 gp->nvArrayIndex = 0;
#if defined(ALTERNATE_STRUCTURES_NEEDED)
 memset(&msg_in, 0, sizeof(msg_in));
 memset(&msg_out, 0, sizeof(msg_out));
 memset(&resp_in, 0, sizeof(resp_in));
 memset(&resp_out, 0, sizeof(resp_out));
 memset(&nv_in_addr, 0, sizeof(nv_in_addr));
 nv_array_index = 0;
#endif
}

/***
Function: HandleMsgCompletion
Returns: None
Reference: None
Purpose: Pass a message completion event to the application
Comments: None.
***/
static void HandleMsgCompletion(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Status stat;
 int16 primaryIndex, baseIndex;
 uint16 dim;
 Boolean pollCompletion = TRUE;

 if(appReceiveParamPtr->success)
 {
 stat = SUCCESS;
 }
 else
 {
 stat = FAILURE;
 }

 /* Since App Layer sends messages for NV update

BS EN 14908-1:2014

EN 14908-1:2014 (E)

226

 we may also get completion indication for these.
 See app.h for tag usage. */
 if (appReceiveParamPtr->tag < 0)
 {
 /* Negative tags belong to application layer. */
 /* See app.h for explanation on how the tag is used. */
 if (PROXY_TAG(appReceiveParamPtr->tag))
 {
 /* Proxy Completion. Release the proxy command structure */
 nmp->pxyData.pxyType = -1;
 }
 else if (MANUAL_SERVICE_REQUEST_TAG(appReceiveParamPtr->tag))
 {
 ; /* Ignore. Nothing to do. */
 }
 else
 {
 /* Shall be a tag for NV message generated by application layer. */
 if (NV_POLL_TAG(appReceiveParamPtr->tag))
 {
 /* A network variable poll for an input variable will
 succeed if both gp->nvInDataStatus and gp->nvInTranStatus succeed.
 The gp->nvInDataStatus flag is updated by ProcessNVUpdate
 function. */
 if (NV_LAST_TAG(appReceiveParamPtr->tag))
 {
 primaryIndex = gp->nvInIndex;
 IsArrayNV(primaryIndex, &dim, &baseIndex);
 gp->nvArrayIndex = primaryIndex - baseIndex;
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 /* Set poll completion status */
 if ((gp->nvInDataStatus == SUCCESS) &&
 (gp->nvInTranStatus == SUCCESS)
)
 {
 stat = SUCCESS;
 }
 else
 {
 stat = FAILURE;
 } /* poll completion status */
 gp->nvInDataStatus = FAILURE; /* Reinit */
 gp->nvInTranStatus = SUCCESS;
 if (AppPgmRuns())
 {
 NVUpdateCompletes(stat, baseIndex, gp->nvArrayIndex);
 }
 }
 else
 {
 /* Update the index. Since the last tag does not have the
 index, we need to save it. */
 gp->nvInIndex = NV_INDEX_OF_TAG(appReceiveParamPtr->tag);
 if (stat == FAILURE)
 {
 /* Set the flag to FAILURE as this transaction failed. */
 gp->nvInTranStatus = FAILURE;
 }
 }
 gp->nvInCanSchedule = TRUE; /* Resume scheduling */
 }
 else
 {
 /* NV_UPDATE_TAG */
 /* A network variable update for an output variable will

BS EN 14908-1:2014

EN 14908-1:2014 (E)

227

 succeed if all the transactions scheduled for that
 variable succeed. So, we need to update status flag. */
 if (NV_LAST_TAG(appReceiveParamPtr->tag))
 {
 primaryIndex = gp->nvOutIndex;
 IsArrayNV(primaryIndex, &dim, &baseIndex);
 gp->nvArrayIndex = primaryIndex - baseIndex;
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 stat = gp->nvOutStatus;
 gp->nvOutStatus = SUCCESS; /* Reinit */
 if (AppPgmRuns())
 {
 NVUpdateCompletes(stat, baseIndex, gp->nvArrayIndex);
 }
 }
 else
 {
 /* Set index. Update gp->nvOutStatus */
 gp->nvOutIndex = NV_INDEX_OF_TAG(appReceiveParamPtr->tag);
 if (stat == FAILURE)
 {
 gp->nvOutStatus = FAILURE;
 }
 }
 gp->nvOutCanSchedule = TRUE; /* Resume scheduling */
 }
 }
 }
 else
 {
 /* Non-negative tags belong to application. */
 MsgCompletes(stat, appReceiveParamPtr->tag);
 }

 /* Message processing completed - remove it from queue */
 DeQueue(&gp->appInQ);
}

/***
Function: HandleResponse
Returns: None
Reference: None
Purpose: Handle incoming response message, passing it to the
 application via the gp->respIn global.
Comments: None.
***/
static void HandleResponse(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 /* Discard responses received when the node is not CNFG_ONLINE.
 In CNFG_ONLINE, the application can be either running (online)
 or not running (soft-offline). In either of these cases,
 we receive the response and store it in resp_in. Note that
 one reponse can be received at a time from resp_in. If the
 application is offline, then at most one response can be
 stored in resp_in */
 if(eep->readOnlyData.nodeState != CNFG_ONLINE)
 {
 DeQueue(&gp->appInQ); /* Discard response, nothing to do */
 return;
 }

 /* If the application has not processed the previous
 * response, then do nothing, we'll try again next time
 */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

228

 if(gp->respReceive)
 {
 return;
 }

 /* Pass response to application */

 /* Setup gp->respIn */
 gp->respIn.tag = appReceiveParamPtr->tag;
 gp->respIn.code = apduPtr->code.allBits;
 gp->respIn.len = appReceiveParamPtr->pduSize - 1;

 /* Copy domainIndex even if it is 2. respIn.domainIndex is
 only one bit anyway, so the result is 0 or 1 */
 gp->respIn.addr.domain = appReceiveParamPtr->srcAddr.domainIndex;
 gp->respIn.addr.flexDomain =
 (appReceiveParamPtr->srcAddr.domainIndex == 2);
 memcpy(&gp->respIn.addr.srcAddr,
 &appReceiveParamPtr->srcAddr.subnetAddr,
 sizeof(appReceiveParamPtr->srcAddr.subnetAddr));
 gp->respIn.addr.srcAddr.snodeFlag =
 appReceiveParamPtr->srcAddr.addressMode != MULTICAST_ACK;
 if (gp->respIn.addr.srcAddr.snodeFlag == 0)
 {
 memcpy(&gp->respIn.addr.destAddr.group,
 &appReceiveParamPtr->srcAddr.ackNode,
 sizeof(appReceiveParamPtr->srcAddr.ackNode));
 }
 else if (!gp->respIn.addr.flexDomain)
 {
 /* Fill snode entry only for non-flex domain response */
 gp->respIn.addr.destAddr.snode.subnet =
 eep->domainTable[appReceiveParamPtr->
 srcAddr.domainIndex].subnet;
 gp->respIn.addr.destAddr.snode.node =
 eep->domainTable[appReceiveParamPtr->
 srcAddr.domainIndex].node;
 }
 if (gp->respIn.len <= gp->appInBufSize)
 {
 memcpy(gp->respIn.data, &apduPtr->data, gp->respIn.len);
 gp->respReceive = TRUE;
#if defined(ALTERNATE_STRUCTURES_NEEDED)
 REF_IMP_TO_ALT(RESP_IN, &resp_in);
#endif
 }
 else
 {
 nmp->errorLog = WRITE_PAST_END_OF_APPL_BUFFER;
 }
 /* Message processing completed - remove it from queue */
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNormal
Returns: None
Reference: None
Purpose: Handle incoming normal message
Comments: If the application program is not running and a request message
 for the application program is received, we send a offline
 message. Note that the node state could be unconfigured or
 soft off-line.
***/
static void HandleNormal(APPReceiveParam *appReceiveParamPtr,

BS EN 14908-1:2014

EN 14908-1:2014 (E)

229

 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;

 if(!AppPgmRuns())
 {
 if(appReceiveParamPtr->service == REQUEST)
 {
 /* If not online, send offline response */
 tsaOutQPtr = &gp->tsaRespQ;
 if(QueueFull(tsaOutQPtr))
 {
 /* Can't send response yet - try later */
 return;
 }
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->apduSize = 1; /* Just the code */
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 if(apduPtr->code.ff.ffFlag == 0x4)
 {
 apduRespPtr->code.allBits = FOREIGN_FRAME_OFFLINE;
 }
 else
 {
 apduRespPtr->code.allBits = APPL_MSG_OFFLINE;
 }
 EnQueue(tsaOutQPtr);
 }
 DeQueue(&gp->appInQ); /* Discard msg, nothing to do */
 return;
 }

 /* If the application has not processed the previous
 * message, then do nothing, we'll try again next time */
 if(gp->msgReceive)
 {
 return;
 }

 /* Pass message to application */

 /* Setup gp->msgIn */
 gp->msgIn.code = apduPtr->code.allBits;
 gp->msgIn.len = appReceiveParamPtr->pduSize - 1;
 if (gp->msgIn.len <= gp->appInBufSize)
 {
 memcpy(gp->msgIn.data, &apduPtr->data, gp->msgIn.len);
 }
 else
 {
 nmp->errorLog = WRITE_PAST_END_OF_APPL_BUFFER;
 DeQueue(&gp->appInQ);
 return;

 }

 gp->msgIn.authenticated = appReceiveParamPtr->auth;
 gp->msgIn.service = appReceiveParamPtr->service;
 gp->msgIn.reqId = appReceiveParamPtr->reqId;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

230

 /* Fill in addr structure */
 gp->msgIn.addr.domain = appReceiveParamPtr->srcAddr.domainIndex;
 gp->msgIn.addr.flexDomain =
 (appReceiveParamPtr->srcAddr.domainIndex == 2);
 /* Copy Source Address */
 memcpy(&gp->msgIn.addr.srcAddr,
 &appReceiveParamPtr->srcAddr.subnetAddr,
 sizeof(gp->msgIn.addr.srcAddr));
 switch(appReceiveParamPtr->srcAddr.addressMode)
 {
 case BROADCAST:
 gp->msgIn.addr.format = 0;
 gp->msgIn.addr.destAddr.bcastSubnet =
 appReceiveParamPtr->srcAddr.broadcastSubnet;
 break;
 case MULTICAST:
 gp->msgIn.addr.format = 1;
 gp->msgIn.addr.destAddr.group =
 appReceiveParamPtr->srcAddr.group;
 break;
 case SUBNET_NODE:
 gp->msgIn.addr.format = 2;
 if (!gp->msgIn.addr.flexDomain)
 {
 gp->msgIn.addr.destAddr.snode.subnet =
 eep->domainTable[gp->msgIn.addr.domain].subnet;
 gp->msgIn.addr.destAddr.snode.node =
 eep->domainTable[gp->msgIn.addr.domain].node;
 }
 break;
 case UNIQUE_NODE_ID:
 gp->msgIn.addr.format = 3;
 gp->msgIn.addr.destAddr.uniqueNodeId.subnet = 0; /* Not stored */
 memcpy(gp->msgIn.addr.destAddr.uniqueNodeId.uniqueId,
 eep->readOnlyData.uniqueNodeId,
 UNIQUE_NODE_ID_LEN);
 break;
 default:
 /* should not come here */
 gp->msgIn.addr.format = 5; /* unknown. arbitrary 5 */
 }

 gp->msgReceive = TRUE;
 REF_IMP_TO_ALT(MSG_IN, &msg_in);
 /* Message processing completed - remove it from queue */
 DeQueue(&gp->appInQ);
}

/***
Function: APPSend
Returns: None
Reference: None
Purpose: Process send side of the application layer
 Send one message of each of the following types if there is space.
 pri msg, nv update message, nv poll message, non-pri msg.
Comments: Called by scheduler loop.
***/
void APPSend(void)
{
 Queue *appOutQPtr;
 Queue *tsaOutQPtr;
 Queue *nwOutQPtr;
 APPSendParam *appSendParamPtr;
 APDU *apduPtr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

231

 Status status;

 if(gp->manualServiceRequest)
 {
 ManualServiceRequestMessage();
 gp->manualServiceRequest = FALSE;
 }

 /* Call MsgFree or RespFree implicitely if needed. */
 if (gp->callMsgFree)
 {
 MsgFree();
 }
 if (gp->callRespFree)
 {
 RespFree();
 }

 /* Send a priority message if we can */
 if (!QueueEmpty(&gp->appOutPriQ))
 {
 appOutQPtr = &gp->appOutPriQ;
 tsaOutQPtr = &gp->tsaOutPriQ;
 nwOutQPtr = &gp->nwOutPriQ;
 appSendParamPtr = QueueHead(appOutQPtr);
 apduPtr = (APDU *)(appSendParamPtr + 1);
 status = TryMsgSend(appSendParamPtr, apduPtr,
 tsaOutQPtr, nwOutQPtr);
 if (status == SUCCESS)
 {
 /* We have moved this message. Discard it */
 DeQueue(appOutQPtr);
 }
 }

 /* Process one NV output variable scheduled, if any. */
 SendVar();

 /* Process one NV input variable (Poll) scheduled, if any. */
 PollVar();

 /* Send a non-priority message if we can */
 if (!QueueEmpty(&gp->appOutQ))
 {
 appOutQPtr = &gp->appOutQ;
 tsaOutQPtr = &gp->tsaOutQ;
 nwOutQPtr = &gp->nwOutQ;
 appSendParamPtr = QueueHead(appOutQPtr);
 apduPtr = (APDU *)(appSendParamPtr + 1);
 status = TryMsgSend(appSendParamPtr, apduPtr,
 tsaOutQPtr, nwOutQPtr);
 if (status == SUCCESS)
 {
 /* We have moved this message. Discard it */
 DeQueue(appOutQPtr);
 }

 }
}

/***
Function: APPReceive
Returns: None
Reference: None

BS EN 14908-1:2014

EN 14908-1:2014 (E)

232

Purpose: Process receive side of the application layer.
Comments: Called by scheduler loop.
***/
void APPReceive(void)
{
 APPReceiveParam *appReceiveParamPtr;
 APDU *apduPtr; /* ptr to APDU being received */

 /* Check if anything to process */
 if(QueueEmpty(&gp->appInQ))
 {
 return; /* Nothing to process */
 }

 /* Set the pointer to APDU in appInQ */
 appReceiveParamPtr = QueueHead(&gp->appInQ);
 apduPtr = (APDU *)(appReceiveParamPtr + 1);

 if(appReceiveParamPtr->indication == COMPLETION)
 {
 HandleMsgCompletion(appReceiveParamPtr,apduPtr);
 }
 else if(appReceiveParamPtr->service == RESPONSE &&
 appReceiveParamPtr->tag >= 0)
 {
 /* The response belongs to the application program.
 Deliver it to the application irrespective of
 what type of message it is. If the application
 sends network management/diagnostic messages,
 it is its responsibility to handle them */
 HandleResponse(appReceiveParamPtr,apduPtr);
 }
 /* Handle Response from a Network Diagnostic Proxy Command */
 /* pxyType is initialized to -1. If a proxy command has been
 received, it is set to the command requested (0 or 1 or 2).
 The command is forwarded using a tag value of PROXY_TAG.
 So, check if this message is a response and is a response
 to a previously forwarded proxy command.
 The response should match (success or failure) of
 original the request */
 else if(nmp->pxyData.pxyType != -1 &&
 PROXY_TAG(appReceiveParamPtr->tag) &&
 appReceiveParamPtr->service == RESPONSE &&
 (apduPtr->code.allBits == 0x32 ||
 apduPtr->code.allBits == 0x12)
)
 {
 /* Indeed we have a good proxy response. Forward to source */
 HandleProxyResponse(appReceiveParamPtr,apduPtr);
 }
 else if (appReceiveParamPtr->service == RESPONSE &&
 PROXY_TAG(appReceiveParamPtr->tag))
 {
 /* ill-formed proxy response. Ignore. */
 DeQueue(&gp->appInQ);
 }
 else if(apduPtr->code.nm.nmFlag == 0x3)
 {
 /* Network management messages */
 HandleNM(appReceiveParamPtr,apduPtr);
 }
 else if(apduPtr->code.nd.ndFlag == 0x5)
 {
 /* Network diagnostic messages */
 HandleND(appReceiveParamPtr,apduPtr);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

233

 }
 else if(apduPtr->code.nv.nvFlag == 0x1)
 {
 /* Network variable update/poll messages */
 ProcessNV(appReceiveParamPtr,apduPtr);
 }
 else if(apduPtr->code.ap.apFlag == 0x0 || apduPtr->code.ff.ffFlag == 0x4)
 {
 /* Messages bound to the application program. App Msg or Foriegn Frames. */
 HandleNormal(appReceiveParamPtr,apduPtr);
 }
 else
 {
 /* Not supported - just discard */
 DeQueue(&gp->appInQ);
 }

}

/***
Function: TryMsgSend
Returns: SUCCESS if message sent, FAILURE otherwise
Reference: None
Purpose: If room is available, move message from app queue to
 to tsa or nw output queue.
Comments: None.
***/
static Status TryMsgSend(APPSendParam *appSendParamPtr,
 APDU *apduPtr,
 Queue *tsaOutQPtr,
 Queue *nwOutQPtr)
{
 TSASendParam *tsaSendParamPtr;
 NWSendParam *nwSendParamPtr;
 APDU *apduSendPtr;

 /* If the address is bad, don't even bother sending it */
 if(appSendParamPtr->addr.noAddress == UNBOUND)
 {
 /* TurnAround is not possible with MsgOutAddr */
 MsgCompletes(SUCCESS, appSendParamPtr->tag);
 return(SUCCESS);
 }

 /* Simple unacknowledged messages go to network layer */
 if(appSendParamPtr->service == UNACKD)
 {
 if(QueueFull(nwOutQPtr))
 {
 return(FAILURE); /* Can't send message yet - try later */
 }

 nwSendParamPtr = QueueTail(nwOutQPtr);

 nwSendParamPtr->dropIfUnconfigured = TRUE;

 switch(appSendParamPtr->addr.noAddress)
 {
 case UNBOUND:
 /* Can't happen. We took care above */
 return(SUCCESS); /* doesn't matter what we return */
 case SUBNET_NODE:
 nwSendParamPtr->destAddr.addressMode = SUBNET_NODE;
 nwSendParamPtr->destAddr.domainIndex =
 appSendParamPtr->addr.snode.domainIndex;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

234

 nwSendParamPtr->destAddr.addr.addr2a.subnet =
 appSendParamPtr->addr.snode.subnetID;
 nwSendParamPtr->destAddr.addr.addr2a.node =
 appSendParamPtr->addr.snode.node;
 break;

 case UNIQUE_NODE_ID:
 nwSendParamPtr->destAddr.addressMode = UNIQUE_NODE_ID;
 nwSendParamPtr->destAddr.domainIndex =
 appSendParamPtr->addr.uniqueNodeId.domainIndex;
 nwSendParamPtr->destAddr.addr.addr3.subnet =
 appSendParamPtr->addr.uniqueNodeId.subnetID;
 memcpy(nwSendParamPtr->destAddr.addr.addr3.uniqueId,
 appSendParamPtr->addr.uniqueNodeId.uniqueId,
UNIQUE_NODE_ID_LEN);
 break;

 case BROADCAST:
 nwSendParamPtr->destAddr.addressMode = BROADCAST;
 nwSendParamPtr->destAddr.domainIndex =
 appSendParamPtr->addr.bcast.domainIndex;
 nwSendParamPtr->destAddr.addr.addr0 =
 appSendParamPtr->addr.bcast.subnetID;
 break;

 default: /* SHALL BE GROUP FORMAT */
 nwSendParamPtr->destAddr.addressMode = MULTICAST;
 nwSendParamPtr->destAddr.domainIndex =
 appSendParamPtr->addr.group.domainIndex;
 nwSendParamPtr->destAddr.addr.addr1 =
 appSendParamPtr->addr.group.groupID;
 break;
 } /* switch */

 nwSendParamPtr->tag = appSendParamPtr->tag;
 nwSendParamPtr->pduType = APDU_TYPE;
 nwSendParamPtr->deltaBL = 0;
 /* unacknowledged messages do not use alternate path */
 nwSendParamPtr->altPath = FALSE;
 nwSendParamPtr->pduSize = appSendParamPtr->len + 1;

 apduSendPtr = (APDU *)(nwSendParamPtr + 1);
 if (nwSendParamPtr->pduSize <= gp->nwOutBufSize)
 {
 memcpy(apduSendPtr, apduPtr, appSendParamPtr->len + 1);
 EnQueue(nwOutQPtr);
 /* Don't give completion yet. The network layer will send the
 completion indication in gp->appInQ */
 }
 else
 {
 /* Losing this packet as it is too large */
 MsgCompletes(FAILURE, appSendParamPtr->tag);
 }

 return(SUCCESS);
 }

 if(QueueFull(tsaOutQPtr))
 {
 return(FAILURE); /* Can't send message yet - try later */
 }

 /* All other service types go to TSA layers */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

235

 tsaSendParamPtr->domainIndex = 3;
 memcpy(&tsaSendParamPtr->destAddr,
 &appSendParamPtr->addr,
 sizeof(appSendParamPtr->addr));
 tsaSendParamPtr->service = appSendParamPtr->service;
 tsaSendParamPtr->auth = appSendParamPtr->authenticated;
 tsaSendParamPtr->reqId = appSendParamPtr->reqId;
 tsaSendParamPtr->tag = appSendParamPtr->tag;
 tsaSendParamPtr->apduSize = appSendParamPtr->len + 1;
 tsaSendParamPtr->altPathOverride = FALSE;

 apduSendPtr = (APDU *)(tsaSendParamPtr + 1);
 if (tsaSendParamPtr->apduSize <= gp->tsaOutBufSize)
 {
 memcpy(apduSendPtr, apduPtr, tsaSendParamPtr->apduSize);
 EnQueue(tsaOutQPtr);
 }
 else
 {
 /* Losing this message */
 MsgCompletes(FAILURE, appSendParamPtr->tag);
 }

 return(SUCCESS);
}

static void ReinitMsgOut(void)
{
 /* Reinit whatever fields need to be reinitialized after each msg_send */
 memset(&gp->msgOut, 0, sizeof(gp->msgOut));
#if defined(ALTERNATE_STRUCTURES_NEEDED)
 memset(&msg_out, 0, sizeof(msg_out));
#endif
}

static void ReinitRespOut(void)
{
 /* Reinit whatever fields need to be reinitialized after each resp_send */
 memset(&gp->respOut, 0, sizeof(gp->respOut));
#if defined(ALTERNATE_STRUCTURES_NEEDED)
 memset(&resp_out, 0, sizeof(resp_out));
#endif
}

/***
Function: MsgAlloc
Returns: None
Reference: None
Purpose: Determines if there is room for a message to be sent.
Comments: None.
***/
Boolean MsgAlloc(void)
{
 return(!QueueFull(&gp->appOutQ));
}

/* For nc compatibility */
Boolean msg_alloc(void)
{
 return(!QueueFull(&gp->appOutQ));
}

/***
Function: MsgAllocPriority

BS EN 14908-1:2014

EN 14908-1:2014 (E)

236

Returns: None
Reference: None
Purpose: Determines if there is room for a pri message to be sent.
Comments: None.
***/
Boolean MsgAllocPriority(void)
{
 return(!QueueFull(&gp->appOutPriQ));
}

/* For nc compatibility */
Boolean msg_alloc_priority(void)
{
 return(!QueueFull(&gp->appOutPriQ));
}

/***
Function: MsgSend
Returns: None
Reference: None
Purpose: The application calls this function to send a message.
 The message is placed in the application queue for
 processing by APPSend.
Comments: None.
***/
void MsgSend(void)
{
 Queue *outQptr;
 APPSendParam *appSendParamPtr;
 APDU *apduPtr;
 AddrTableEntry *ap;
 uint16 addrIndex;

 ALT_TO_REF_IMP(MSG_OUT, &msg_out);

 if(gp->msgOut.priorityOn)
 {
 outQptr = &gp->appOutPriQ;
 }
 else
 {
 outQptr = &gp->appOutQ;
 }

 /* Negative tags are reserved for application layer.
 Applications are not allowed to use negative tags */
 if(QueueFull(outQptr) || gp->msgOut.tag < 0 ||
 (gp->msgOut.service >= RESPONSE))
 {
 /* Bad Tag OR
 Bad Service OR
 No place to put the message - discard it. This should
 not happen if application called MsgAlloc or
 MsgPriorityAlloc before forming the message */
 MsgCompletes(FAILURE, gp->msgOut.tag);
 ReinitMsgOut();
 return;
 }

 appSendParamPtr = QueueTail(outQptr);
 appSendParamPtr->tag = gp->msgOut.tag;
 appSendParamPtr->len = gp->msgOut.len;
 appSendParamPtr->authenticated = gp->msgOut.authenticated;
 appSendParamPtr->service = gp->msgOut.service;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

237

 appSendParamPtr->addr = gp->msgOut.addr;
 apduPtr = (APDU *)(appSendParamPtr + 1);
 apduPtr->code.allBits = gp->msgOut.code;
 if (appSendParamPtr->len + 1 <= gp->appOutBufSize)
 {
 /* There is space in the queue item to copy data */
 memcpy((char *)apduPtr+1,
 gp->msgOut.data,
 appSendParamPtr->len);
 }
 else
 {
 /* We are losing this message as it is too big. */
 MsgCompletes(FAILURE, appSendParamPtr->tag);
 ReinitMsgOut();
 return;
 }

 /* Use implicit addressing if the tag value corresponds to an address
 table entry and the explicit address is unbound or turnaround.
 Thus explicit address can be used to override implicit addressing.
 Note that turnaround is not allowed with explicit messages. */
 if(appSendParamPtr->tag < NUM_ADDR_TBL_ENTRIES &&
 gp->msgOut.addr.noAddress == UNBOUND)
 {
 addrIndex = appSendParamPtr->tag;
 ap = AccessAddress(addrIndex); /* ap cannot be NULL */
 if (ap == NULL || ap->addrFormat == UNBOUND)
 {
 /* ap cannot be NULL, but we can be safe in checking it anyway.
 We lose this message as the address table entry is unbound
 or turnaround. */
 MsgCompletes(FAILURE, appSendParamPtr->tag);
 ReinitMsgOut();
 return;
 }
 memcpy(&appSendParamPtr->addr,
 ap,
 sizeof(MsgOutAddr));
 }
 EnQueue(outQptr);
 ReinitMsgOut();
}

/* For nc compatibility */
void msg_send(void)
{
 MsgSend();
}

/***
Function: MsgCancel
Returns: None
Reference: None
Purpose: The application calls this function to cancel a
 previous message allocation.
Comments: None.
***/
void MsgCancel(void)
{
 /* Nothing to do */
}

/* For nc compatibility */
void msg_cancel()

BS EN 14908-1:2014

EN 14908-1:2014 (E)

238

{
}

/***
Function: MsgFree
Returns: None
Reference: None
Purpose: Releases gp->msgIn (by clearning gp->msgReceive) so that the
 next message can be copied to gp->msgIn.
Comments: None.
***/
void MsgFree(void)
{
 gp->msgReceive = FALSE; /* TRUE when data is in gp->msgIn */
 gp->callMsgFree = FALSE;
}

/* For nc compatibility */
void msg_free(void)
{
 gp->msgReceive = FALSE;
 gp->callMsgFree = FALSE;
}

/* TRUE if there is msg to be received */
Boolean msgReceive(void)
{
 if (gp->msgReceive)
 {
 /* There is a message to be received. Need to call msg_free() */
 gp->callMsgFree = TRUE;
 }
 return(gp->msgReceive);
}

/* For nc compatibility */
Boolean msg_receive(void)
{
 if (gp->msgReceive)
 {
 /* There is a message to be received. Need to call msg_free() */
 gp->callMsgFree = TRUE;
 }
 return(gp->msgReceive);
}

/***
Function: RespAlloc
Returns: None
Reference: None
Purpose: Check if there is space for sending a response.
Comments: None.
***/
Boolean RespAlloc(void)
{
 if (!QueueFull(&gp->tsaRespQ))
 {
 return(TRUE);
 }
 return(FALSE);
}

/* For nc compatibility */
Boolean resp_alloc(void)
{

BS EN 14908-1:2014

EN 14908-1:2014 (E)

239

 return(RespAlloc());
}

/***
Function: RespSend
Returns: None
Reference: None
Purpose: Reads gp->respOut, sends the response message
Comments: None.
***/
void RespSend(void)
{
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;

 ALT_TO_REF_IMP(RESP_OUT, &resp_out);

 if (gp->respOut.reqId == 0)
 {
 /* Application did not initialize it. Let us use as default
 the reqId of message currently in gp->msgIn */
 gp->respOut.reqId = gp->msgIn.reqId;
 }

 /* Place the response in tsaRespQ. If it is full, discard the
 response. There should be space if application called
 RespAlloc before forming the response */
 if (!QueueFull(&gp->tsaRespQ))
 {
 tsaSendParamPtr = QueueTail(&gp->tsaRespQ);
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->reqId = gp->respOut.reqId;
 tsaSendParamPtr->apduSize = gp->respOut.len + 1;
 tsaSendParamPtr->nullResponse = gp->respOut.nullResponse;
 apduRespPtr->code.allBits = gp->respOut.code;
 if (tsaSendParamPtr->apduSize <= gp->tsaRespBufSize)
 {
 memcpy((char *)apduRespPtr + 1,
 gp->respOut.data,
 gp->respOut.len);
 EnQueue(&gp->tsaRespQ);
 }
 else
 {
 /* Lose this response as it is too big to fit */
 /* There is no errorLog or stat to record this */
 ;
 }
 }
 else
 {
 /* Sorry! Application is sending a response without checking
 for space first */
 ;
 }
 ReinitRespOut();
}

/* For nc compatibility */
void resp_send(void)
{
 RespSend();
}

BS EN 14908-1:2014

EN 14908-1:2014 (E)

240

/***
Function: RespCancel
Returns: None
Reference: None
Purpose: The application calls this function to cancel a
 previous response allocation.
Comments: None.
***/
void RespCancel(void)
{
 /* Nothing to do */
}

/* For nc compatibility */
void resp_cancel(void)
{
}

/***
Function: RespFree
Returns: None
Reference: None
Purpose: Sets gp->respReceive to FALSE, which will allow a new
 response to be received.
Comments: None.
***/
void RespFree(void)
{
 gp->respReceive = FALSE; /* TRUE when data is in gp->respIn */
 gp->callRespFree = FALSE;
}

/* For nc compatibility */
void resp_free(void)
{
 gp->respReceive = FALSE;
 gp->callRespFree = FALSE;
}

/* Returns TRUE if there is resp to be received */
Boolean RespReceive(void)
{
 if (gp->respReceive)
 {
 /* There is a response to be received. Need to call resp_free() */
 gp->callRespFree = TRUE;
 }
 return(gp->respReceive);
}

/* For nc comptability */
Boolean resp_receive(void)
{
 if (gp->respReceive)
 {
 /* There is a response to be received. Need to call resp_free() */
 gp->callRespFree = TRUE;
 }
 return(gp->respReceive);
}

void RefImpToAlt(RefImpAltStruct whatIn, void *destAddr)
{

BS EN 14908-1:2014

EN 14908-1:2014 (E)

241

 switch(whatIn)
 {
 case MSG_IN:
 memcpy(destAddr, &gp->msgIn, sizeof(gp->msgIn));
 break;
 case MSG_OUT:
 memcpy(destAddr, &gp->msgOut, sizeof(gp->msgOut));
 break;
 case RESP_IN:
 memcpy(destAddr, &gp->respIn, sizeof(gp->respIn));
 break;
 case RESP_OUT:
 memcpy(destAddr, &gp->respOut, sizeof(gp->respOut));
 break;
 case NV_IN_ADDR:
 memcpy(destAddr, &gp->nvInAddr, sizeof(gp->nvInAddr));
 break;
 case NV_ARRAY_INDEX:
 memcpy(destAddr, &gp->nvArrayIndex, sizeof(gp->nvArrayIndex));
 break;
 default:
 /* Do nothing */
 ;
 }
}
void AltToRefImp(RefImpAltStruct whatIn, void *srcAddr)
{
 switch(whatIn)
 {
 case MSG_IN:
 memcpy(&gp->msgIn, srcAddr, sizeof(gp->msgIn));
 break;
 case MSG_OUT:
 memcpy(&gp->msgOut, srcAddr, sizeof(gp->msgOut));
 break;
 case RESP_IN:
 memcpy(&gp->respIn, srcAddr, sizeof(gp->respIn));
 break;
 case RESP_OUT:
 memcpy(&gp->respOut, srcAddr, sizeof(gp->respOut));
 break;
 case NV_IN_ADDR:
 memcpy(&gp->nvInAddr, srcAddr, sizeof(gp->nvInAddr));
 break;
 case NV_ARRAY_INDEX:
 memcpy(&gp->nvArrayIndex, srcAddr, sizeof(gp->nvArrayIndex));
 break;
 default:
 /* Do nothing */
 ;
 }
}

/***
Function: AddNV
Returns: Network variable index. For arrays, the base index is returned.
Reference: None
Purpose: Adds a new network variable. This involves
 adding an entry into nvConfigTable, nvFixedTable,
 SNVT information, if present etc.
 The return value is the index assigned to the variable.
 For arrays, each element is like a separate network
 variable. So, multiple entries are added to the
 tables. However, only the base index is returned.
Comments: Format of the snvt.sb space is as follows:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

242

 Self-Id for each network variable (SNVTdescStruct)
 (For arrays, one entry for each element)
 Node Self-Doc string.
 Self-Doc for each network variable
 (SNVTExtension & variable part)
 Self-Id for binding and status (AliasField)
***/
int16 AddNV(NVDefinition *dp)
{
 uint16 i, nvSelfIdCnt;
 uint16 nvNameLen; /* Length for name of network variable. */
 uint16 docLen; /* Length for self-doc for network var. */
 uint16 selectorVal;
 uint16 sizeNeeded;
 uint16 dim;
 uint16 jumpBy; /* Number of bytes by that we shift sb array. */
 uint8 remainder,quotient;
 SNVTextension *se;
 SNVTdescStruct *sd;
 AliasField saveAlias; /* To save old alias field. */
 char *p;
 char *extPtr; /* Points to where the new ext rec can be stored.*/
 char *endOfSb; /* Points to end of sb array. */

 /* Initialize local pointers for structure information in dp so that
 we can use field names in these structures instead of explicit
 bit operations */
 se = (SNVTextension *) &dp->snvtExt;
 /* snvtType info is not part of the snvtDesc. We only want to access the
 first byte of the structure, anyway. */
 sd = (SNVTdescStruct *) &dp->snvtDesc;

 /* First determine the number of entries to be added to nvConfigTable */
 if (dp->arrayCnt > 0)
 {
 dim = dp->arrayCnt; /* Array Variable. dim can still be 1. */
 }
 else
 {
 dim = 1; /* Simple variable */
 }

 if (dp->nvName == NULL || dp->varAddr == NULL)
 {
 return(-1); /* Network variable name and address is a shall. */
 }

 if (nmp->nvTableSize + dim > NV_TABLE_SIZE)
 {
 /* Not enough space in network variable table. */
 return(-1);
 }

 /* Save the original alias field. */
 saveAlias = *nmp->snvt.aliasPtr;

 /* Make endOfSb point to last element of sb array. We never want to go
 past this element */
 endOfSb = (char *)&nmp->snvt.sb[SNVT_SIZE - 1];

 /* Compute the size needed for this variable in SNVT structure. */
 if (dp->arrayCnt > 0 && dp->explodeArray)
 {
 /* We need one entry for each network variable. */
 nvSelfIdCnt = dim;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

243

 }
 else
 {
 nvSelfIdCnt = 1;

 }
 sizeNeeded = sizeof(SNVTdescStruct) * nvSelfIdCnt;

 /* Fixed extRec. One for each entry in self id desc part. */
 if (sd->extRec) /* Check ext_rec bit */
 {
 /* Need space for fixed extension record too */
 sizeNeeded = sizeNeeded + sizeof(SNVTextension) * nvSelfIdCnt;
 }

 /* Variable Part of Extension Record. */
 /* One for each entry in self id desc part. */
 if (sd->extRec && se->mre)
 {
 sizeNeeded += nvSelfIdCnt; /* One byte for maximum rate */
 }
 if (sd->extRec && se->re)
 {
 sizeNeeded += nvSelfIdCnt; /* One byte for average rate */
 }
 if (sd->extRec && se->nm)
 {
 nvNameLen = strlen(dp->nvName) + 1;
 if (dp->arrayCnt > 0 && dp->explodeArray)
 {
 /* Need space for [] and up to 3 bytes for index */
 nvNameLen += 5;
 if (nvNameLen > 22)
 {
 return(-1);
 }
 }
 else if (nvNameLen > 17)
 {
 return(-1); /* Only up to 17 bytes supported */
 }

 sizeNeeded += (nvNameLen * nvSelfIdCnt);
 }
 if (sd->extRec && se->sd)
 {
 if (dp->nvSdoc)
 {
 docLen = strlen(dp->nvSdoc) + 1;
 }
 else
 {
 docLen = 1; /* For null character */
 }
 if (docLen > MAX_NV_SELF_DOC_LENGTH)
 {
 return(-1);
 }
 sizeNeeded += (docLen * nvSelfIdCnt);
 }

 if (sd->extRec & se->nc)
 {
 /* 16 bit count for # of network variables of this type. dim? */
 /* Reference implementation uses ver 1. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

244

 sizeNeeded += (2 * nvSelfIdCnt);
 }

 if ((char *)nmp->snvt.aliasPtr + sizeof(AliasField) + sizeNeeded
 > endOfSb)
 {
 /* No Space for the new snvt_desc_struct and extension rec. */
 return(-1);
 }

 /* For arrays, we need space in gp->nvArrayTblSize */
 if (dp->arrayCnt > 0 && gp->nvArrayTblSize == MAX_NV_ARRAYS)
 {
 /* No more space to save array information */
 return(-1);
 }

 /**
 dp->bind = TRUE ==> the network variable is bindable. Bindable
 variables are automatically given selector numbers in the range
 0x3000-0x3FFF (unbound network variables). Bindable means they
 are currently unbound.

 dp->bind = FALSE ==> the network variable is non-bindable. i.e
 the application program assigns selector numbers and these variables
 are cannot be bound by the binder tools. In this case, it is
 the responsibility of the application program to assign these
 selector numbers in a reasonable way. For array variables, the
 application program indicates the selector for the first element
 and the other elements automatically get the previous selector
 numbers. The selector numbers count down.
 **/

 /* We need dim many selectors. dim can be 1. */
 /* bindable variables use unboundSelectors */
 selectorVal = gp->unboundSelector; /* initialize */
 if (dp->bind && gp->unboundSelector - dim + 1 < 0x3000)
 {
 /* Not enough selector numbers available for assigning */
 return(-1);
 }
 else if (!dp->bind)
 {
 /* selectors are specified by the application program.
 For arrays, only the selector for first element is
 given. Application program has the responsibility to
 assign unique selectors for all variables */

 selectorVal = dp->selectorHi;
 selectorVal = (selectorVal << 8) + dp->selectorLo;
 /* We are using dim selectors. Make sure that all are in range */
 if (selectorVal + dim - 1 > 0x2FFF)
 {
 /* Nonbindable variables should have value in 0-0x2FFF */
 return(-1);
 }
 }

 /* Now selectorVal has the selector number to be assigned */

 /* Everything is fine. We are now ready to add this variable */

 /* Make extPtr point to where the new extension rec would go */
 /* aliasPtr points to the byte following the last byte of ext records */
 extPtr = (char *)nmp->snvt.aliasPtr + sizeof(SNVTdescStruct) * nvSelfIdCnt;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

245

 /* Add entry or entries into the nvConfigTable and Fixed Table */
 /* Add one entry for each array element irrespective of whether it
 is exploded or not. */
 for (i = nmp->nvTableSize; i < nmp->nvTableSize + dim; i++)
 {
 /* nv config table */
 nmp->nvConfigTable[i].nvPriority = dp->priority;
 nmp->nvConfigTable[i].nvDirection = dp->direction;
 nmp->nvConfigTable[i].nvSelectorHi = selectorVal >> 8;
 nmp->nvConfigTable[i].nvSelectorLo = selectorVal & 0xFF;
 selectorVal--; /* automatic countdown - for both bind & non-bind */
 if (dp->bind)
 {
 gp->unboundSelector--; /* Update this as we just used up one */
 }
 nmp->nvConfigTable[i].nvTurnaround = dp->turnaround;
 nmp->nvConfigTable[i].nvService = dp->service;
 nmp->nvConfigTable[i].nvAuth = dp->auth;
 nmp->nvConfigTable[i].nvAddrIndex = 0xF;

 /* nv fixed table */
 nmp->nvFixedTable[i].nvSync = sd->nvSync;
 nmp->nvFixedTable[i].nvLength = dp->nvLength;
 /* For arrays, make sure we compute the address of each item. */
 nmp->nvFixedTable[i].nvAddress = (char *) dp->varAddr +
 (i - nmp->nvTableSize) * dp->nvLength;
 }

 /* If we are adding an array, save this info in gp->nvArrayTbl */
 /* Array with dim 1 is considered like an array */
 if (dp->arrayCnt > 0)
 {
 gp->nvArrayTbl[gp->nvArrayTblSize].nvIndex = nmp->nvTableSize;
 gp->nvArrayTbl[gp->nvArrayTblSize++].dim = dim;
 }

 /**
 Format of the SNVT structure: (See APPReset for more info).
 snvtheader nv-self-id-desc node-self-doc nv-self-doc alias-field

 snvtheader is part of the nmp->snvt structure, its initial members.
 nmp->snvt.sb array is used for [nv-self-id-desc ... alias-field]
 alias-fields has binding and status information.
 nmp->snvt.descPtr points to beginning address of node-self-doc.
 i.e the address where the nv-self-id-desc for new network
 variable should be placed.
 **/

 /* Add data to snvt structure */

 /* Update snvt descriptor count in snvt structure.
 nmp->snvt.msbNumNetvars is the most significant byte.
 nmp->snvt.numNetvars is the least significant byte.
 We want to add the value of dim to this number */
 quotient = (nmp->snvt.numNetvars + nvSelfIdCnt) / 256;
 remainder = (nmp->snvt.numNetvars + nvSelfIdCnt) % 256;
 nmp->snvt.numNetvars = remainder;
 nmp->snvt.msbNumNetvars += quotient;

 /* Now we need to move nv-self-doc and node-self-doc to make
 for self-id-desc for the network variable being added. */

 /* Make p point the last byte of nv-self-doc */
 p = (char *)nmp->snvt.aliasPtr - 1;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

246

 /* Determine how many bytes everything moves by. */
 jumpBy = sizeof(SNVTdescStruct) * nvSelfIdCnt;
 while(p >= (char *)(nmp->snvt.descPtr))
 {
 *(p + jumpBy) = *p;
 p--;
 }

 /* Copy dp->snvtDesc information. One for each array item. */
 /* All array items have the same information. i.e homogeneous. */
 sd = nmp->snvt.descPtr; /* Initialize */
 for (i = 0; i < nvSelfIdCnt; i++)
 {
 memcpy(sd, &dp->snvtDesc, 1); /* can't assign without casting. */
 sd->snvtTypeIndex = dp->snvtType;
 sd++;
 }
 nmp->snvt.descPtr = sd;

 sd = (SNVTdescStruct *)&dp->snvtDesc; /* Reinitialize */
 /* We are now ready to add the extension information */
 if(sd->extRec)
 {
 /* This variable has extension record following node-self-doc */
 /* Add one for each entry in the self id desc part. */
 for (i = 0; i < nvSelfIdCnt; i++)
 {
 /* extPtr has already been set to point to the right place */
 /* se has already been set to point to dp->snvtExt */
 /* extPtr is of type (Byte *) */
 *extPtr = dp->snvtExt;
 extPtr += sizeof(SNVTextension);
 if(se->mre)
 {
 *extPtr = dp->maxrEst;
 extPtr++;
 }

 if(se->re)
 {

 *extPtr = dp->rateEst;
 extPtr++;
 }

 if(se->nm)
 {
 /* We need to store the name of the variable. null terminated. */
 nvNameLen = strlen(dp->nvName) + 1;
 if (dp->arrayCnt > 0 && dp->explodeArray)
 {
 int index = i + 1;
 /* We support maximum of 999 array items */
 /* 999 is the maximum index we can represent with 3 digits */
 sprintf(extPtr, "%s_", dp->nvName);
 extPtr += nvNameLen; /* Should now point to null character */
 if (index < 10)
 {
 sprintf(extPtr, "%1d", index); /* Single digit index */
 extPtr++;
 }
 else if (index < 100)
 {
 sprintf(extPtr, "%2d", index); /* Double digit index */
 extPtr += 2;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

247

 }
 else
 {
 sprintf(extPtr, "%3d", index); /* Triple digit index */
 extPtr += 3;
 }
 *extPtr = '\0';
 extPtr++;
 } /* for j loop */
 else
 {
 /* Simple variable. or Array with one entry. */
 strcpy(extPtr, dp->nvName); /* Adds Null ch too */
 extPtr += nvNameLen;
 } /* else */
 } /* if (se->nm) */

 if(se->sd)
 {
 if (dp->nvSdoc == NULL)
 {
 extPtr = '\0'; / nvSdoc is missing */
 extPtr++;
 }
 else
 {
 docLen = strlen(dp->nvSdoc) + 1;
 strcpy(extPtr, dp->nvSdoc);
 extPtr += docLen;
 }
 }

 if(se->nc)
 {
 /* Store the dimension of the variable. Useful only for array
 entered in SNVT that are not exploded. */
 extPtr = dp->arrayCnt >> 8; / High order byte. */
 extPtr++;
 extPtr = dp->arrayCnt & 0xFF; / Low order byte */
 extPtr++;
 }
 } /* for */
 } /* if (sd->extRec) */

 /* Restore Alias */
 nmp->snvt.aliasPtr = (AliasField *)extPtr;
 *nmp->snvt.aliasPtr = saveAlias;
 extPtr = extPtr + sizeof(AliasField);

 /* Now extPtr points to the byte following the alias field */

 /* Update nmp->snvt.length */
 /* 6 below refers to the size of the header in snvt structure */
 nmp->snvt.length = (extPtr - (char *)&nmp->snvt.sb[0]) + 6;

 nmp->nvTableSize += dim;

 return(nmp->nvTableSize - dim); /* Base index for arrays. */
}

/***
Function: ProcessNV
Returns: None
Purpose: To process an incoming network variable message.
 The message can be

BS EN 14908-1:2014

EN 14908-1:2014 (E)

248

 1. NV Update Message (ACKD, UNACKD, UNACKD_RPT)
 2. NV Poll Message. (REQUEST)
Comments: In either case, the msg should have at least 2 bytes.
***/
static void ProcessNV(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 if (appReceiveParamPtr->service == REQUEST)
 {
 ProcessNVPoll(appReceiveParamPtr, apduPtr);
 }
 else
 {
 ProcessNVUpdate(appReceiveParamPtr, apduPtr);
 }
}

/***
Function: ProcessNVPoll
Returns: None
Purpose: To process an incoming network variable poll message.
 The service should be a request.
Comments: The message should have 2 bytes.
 The network variable poll message is normally addressed
 to an output variable. However, we will allow either
 input or output variable to be polled. We simply respond
 with the data value of the matching variable.
 The application layer in reference implementation
 never sends network variable poll messages addressed
 to input variables. A network variable monitor tool
 might do this to get the value of input variables.
 (NVFetch is another way).

 If we are offline, send a response with no data.
 Else
 If we have one matching network variable (primary
 or alias), then send the response with the data.

 If we have two matching primary network variables
 then we ignore this message.

 If we don't have a matching network variable,
 then send a response with no data.

 The response is network variable update message
 with the direction flipped from what was received.

 If we have more than one primary variable with matching
 selector, then we have a problem. The sender is expecting
 only one response from each node receiving the poll message.
 So, it is not clear which one to send. If we have this
 situation, we will ignore this message and not respond
 at all. Note that it is not meaningful to have a primary
 and an alias of that primary to have the same selector.
 If the incoming variable is connected to two different primary
 variables on this node, then the incoming variable
 should not have been polled.
***/
static void ProcessNVPoll(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 int16 i;
 uint8 nvDirection;
 uint16 selector, thisSelector;
 int16 matchingIndex;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

249

 uint16 matchingPrimaryIndex;
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 NVStruct *thisNVStrPtr, *matchingNVStrPtr;
 Boolean authOK;
 int16 nvAliasTableSize;
 Boolean noData; /* Should data go out? */

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 if(appReceiveParamPtr->pduSize != 2)
 {
 /* The message does not have correct size */
 nmp->errorLog = NV_MSG_TOO_SHORT;
 DeQueue(&gp->appInQ);
 return;
 }

 tsaOutQPtr = &gp->tsaRespQ;

 if(QueueFull(tsaOutQPtr))
 {
 /* Can't send response yet - try later. */
 return;
 }

 if (NodeUnConfigured())
 {
 /* Ignore this message in this state.
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = TRUE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* Determine selector and nvDirection for variable in the poll message. */
 selector = (apduPtr->code.nv.nvCode << 8) | apduPtr->data[0];
 nvDirection = apduPtr->code.nv.nvDir;

 noData = TRUE; /* Assume that we will respond with no data */
 matchingIndex = -1; /* Initialize to indicate that no match yet. */

 /* If application is not running, then we should return with no data */
 /* We know that the node is configured at this point */
 if(AppPgmRuns())
 {
 /* Search for matching network variable. Search both primary
 and alias entries */
 for(i = 0; i < nmp->nvTableSize+nvAliasTableSize; i++)
 {
 thisNVStrPtr = GetNVStructPtr(i);
 thisSelector =
 (thisNVStrPtr->nvSelectorHi << 8) | thisNVStrPtr->nvSelectorLo;
 if(thisNVStrPtr->nvDirection == nvDirection &&
 thisSelector == selector)
 {
 if (matchingIndex == -1)
 {
 matchingIndex = i; /* First match. */
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

250

 else if (GetPrimaryIndex(matchingIndex) ==
 GetPrimaryIndex(i))
 {
 /* We have two distinct primary variables with same
 selector. Ignore this message. */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = TRUE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }
 else
 {
 continue; /* Skip this entry. Does not match. */
 }
 }
 }

 /* Send the response with either data or nodata. */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 apduRespPtr->code.nv.nvFlag = 0x1;
 apduRespPtr->code.nv.nvDir = 1 - nvDirection; /* Opposite */
 /* Keep the same selector as the one received */
 apduRespPtr->code.nv.nvCode = apduPtr->code.nv.nvCode;
 apduRespPtr->data[0] = apduPtr->data[0];

 if (matchingIndex != -1)
 {
 noData = FALSE;
 matchingPrimaryIndex = GetPrimaryIndex(matchingIndex);
 matchingNVStrPtr = GetNVStructPtr(matchingIndex);
 }

 if(appReceiveParamPtr->auth ||
 matchingIndex == -1 ||
 !matchingNVStrPtr->nvAuth)
 {
 authOK = TRUE;
 }
 else
 {
 authOK = FALSE;
 }

 if (noData || matchingIndex == -1 || authOK == FALSE)
 {
 /* Send a response with no data */
 tsaSendParamPtr->apduSize = 2;
 }
 else
 {
 /* Send a response with data */
 if (NV_LENGTH(matchingPrimaryIndex) + 2 <= gp->tsaRespBufSize)
 {
 memcpy(&apduRespPtr->data[1],
 NV_ADDRESS(matchingPrimaryIndex),

BS EN 14908-1:2014

EN 14908-1:2014 (E)

251

 NV_LENGTH(matchingPrimaryIndex));
 tsaSendParamPtr->apduSize = 2 + NV_LENGTH(matchingPrimaryIndex);
 }
 else
 {
 tsaSendParamPtr->apduSize = 2;
 }
 }
 EnQueue(tsaOutQPtr);

 /* Message processing completed - remove it from queue */
 DeQueue(&gp->appInQ);
 return;
}

/***
Function: ProcessNVUpdate
Returns: None
Purpose: To process an incoming network variable update message.
 The service can be ACKD, UNACKD, UNACKD_RPT.
 The service can be RESPONSE too for poll responses.
Comments: The message should have > 2 bytes.
 The network variable update message is addressed
 to an input variable.

 If we are unconfigured then discard the message.

 There can be only one variable (primary or alias) with
 matching selector. Once a match is found, break.

 If we update one ore more network variables and we are
 not soft-offline then we don't give NVUpdateOccurs event.
 Otherwise, we do give NVUpdateOccurs to the application program.

 The prefix 'this' is used for local variables of this function
 related to information regarding network variables searched.
***/
static void ProcessNVUpdate(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 int16 i;
 uint16 dataLength, matchingDataLength;
 uint8 nvDirection;
 uint16 selector, thisSelector;
 int16 matchingIndex;
 uint16 matchingPrimaryIndex;
 NVStruct *thisNVStrPtr, *matchingNVStrPtr;
 Boolean authOK;
 int16 nvAliasTableSize;
 uint16 thisDim;
 int16 thisBaseIndex;

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 if(appReceiveParamPtr->pduSize <= 2)
 {
 /* The message does not have any correct size or data field. */
 nmp->errorLog = NV_MSG_TOO_SHORT;
 DeQueue(&gp->appInQ);
 return;
 }

 if (eep->readOnlyData.nodeState == APPL_UNCNFG)
 {
 /* Ignore this message in this state.*/

BS EN 14908-1:2014

EN 14908-1:2014 (E)

252

 DeQueue(&gp->appInQ);
 return;
 }

 /* Determine selector and nvDirection for variable in the update message. */
 selector = (apduPtr->code.nv.nvCode << 8) | apduPtr->data[0];
 nvDirection = apduPtr->code.nv.nvDir;
 if (nvDirection == NV_OUTPUT)
 {
 /* Ignore this message */
 nmp->errorLog = NV_UPDATE_ON_OUTPUT_NV;
 DeQueue(&gp->appInQ);
 return;
 }

 dataLength = appReceiveParamPtr->pduSize - 2; /* data length in message */

 /* Go through network input variables looking for a match. Once
 a match is found, update it and break. */
 matchingIndex = -1;
 for(i = 0; i < nmp->nvTableSize + nvAliasTableSize; i++)
 {
 thisNVStrPtr = GetNVStructPtr(i);
 thisSelector =
 (thisNVStrPtr->nvSelectorHi << 8) | thisNVStrPtr->nvSelectorLo;
 if (thisNVStrPtr->nvDirection == NV_OUTPUT)
 {
 continue; /* Skip network output variables */
 }
 if (thisSelector == selector)
 {
 matchingIndex = i;
 break;
 }
 }

 if (matchingIndex != -1)
 {
 /* Need to update the network input variable */
 /* matchingIndex can be primary or alias index */
 matchingPrimaryIndex = GetPrimaryIndex(matchingIndex);
 matchingDataLength = NV_LENGTH(matchingPrimaryIndex);
 matchingNVStrPtr = GetNVStructPtr(matchingPrimaryIndex);

 /* If the data size does not match, don't update. ignore. */
 if (dataLength != matchingDataLength)
 {
 nmp->errorLog = NV_LENGTH_MISMATCH;
 DeQueue(&gp->appInQ);
 return;
 }

 if(appReceiveParamPtr->auth || !matchingNVStrPtr->nvAuth)
 {
 authOK = TRUE;
 }
 else
 {
 authOK = FALSE;
 }

 if (!authOK)
 {
 DeQueue(&gp->appInQ);
 return; /* Skip the update as authentication did not succeed. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

253

 }

 /* Update the variable */
 if (dataLength > 0 && appReceiveParamPtr->service == RESPONSE)
 {
 /* We have a response to poll message. Update gp->nvInDataStatus flag. */
 gp->nvInDataStatus = SUCCESS;
 }
 memcpy(NV_ADDRESS(matchingPrimaryIndex),
 &apduPtr->data[1],
 dataLength);
 if (AppPgmRuns())
 {
 /* Notify application program only if it is running. */
 gp->nvInAddr.domain = appReceiveParamPtr->srcAddr.domainIndex;
 gp->nvInAddr.flexDomain =
 (appReceiveParamPtr->srcAddr.domainIndex == FLEX_DOMAIN);
 memcpy(&gp->nvInAddr.srcAddr,
 &appReceiveParamPtr->srcAddr.subnetAddr,
 sizeof(gp->nvInAddr.srcAddr));

 switch(appReceiveParamPtr->srcAddr.addressMode)
 {
 case BROADCAST:
 gp->nvInAddr.format = 0;
 break;
 case MULTICAST:
 gp->nvInAddr.format = 1;
 gp->nvInAddr.destAddr.group =
 appReceiveParamPtr->srcAddr.group;
 break;
 case SUBNET_NODE:
 gp->nvInAddr.format = 2;
 break;
 case UNIQUE_NODE_ID:
 gp->nvInAddr.format = 3;
 break;
 default:
 /* should not come here */
 gp->nvInAddr.format = 5; /* unknown */
 }
 IsArrayNV(matchingPrimaryIndex, &thisDim, &thisBaseIndex);
 gp->nvArrayIndex = matchingPrimaryIndex - thisBaseIndex;
 REF_IMP_TO_ALT(NV_IN_ADDR, &nv_in_addr);
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 NVUpdateOccurs(thisBaseIndex, gp->nvArrayIndex);
 }
 }

 DeQueue(&gp->appInQ);
 return;
}

/***
Function: PropagateThisIndex
Returns: SUCCESS if the index is scheduled.
 FAILURE if the queue is full and hence not scheduled
 or for sync network output variables, the queue
 buffer size is not sufficient for this variable.
 INVALID if the index does not correspond to NV_OUTPUT
Purpose: To schedule a specific index of a network variable
 (primary or alias), polled or not.
Comment:
 This function is local to this file and used by API functions

BS EN 14908-1:2014

EN 14908-1:2014 (E)

254

 Propagate, PropagateNV, and PropagateArrayNV.
 The address table entry for NV_OUTPUT can be turnarouud.
 So, if it is UNBOUND, then we check for turnaround field too.

 primaryIndex is passed for efficiency to avoid recomputation.
 nvIndexIn is always valid.
***/
static Status PropagateThisIndex(int16 nvIndexIn, int16 primaryIndex)
{
 int16 *indexPtr;
 Queue *indexQPtr;
 uint16 addrIndex;
 NVStruct *nvStructPtr;
 uint16 nvAliasTableSize;
 char *valPtr;
 uint16 bufSize;

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;
 nvStructPtr = GetNVStructPtr(nvIndexIn);
 addrIndex = nvStructPtr->nvAddrIndex;

 /* If the variable is not output, then we can't propagate. */
 if (nvStructPtr->nvDirection != NV_OUTPUT)
 {
 return(INVALID);
 }

 indexQPtr = &gp->nvOutIndexQ;
 bufSize = gp->nvOutIndexBufSize;

 if (QueueFull(indexQPtr))
 {
 return(FAILURE); /* Could not schedule all. */
 }

 indexPtr = QueueTail(indexQPtr);
 *indexPtr = nvIndexIn;
 if (NV_SYNC(primaryIndex))
 {
 /* Copy current value for synchronous variables */
 /* In the queue, the 2 byte index should follow the value */
 valPtr = (char *)(indexPtr + 1);
 if (NV_LENGTH(primaryIndex) <= bufSize - 2)
 {
 memcpy(valPtr, NV_ADDRESS(primaryIndex), NV_LENGTH(primaryIndex));
 EnQueue(indexQPtr);
 }
 else
 {
 return(FAILURE);
 }
 }
 else
 {
 EnQueue(indexQPtr);
 }

 return(SUCCESS);
}

/***
Function: PropagateThisPrimary
Returns: None
Purpose: To schedule a specific primary network variable.
 If the variable is bound

BS EN 14908-1:2014

EN 14908-1:2014 (E)

255

 then
 this schedules the primary and any alias entries for this
 primary using PropagateThisIndex.
 If nothing was scheduled
 then
 generate failure completion event.
 else
 generate success completion event.
Comment: After scheduling the primary and all related alias entries,
 this function will add -1 to the queue to indicate end.
***/
void PropagateThisPrimary(int16 nvIndexIn)
{
 int16 *indexPtr;
 Queue *indexQPtr;
 NVStruct *nvStructPtr;
 uint16 nvAliasTableSize;
 uint16 count, dim;
 int16 baseIndex;
 int16 j;
 uint16 queueSpace;

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;
 nvStructPtr = GetNVStructPtr(nvIndexIn);

 indexQPtr = &gp->nvOutIndexQ;

 queueSpace = QueueCnt(indexQPtr) - QueueSize(indexQPtr);

 /* Schedule primary network output variables for NVUpdate. */
 if (IsNVBound(nvIndexIn))
 {
 /* We need space for at least 2 entries to schedule.
 i.e we need to reserve one space for -1 at the end. */

 count = 0;
 if (queueSpace > 1 && PropagateThisIndex(nvIndexIn, nvIndexIn) == SUCCESS)
 {
 count++;
 queueSpace--;
 }
 /* Schedule all alias entries that map to this primary entry.
 If queue does not have much space, stop scheduling rest. */
 for (j = nmp->nvTableSize;
 j < nmp->nvTableSize + nvAliasTableSize && queueSpace > 1;
 j++)
 {
 if (GetPrimaryIndex(j) != nvIndexIn)
 {
 continue;
 }
 if (PropagateThisIndex(j, nvIndexIn) == SUCCESS)
 {
 count++;
 queueSpace--;
 }
 }
 if (count == 0)
 {
 IsArrayNV(nvIndexIn, &dim, &baseIndex);
 gp->nvArrayIndex = nvIndexIn - baseIndex;
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 NVUpdateCompletes(FAILURE, baseIndex, gp->nvArrayIndex);
 }
 else

BS EN 14908-1:2014

EN 14908-1:2014 (E)

256

 {
 /* Schedule a -1 to indicate end of indices for this primary. */
 /* There should be at least one space left in queue */
 indexPtr = QueueTail(indexQPtr);
 *indexPtr = -1;
 EnQueue(indexQPtr);
 }
 }
 else
 {
 IsArrayNV(nvIndexIn, &dim, &baseIndex);
 gp->nvArrayIndex = nvIndexIn - baseIndex;
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 NVUpdateCompletes(SUCCESS, baseIndex, gp->nvArrayIndex); /* Not bound. */
 }
}

/***
Function: Propagate
Returns: None
Purpose: To propagate all output network variables.
Comment: This function is called by the application program to propagate
 all output network variables (declared as polled or not).

 Schedule all NV_OUTPUT indices with a valid address table
 entry regardless of whether it is primary or alias.

 This function only schedules these variables by placing
 them in a queue for later processing by APPSend function.
 APPSend will call SendVar function to actually send out
 NV Updates messages. If a network output variable is not
 bound, then there is no need to schedule it.

 The addressing information is implicit. If the network
 output variables does not correspond to an address table
 entry, then it can't be scheduled as we don't know how to
 generate the destination address.

 It is possible that not all variables can be scheduled
 due to space limitation in the queues. For guranteed
 scheduling of all possible network ouput variables, the
 nv output queue should be large enough.
***/
void Propagate(void)
{
 int16 i;

 /* Schedule primary network output variables. */
 for (i = 0; i < nmp->nvTableSize; i++)
 {
 PropagateThisPrimary(i);
 }
}

/***
Function: PropagateNV
Returns: None
Purpose: To propagate a specific output network variable (simple or array)
Comment: This function is called by the application program to propagate
 a specific network output variable (declared as polled or not).
 If the index corresponds to the first item of an array,
 then all items of the array are propagated.

 If the index does not correspond to first item of an array.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

257

 only that index is propagated.

 The variable shall be a primary variable. Alias entries that
 map to this primary (for array, any of the entries), that
 are bound to some valid address table entry. are also
 scheduled.

 This function only schedules these variables by placing
 them in a queue for later processing by APPSend function.
 APPSend will call SendVar function to actually send out
 NV Update messages.

 There is no gurantee that all possible variables are scheduled
 due to space limitation in the schedule queue. To ensure that
 this does not happen, the queue size for the scheduling should
 be made larger.

 The addressing information is implicit. If the network
 output variables does not correspond to an address table
 entry, then it can't be scheduled as we don't know how to
 generate the destination address.
***/
void PropagateNV(int16 nvIndexIn)
{
 uint16 dim;
 int16 baseIndex;
 int16 i;

 if (nvIndexIn < 0 || nvIndexIn >= nmp->nvTableSize)
 {
 return; /* Shall be a valid primary index. */
 }

 IsArrayNV(nvIndexIn, &dim, &baseIndex);
 if (nvIndexIn != baseIndex)
 {
 dim = 1; /* nvIndexIn is not the first item of array */
 }

 /* Scheduled one or more (for array) primary indices. */
 /* For array, nvIndexIn = baseIndex */
 for (i = nvIndexIn; i < nvIndexIn + dim; i++)
 {
 PropagateThisPrimary(i);
 }
}

/***
Function: PropagateArrayNV
Returns: None
Purpose: To propagate a specific element of an array output network
 variable or any other network variable (i.e non-array nv).
Comment: This function is called by the application program to propagate
 a specific item of an array network output variable
 (declared as polled or not) or a simple network variable.

 Once the primary is scheduled, we also schedule alias
 entries that map to this primary to make sure that we
 reach all possible input connections.

 This function only schedules these variables by placing
 them in a queue for later processing by APPSend function.
 APPSend will call SendVar function to actually send out

BS EN 14908-1:2014

EN 14908-1:2014 (E)

258

 NV Update messages.

 The addressing information is implicit. If the network
 input variables does not correspond to an address table
 entry, then it can be scheduled as we don't know how to
 generate the destination address.

 If arrayNVIndexIn corresponds to the baseindex of an array
 network variable then indexIn is used to compute the specific
 item of the array. Otherwise indexIn is set to 0 so that this
 function will propagate the given index only (a specific array
 item or a simple network variable).
***/
void PropagateArrayNV(int16 arrayNVIndexIn, int16 indexIn)
{
 uint16 dim;
 int16 baseIndex;
 int16 nvIndex;

 if (arrayNVIndexIn < 0 || arrayNVIndexIn >= nmp->nvTableSize)
 {
 return; /* Invalid index. */
 }

 /* if arrayNVIndexIn is not an array variable, then dim is set to 1
 and baseIndex is set to arrayNVIndexIn by IsArrayNV function */
 if (!IsArrayNV(arrayNVIndexIn, &dim, &baseIndex))
 {
 indexIn = 0; /* Simple network variable */
 }
 else if (baseIndex != arrayNVIndexIn)
 {
 indexIn = 0; /* Any other array item. don't use indexIn passed. */
 }

 if (indexIn < 0 || indexIn >= dim)
 {
 return; /* Invalid index */
 }

 nvIndex = arrayNVIndexIn + indexIn;
 PropagateThisPrimary(nvIndex);
}

/***
Function: SendVar
Returns: None.
Purpose: Generates NV Update message for the given index.
 The given index can be either primary or alias.
 For sync network output variables, we are also
 given the corresponding value. For nonsync variables,
 valPtr is null and current value is used.

 If the network output variable has nvTurnaround on,
 then we need to search for a network input variable with
 matching selector number. Once found, we update it, and
 send NVUpdateOccurs event to the application program.
 Note that we search through both primary and alias
 entries for the turnaround. If a primary is connected to this
 output variables, we will find it eventually either direcly
 or indirectly (via alias).

Comments:
 We need to handle only the given index. Propagate functions
 take care of scheduling all needed alias indices properly.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

259

 Implicit NV Updates are handleded through Propagate.

 It is possible that variables are scheduled, but by the time
 they are processed in this function, the application is
 offline or the node is unconfigured. So, check for this
 too before updating network variables for turnaround.

 Also, it is possible that some attributes of the variable
 has been changed by a network management tool after the
 index was scheduled.

 If the index is -1, then it represents the end of scheduling for a
 primary. Generate a message to transport layer with a special tag
 that will be recognized and sent back immediately in the
 indication to application layer.
***/
static void SendVar()
{
 Queue *indexQPtr;
 int16 i; /* For loop. */
 uint16 bufSize; /* bufSize for the target queue */
 int16 nvIndex;
 int16 primaryIndex; /* For nvIndex. */
 uint16 nvLength; /* For nvIndex. */
 uint16 selector; /* For nvIndex. */
 Byte *nvPtr; /* For nvIndex. Points to storage. */
 uint16 dimIn; /* For input network variable */
 int16 primaryIndexIn; /* For input network variable */
 int16 baseIndexIn; /* For input network variable */
 uint16 nvLengthIn; /* For input network variable */
 Byte *nvPtrIn; /* For input network variable */
 uint16 selectorIn; /* For input network variable */
 Queue *nwOutQPtr, *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 NWSendParam *nwSendParamPtr;
 APDU *apduPtr;
 uint16 nvAliasTableSize;
 NVStruct *nvStrPtr, *nvStrPtrIn;
 uint16 addrIndex;
 AddrTableEntry *ap;
 Boolean turnAroundOnly; /* does not mean turnaround for sure. Means
 that the variable does not have addr table
 entry or the address table entry is unbound
 or it is turnaround entry. */
 Boolean foundMatchingInputVar;
 int16 *indexPtr;
 char *valPtr;

 indexQPtr = &gp->nvOutIndexQ;

 if (!gp->nvOutCanSchedule || QueueEmpty(indexQPtr))
 {
 return; /* Nothing to do. */
 }
 indexPtr = QueueHead(indexQPtr);
 nvIndex = *indexPtr;
 valPtr = (char *)(indexPtr + 1);

 /* If the node enters unconfigued state before processing this nv update
 we do not want to schedule these indices. We simply do nothing and wait
 for the node to go configured. */
 if (eep->readOnlyData.nodeState == APPL_UNCNFG)
 {
 return;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

260

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 /* nvIndexIn > 0 => nv variable. nvIndex == -1 => end of scheduling */
 if (nvIndex >= 0)
 {
 /* Make nvStrPtr point to the right NVStruct for nvIndexIn */
 nvStrPtr = GetNVStructPtr(nvIndex);
 primaryIndex = GetPrimaryIndex(nvIndex);
 nvPtr = NV_ADDRESS(primaryIndex);
 nvLength = NV_LENGTH(primaryIndex);
 selector = (nvStrPtr->nvSelectorHi << 8) | nvStrPtr->nvSelectorLo;
 addrIndex = nvStrPtr->nvAddrIndex;
 /* The variable is turnaround only if addrIndex is 0xF or the address
 table entry is unbound (turnaround or not). */
 /* *** START INFORMATIVE - Unbound Network Variable */
 /* It is acceptable to require that turnaround NVs have an address table
 * entry assigned. This entry may be used for determining retry counts
 * and tx_timer values for retrying in the event of resource problems such
 * as input buffer inavailability. Network management tools are expected
 * to assign an address table entry even if using unackd service. */
 /* *** END INFORMATIVE - Unbound Network Variable */
 turnAroundOnly = addrIndex == 0xF ||
 eep->addrTable[addrIndex].addrFormat == UNBOUND;

 if(nvStrPtr->nvPriority)
 {
 tsaOutQPtr = &gp->tsaOutPriQ;
 nwOutQPtr = &gp->nwOutPriQ;
 if (nvStrPtr->nvService == UNACKD)
 {
 bufSize = gp->nwOutPriBufSize;
 }
 else
 {
 bufSize = gp->tsaOutPriBufSize;
 }
 }
 else
 {
 tsaOutQPtr = &gp->tsaOutQ;
 nwOutQPtr = &gp->nwOutQ;
 if (nvStrPtr->nvService == UNACKD)
 {
 bufSize = gp->nwOutBufSize;
 }
 else
 {
 bufSize = gp->tsaOutBufSize;
 }
 }
 }
 else
 {
 /* Let us use tsaOutQ for the special message */
 tsaOutQPtr = &gp->tsaOutQ;
 }

 if (nvIndex == -1 || !turnAroundOnly)
 {
 /* We need to make sure that we have space in transport or network
 layer. If there is no space, we should return without doing any
 processing.
 NV variable messages can be ACK, UNACK, UNACKD_RPT */
 if (nvIndex == -1)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

261

 {
 if (QueueFull(tsaOutQPtr))
 {
 return;
 }
 }
 else if(nvStrPtr->nvService == UNACKD && QueueFull(nwOutQPtr))
 {
 return;
 }
 else if(nvStrPtr->nvService != UNACKD && QueueFull(tsaOutQPtr))
 {
 return;
 }
 }

 if (nvIndex == -1)
 {
 /* Form a message with a special tag to transport layer. */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = ACKD;
 tsaSendParamPtr->tag = NV_UPDATE_LAST_TAG_VALUE;
 tsaSendParamPtr->apduSize = 0;
 EnQueue(tsaOutQPtr);
 gp->nvOutCanSchedule = FALSE; /* Only one at a time. */
 DeQueue(indexQPtr);
 return;
 }

 /* If the variable is flagged as turnaround, then we look for first
 network input variable with matching selector number. Once found,
 we update that input variable, and then send NVUpdateOccurs event
 to the application program. We break as soon as first match is found. */
 if (nvStrPtr->nvTurnaround)
 {
 foundMatchingInputVar = FALSE;
 for(i = 0; i < nmp->nvTableSize+nvAliasTableSize; i++)
 {
 nvStrPtrIn = GetNVStructPtr(i);
 selectorIn =
 (nvStrPtrIn->nvSelectorHi << 8) | nvStrPtrIn->nvSelectorLo;
 /* If this variable is not input or does not have matching selector,
 then skip this entry */
 if (nvStrPtrIn->nvDirection != NV_INPUT ||
 selector != selectorIn)
 {
 continue; /* Not a matching entry */
 }
 /* Found a matching turnaroud entry for nvIndexIn */
 primaryIndexIn = GetPrimaryIndex(i);
 nvPtrIn = NV_ADDRESS(primaryIndexIn);
 nvLengthIn = NV_LENGTH(primaryIndexIn);
 if (nvLength != nvLengthIn)
 {
 break; /* selector matches but length does not */
 }
 memcpy(nvPtrIn, nvPtr, nvLength);
 foundMatchingInputVar = TRUE;
 /* Notify application if it is running */
 if (AppPgmRuns())
 {
 IsArrayNV(primaryIndexIn, &dimIn, &baseIndexIn);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

262

 gp->nvInAddr.format = 4; /* TURNAROUND */
 memset(&gp->nvInAddr.srcAddr, 0, sizeof(SubnetAddress));
 gp->nvInAddr.domain = 0; /* Not relevant */
 gp->nvArrayIndex = primaryIndexIn - baseIndexIn;
 REF_IMP_TO_ALT(NV_IN_ADDR, &nv_in_addr);
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 NVUpdateOccurs(baseIndexIn, gp->nvArrayIndex);
 }

 break; /* break after first match */
 } /* for */
 } /* if */

 if (turnAroundOnly)
 {
 /* Completion event is given in HandleMsgCompletion function */
 /* Since there is nothing actually scheduled, no need to clear
 gp->nvOutCanSchedule flag. */
 /* Since this index does not go through HandleMsgCompletion, we need
 to set gp->nvOutIndex here. This is to take care of the case when
 a variable is turndaround only with no alias. In this case this index
 is followed by -1 in the queue. Hence, the gp->nvOutIndex would never
 be initialized when HandleMsgCompletion gets NV_UPDATE_LAST_TAG_VALUE.
 Explicit initialization here will fix the problem. */
 gp->nvOutIndex = GetPrimaryIndex(nvIndex);
 DeQueue(indexQPtr);
 return;
 }

 gp->nvOutCanSchedule = FALSE; /* Only one index at a time */
 DeQueue(indexQPtr);

 /* Build and send network variable update message. */
 ap = AccessAddress(addrIndex); /* ap can't be null. */
 /* Fail if we don't have sufficient space in the target queue. */
 if (2 + nvLength > bufSize)
 {
 /* Discard this index as the space is not sufficient */
 return;
 }

 if (nvStrPtr->nvService != UNACKD)
 {
 /* The message should go to the transport layer */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->domainIndex = COMPUTE_DOMAIN_INDEX;
 *(AddrTableEntry *)(&tsaSendParamPtr->destAddr) = *ap;
 tsaSendParamPtr->service = nvStrPtr->nvService;
 tsaSendParamPtr->auth = nvStrPtr->nvAuth;
 /* See app.h for information on tag usage. */
 tsaSendParamPtr->tag = GET_NV_UPDATE_TAG(primaryIndex);
 apduPtr = (APDU *)(tsaSendParamPtr + 1);
 apduPtr->code.nv.nvFlag = 0x1;
 apduPtr->code.nv.nvDir = NV_INPUT;
 apduPtr->code.nv.nvCode = nvStrPtr->nvSelectorHi;
 apduPtr->data[0] = nvStrPtr->nvSelectorLo;
 tsaSendParamPtr->apduSize = 2 + nvLength;
 if (NV_SYNC(primaryIndex))
 {
 /* Send value given */
 memcpy(&apduPtr->data[1], valPtr, nvLength);
 }
 else
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

263

 /* Send the most current value */
 memcpy(&apduPtr->data[1], nvPtr, nvLength);
 }

 EnQueue(tsaOutQPtr);
 return;
 }

 /* The message is for the network layer */
 nwSendParamPtr = QueueTail(nwOutQPtr);
 nwSendParamPtr->dropIfUnconfigured = TRUE;
 nwSendParamPtr->tag = GET_NV_UPDATE_TAG(primaryIndex);

 switch(ap->addrFormat)
 {
 case SUBNET_NODE:
 nwSendParamPtr->destAddr.addressMode = SUBNET_NODE;
 nwSendParamPtr->destAddr.domainIndex =
 ap->snodeEntry.domainIndex;
 nwSendParamPtr->destAddr.addr.addr2a.subnet =
 ap->snodeEntry.subnetID;
 nwSendParamPtr->destAddr.addr.addr2a.node =
 ap->snodeEntry.node;
 break;
 case BROADCAST:
 nwSendParamPtr->destAddr.addressMode = BROADCAST;
 nwSendParamPtr->destAddr.domainIndex =
 ap->bcastEntry.domainIndex;
 nwSendParamPtr->destAddr.addr.addr0 =
 ap->bcastEntry.subnetID;
 break;

 default:
 /* Since the address table entry can't be unbound or turnaround,
 we shall have group entry */
 nwSendParamPtr->destAddr.addressMode = MULTICAST;
 nwSendParamPtr->destAddr.domainIndex =
 ap->groupEntry.domainIndex;
 nwSendParamPtr->destAddr.addr.addr1 =
 ap->groupEntry.groupID;
 } /* switch */

 nwSendParamPtr->pduType = APDU_TYPE;
 nwSendParamPtr->deltaBL = 0; /* No ack generated */
 nwSendParamPtr->altPath = FALSE;
 nwSendParamPtr->pduSize = 2 + nvLength;
 apduPtr = (APDU *)(nwSendParamPtr + 1);
 apduPtr->code.nv.nvFlag = 0x1;
 apduPtr->code.nv.nvDir = NV_INPUT;
 apduPtr->code.nv.nvCode = nvStrPtr->nvSelectorHi;
 apduPtr->data[0] = nvStrPtr->nvSelectorLo;
 if (NV_SYNC(primaryIndex))
 {
 /* Send value given. */
 memcpy(&apduPtr->data[1], valPtr, nvLength);
 }
 else
 {
 /* Send the most current value. */
 memcpy(&apduPtr->data[1], NV_ADDRESS(primaryIndex), nvLength);
 }
 EnQueue(nwOutQPtr);

 return;
}

BS EN 14908-1:2014

EN 14908-1:2014 (E)

264

/***
Function: PollThisIndex
Returns: SUCCESS if the index is scheduled.
 FAILURE if the queue is full and hence not scheduled.
 INVALID if the index does not correspond to NV_INPUT.
Purpose: To schedule a specific index of a network variable
 (primary or alias).
Comment:
 This function is local to this file and used by API functions
 Poll, PollNV, and PollArrayNV.
 nvIndexIn is always valid.
***/
static Status PollThisIndex(int16 nvIndexIn)
{
 int16 *indexPtr;
 Queue *indexQPtr;
 uint16 addrIndex;
 NVStruct *nvStructPtr;
 uint16 nvAliasTableSize;

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;
 nvStructPtr = GetNVStructPtr(nvIndexIn);
 addrIndex = nvStructPtr->nvAddrIndex;
 if (nvStructPtr->nvDirection != NV_INPUT)
 {
 return(INVALID);
 }

 indexQPtr = &gp->nvInIndexQ;

 if (QueueFull(indexQPtr))
 {
 return(FAILURE); /* Could not schedule all. */
 }
 indexPtr = QueueTail(indexQPtr);
 *indexPtr = nvIndexIn;
 EnQueue(indexQPtr);
 return(SUCCESS);
}

/***
Function: PollThisPrimary
Returns: None
Purpose: To schedule a specific primary network variable.
 If the variable is bound
 then
 this schedules the primary and any alias entries for this
 primary using PollThisIndex.
 If nothing was scheduled
 then
 generate failure completion event.
 else
 generate success completion event.
Comment: None.
***/
void PollThisPrimary(int16 nvIndexIn)
{
 int16 *indexPtr;
 Queue *indexQPtr;
 NVStruct *nvStructPtr;
 uint16 nvAliasTableSize;
 uint16 count, dim;
 int16 baseIndex;
 int16 j;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

265

 uint16 queueSpace;

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;
 nvStructPtr = GetNVStructPtr(nvIndexIn);

 indexQPtr = &gp->nvInIndexQ;

 queueSpace = QueueCnt(indexQPtr) - QueueSize(indexQPtr);

 /* Schedule primary network input variables for poll */
 if (IsNVBound(nvIndexIn))
 {
 /* We need space for at least 2 entries to schedule.
 i.e we need to reserve one space for -1 at the end. */
 count = 0;
 if (queueSpace > 1 && PollThisIndex(nvIndexIn) == SUCCESS)
 {
 count++;
 queueSpace--;
 }
 /* Schedule all alias entries that map to this primary entry.
 If queue does not have much space, stop scheduling rest. */
 for (j = nmp->nvTableSize;
 j < nmp->nvTableSize + nvAliasTableSize && queueSpace > 1;
 j++)
 {
 if (GetPrimaryIndex(j) != nvIndexIn)
 {
 continue;
 }
 if (PollThisIndex(j) == SUCCESS)
 {
 count++;
 queueSpace--;
 }
 }
 if (count == 0)
 {
 IsArrayNV(nvIndexIn, &dim, &baseIndex);
 gp->nvArrayIndex = nvIndexIn - baseIndex;
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 NVUpdateCompletes(FAILURE, baseIndex, gp->nvArrayIndex);
 }
 else
 {
 /* Schedule -1 to indicate end of indices for this primary. */
 /* There should be at least one space left in queue */
 indexPtr = QueueTail(indexQPtr);
 *indexPtr = -1;
 EnQueue(indexQPtr);
 }
 }
 else
 {
 IsArrayNV(nvIndexIn, &dim, &baseIndex);
 gp->nvArrayIndex = nvIndexIn - baseIndex;
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 NVUpdateCompletes(SUCCESS, baseIndex, gp->nvArrayIndex); /* Not bound. */
 }
}

/***
Function: Poll
Returns: None
Purpose: To poll all input network variables.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

266

Comment: This function is called by the application program to poll
 all network input variables.

 Schedule all NV_INPUT indices with a valid address table
 entry regardless of whether it is primary or alias.

 This function only schedules these variables by placing
 them in a queue for later processing by APPSend function.
 APPSend will call PollVar function to actually send out
 polling requests.

 It is possible that not all variables can be scheduled
 due to space limitation in the queues. For guranteed
 scheduling of all possible network input variables, the
 polling queue should be large enough.

 NVUpdateCompletes for input variables means that they
 are completion indication of corresponding poll requests.
***/
void Poll(void)
{
 int16 i;

 /* Schedule primary network input variables for poll */
 for (i = 0; i < nmp->nvTableSize; i++)
 {
 PollThisPrimary(i);
 }
}

/***
Function: PollNV
Returns: None
Purpose: To poll a specific input network variable (simple or array)
Comment: This function is called by the application program to poll
 a specific network input variable.
 If the index corresponds to the first item of an array,
 then all items of the array are polled.

 If the index does not correspond to first item of an array.
 only that index is polled.

 The variable shall be a primary variable. All alias entries
 for this primary are also scheduled.

 This function only schedules these variables by placing
 them in a queue for later processing by APPSend function.
 APPSend will call PollVar function to actually send out
 polling requests.

 There is no gurantee that all possible variables are scheduled
 due to space limitation in the schedule queue. To ensure that
 this does not happen, the queue size for the scheduling should
 be made larger.

 The addressing information is implicit. If the network
 input variables does not correspond to an address table
 entry, then it can't be scheduled as we don't know how to
 generate the destination address.

 NVUpdateCompletes for input variables means that they
 are completion indication of corresponding poll requests.
***/
void PollNV(int16 nvIndexIn)
{

BS EN 14908-1:2014

EN 14908-1:2014 (E)

267

 uint16 dim;
 int16 baseIndex;
 int16 i;

 if (nvIndexIn < 0 || nvIndexIn >= nmp->nvTableSize)
 {
 return; /* Shall be a valid primary index. */
 }

 IsArrayNV(nvIndexIn, &dim, &baseIndex);
 if (nvIndexIn != baseIndex)
 {
 dim = 1; /* nvIndexIn is not the first item of array */
 }

 /* Scheduled one or more (for array) primary indices. */
 /* For array, nvIndexIn = baseIndex */
 for (i = nvIndexIn; i < nvIndexIn + dim; i++)
 {
 PollThisPrimary(i);
 }
}

/***
Function: PollArrayNV
Returns: None
Purpose: To poll a specific element of an array input network variable
 or any other network variable (i.e non-array).
Comment: This function is called by the application program to poll
 a specific item of an array network input variable or any
 other network variable (non-array).

 Once the primary is schedules, we also schedule alias
 entries that map to this primary to make sure that we
 reach all possible output connections.

 This function only schedules these variables by placing
 them in a queue for later processing by APPSend function.
 APPSend will call PollVar function to actually send out
 polling requests.

 The addressing information is implicit. If the network
 input variables does not correspond to an address table
 entry, then it can be scheduled as we don't know how to
 generate the destination address.

 If arrayNVIndexIn corresponds to the base index of an array,
 the indexIn is used to get the specific item of the array to
 be polled. Othewise, indexIn is set to 0 so that any other
 array item or any other network variable can be passed.

 NVUpdateCompletes for input variables means that they
 are completion indication of corresponding poll requests.
***/
void PollArrayNV(int16 arrayNVIndexIn, int16 indexIn)
{
 uint16 dim;
 int16 baseIndex;
 int16 nvIndex;

 if (arrayNVIndexIn < 0 || arrayNVIndexIn >= nmp->nvTableSize)
 {
 return; /* Invalid index. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

268

 }

 /* if arrayNVIndexIn is not an array variable, then dim is set to 1
 and baseIndex is set to arrayNVIndexIn by IsArrayNV function */
 if (!IsArrayNV(arrayNVIndexIn, &dim, &baseIndex))
 {
 indexIn = 0; /* Simple network variable */
 }
 else if (baseIndex != arrayNVIndexIn)
 {
 indexIn = 0; /* Any other array item. don't use indexIn passed. */
 }

 if (indexIn < 0 || indexIn >= dim)
 {
 return; /* Invalid index */
 }

 nvIndex = arrayNVIndexIn + indexIn;
 PollThisPrimary(nvIndex);
}

/***
Function: PollVar
Returns: None
Purpose: Issues a poll message for a single network input variable.
 Sends NV Poll message for the connected output variables.

 If there exists a unique turnaround output, we update
 the network variable directly and send NVUpdateOccurs event
 to the application program. Thus, updates from externally
 connected output variables will arrive later.

Comments: Note that this return value does not mean that the
 poll transaction is complete. It only means that the
 polling request has been delivered to the session layer.

 nvIndexIn shall be good as it was previously scheduled.
 nvIndexIn can be either primary or alias.

 Do not check turnaround entries unless the session layer
 has space in the request queue for scheduling the poll.
 Otherwise, we may do the turnaround but stuck with not
 being able send the poll request. If we keep the entry
 in the queue after turnaround entries are processed, we
 may end up with double processing of turnaround entries.

 The NV Variable Poll message shall be Request. So, use
 session layer.
***/
static void PollVar(void)
{
 Queue *indexQPtr;
 int16 nvIndex;
 int16 *indexPtr;
 int16 i; /* For loop. */
 int16 primaryIndex; /* For nvIndex. */
 uint16 nvLength; /* For nvIndex. */
 uint16 dim; /* For nvIndex, if it is array */
 int16 baseIndex; /* For nvIndex, if it is array */
 uint16 selector; /* For nvIndex. */
 Byte *nvPtr; /* For nvIndex. Points to storage. */
 int16 primaryIndexOut; /* For output network variable */
 uint16 nvLengthOut; /* For output network variable */
 Byte *nvPtrOut; /* For output network variable */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

269

 uint16 selectorOut; /* For output network variable */
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduPtr;
 uint16 nvAliasTableSize;
 NVStruct *nvStrPtr, *nvStrPtrOut;
 uint16 addrIndex, addrIndexOut;
 AddrTableEntry *ap;
 Boolean turnAroundOnly; /* does not mean turnaround for sure. Means
 that the variable does not have addr table
 entry or the address table entry is unbound
 or it is turnaround entry. */
 Boolean foundMatchingOutputVar;
 int16 matchingIndexOut;

 indexQPtr = &gp->nvInIndexQ;

 if (!gp->nvInCanSchedule || QueueEmpty(indexQPtr))
 {
 return;
 }
 indexPtr = QueueHead(indexQPtr);
 nvIndex = *indexPtr;

 /* If the node enters unconfigued state before processing this nv poll
 we do not want to schedule these indices. We simply do nothing and wait
 for the node to go configured. */
 if (eep->readOnlyData.nodeState == APPL_UNCNFG)
 {
 return;
 }

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 if (nvIndex >= 0)
 {
 /* Make nvStrPtr point to the right NVStruct for nvIndex */
 nvStrPtr = GetNVStructPtr(nvIndex);
 /* START INFORMATIVE - Network Variable Alias Priority */
 /* The bracketed code in conjunction with other code in this implementation
 * is structured in a way that allows network variable aliases
 * to have a different priority attribute than the primary and for that
 * difference in priority to be honored. It is acceptable, however, to send
 * all aliases using the same priority attribute as that of the primary. */
 if(nvStrPtr->nvPriority)
 {
 tsaOutQPtr = &gp->tsaOutPriQ;
 }
 else
 {
 tsaOutQPtr = &gp->tsaOutQ;
 }
 /* END INFORMATIVE - Network Variable Alias Priority */

 primaryIndex = GetPrimaryIndex(nvIndex);
 nvPtr = NV_ADDRESS(primaryIndex);
 nvLength = NV_LENGTH(primaryIndex);
 selector = (nvStrPtr->nvSelectorHi << 8) | nvStrPtr->nvSelectorLo;
 addrIndex = nvStrPtr->nvAddrIndex;
 /* The variable is turnaround only if addrIndex is 0xF or it is unbound
 (turnaround or not) */
 turnAroundOnly = (addrIndex == 0xF) ||
 (eep->addrTable[addrIndex].addrFormat == UNBOUND);
 }
 else

BS EN 14908-1:2014

EN 14908-1:2014 (E)

270

 {
 tsaOutQPtr = &gp->tsaOutQ;
 }
 /* If the address table entry is turnaround only, then we don't send out
 any nv poll messages and hence we don't need to check the queue
 for space availability */
 if(nvIndex == -1 || !turnAroundOnly)
 {
 if (QueueFull(tsaOutQPtr))
 {
 /* Can't send request yet - try later. Don't even try turnaround. */
 return;
 }
 }

 if (nvIndex == -1)
 {
 /* Form a message with a special tag to transport layer. */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = ACKD;
 tsaSendParamPtr->tag = NV_POLL_LAST_TAG_VALUE;
 tsaSendParamPtr->apduSize = 0;
 EnQueue(tsaOutQPtr);
 gp->nvInCanSchedule = FALSE; /* Only one at a time. */
 DeQueue(indexQPtr);
 return;
 }

 /* If nvIndex is part of an array, we need to get the dimension and
 the baseIndex so that we can report nvInAddr and nvArrayIndex
 properly, in case there is a turn around connected. Alias entries
 can't be used to determine whether it is array. Use primaryIndex.
 We will use baseIndex for NVUpdateOccurs event */
 IsArrayNV(primaryIndex, &dim, &baseIndex);

 /* If the variable is flagged as turnaround, then we look for first
 network output variables with matching selector number. Once found,
 we update this input variable, and then send NVUpdateOccurs event
 to the application program. */
 if (nvStrPtr->nvTurnaround)
 {
 foundMatchingOutputVar = FALSE;
 matchingIndexOut = -1;
 for(i = 0; i < nmp->nvTableSize+nvAliasTableSize; i++)
 {
 nvStrPtrOut = GetNVStructPtr(i);
 addrIndexOut = nvStrPtrOut->nvAddrIndex;
 /* Skip input network variables */
 if (nvStrPtrOut->nvDirection == NV_INPUT)
 {
 continue;
 }
 /* It is a network output variable. Match selector */
 selectorOut =
 (nvStrPtrOut->nvSelectorHi << 8) | nvStrPtrOut->nvSelectorLo;
 if (selector != selectorOut)
 {
 continue; /* Selector does not match */
 }
 /* Found a matching output variable for nvIndex */
 matchingIndexOut = i;
 break;
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

271

 if (matchingIndexOut != -1)
 {
 primaryIndexOut = GetPrimaryIndex(matchingIndexOut);
 nvPtrOut = NV_ADDRESS(primaryIndexOut);
 nvLengthOut = NV_LENGTH(primaryIndexOut);

 /* Update the input variable provided the length matches */
 if (nvLength == nvLengthOut)
 {
 /* We will skip authentication check as it is turnaround */
 memcpy(nvPtr, nvPtrOut, nvLength);
 foundMatchingOutputVar = TRUE;

 /* turnaround updates are ignored for valid data check for polls.
 The only time it is ignored is if the nv is turnaround only.
 So, do not update gp->nvInDataStatus flag here. */

 /* Notify application program if it is running. */
 if (AppPgmRuns())
 {
 gp->nvInAddr.format = 4; /* TURNAROUND */
 memset(&gp->nvInAddr.srcAddr, 0, sizeof(SubnetAddress));
 gp->nvInAddr.domain = 0; /* Not relevant */
 /* gp->nvArrayIndex is 0 for simple var */
 gp->nvArrayIndex = primaryIndex - baseIndex;
 REF_IMP_TO_ALT(NV_IN_ADDR, &nv_in_addr);
 REF_IMP_TO_ALT(NV_ARRAY_INDEX, &nv_array_index);
 /* same as primaryIndex for simple var */
 NVUpdateOccurs(baseIndex, gp->nvArrayIndex);
 }
 }
 }
 }

 if (turnAroundOnly)
 {
 /* NV completion event is given in HandleMsgCompletion. */
 /* Don't clear the nvInCanSchedule flag as we can continue */
 /* Since this index does not go through HandleMsgCompletion, we need
 to set gp->nvInIndex here. This is to take care of the case when
 a variable is turndaround only with no alias. In this case, this index
 is followed by -1 in the queue. Hence, the gp->nvInIndex would never
 be initialized when HandleMsgCompletion gets NV_POLL_LAST_TAG_VALUE.
 Explicit initialization here will fix the problem. */
 gp->nvInIndex = GetPrimaryIndex(nvIndex);
 if (nvStrPtr->nvTurnaround && matchingIndexOut != -1)
 {
 /* We did find a matching output variable and updated the polled */
 /* variable */
 /* Note that even if one of the indices (primary or alias) is turnaround
 only, this flag is set to true. */
 gp->nvInDataStatus = SUCCESS; /* to enable poll to succeed */
 }
 DeQueue(indexQPtr);
 return;
 }

 gp->nvInCanSchedule = FALSE;
 DeQueue(indexQPtr);

 /* Build and send netvar poll message. It is a REQUEST message. */
 ap = AccessAddress(addrIndex); /* ap can't be null */

 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

272

 tsaSendParamPtr->domainIndex = COMPUTE_DOMAIN_INDEX;
 *(AddrTableEntry *)(&tsaSendParamPtr->destAddr) = *ap;
 tsaSendParamPtr->service = REQUEST; /* Poll Message */
 tsaSendParamPtr->auth = nvStrPtr->nvAuth;
 /* See app.h for details on tag usage. */
 tsaSendParamPtr->tag = GET_NV_POLL_TAG(primaryIndex);
 apduPtr = (APDU *)(tsaSendParamPtr + 1);
 apduPtr->code.nv.nvFlag = 0x1;
 apduPtr->code.nv.nvDir = NV_OUTPUT;
 apduPtr->code.nv.nvCode = nvStrPtr->nvSelectorHi;
 apduPtr->data[0] = nvStrPtr->nvSelectorLo;
 tsaSendParamPtr->apduSize = 2;

 EnQueue(tsaOutQPtr);
 return;
}

/***
Function: NewMsgTag
Returns: A new message tag of the requested type (bindable or non-bindable).
Purpose: To allocate message tags for use by application program.
Comment: Reference implementation does not support rate information
 for tags.
**/
MsgTag NewMsgTag(BindNoBind bindStatusIn)
{
 if (bindStatusIn == BIND)
 {
 if (gp->nextBindableMsgTag < NUM_ADDR_TBL_ENTRIES &&
 nmp->snvt.mtagCount < 0xFF)
 {
 nmp->snvt.mtagCount++;
 return(gp->nextBindableMsgTag++);
 }
 else
 {
 /* Ran out of addr table entries or no room in mtagCount. */
 return(-1);
 }
 }

 if (gp->nextNonbindableMsgTag < 0xFFFF)
 {
 return(gp->nextNonbindableMsgTag++); /* We have lots of this */
 }
 else
 {
 return(-1); /* Extremely unlikely to happen. */
 }
}

/***
Function: IsArrayNV
Returns: Returns TRUE if a given primary index corresponds to a
 network array variable.
 The index can be any of the indices for the array
 elements.
Reference: None
Purpose: To determine if an index corresponds to a network
 array variable. This is needed as this info is not part
 of the nv config or fixed tables.
 For simple variables, dimOut is set to 1 and baseIndexOut
 is set to the given index. (By default).
Comments: gp->nvArrayTbl is an array of structures with two
 fields: nvIndex and dim. The table contains nvIndex

BS EN 14908-1:2014

EN 14908-1:2014 (E)

273

 and dim only for array variables. The table is populated
 during AddNV.
 For array variables, dim (dimension of array) and array
 base index passed back if provided with non-null addresses.
***/
static Boolean IsArrayNV(int16 nvIndexIn,
 uint16 *dimOut, int16 *baseIndexOut)
{
 int16 i;

 if (dimOut)
 {
 dimOut = 1; / Default for simple variables */
 }
 if (baseIndexOut)
 {
 *baseIndexOut = nvIndexIn;
 }
 /* Sequential search. OK if there are not too many arrays. */
 if (nvIndexIn < 0 || nvIndexIn >= nmp->nvTableSize)
 {
 return(FALSE); /* Only primary variables can be arrays */
 }
 for (i = 0; i < gp->nvArrayTblSize; i++)
 {
 if (nvIndexIn >= gp->nvArrayTbl[i].nvIndex &&
 nvIndexIn < gp->nvArrayTbl[i].nvIndex + gp->nvArrayTbl[i].dim)
 {
 /* Lies in the range for this array variable */
 if (dimOut)
 {
 *dimOut = gp->nvArrayTbl[i].dim;
 }
 if (baseIndexOut)
 {
 *baseIndexOut = gp->nvArrayTbl[i].nvIndex;
 }
 return(TRUE);
 }
 }
 return(FALSE); /* Not found. Shall be a simple variable */
}

/* Application can call this fn to put itself offline */
void GoOffline(void)
{
 OfflineEvent();
 gp->appPgmMode = OFF_LINE;
}

/* Appplication can call this fn to put itself unconfigured */
void GoUnconfigured(void)
{
 int i, numDomains;

 eep->readOnlyData.nodeState = APPL_UNCNFG;
 /* Set appPgmMode to OFF_LINE so that when we configured again, the
 application program will be soft-off-line.
 gp->appPgmMode = OFF_LINE;
 if (eep->readOnlyData.twoDomains)
 {
 numDomains = 2;
 }
 else
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

274

 numDomains = 1;
 }

 /* Overwrite all domain information. Destroys auth key */
 for (i = 0; i < numDomains; i++)
 {
 memcpy(eep->domainTable[i].domainId, "gmrdwf", DOMAIN_ID_LEN);
 eep->domainTable[i].subnet = 0;
 eep->domainTable[i].cloneDomain = 0;
 eep->domainTable[i].node = 0;
 eep->domainTable[i].len = 0xFF;
 memcpy(eep->domainTable[i].key, "NO_KEY", AUTH_KEY_LEN);
 }
}

/*-----------------------------------End of app.c-----------------------------*/
_

A.11 Network Management Commands

/***
 Reference: Section 13, Network management & diagnostics

 File: netmgmt.c

 Version: 1.7

 Reference: 13.7 of this European Standard.

 Purpose: App Layer/Network Management

 The functions in this file handle the network
 management messages (HandleNM()) and network
 diagnostic messages (HandleND()).

 Note:
 Discard if Honor even if Never
 Not Request read/write prot Authcated
 ----------- --------------- -----------
Network Management Messages:
NM_QUERY_ID 0x61 YES YES YES
NM_RESPOND_TO_QUERY 0x62 no YES YES
NM_UPDATE_DOMAIN 0x63 no YES no
NM_LEAVE_DOMAIN 0x64 no YES no
NM_UPDATE_KEY 0x65 no YES no
NM_UPDATE_ADDR 0x66 no YES no
NM_QUERY_ADDR 0x67 YES YES no
NM_QUERY_NV_CNFG 0x68 YES YES no
NM_UPDATE_GROUP_ADDR 0x69 no YES no
NM_QUERY_DOMAIN 0x6A YES YES no
NM_UPDATE_NV_CNFG 0x6B no YES no
NM_SET_NODE_MODE 0x6C no YES no
NM_READ_MEMORY 0x6D YES Limited no
NM_WRITE_MEMORY 0x6E no Limited no
NM_CHECKSUM_RECALC 0x6F no YES no
NM_WINK 0x70 no YES no
NM_MEMORY_REFRESH 0x71 no YES no
NM_QUERY_SNVT 0x72 YES YES no
NM_NV_FETCH 0x73 YES YES no

Network Diagnostic Messages:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

275

ND_QUERY_STATUS 0x51 YES YES YES
ND_PROXY_COMMAND 0x52 YES YES YES
ND_CLEAR_STATUS 0x53 NO YES no
ND_QUERY_XCVR 0x54 YES YES no

Manual Service Request Message:
NM_MANUAL_SERVICE_REQUEST
 0x1F -na- -na- -na-

The HandleNM() function is called for each network management
message, and does the appropriate processing. Some messages
are simple enough to be processed right in HandleNM(), others
have their own function that is called by HandleNM().

The HandleND() function is called for each network diagnostic
message. Like HandleNM(), the HandleND() function takes care
of simple messages, and more complicated messages are handled
by their own function.

***/
/*--
Section: Includes
--*/
#include <string.h>

#include <cnp_1.h>
#include <node.h>
#include <app.h>
#include <api.h>
#include <netmgmt.h>

/*--
Section: Constant Definitions
--*/
/* None */

/*--
Section: Type Definitions
--*/
#pragma maxalign(1)

typedef struct
{
 uint16 transmissionErrors;
 uint16 transmitTXFailures;
 uint16 receiveTXFull;
 uint16 lostMessages;
 uint16 missedMessages;
 uint8 resetCause;
 uint8 nodeState;
 uint8 versionNumber;
 uint8 errorLog;
 uint8 modelNumber;
} NDQueryStat;

#pragma maxalign()

/*--
Section: Globals
--*/
/* None */

/*--
Section: Function Prototypes.
--*/

BS EN 14908-1:2014

EN 14908-1:2014 (E)

276

/* Local Functions */
static void RecomputeChecksum(void);
static void NMNDRespond(NtwkMgmtMsgType msgType,
 Status success,
 APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

/* Network management related functions */
void HandleNMQueryId(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMWink(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMLeaveDomain(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMQueryAddr(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMQueryNvCnfg(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMQuerySIData(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMNVFetch(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMReadMemory(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMWriteMemory(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNMQueryDomain(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

/* Network diagnostics related functions */
void HandleNDQueryStatus(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNDProxyCommand(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNDTransceiverStatus(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

void HandleNDClearStatus(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

/* This function is for use by HandleNDProxyCommand */
void HandleNDQueryUnconfig(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr);

/* External function from physical layer to get the transceiver status. */
extern void GetTransceiverStatus(Byte transceiverStatusOut[]);

/*--
Section: Function Definitions
--*/
/***
Function: RecomputeChecksum
Returns: None.
Reference: None

BS EN 14908-1:2014

EN 14908-1:2014 (E)

277

Purpose: To compute the configuration checksum and store.
Comments: None.
***/
static void RecomputeChecksum(void)
{
 eep->configCheckSum = ComputeConfigCheckSum();
}

/***
Function: ManualServiceRequestMessage
Returns: TRUE if the message is sent, FALSE otherwise.
Reference: None
Purpose: Produces a manual service request message.
Comments: Prototype in api.h so that application program can use this
 function too. Returns TRUE or FALSE so that application
 program can determine whether the message was sent or not.
***/
Boolean ManualServiceRequestMessage(void)
{
 NWSendParam *nwSendParamPtr;
 APDU *apduRespPtr;

 if(QueueFull(&gp->nwOutQ))
 {
 return(FALSE); /* Can't send it now. Try later. */
 }

 /* Send unack domain wide broadcast message. */
 nwSendParamPtr = QueueTail(&gp->nwOutQ);
 nwSendParamPtr->pduSize = 1 + UNIQUE_NODE_ID_LEN + ID_STR_LEN;
 if (nwSendParamPtr->pduSize > gp->nwOutBufSize)
 {
 return(FALSE); /* Do not have sufficient space to send the message. */
 }
 apduRespPtr = (APDU *)(nwSendParamPtr + 1);
 apduRespPtr->code.allBits = 0x7F; /* Manual Service Request. */
 nwSendParamPtr->destAddr.domainIndex = FLEX_DOMAIN;
 nwSendParamPtr->destAddr.flexDomainLen = 0;
 nwSendParamPtr->pduType = APDU_TYPE;
 nwSendParamPtr->destAddr.addressMode = BROADCAST;
 nwSendParamPtr->destAddr.addr.addr0 = 0; /* Domain wide broadcast. */
 nwSendParamPtr->deltaBL = 0;
 nwSendParamPtr->altPath = 0; /* don't use alternate path. */
 nwSendParamPtr->tag = MANUAL_SERVICE_REQ_TAG_VALUE;

 memcpy(apduRespPtr->data, eep->readOnlyData.uniqueNodeId,
 UNIQUE_NODE_ID_LEN);
 memcpy(&(apduRespPtr->data[UNIQUE_NODE_ID_LEN]),
 eep->readOnlyData.progId, ID_STR_LEN);
 EnQueue(&gp->nwOutQ);
 gp->manualServiceRequest = FALSE;
 return(TRUE);
}

/***
Function: NMNDRespond
Returns: None
Reference: None
Purpose: Respond with success or failure code to current message.
 Can be called either for ND or NM messages.
Comments: None
***/
static void NMNDRespond(NtwkMgmtMsgType msgType,

BS EN 14908-1:2014

EN 14908-1:2014 (E)

278

 Status success,
 APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;

 /* If service type is not request, nothing to do. */
 if(appReceiveParamPtr->service != REQUEST)
 {
 /* Does not make sense to respond if the original is not a request. */
 return;
 }

 if (QueueFull(&gp->tsaRespQ))
 {
 return; /* Can't send the response. Do nothing. */
 }

 /* Send response. */
 tsaOutQPtr = &gp->tsaRespQ;
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 if (msgType == NM_MESSAGE)
 {
 apduRespPtr->code.allBits =
 (success == SUCCESS?NM_resp_success:NM_resp_failure)
 | (apduPtr->code.allBits & 0x1F);
 }
 else
 {
 apduRespPtr->code.allBits =
 (success == SUCCESS?ND_resp_success:ND_resp_failure)
 | (apduPtr->code.allBits & 0x0F);

 }
 EnQueue(tsaOutQPtr);
}

/***
Function: HandleNMLeaveDomain
Returns: None
Reference: None
Purpose: Handle incoming NM LeaveDomain message.
 - Delete the indicated domain table entry.
 - Recompute the configuration checksum.
 - If message was received on the indicated domain,
 do not respond
 - If node no longer belongs to any Domain:
 + become unconfigured
 + reset
Comments: None.
***/
void HandleNMLeaveDomain(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 /* Fail if message is not 2 bytes long */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* It is not required that the processing of network management commands

BS EN 14908-1:2014

EN 14908-1:2014 (E)

279

 * include parameter validation. In general, it is the responsibility of the
 * configuration tool to ensure that requests are well formed. */
 if(appReceiveParamPtr->pduSize != 2)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* If the domain index is bad, fail */
 if (apduPtr->data[0] != 0 && apduPtr->data[0] != 1)
 {
 nmp->errorLog = INVALID_DOMAIN;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 /* Leave the domain */
 memcpy(eep->domainTable[apduPtr->data[0]].domainId,
 "gmrdwf",
 DOMAIN_ID_LEN);
 eep->domainTable[apduPtr->data[0]].subnet = 0;
 eep->domainTable[apduPtr->data[0]].cloneDomain = 1;
 eep->domainTable[apduPtr->data[0]].node = 0;
 eep->domainTable[apduPtr->data[0]].len = 0xFF; /* not in use */
 memcpy(eep->domainTable[apduPtr->data[0]].key,
 "NO_KEY",
 AUTH_KEY_LEN);

 /* Recompute the configuration checksum */
 RecomputeChecksum();

 /* If message not received on domain just left, then respond */
 if(apduPtr->data[0] != appReceiveParamPtr->srcAddr.domainIndex)
 {
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr,apduPtr);
 }

 /* If not a member of any domain, go unconfigured and reset. */
 if ((!eep->readOnlyData.twoDomains &&
 eep->domainTable[0].len == 0xFF) ||
 (eep->readOnlyData.twoDomains &&
 eep->domainTable[0].len == 0xFF &&
 eep->domainTable[1].len == 0xFF))
 {
 eep->readOnlyData.nodeState = APPL_UNCNFG;
 nmp->resetCause = SOFTWARE_RESET;
 gp->resetNode = TRUE; /* Scheduler will reset the node */
 }

 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMQueryAddr
Returns: None
Reference: None
Purpose: Handle incoming NM Query Address message.
Comments: None.
***/
void HandleNMQueryAddr(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

280

 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 AddrTableEntry *ap;

 tsaOutQPtr = &gp->tsaRespQ;
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 /* Fail if message is not 2 bytes long. */
 if(appReceiveParamPtr->pduSize != 2)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 /* Fail if the address table index is bad and set statistics. */
 if (apduPtr->data[0] >= NUM_ADDR_TBL_ENTRIES)
 {
 nmp->errorLog = INVALID_ADDR_TABLE_INDEX;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* Fail if the buffer is insufficient for the response. */
 if (1 + sizeof(AddrTableEntry) > gp->tsaRespBufSize)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 ap = AccessAddress(apduPtr->data[0]); /* ap should not NULL. */

 /* Send response */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 apduRespPtr->code.allBits = NM_resp_success | NM_QUERY_ADDR;
 tsaSendParamPtr->apduSize = 1 + sizeof(AddrTableEntry);
 memcpy(apduRespPtr->data, ap, sizeof(AddrTableEntry));
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMQueryNvCnfg
Returns: None
Reference: None
Purpose: Handle incoming NM Query Netvar Config message.
Comments: None.
***/
void HandleNMQueryNvCnfg(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 uint16 n;
 uint16 nvAliasTableSize;

 /* Fail if the request does not have correct size */
 /* *** START INFORMATIVE - Parameter Validation *** */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

281

 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize != 2 && appReceiveParamPtr->pduSize != 4)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 n = apduPtr->data[0];
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (n == 255 && appReceiveParamPtr->pduSize != 4)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 /* Calculate current alias table size */
 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 /* Decode index */

 /* *** START INFORMATIVE - Escaped NV Index *** */
 /* In implementations that handle a maximum number of network variables that is
 /* less than 255, it is not necessary to check for network variable escapes of
 /* 255.
 */
 if(n == 255)
 {
 n = (uint16) apduPtr->data[1];
 n = (n << 8) | apduPtr->data[2];
 }
 /* *** END INFORMATIVE - Escaped NV Index *** */

 /* Fail if there is insufficient space to send the response */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (
 (n < nmp->nvTableSize && (1 + sizeof(NVStruct)) > gp->tsaRespBufSize) ||
 (n >= nmp->nvTableSize && n < nmp->nvTableSize + nvAliasTableSize &&
 (1 + sizeof(AliasStruct)) > gp->tsaRespBufSize)
)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 /* Send response */
 tsaOutQPtr = &gp->tsaRespQ;
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 apduRespPtr->code.allBits = NM_resp_success | NM_QUERY_NV_CNFG;
 if(n < nmp->nvTableSize)
 {
 /* Copy the NVStruct entry */
 tsaSendParamPtr->apduSize = 1 + sizeof(NVStruct);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

282

 memcpy(apduRespPtr->data, &(nmp->nvConfigTable[n]),
 sizeof(NVStruct));
 }
 else if(n < nmp->nvTableSize + nvAliasTableSize)
 {
 /* Copy the alias table entry. */
 tsaSendParamPtr->apduSize = 1 + sizeof(AliasStruct);
 n = n - nmp->nvTableSize;
 memcpy(apduRespPtr->data, &(nmp->nvAliasTable[n]),
 sizeof(AliasStruct));
 }
 else
 {
 nmp->errorLog = INVALID_NV_INDEX;
 apduRespPtr->code.allBits = NM_resp_failure | NM_QUERY_NV_CNFG;
 tsaSendParamPtr->apduSize = 1;
 }

 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMNVFetch
Returns: None
Reference: None
Purpose: Handle incoming NM NV Fetch message.
Comments: None.
***/
void HandleNMNVFetch(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 uint16 n;
 uint8 i;

 /* Check if the message has correct size. If not, fail. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize != 2 &&
 appReceiveParamPtr->pduSize != 4)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 n = apduPtr->data[0];
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (n == 255 && appReceiveParamPtr->pduSize != 4)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 tsaOutQPtr = &gp->tsaRespQ;
 /* Send response */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

283

 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);

 /* *** START INFORMATIVE - Escaped NV Index *** */
 /* See "START INFORMATIVE - Escaped NV Index" above. */
 if(n == 255)
 {
 n = apduPtr->data[1];
 n = (n << 8) | apduPtr->data[2];
 memcpy(apduRespPtr->data, apduPtr->data, 3); /* copy the index */
 i = 3; /* index where value of nv is copied */
 }
 /* *** END INFORMATIVE - Escaped NV Index *** */
 else
 {
 apduRespPtr->data[0] = (char) n;
 i = 1;
 }
 if (n < nmp->nvTableSize)
 {
 /* Make sure there is sufficient space for the response. Else, fail. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (nmp->nvFixedTable[n].nvLength + i + 1 > gp->tsaRespBufSize)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 memcpy(&apduRespPtr->data[i],
 nmp->nvFixedTable[n].nvAddress,
 nmp->nvFixedTable[n].nvLength);
 tsaSendParamPtr->apduSize = nmp->nvFixedTable[n].nvLength + i + 1;
 apduRespPtr->code.allBits = NM_resp_success | NM_NV_FETCH;
 EnQueue(tsaOutQPtr);

 }
 else
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 }
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMQuerySIData
Returns: None
Reference: None
Purpose: Handle incoming NM Query SI Data message.
Comments: None.
***/
void HandleNMQuerySIData(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 uint16 offset;
 uint8 count;

 tsaOutQPtr = &gp->tsaRespQ;

 /* *** START INFORMATIVE - Query SI Data *** */
 /* It is only necessary to respond to Query SI Data messages (AKA Query SNVT)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

284

 * if the implementation does not support direct memory read/[write] of the
 * device self identification data. Only a device with a

* "ReadOnlyDataStruct.snvtStruct"field with value 0xffff shall implement this
* function. */

 /* Fail if message is not 4 bytes long */
 if(appReceiveParamPtr->pduSize != 4)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* Decode offset and count */
 offset = apduPtr->data[0];
 offset = (offset << 8) | apduPtr->data[1];
 count = apduPtr->data[2];
 /* Check if we have enough space to respond for this message */
 if (count + 1 > gp->tsaRespBufSize)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* Send response */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 apduRespPtr->code.allBits = NM_resp_success | NM_QUERY_SNVT;
 tsaSendParamPtr->apduSize = 1 + count;
 memcpy(apduRespPtr->data, offset + (char *)&(nmp->snvt), count);
 EnQueue(tsaOutQPtr);
 /* *** END INFORMATIVE - Query SI Data *** */
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMWink
Returns: None
Reference: None
Purpose: Handle incoming NM Wink message.
Comments: None.
***/
void HandleNMWink(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaQueuePtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 int8 subcmd;
 int8 niIndex;

 subcmd = 0;

 if (appReceiveParamPtr->pduSize > 1)
 {
 subcmd = apduPtr->data[0];
 }

 if (appReceiveParamPtr->pduSize > 2)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

285

 niIndex = apduPtr->data[1];
 }

 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize > 3)
 {
 /* Incorrect size */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 /* *** START INFORMATIVE - Wink Handling *** */
 /* Handling of wink subcommands is not required. That is, it is acceptable
 * to treat all requests with this code as if they were simple wink requests.
 * Wink subcommands are a set of backward compatible extensions to the wink
 * command code. */
 if(appReceiveParamPtr->pduSize <= 1 || subcmd == 0)
 {
 if (appReceiveParamPtr->service != REQUEST)
 {
 /* Any service except request/response */
 Wink(); /* Simple Wink */
 }
 else
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 }
 DeQueue(&gp->appInQ);
 return;
 }

 /* shall be requesting SEND_ID_INFO. */
 if(appReceiveParamPtr->service != REQUEST)
 {
 DeQueue(&gp->appInQ); /* Discard */
 return; /* The message should be a request. */
 }

 tsaQueuePtr = &gp->tsaRespQ;
 if (QueueFull(tsaQueuePtr))
 {
 return;
 }
 tsaSendParamPtr = QueueTail(tsaQueuePtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 /* Note: This implementation only has one NI Interface. i.e 0 */
 /* Send response. */
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->nullResponse = FALSE;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);

 if (niIndex == 0 &&
 UNIQUE_NODE_ID_LEN + ID_STR_LEN + 2 <= gp->tsaRespBufSize)
 {
 tsaSendParamPtr->apduSize = ID_STR_LEN + UNIQUE_NODE_ID_LEN + 2;
 apduRespPtr->data[0] = 0; /* Interface not down. */
 apduRespPtr->code.allBits = NM_resp_success | NM_WINK;
 memcpy(&apduRespPtr->data[1], eep->readOnlyData.uniqueNodeId,
 UNIQUE_NODE_ID_LEN);
 memcpy(&(apduRespPtr->data[1+UNIQUE_NODE_ID_LEN]),
 eep->readOnlyData.progId, ID_STR_LEN);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

286

 }
 else
 {
 tsaSendParamPtr->apduSize = 1;
 apduRespPtr->code.allBits = NM_resp_failure | NM_WINK;
 }
 EnQueue(tsaQueuePtr);
 /* *** END INFORMATIVE - Wink Handling *** */
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMQueryId
Returns: None
Reference: None
Purpose: Handle incoming NM Query ID message.
Comments: The message shall be a request. There shall be space in
 response queue. See HandleNM (We do these checks first).
***/
void HandleNMQueryId(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 NMQueryIdRequest *pid;
 char *memp;
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 Boolean allowed;
 uint16 offset;

 /* Fail if message does not have the correct size. Should be 2 or 6+n */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if(appReceiveParamPtr->pduSize != 2 && appReceiveParamPtr->pduSize < 6)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 tsaOutQPtr = &gp->tsaRespQ;

 /* Init some fields here. Assume we may fail. */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1;
 /* Since there are a lot of fail cases, init code to indicate failed
 response. */
 apduRespPtr->code.allBits = NM_resp_failure | NM_QUERY_ID;

 pid = (NMQueryIdRequest *)&apduPtr->data;
 offset = pid->offset;

 /* if optional fields are present, check that the data field has
 sufficient bytes. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize > 2 &&
 appReceiveParamPtr->pduSize != (6 + pid->count))
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

287

 /* The message does not have sufficient data or it has too much data. */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 switch(pid->selector)
 {
 case UNCONFIGURED:
 if(!NodeUnConfigured())
 {
 /* Not unconfigured - don't respond. */
 tsaSendParamPtr->nullResponse = TRUE;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 break;
 case SELECTED:
 if(!gp->selectQueryFlag)
 {
 /* Not selected - don't respond. */
 tsaSendParamPtr->nullResponse = TRUE;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 break;
 case SELECTED_UNCFG: /* shall be selected and unconfigured */
 if(!gp->selectQueryFlag)
 {
 /* Not selected - don't respond. */
 tsaSendParamPtr->nullResponse = TRUE;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 if(!NodeUnConfigured())
 {
 /* Not unconfigured - don't respond */
 tsaSendParamPtr->nullResponse = TRUE;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 break;
 default:
 EnQueue(tsaOutQPtr); /* Failed response. */
 DeQueue(&gp->appInQ);
 return;
 }

 /* If memory matching is present, check memory match */
 if(appReceiveParamPtr->pduSize > 2)
 {
 switch(pid->mode)
 {
 case ABSOLUTE_MEM_ADDR:
 memp = (char *)nmp;
 if(offset >= 0xF000)
 {
 memp = (char *)eep - 0xF000;
 }
 else if (offset >= 0xFC00)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

288

 {
 memp = (char *)nmp->memMapSpace - 0xFC00;
 }
 break;
 case CONFIG_RELATIVE:
 memp = (char *)&(eep->configData);
 break;
 case READ_ONLY_RELATIVE:
 memp = (char *)&(eep->readOnlyData);
 break;
 default:
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return; /* Failed response. */
 }

 memp += offset;

 /* Absolute addressing to read snvt is not possible */
 allowed = (memp >= (char *)&eep->readOnlyData &&
 memp + apduPtr->data[3] < (char *)&eep->domainTable[0]);
 if (!allowed)
 {
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return; /* Failed response. */
 }

 if(memcmp(pid->data, memp, pid->count) != 0)
 {
 /* Compare failed - don't reply. */
 tsaSendParamPtr->nullResponse = TRUE;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }

 /* Send response */
 if (1 + UNIQUE_NODE_ID_LEN + ID_STR_LEN <= gp->tsaRespBufSize)
 {
 tsaSendParamPtr->apduSize = 1 + UNIQUE_NODE_ID_LEN + ID_STR_LEN;
 apduRespPtr->code.allBits = NM_resp_success | NM_QUERY_ID;
 memcpy(apduRespPtr->data, eep->readOnlyData.uniqueNodeId,
 UNIQUE_NODE_ID_LEN);
 memcpy(&(apduRespPtr->data[UNIQUE_NODE_ID_LEN]),
 eep->readOnlyData.progId, ID_STR_LEN);
 }

 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMQueryDomain
Returns: None
Reference: None
Purpose: Handle incoming NM QueryDomain message.
Comments: Shall be a Request.
***/
void HandleNMQueryDomain(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

289

 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 int n; /* Domain Index */

 /* Fail if message does not have the correct size. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if(appReceiveParamPtr->pduSize != 2)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 tsaOutQPtr = &gp->tsaRespQ;
 n = apduPtr->data[0]; /* Domain Index */
 /* If domain index is other than 0 or 1 or if the node is in only one
 domain and the index is 1, then fail. */
 if ((n != 0 && n != 1) || (eep->readOnlyData.twoDomains == 0 && n == 1))
 {
 /* Domain index is bad. */
 nmp->errorLog = INVALID_DOMAIN;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* If there is not enough space, fail too. */
 if (1 + sizeof(DomainStruct) > gp->tsaRespBufSize)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* Send response */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1 + sizeof(DomainStruct);
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 apduRespPtr->code.allBits = NM_resp_success | NM_QUERY_DOMAIN;
 memcpy(apduRespPtr->data, &eep->domainTable[n], sizeof(DomainStruct));

 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMReadMemory
Returns: None
Reference: None
Purpose: Handle incomming NM ReadMemory message
Comments: None.
***/
void HandleNMReadMemory(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

290

 char *memp;
 uint16 offset;
 Boolean allowed;

 tsaOutQPtr = &gp->tsaRespQ;

 /* Fail if message is not 5 bytes long. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if(appReceiveParamPtr->pduSize != 5)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 offset = (apduPtr->data[1] << 8) | apduPtr->data[2];

 /* Assemlbe response */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1 + apduPtr->data[3];

 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);

 apduRespPtr->code.allBits = NM_resp_success | NM_READ_MEMORY;

 switch(apduPtr->data[0])
 {
 case ABSOLUTE_MEM_ADDR:
 memp = (char *)nmp;
 if(offset >= 0xF000)
 {
 memp = (char *)eep - 0xF000;
 }
 else if (offset >= 0xFC00)
 {
 memp = (char *)nmp->memMapSpace - 0xFC00;
 }
 break;
 case READ_ONLY_RELATIVE:
 default:
 memp = (char *)&(eep->readOnlyData);
 break;
 case CONFIG_RELATIVE:
 memp = (char *)&(eep->configData);
 break;
 case STAT_RELATIVE:
 memp = (char *)&(nmp->stats);
 break;
 }

 memp += offset;

 /* If readWriteProtect flag is on, then only readonly data structure,
 snvt structures, and configuration structure can be read.
 The one byte read of location 0 (firmware number) is also allowed.
 Reference implementation does not support snvt reading through
 absolute addressing. readOnlyData.snvtStruct is 0xFFFF */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

291

 if(eep->readOnlyData.readWriteProtect == TRUE)
 {
 allowed = (memp >= (char *)&eep->readOnlyData &&
 memp + apduPtr->data[3] < (char *)&eep->domainTable[0]) ||
 (memp == (char *)&nmp && apduPtr->data[3] == 1);

 if(!allowed)
 {
 tsaSendParamPtr->apduSize = 1;
 apduRespPtr->code.allBits = NM_resp_failure | NM_READ_MEMORY;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }

 if (apduPtr->data[3] <= gp->tsaRespBufSize)
 {
 memcpy(apduRespPtr->data, memp, apduPtr->data[3]);
 }
 else
 {
 tsaSendParamPtr->apduSize = 1;
 }

 if (memp == (char *)nmp && apduPtr->data[3] == 1)
 {
 /* trap for absolute read of location 0 and write
 version number (hard code it as 11) */
 apduRespPtr->data[0] = 11;
 }
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNMWriteMemory
Returns: None
Reference: None
Purpose: Handle incoming NM WriteMemory message.
Comments: None.
***/
void HandleNMWriteMemory(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 NMWriteMemoryRequest *pr;
 char *memp;
 uint16 offset;
 Boolean allowed;

 tsaOutQPtr = &gp->tsaRespQ;

 /* Fail if message is not at least 6 bytes long */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if(appReceiveParamPtr->pduSize < 6)
 {
 NMNDRespond(NM_MESSAGE, FAILURE,appReceiveParamPtr,apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

292

 /* Pointer to struct describing memory request */
 pr = (NMWriteMemoryRequest *)&apduPtr->data[0];

 offset = pr->offset;

 /* Fail if message length doesn't match count. Poke can use 16 data bytes.
 Allow that. Note that the code takes one byte. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if(appReceiveParamPtr->pduSize != 6 + pr->count &&
 appReceiveParamPtr->pduSize != 17)
 {
 NMNDRespond(NM_MESSAGE, FAILURE,appReceiveParamPtr,apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 if (appReceiveParamPtr->service == REQUEST)
 {
 /* Assemble response */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 }

 switch(pr->mode)
 {
 case ABSOLUTE_MEM_ADDR:
 memp = (char *)nmp;
 if(offset >= 0xF000)
 {
 memp = (char *)eep - 0xF000;
 }
 else if (offset >= 0xFC00)
 {
 memp = (char *)nmp->memMapSpace - 0xFC00;
 }
 break;
 case CONFIG_RELATIVE:
 memp = (char *)&(eep->configData);
 break;
 case STAT_RELATIVE:
 memp = (char *)&(nmp->stats);
 break;
 case READ_ONLY_RELATIVE:
 memp = (char *)&(eep->readOnlyData);
 break;
 default:
 /* Invalid Mode */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 memp += offset;

 /* Check if the range of memory cells written is good. */
 allowed = (memp >= (char *)nmp &&
 (memp + pr->count) <= ((char *)nmp + 64 * 1024)) ||

BS EN 14908-1:2014

EN 14908-1:2014 (E)

293

 (memp >= (char *)eep &&
 (memp + pr->count) <= ((char *)eep + sizeof(EEPROM)));
 if (! allowed)
 {

 /* Send failure response if the message was a request */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* If readwrite flag is on, then only config structure can be written. */
 if(eep->readOnlyData.readWriteProtect == TRUE)
 {
 allowed = (memp >= (char *)&eep->configData &&
 memp + pr->count < (char *)&eep->domainTable[0]);

 if(! allowed)
 {
 /* Send failure response if the message was a request */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }

 /* Need to copy only the data array in NM_Req structure.
 The header is 5 bytes long */
 /* We have to assume that pr->count is good. Max is 255 */
 /* Reference implementation has no application check sum.
 Only config checksum */
 memcpy(memp, apduPtr->data+5, pr->count);

 if (pr->form & CNFG_CS_RECALC) {
 RecomputeChecksum();
 }
 if (pr->form & ACTION_RESET) {
 gp->resetNode = TRUE;
 nmp->resetCause = SOFTWARE_RESET;
 }

 /* There is no harm in responding even when the node is reset. It will
 be lost anyway */
 if(appReceiveParamPtr->service == REQUEST)
 {
 apduRespPtr->code.allBits = NM_resp_success | NM_WRITE_MEMORY;
 EnQueue(tsaOutQPtr);
 }
 DeQueue(&gp->appInQ);
}

/***
Function: HandleProxyResponse
Returns: None
Reference: None
Purpose: Handle Proxy Response Message.
Comments: None.
***/
void HandleProxyResponse(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

294

 APDU *apduRespPtr;

 /* Send response */
 tsaOutQPtr = &gp->tsaRespQ;

 if(QueueFull(tsaOutQPtr))
 {
 return; /* Return without processing message */
 }

 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = nmp->pxyData.reqId;
 tsaSendParamPtr->apduSize = appReceiveParamPtr->pduSize;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 if (appReceiveParamPtr->pduSize <= gp->tsaRespBufSize)
 {
 memcpy(apduRespPtr, apduPtr, appReceiveParamPtr->pduSize);
 }
 else
 {
 tsaSendParamPtr->apduSize = 1;
 }

 EnQueue(tsaOutQPtr);

 /* Done processing */
 DeQueue(&gp->appInQ);

 /* Reset the flag as we have now responded */
 nmp->pxyData.pxyType = -1;
}

/***
Function: HandleNDQueryStatus
Returns: none
Reference: None
Purpose: Handle Network Diagnostics Query Status Message.
Comments: None.
***/
void HandleNDQueryStatus(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 NDQueryStat ndq;
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;

 tsaOutQPtr = &gp->tsaRespQ;
 if (((apduPtr->code.allBits & 0x0F) == ND_QUERY_STATUS) &&
 appReceiveParamPtr->pduSize != 1)
 {
 /* Incorrect size. Fail. */
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (((apduPtr->code.allBits & 0x0F) == ND_PROXY_COMMAND) &&
 appReceiveParamPtr->pduSize != 2)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

295

 /* Incorrect size. Fail. */
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 ndq.transmissionErrors = nmp->stats.transmissionErrors;
 ndq.transmitTXFailures = nmp->stats.transmitTXFailures;
 ndq.receiveTXFull = nmp->stats.receiveTXFull;
 ndq.lostMessages = nmp->stats.lostMessages;
 ndq.missedMessages = nmp->stats.missedMessages;
 ndq.resetCause = nmp->resetCause;
 if (eep->readOnlyData.nodeState == CNFG_ONLINE &&
 gp->appPgmMode == OFF_LINE)
 {
 ndq.nodeState = SOFT_OFFLINE;
 }
 else
 {
 ndq.nodeState = eep->readOnlyData.nodeState;
 }
 ndq.versionNumber = 128;
 ndq.errorLog = nmp->errorLog;
 ndq.modelNumber = 128;
 /* Send response */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1 + sizeof(NDQueryStat);
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 /* The response code is formed using apduPtr->code.allBits as the
 actual could be a proxy command and the response code will be
 different. Thus, using apduPtr->code.allBits works for both
 native query status command as well as proxy based query status */
 if (tsaSendParamPtr->apduSize <= gp->tsaRespBufSize)
 {
 apduRespPtr->code.allBits =
 ND_resp_success | (apduPtr->code.allBits & 0x0F);
 memcpy(apduRespPtr->data, &ndq, sizeof(NDQueryStat));
 }
 else
 {
 apduRespPtr->code.allBits =
 ND_resp_failure | (apduPtr->code.allBits & 0x0F);
 tsaSendParamPtr->apduSize = 1;
 }
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);

}

/***
Function: HandleNDProxyCommand
Returns: none
Reference: None
Purpose: Handle network diagnostics proxy request message.
Comments: None.
***/
void HandleNDProxyCommand(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

296

 TSASendParam *tsaSendParamPtr;
 APDU *apduSendPtr;

 /* See if the proxy command is to be forwarded or it is for us
 to process. If the address information in the packet is missing,
 then there is no forwarding information and hence we respond directly */
 if (appReceiveParamPtr->pduSize == 2)
 {
 /* Address portion is missing. This node is the proxy target. */
 tsaOutQPtr = &gp->tsaRespQ;
 /* Send the response directly back to the sender */
 switch(apduPtr->data[0])
 {
 case 0:
 HandleNDQueryUnconfig(appReceiveParamPtr, apduPtr);
 break;
 case 1:
 HandleNDQueryStatus(appReceiveParamPtr, apduPtr);
 break;
 case 2:
 HandleNDTransceiverStatus(appReceiveParamPtr, apduPtr);
 break;
 default:
 /* Invalid sub_command. Send failure response */
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 }
 return;
 }

 /* Send failure response if a proxy command is already in progress
 or we are proxy agent and the message received is on flex domain
 or it does not have correct size */
 if (
 nmp->pxyData.pxyType != -1 ||
 appReceiveParamPtr->srcAddr.domainIndex == FLEX_DOMAIN ||
 (apduPtr->data[1] == UNIQUE_NODE_ID &&
 appReceiveParamPtr->pduSize !=
 (2 + sizeof(AddrTableEntry) + UNIQUE_NODE_ID_LEN)) ||
 (apduPtr->data[1] != UNIQUE_NODE_ID &&
 appReceiveParamPtr->pduSize != (2 + sizeof(AddrTableEntry)))
)
 {
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* We need to forward the proxy now. Set the target queue ptrs */
 if(appReceiveParamPtr->priority)
 {
 tsaOutQPtr = &gp->tsaOutPriQ;
 }
 else
 {
 tsaOutQPtr = &gp->tsaOutQ;
 }

 /* Check if the target queue has space for forwarding this request. */
 if(QueueFull(tsaOutQPtr))
 {
 return; /* Return without processing message */
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

297

 /* Save the proxy data for processing the response later.
 Also, pxyType will no longer be equal to -1 that serves
 as a kind of lock on this record. Future proxy commands
 will be ignored until this proxy command is done. The proxy
 command is done as soon as we get the response and we forward
 it to the original sender or when the transaction forwarding
 the proxy times out. Session layer will not give us duplicate
 requests and hence we don't need to handle that here. Also,
 session layet will take care of sending response again for
 duplicate requests. */
 nmp->pxyData.pxyType = apduPtr->data[0];
 nmp->pxyData.reqId = appReceiveParamPtr->reqId;

 /* Generate request message */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 /* First copy the msg_out_addr info in the proxy command */
 if (apduPtr->data[1] == UNIQUE_NODE_ID)
 {
 memcpy(&tsaSendParamPtr->destAddr,&apduPtr->data[1],
 sizeof(MsgOutAddr) + UNIQUE_NODE_ID_LEN);
 }
 else
 {
 memcpy(&tsaSendParamPtr->destAddr,&apduPtr->data[1],
 sizeof(MsgOutAddr));
 }
 /* Set the domain index to be the one in which it was received.
 Note that this cannot be flex domain. Transport or session
 will use this instead of the one in the destAddr (i.e msg_out_addr) */
 tsaSendParamPtr->domainIndex = appReceiveParamPtr->srcAddr.domainIndex;
 tsaSendParamPtr->service = REQUEST;
 tsaSendParamPtr->auth = FALSE;
 tsaSendParamPtr->tag = (MsgTag) 0xFFFF;
 /* Proxy relays the message, the altpath bit should be same as the one
 used for the proxy message received */
 tsaSendParamPtr->altPathOverride = TRUE;
 tsaSendParamPtr->altPath = appReceiveParamPtr->altPath;
 tsaSendParamPtr->apduSize = 2; /* Always two bytes: code + sub_command */
 apduSendPtr = (APDU *)(tsaSendParamPtr + 1);
 /* Copy the code as it is */
 apduSendPtr->code.allBits = apduPtr->code.allBits;
 apduSendPtr->data[0] = apduPtr->data[0];
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNDTransceiverStatus
Returns: none
Reference: None
Purpose: Handle network diagnostics transceiver status message.
Comments: None.
***/
void HandleNDTransceiverStatus(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;
 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;
 Byte transceiverStatus[NUM_COMM_PARAMS];
 uint8 n;

 /* Check for proper size of the message. Regular pdusize is 1 byte.
 If this fn is called due to proxy request, then it is 2 bytes. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

298

 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize > 2)
 {
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 else if (appReceiveParamPtr->pduSize == 2)
 {
 /* Make sure it is a proxy request. Or else, length is wrong. */
 if (apduPtr->code.nd.ndFlag == 0x5 &&
 apduPtr->code.nd.ndCode == ND_PROXY_COMMAND &&
 apduPtr->data[0] == 2)
 {
 ; /* It is indeed a proxy command. Length ok. Proceed. */
 }
 else
 {
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }

 if (eep->configData.commType == SPECIAL_PURPOSE)
 {
 GetTransceiverStatus(transceiverStatus);
 n = NUM_COMM_PARAMS;
 }
 else
 {
 n = 0;
 }

 /* Send response */
 tsaOutQPtr = &gp->tsaRespQ;
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1 + n;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);

 /* If a node does not have transceiver status registers, fail */
 if (n > 0 &&
 tsaSendParamPtr->apduSize <= gp->tsaRespBufSize)
 {
 /* No registers or not enough space */
 apduRespPtr->code.allBits = ND_resp_success |
 (apduPtr->code.allBits & 0x0F);

 memcpy(apduRespPtr->data, transceiverStatus, n);
 }
 else
 {
 apduRespPtr->code.allBits = ND_resp_failure |
 (apduPtr->code.allBits & 0x0F);

 tsaSendParamPtr->apduSize = 1;
 }
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

299

}

/***
Function: HandleNDClearStatus
Returns: none
Reference: None
Purpose: Handle network diagnostics clear status message.
Comments: None.
***/
void HandleNDClearStatus(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{

 /* Check for proper size of the message */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize != 1)
 {
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 /* Clear Status */
 nmp->stats.transmissionErrors = 0;
 nmp->stats.transmitTXFailures = 0;
 nmp->stats.receiveTXFull = 0;
 nmp->stats.lostMessages = 0;
 nmp->stats.missedMessages = 0;
 nmp->stats.layer2Received = 0;
 nmp->stats.layer3Received = 0;
 nmp->stats.layer3Transmitted = 0;
 nmp->stats.transmitTXRetries = 0;
 nmp->stats.backlogOverflow = 0;
 nmp->stats.lateAcknowledgements = 0;
 nmp->stats.collisions = 0;
 nmp->resetCause = CLEARED;
 nmp->errorLog = NO_ERRORS; /* Cleared */

 nmp->stats.layer6_7MsgsSent = 0;
 nmp->stats.layer6_7RespSent = 0;
 nmp->stats.layer6_7MsgsRcvd = 0;
 nmp->stats.layer6_7RespRcvd = 0;
 nmp->stats.lateResponses = 0;
 nmp->stats.lateChallenges = 0;
 nmp->stats.lateReplies = 0;

 /* NMNDRespond will send response only if the msg is REQUEST */
 NMNDRespond(ND_MESSAGE, SUCCESS, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleNDQueryUnconfig
Returns: None
Reference: None
Purpose: Handle Query Unconfig through Proxy message.
Comments: This is a simplified version of HandleNMQueryId.
 Only unconfig version of Query ID is supported.
***/
void HandleNDQueryUnconfig(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 Queue *tsaOutQPtr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

300

 TSASendParam *tsaSendParamPtr;
 APDU *apduRespPtr;

 /* Check for proper size of the message */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize != 2)
 {
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 tsaOutQPtr = &gp->tsaRespQ;

 /* Init some fields here. */
 tsaSendParamPtr = QueueTail(tsaOutQPtr);
 tsaSendParamPtr->altPathOverride = FALSE;
 apduRespPtr = (APDU *)(tsaSendParamPtr + 1);
 tsaSendParamPtr->service = RESPONSE;
 tsaSendParamPtr->nullResponse = FALSE;
 tsaSendParamPtr->reqId = appReceiveParamPtr->reqId;
 tsaSendParamPtr->apduSize = 1;
 /* apduPtr->code.allBits should be proxy code */
 apduRespPtr->code.allBits = ND_resp_failure |
 (apduPtr->code.allBits & 0x0F);

 if(!NodeUnConfigured())
 {
 /* Not unconfigured - don't respond. */
 tsaSendParamPtr->nullResponse = TRUE;
 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* Send response */
 if (1 + UNIQUE_NODE_ID_LEN + ID_STR_LEN <= gp->tsaRespBufSize)
 {
 tsaSendParamPtr->apduSize = 1 + UNIQUE_NODE_ID_LEN + ID_STR_LEN;
 apduRespPtr->code.allBits = ND_resp_success |
 (apduPtr->code.allBits & 0x0F);
 memcpy(apduRespPtr->data, eep->readOnlyData.uniqueNodeId,
 UNIQUE_NODE_ID_LEN);
 memcpy(&(apduRespPtr->data[UNIQUE_NODE_ID_LEN]),
 eep->readOnlyData.progId, ID_STR_LEN);
 }

 EnQueue(tsaOutQPtr);
 DeQueue(&gp->appInQ);
}

/***
Function: HandleND
Returns: None
Reference: None
Purpose: Handle incomming network diagnostic message.
Comments: None.
***/
void HandleND(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

301

{
 if(appReceiveParamPtr->service == RESPONSE)
 {
 /* It is not legal for a response to be an ND command */
 DeQueue(&gp->appInQ);
 return;
 }

 /* If network diagnostics messages need authentication
 and the message did not pass authentication and
 the node is not unconfigured
 then discard those messages that should be discarded and return. */
 if(!NodeUnConfigured() && eep->configData.nmAuth &&
 !appReceiveParamPtr->auth)
 {
 /* Only two messages are allowed. Others should be discarded */
 if (apduPtr->code.nd.ndCode != ND_QUERY_STATUS &&
 apduPtr->code.nd.ndCode != ND_PROXY_COMMAND)
 {
 if(QueueFull(&gp->tsaRespQ))
 {
 return; /* Can't send response now. Try later. */
 }
 nmp->errorLog = AUTHENTICATION_MISMATCH;
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }

 /* Only clear status command need not be request message. Others
 shall be request/response */
 if (apduPtr->code.nd.ndCode != ND_CLEAR_STATUS &&
 appReceiveParamPtr->service != REQUEST)
 {
 /* Discard. We can't respond anyway as it is not a request */
 DeQueue(&gp->appInQ);
 return;
 }

 if (appReceiveParamPtr->service == REQUEST &&
 QueueFull(&gp->tsaRespQ))
 {
 return; /* Can't send a response. Try later. */
 }

 /* Handle various network diagnostic message codes */
 switch(apduPtr->code.nd.ndCode)
 {
 case ND_QUERY_STATUS:
 HandleNDQueryStatus(appReceiveParamPtr, apduPtr);
 return;
 case ND_PROXY_COMMAND:
 HandleNDProxyCommand(appReceiveParamPtr, apduPtr);
 return;
 case ND_CLEAR_STATUS:
 HandleNDClearStatus(appReceiveParamPtr, apduPtr);
 return;
 case ND_QUERY_XCVR:
 HandleNDTransceiverStatus(appReceiveParamPtr, apduPtr);
 return;
 default:
 /* Discard unrecognized diagnostic command */
 NMNDRespond(ND_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

302

 }
}

/***
Function: HandleNM
Returns: None
Reference: None
Purpose: Handle incomming network management messages.
Comments: None.
***/
void HandleNM(APPReceiveParam *appReceiveParamPtr,
 APDU *apduPtr)
{
 int16 i;
 uint16 n; /* for nv index */
 AddrTableEntry *ap;
 GroupAddrMode *groupStrPtr;
 uint16 addrIndex;
 NVStruct *np;
 uint16 nvAliasTableSize;
 uint8 pduSize;

 if(appReceiveParamPtr->service == RESPONSE)
 {
 /* It is not legal for a response to be an NM command. */
 DeQueue(&gp->appInQ);
 return;
 }

 /* If network management messages need authentication
 and the message did not pass authentication and
 the node is not unconfigured
 then discard those messages that should be discarded and return. */
 if(!NodeUnConfigured() && eep->configData.nmAuth && !appReceiveParamPtr->auth)
 {
 /* Only two messages are allowed. Others should be discarded */
 if (apduPtr->code.nm.nmCode != NM_QUERY_ID &&
 apduPtr->code.nm.nmCode != NM_RESPOND_TO_QUERY)
 {
 if(QueueFull(&gp->tsaRespQ))
 {
 return; /* Can't send response now. Try later. */
 }
 nmp->errorLog = AUTHENTICATION_MISMATCH;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }

 /* If the service type is not request, discard certain messages. */
 if(appReceiveParamPtr->service != REQUEST)
 {
 switch(apduPtr->code.nm.nmCode)
 {
 /* messages that need request/resp. */
 case NM_QUERY_ID:
 case NM_QUERY_ADDR:
 case NM_QUERY_NV_CNFG:
 case NM_QUERY_DOMAIN:
 case NM_READ_MEMORY:
 case NM_QUERY_SNVT:
 case NM_NV_FETCH:
 DeQueue(&gp->appInQ);
 return;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

303

 default:
 break;
 }
 }

 /* If service type is request, and there is no room for response
 return without processing - so message will be processed later. */
 if(appReceiveParamPtr->service == REQUEST)
 {
 if(QueueFull(&gp->tsaRespQ))
 {
 return; /* Wait until there is room for response. */
 }
 }

 /* Handle various network mgmt message codes */
 switch(apduPtr->code.nm.nmCode)
 {
 case NM_QUERY_ID:
 HandleNMQueryId(appReceiveParamPtr,apduPtr);
 return;
 case NM_RESPOND_TO_QUERY:
 /* Fail if message is not 2 bytes long or the byte is bad. */
 if(appReceiveParamPtr->pduSize != 2 ||
 (apduPtr->data[0] != 0 && apduPtr->data[0] != 1))
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 gp->selectQueryFlag = apduPtr->data[0];
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr,apduPtr);
 DeQueue(&gp->appInQ);
 return;
 case NM_UPDATE_DOMAIN:
 /* Fail if message is not the right size or the domain_index is bad. */
 if(appReceiveParamPtr->pduSize != 2 + sizeof(DomainStruct))
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 if (apduPtr->data[0] != 0 && apduPtr->data[0] != 1)
 {
 nmp->errorLog = INVALID_DOMAIN;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* If the node is in only one domain and the request is to update
 domain index 1, then we send a failure response. */
 if (eep->readOnlyData.twoDomains == 0 &&
 apduPtr->data[0] == 1)
 {
 nmp->errorLog = INVALID_DOMAIN;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* Reference implementation allows even clone domain update. */
 if (((DomainStruct *)&apduPtr->data[1])->cloneDomain == 1)
 {
 UpdateDomain((DomainStruct *)&apduPtr->data[1], apduPtr->data[0]);
 }
 else

BS EN 14908-1:2014

EN 14908-1:2014 (E)

304

 {
 UpdateCloneDomain((DomainStruct *)&apduPtr->data[1],
 apduPtr->data[0]);
 }
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr, apduPtr);
 RecomputeChecksum();
 DeQueue(&gp->appInQ);
 return;
 case NM_LEAVE_DOMAIN:
 HandleNMLeaveDomain(appReceiveParamPtr, apduPtr);
 return;
 case NM_UPDATE_KEY:
 /* Fail if message is not of correct length or domain index is bad. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if(appReceiveParamPtr->pduSize != 2 + AUTH_KEY_LEN)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 if (apduPtr->data[0] != 0 && apduPtr->data[0] != 1)
 {
 nmp->errorLog = INVALID_DOMAIN;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 for(i = 0; i < AUTH_KEY_LEN; i++)
 {
 eep->domainTable[apduPtr->data[0]].key[i] +=
 apduPtr->data[i+1];
 }
 RecomputeChecksum();
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr,apduPtr);
 DeQueue(&gp->appInQ);
 return;
 case NM_UPDATE_ADDR:
 /* Check for incorrect size. Allow for padding. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize < 6 ||
 appReceiveParamPtr->pduSize > 7)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 if (apduPtr->data[1] != UNBOUND)
 {
 /* Not turnaround. Shall be 7 bytes. */
 if (appReceiveParamPtr->pduSize != 7)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 /* Fail if the address table index is bad. */
 if (apduPtr->data[0] >= NUM_ADDR_TBL_ENTRIES)
 {
 nmp->errorLog = INVALID_ADDR_TABLE_INDEX;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

305

 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 UpdateAddress((AddrTableEntry *)&apduPtr->data[1], apduPtr->data[0]);
 RecomputeChecksum();
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 case NM_QUERY_ADDR:
 HandleNMQueryAddr(appReceiveParamPtr, apduPtr);
 return;
 case NM_QUERY_NV_CNFG:
 HandleNMQueryNvCnfg(appReceiveParamPtr, apduPtr);
 return;
 case NM_UPDATE_GROUP_ADDR:
 /* This message shall be delivered with group addressing and is
 updated based on the domain in which it was received. Hence,
 flex domain is not allowed. */
 if (appReceiveParamPtr->srcAddr.addressMode != MULTICAST ||
 appReceiveParamPtr->srcAddr.domainIndex == FLEX_DOMAIN)
 {
 /* This message should be sent in MULTICAST. Fail */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize != 1 + sizeof(AddrTableEntry))
 {
 /* Incorrect size */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 /* For accessing the corresponding address table entry,
 let us use the domainIndex in which it was received and
 the group in which it was received. It makes sense to use
 the domainIndex in which the message was received rather than
 the domain index in the packet(that will be same for all
 recipients) as it may be different for different nodes. */
 groupStrPtr = (GroupAddrMode *)&apduPtr->data[0];
 if (groupStrPtr->groupFlag == 1)
 {
 addrIndex = AddrTableIndex(appReceiveParamPtr->srcAddr.domainIndex,
 appReceiveParamPtr->srcAddr.group);
 }

 /* Make sure we got a good index. */
 if (groupStrPtr->groupFlag != 1 || addrIndex == 0xFF)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 ap = AccessAddress(addrIndex); /* ap cannot be NULL */
 /* Only group size and timer values should be changed */
 ap->groupEntry.groupSize = groupStrPtr->groupSize;
 ap->groupEntry.rptTimer = groupStrPtr->rptTimer;
 ap->groupEntry.retryCount = groupStrPtr->retryCount;
 ap->groupEntry.rcvTimer = groupStrPtr->rcvTimer;
 ap->groupEntry.txTimer = groupStrPtr->txTimer;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

306

 RecomputeChecksum();
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 case NM_QUERY_DOMAIN:
 HandleNMQueryDomain(appReceiveParamPtr,apduPtr);
 return;
 case NM_UPDATE_NV_CNFG:
 /* Check for pdu size. Fail if the size is too small or too big */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize < 5 ||
 appReceiveParamPtr->pduSize > 10)
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;
 /* Decode index */

 n = apduPtr->data[0];
 /* *** START INFORMATIVE - Escaped NV Index *** */
 /* See "START INFORMATIVE - Escaped NV Index" above. */
 if(n == 255)
 {
 n = (uint16)apduPtr->data[1];
 n = (n << 8) | apduPtr->data[2];
 if (n < nmp->nvTableSize)
 {
 pduSize = sizeof(NVStruct) + 4; /* escaped regular update */
 }
 else
 {
 /* Escaped alias update. Assume that host_primary is
 absent for now. */
 pduSize = (sizeof(AliasStruct) - 2) + 4;
 }
 np = (NVStruct *)(&apduPtr->data[3]);
 }
 /* *** END INFORMATIVE - Escaped NV Index *** */
 else
 {
 if (n < nmp->nvTableSize)
 {
 pduSize = sizeof(NVStruct) + 2; /* regular update */
 }
 else
 {
 /* Alias update. Assume that host_primary is absent for now. */
 /* last 2 is for index + code */
 pduSize = (sizeof(AliasStruct) - 2) + 2;
 }
 np = (NVStruct *)(&apduPtr->data[1]);
 }

 /* Update nv config or alias table */
 if(n < nmp->nvTableSize)
 {
 if (appReceiveParamPtr->pduSize >= pduSize)
 {
 memcpy(&nmp->nvConfigTable[n], np, sizeof(NVStruct));
 }
 else

BS EN 14908-1:2014

EN 14908-1:2014 (E)

307

 {
 /* Incorrect size */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }
 else if(n < nmp->nvTableSize + nvAliasTableSize)
 {
 n = n - nmp->nvTableSize; /* Alias table index */
 /* Check for various forms of alias update */
 if (((AliasStruct *)np)->primary == 0xFF &&
 appReceiveParamPtr->pduSize == pduSize)
 {
 /* host_primary missing. default to 0xffff. Null alias update. */
 ((AliasStruct *)np)->hostPrimary = 0xffff;
 }
 else if (((AliasStruct *)np)->primary == 0xFF)
 {
 /* escaped alias. hostPrimary is present */
 pduSize += 2;
 }
 /* Update the nv alias table */
 if (appReceiveParamPtr->pduSize >= pduSize)
 {
 memcpy(&nmp->nvAliasTable[n], np, sizeof(AliasStruct));
 }
 else
 {
 /* Incorrect size */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 }
 else
 {
 /* Invalid nv table index */
 nmp->errorLog = INVALID_NV_INDEX;
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 /* Recompute checksum and send response */
 RecomputeChecksum();
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;

 /* NM_SET_NODE_MODE:
 * Possible
 * Description State Mode Service LED in ref imp?
 * --
 * Applicationless, unconfigured 3 - On NO
 * Unconfigured (w/application) 2 - Flashing YES
 * Configured, Hard Offline 6 - Off NO
 * Configured 4 1 Off YES
 * Configured, Soft offline 4 0 Off YES
 *
 * The NM_SET_NODE_MODE message encompasses a lot of functionality,
 * and impacts some other areas of the implementation.
 * 1) Mode is not maintained in EEPROM
 * 2) A node that is soft-offline will go on-line when it is reset
 * 3) The hard-offline state is preserved across reset

BS EN 14908-1:2014

EN 14908-1:2014 (E)

308

 * 4) For either hard or soft offline, the scheduler is disabled
 * 5) When soft-offline:
 * A) Polling an NV will return NULL data
 * B) Incomming network variable updates are handled normally
 * C) But nv_update_occurs events will be lost
 * 6) In all other states except configured:
 * A) No response is returned on NV polls
 * B) Incomming NV updates are discarded
 * 7) If a node is in a non-configured state, is reset and then issued
 * a command to go configured, it will come up soft offline
 * 8) If a set node mode message changes the mode to offline or online
 * the approprite task (if any) is executed
 * 9) Changing the node state recomputes the configuration checksum
 */
 case NM_SET_NODE_MODE:
 /* Fail if message is not 2 or 3 bytes long. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if(appReceiveParamPtr->pduSize < 2 || appReceiveParamPtr->pduSize > 3)
 {
 NMNDRespond(NM_MESSAGE, FAILURE,appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 if ((apduPtr->data[0] != 3 && (appReceiveParamPtr->pduSize < 2 ||
 appReceiveParamPtr->pduSize > 3)) ||
 (apduPtr->data[0] == 3 && appReceiveParamPtr->pduSize != 3)
)
 {
 /* Incorrect size */
 NMNDRespond(NM_MESSAGE, FAILURE,appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */

 /* Mode on-line and mode off-line messages shall not be request
 messages.
 if (
 (apduPtr->data[0] == 0 || apduPtr->data[0] == 1)
 &&
 appReceiveParamPtr->service == REQUEST
)
 {
 /* Fail. */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }

 switch(apduPtr->data[0])
 {
 case 0: /* Go to soft offline state */
 if (AppPgmRuns())
 {
 OfflineEvent(); /* Indicate to application program. */
 }
 eep->readOnlyData.nodeState = CNFG_ONLINE;
 gp->appPgmMode = OFF_LINE;
 gp->ioOutputPin1 = FALSE; /* LED off */
 /* No response given as the message is not a request. */
 break;
 case 1: /* Go on-line */
 OnlineEvent(); /* Indicate to application program. */
 eep->readOnlyData.nodeState = CNFG_ONLINE;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

309

 gp->appPgmMode = ON_LINE;
 gp->ioOutputPin1 = FALSE; /* LED off */
 /* No response given as the message is not a request. */
 break;
 case 2: /* Application reset */
 gp->resetNode = TRUE;
 nmp->resetCause = SOFTWARE_RESET; /* Software reset. */
 /* No response since the node is being reset. */
 break;
 case 3: /* Change State */
 /* Fail if message is not 3 bytes long. */
 if(appReceiveParamPtr->pduSize != 3)
 {
 NMNDRespond(NM_MESSAGE, FAILURE,
 appReceiveParamPtr, apduPtr);
 break;
 }
 eep->readOnlyData.nodeState = apduPtr->data[1];
 /* Preserve the state of appPgmMode except for
 NO_APPL_UNCNFG. */
 if (eep->readOnlyData.nodeState == NO_APPL_UNCNFG)
 {
 gp->appPgmMode = NOT_RUNNING;
 }
 RecomputeChecksum();
 /* Respond with success if the message was a request. */
 NMNDRespond(NM_MESSAGE, SUCCESS,
 appReceiveParamPtr, apduPtr);
 break;
 default:
 /* Let us reset the node for this case */
 gp->resetNode = TRUE;
 nmp->resetCause = SOFTWARE_RESET;
 break;
 }
 DeQueue(&gp->appInQ);
 return;
 case NM_READ_MEMORY:
 HandleNMReadMemory(appReceiveParamPtr, apduPtr);
 return;
 case NM_WRITE_MEMORY:
 HandleNMWriteMemory(appReceiveParamPtr, apduPtr);
 return;
 case NM_CHECKSUM_RECALC:
 /* Fail if the message does not have correct size or has bad value. */
 /* *** START INFORMATIVE - Parameter Validation *** */
 /* See "START INFORMATIVE - Parameter Validation" above. */
 if (appReceiveParamPtr->pduSize != 2 ||
 (apduPtr->data[0] != 1 && apduPtr->data[0] != 4))
 {
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 }
 /* *** END INFORMATIVE - Parameter Validation *** */
 /* We don't have checksum for application. Just config checksum */
 RecomputeChecksum();
 NMNDRespond(NM_MESSAGE, SUCCESS, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 return;
 case NM_WINK: /* Same as NM_INSTALL */
 HandleNMWink(appReceiveParamPtr,apduPtr);
 return;
 case NM_MEMORY_REFRESH:
 /* *** START INFORMATIVE - Memory Refresh *** */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

310

 /* It is acceptable to also respond with a failure to the memory
 * refresh request if the implementation does not include memory
 * that requires refreshing. An example of responding to memory
 * refresh with non failure responses is not provided here. */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ);
 /* *** END INFORMATIVE - Memory Refresh *** */
 return;
 case NM_QUERY_SNVT:
 HandleNMQuerySIData(appReceiveParamPtr, apduPtr);
 return;
 case NM_NV_FETCH:
 HandleNMNVFetch(appReceiveParamPtr, apduPtr);
 return;
 case NM_MANUAL_SERVICE_REQUEST:
 /* This is unsolicited message from a node. Reference
 implementation ignores manual service request message from other nodes
 */
 DeQueue(&gp->appInQ);
 return;
 default:
 /* This is where any message that is not taken care of should be
 handled. An example is product query command. For now, we treat
 everything else as unrecognized network management message. */
 NMNDRespond(NM_MESSAGE, FAILURE, appReceiveParamPtr, apduPtr);
 DeQueue(&gp->appInQ); /* Simply discard it */
 }
}

/**/
_

A.12 Configuration data structures

/***
 Reference: Annex B, Addtitional data structures

 File: node.c

 Version: 1.7

 Purpose: Configuration Data Strutures that contain
 information about this node.
 Also, define all type defintions needed.

 Note: RefImp supports any number of stacks.
 A global structure called ProtocolStackData
 is defined in node.h. An array of such
 structures is used so that each stack has
 its own data that it works on. A global
 pointer gp points to the right structure
 before the stack code is executed. This
 is done by the scheduler.

 The support for multiple-stacks does not include support
 for mac layer to handle multiple stacks or multiple application
 programs. A true multi-stack system needs some extra coding.
 To Do: None
***/
/*--
Section: Includes

BS EN 14908-1:2014

EN 14908-1:2014 (E)

311

--*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <cnp_1.h>
#include <custom.h>
#include <node.h>
#include <physical.h>

/*---
Section: Constant Definitions
---*/
/* None */

/*---
Section: Type Definitions
---*/
/* None */

/*---
Section: Globals
---*/
EEPROM *eep; /* actual structure is in eeprom.c */
NmMap *nmp;
NmMap nm[NUM_STACKS] = {{0}};
ProtocolStackData *gp;
ProtocolStackData protocolStackDataGbl[NUM_STACKS];

#if defined(ALTERNATE_STRUCTURES_NEEDED)
msg_in_type msg_in;
msg_out_type msg_out;
resp_in_type resp_in;
resp_out_type resp_out;
nv_in_addr_type nv_in_addr;
int16 nv_array_index;
#endif

/*---
Section: Local Globals
---*/
static uint16 bufSizeCodeLGbl[16] =
{
 255,20,20,21,22,24,26,30,34,42,50,66,82,114,146,210
};
static uint16 bufCntCodeLGbl[16] =
{
 0,1,1,2,3,5,7,11,15,23,31,47,63,95,127,191
};
static uint16 rptTimerCodeLGbl[16] =
{
 16,24,32,48,64,96,128,192,256,384,512,768,1024,1536,2048,3072
};
static uint16 rcvTimerCodeLGbl[16] =
{
 128,192,256,384,512,768,1024,1536,2048,3072,4096,6144, 8192,
 12288,16384,24576
};
static uint16 txTimerCodeLGbl[16] =
{
 16,24,32,48,64,96,128,192,256,384,512,768,1024,1536,2048,3072
};
static uint16 nonGroupTimerCodeLGbl[16] =
{
 128,192,256,384,512,768,1024,1536,2048,3072,4096,6144,8192,

BS EN 14908-1:2014

EN 14908-1:2014 (E)

312

 12288,16384,24576
};

/*---
Section: Local Function Prototypes
---*/
/* None */

/*---
Section: Function Definitions
---*/
/***
Function: AccessDomain
Returns: Address of structure corresponding to given index
Purpose: To return the address of the structure that has domain
 information for this node
Comments: If an invalid index is given, log error message.
**/

DomainStruct *AccessDomain(uint8 indexIn)
{
 if (indexIn < MAX_DOMAINS)
 {
 return(&eep->domainTable[indexIn]);
 }
 return(NULL);
}

/***
Function: UpdateDomain
Returns: None
Purpose: To Change the domain table entry with given structure.
Comments: If an invalid index is given, log error message.
**/
void UpdateDomain(DomainStruct *domainInp, uint8 indexIn)
{
 if (domainInp && (indexIn < MAX_DOMAINS))
 {
 eep->domainTable[indexIn] = *domainInp;
 eep->domainTable[indexIn].cloneDomain = 1;
 return;

 }
 if (domainInp)
 {
 ErrorMsg("UpdateDomain: Invalid index.\n");

 }
 else
 {
 ErrorMsg("UpdateDomain: NULL domainInp passed.\n");
 }
}

/***
Function: UpdateCloneDomain
Returns: None
Purpose: To Change the domain table entry with given structure.
Comments: If an invalid index is given, log error message.
 If this fn is called, then the node can only receive
 messages addressed with Unique Node ID, group unack or
 broadcast addressing mode. CloneDomain is set to 0.
 Clone Domain allows a node to have same subnet and node ID
 as another node and yet receive messages of above types.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

313

 All messages in network have this bit set to 1.
**/
void UpdateCloneDomain(DomainStruct *domainInp, uint8 indexIn)
{
 if (domainInp && (indexIn < MAX_DOMAINS))
 {
 eep->domainTable[indexIn] = *domainInp;
 eep->domainTable[indexIn].cloneDomain = 0;
 return;

 }
 if (domainInp)
 {
 ErrorMsg("UpdateDomain: Invalid index.\n");

 }
 else
 {
 ErrorMsg("UpdateDomain: NULL domainInp passed.\n");
 }
}

/***
Function: AccessAddress
Returns: Address of structure at given index
Reference: None
Purpose: To access address table entry
Comments: None
**/
AddrTableEntry *AccessAddress(uint16 indexIn)
{
 if (indexIn < NUM_ADDR_TBL_ENTRIES)
 {
 return(&eep->addrTable[indexIn]);
 }
 return(NULL);
}

/***
Function: UpdateAddress
Returns: None
Reference: None
Purpose: To update an address table entry.
Comments: None
**/
void UpdateAddress(AddrTableEntry *addrEntryInp, uint16 indexIn)
{
 if (addrEntryInp && indexIn < NUM_ADDR_TBL_ENTRIES)
 {
 eep->addrTable[indexIn] = *addrEntryInp;
 return;
 }
 if (addrEntryInp)
 {
 nmp->errorLog = INVALID_ADDR_TABLE_INDEX;
 ErrorMsg("UpdateAddress: Invalid index.\n");
 }
 else
 {
 ErrorMsg("UpdateAddress: NULL addrEntryInp passed.\n");
 }
}

/***
Function: IsGroupMember

BS EN 14908-1:2014

EN 14908-1:2014 (E)

314

Returns: TRUE if this node belongs to given group. FALSE, else.
Reference: None
Purpose: To check if a node belongs to a given group in the
 given domain. If it does, also get the member number.
Comments: If groupMemberOut is NULL, then it is not used.
**/
Boolean IsGroupMember(Byte domainIndexIn, uint8 groupIn,
 uint8 *groupMemberOut)
{
 uint16 i;

 for (i = 0; i < NUM_ADDR_TBL_ENTRIES; i++)
 {
 if (eep->addrTable[i].addrFormat >= 128)
 {
 /* Group Format */
 if (eep->addrTable[i].groupEntry.groupID == groupIn &&
 eep->addrTable[i].groupEntry.domainIndex == domainIndexIn)
 {
 break;
 }
 }
 }
 if (i == NUM_ADDR_TBL_ENTRIES)
 {
 return(FALSE); /* Not Found */
 }
 if (groupMemberOut)
 {
 *groupMemberOut = eep->addrTable[i].groupEntry.member;
 }
 return(TRUE); /* Found */
}

/***
Function: AddrTableIndex
Returns: The index of the address table for the given domain
 and group. 0xFF if not found.
Reference: None
Purpose: To get the addr table index for a given group and domain.
 If there is no such entry in the addr table, return 0xff.
Comments: None
**/
uint16 AddrTableIndex(uint8 domainIndexIn, uint8 groupIn)
{
 uint16 i;

 for (i = 0; i < NUM_ADDR_TBL_ENTRIES; i++)
 {
 if (eep->addrTable[i].addrFormat >= 128)
 {
 /* Group Format */
 if (eep->addrTable[i].groupEntry.groupID == groupIn &&
 eep->addrTable[i].groupEntry.domainIndex == domainIndexIn)
 {
 return(i);
 }
 }
 }

 return(0xFF); /* Not Found */
}

/***
Function: DecodeBufferSize

BS EN 14908-1:2014

EN 14908-1:2014 (E)

315

Returns: Actual Buffer Size
Reference: None
Purpose: To compute the actual buffer size from code
Comments: None
**/
uint16 DecodeBufferSize(uint8 bufSizeIn)
{
 if (bufSizeIn <= 15)
 {
 return(bufSizeCodeLGbl[bufSizeIn]);
 }
 ErrorMsg("DecodeBufferSize: Invalid code.\n");
 return(0);
}

/***
Function: DecodeBufferCnt
Returns: Actual Buffer Count
Reference: NonePurpose: To compute the actual buffer count from code
Comments: None
**/
uint16 DecodeBufferCnt(uint8 bufCntIn)
{
 if (bufCntIn <= 15)
 {
 return(bufCntCodeLGbl[bufCntIn]);
 }
 ErrorMsg("DecodeBufferCnt: Invalid code.\n");
 return(0);
}

/***
Function: DecodeRptTimer
Returns: Actual timer value in ms
Reference: None
Purpose: To compute the actual rpt timer value from code
Comments: None
**/
uint16 DecodeRptTimer(uint8 rptTimerIn)
{
 if (rptTimerIn <= 15)
 {
 return(rptTimerCodeLGbl[rptTimerIn]);
 }
 ErrorMsg("DecodeRptTimer: Invalid code.\n");
 return(0);
}

/***
Function: DecodeRcvTimer
Returns: Actual Receive Timer value in ms
Reference: NonePurpose: To compute the actual rcv timer value in ms from code
Comments: None
**/
uint16 DecodeRcvTimer(uint8 rcvTimerIn)
{
 if (rcvTimerIn <= 15)
 {
 return(rcvTimerCodeLGbl[rcvTimerIn]);
 }
 ErrorMsg("DecodeRcvTimer: Invalid code.\n");
 return(0);
}

/***

BS EN 14908-1:2014

EN 14908-1:2014 (E)

316

Function: DecodeTxTimer
Returns: Actual Transmit Timer Value in ms
Reference: NonePurpose: To compute the actual transmit timer value from code
Comments: None
**/
uint16 DecodeTxTimer(uint8 txTimerIn)
{
 if (txTimerIn <= 15)
 {
 return(txTimerCodeLGbl[txTimerIn]);
 }
 ErrorMsg("DecodeTxTimer: Invalid code.\n");
 return(0);
}

/***
Function: DecodeNonGroupTimer
Returns: Actual non-group timer value in ms
Reference: None
Purpose: To Compute the actual non-group timer value from code
Comments: None
**/
uint16 DecodeNonGroupTimer(uint8 nonGroupTimerIn)
{
 if (nonGroupTimerIn <= 15)
 {
 return(nonGroupTimerCodeLGbl[nonGroupTimerIn]);
 }
 ErrorMsg("DecodeNonGroupTimer: Invalid code.\n");
 return(0);
}

/***
Function: AccessNV
Returns: Address of NV conf table entry
Reference: None
Purpose: To Access the NV Config Table Entry given the index
Comments: None
**/
NVStruct *AccessNV(uint16 indexIn)
{
 if (indexIn < nmp->nvTableSize)
 {
 return(&nmp->nvConfigTable[indexIn]);
 }
 ErrorMsg("AccessNV: Invalid index.\n");
 return(NULL);
}

/***
Function: UpdateNV
Returns: None
Reference: None
Purpose: To update an entry in NV Config Table
Comments: None
**/
void UpdateNV(NVStruct *nvStructInp, uint16 indexIn)
{
 if (nvStructInp && indexIn < nmp->nvTableSize)
 {
 nmp->nvConfigTable[indexIn] = *nvStructInp;
 return;
 }
 if (nvStructInp)
 {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

317

 ErrorMsg("UpdateNV: Invalid index.\n");
 }
 else
 {
 ErrorMsg("UpdateNV: NULL nvStructInp.\n");
 }
}

/***
Function: NVTableIndex
Returns: index of NV Config Table
Reference: None
Purpose: To retrieve the index corresponding to a network varname.
Comments: We don't need this fn for Ref Imp. as the app pgm already
 has the index for all variables.
**/
uint16 NVTableIndex(char varNameIn[])
{
 return(0);
}

/***
Function: ErrorMsg
Returns: None
Reference: None
Purpose: To store error msgs produced by these functions.
Comments: It is just a sequence of Bytes that is large.
 If there is no more space, it wraps around and
 logs. Thus, if there are too many error logs,
 we will only have the latest ones.
 Each Log is automatically given a number.
 The output has log number followed by message.
**/
void ErrorMsg(char errMessageIn[])
{
 uint16 j, msgNumber;
 uint16 spaceNeeded;

 /* Set the starting index for copy */
 /* If there is insufficient space, wrap around */
 /* spaceNeeded includes space for the null character */
 /* header(xxx.) + msg + \0 */
 spaceNeeded = 5 + strlen(errMessageIn) + 1;
 if (gp->errorMsgIndex + spaceNeeded > ERROR_MSG_SIZE)
 {
 gp->errorMsgIndex = 0; /* Wrap around */
 }

 /* Compute the Log Number. Make sure it is no more
 than 3 digits */
 gp->errorMsgNumber++;
 if (gp->errorMsgNumber > 999)
 {
 gp->errorMsgNumber = 1;
 }
 msgNumber = gp->errorMsgNumber;

 j = gp->errorMsgIndex;
 sprintf(gp->errorMsg + j, "%3d. ", msgNumber);
 j = j + 5;

 /* Write the message */
 strcpy(gp->errorMsg + j, errMessageIn);

 /* Update errorMsgIndex. Don't count the space for null char */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

318

 gp->errorMsgIndex = gp->errorMsgIndex + spaceNeeded - 1;
}

/***
Function: DebugMsg
Returns: None
Reference: None
Purpose: To Print Debugging Messages for stacks.
Comments: Actually not recorded anywhere. One needs to set
 breakpoint at the end of this fn and print temp
 to see the msg.
**/
void DebugMsg(char debugMsgIn[])
{
 char temp[200];
 uint8 i;

 if (strlen(debugMsgIn) > 170)
 {
 return; /* Too large for temp. Ignore it. */
 }

 /* Find our Stack # */
 for (i = 0; i < NUM_STACKS; i++)
 {
 if (gp == &protocolStackDataGbl[i])
 {
 break;
 }
 }
 sprintf(temp, "Time:%5u: Stack %2d: ", GetCurrentMsTime(), i+1);
 strcpy(temp + strlen(temp), debugMsgIn);
}

/***
Function: AllocateStorage
Returns: Pointer to data storage allocated or NULL
Reference: None
Purpose: A Simple version of storage allocator similar to malloc.
 A Global array is used to allocate the srorage.
 If no more space, NULL is retured.
Comments: There is no function similar to free. There is no need
 for such a funcion in the Reference Implementation.
**/
void *AllocateStorage(uint16 sizeIn)
{
 Byte *ptr;

 if (gp->mallocUsedSize + sizeIn > MALLOC_SIZE)
 {
 nmp->errorLog = MEMORY_ALLOC_FAILURE;
 return(NULL); /* No space for requested size */
 }

 ptr = gp->mallocStorage + gp->mallocUsedSize;
 gp->mallocUsedSize += sizeIn;

 return(ptr);
}

/***
Function: GetCurrentTime
Returns: Current Time (not necessarily real time)
Reference: None
Purpose: To get the current time.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

319

Comments: None
**/
uint32 GetCurrentTime(void)
{
 return(*(gp->currentTime));
}

/***
Function: GetCurrentMsTime
Returns: Current Time (not necessarily real time)
Reference: None
Purpose: To get the current time.
Comments: None
**/
uint32 GetCurrentMsTime(void)
{
 return(*(gp->currentTime)/CLOCK_TICKS_PER_MS);
}

/***
Function: SetMsTimer
Returns: None
Reference: None
Purpose: To set a timer value to a given value in ms.
Comments: The timer is set to given value. The lastUpdateTime is
 set to current time. UpdateTimer is called later to
 update the timer value.
**/
void SetMsTimer(MsTimer *timerOut, uint16 initValueIn)
{
 timerOut->curTimerValue = initValueIn * CLOCK_TICKS_PER_MS;
 timerOut->lastUpdatedTime = GetCurrentTime();
 /* If the initial value is 0, then we assume that the timer is
 actually disabled. */
 if (initValueIn > 0)
 {
 timerOut->expired = FALSE;
 }
 else
 {
 timerOut->expired = TRUE;
 }
}

/***
Function: UpdateMsTimer
Returns: None
Reference: None
Purpose: To Update a timer value.
Comments: Get CurrentTime. See the difference between cur time
 and last updated time. Subtract that qty from timer
 value. Make sure that the timer value is not
 reduced below 0 (that will make it a big positive).
**/
void UpdateMsTimer(MsTimer *timerInOut)
{
 uint32 curTime, elapsedTime;

 if (timerInOut->curTimerValue == 0)
 {
 return; /* Already expired. */
 }

 /* Since the timer values are unsigned, C gurantees that simple
 subtraction will give the right value even if the timer

BS EN 14908-1:2014

EN 14908-1:2014 (E)

320

 has already wrapped. We just have to make sure that we
 update the timer within one cycle of the clock. For 32
 bit clock, this is long enough and hence no problem. */
 curTime = GetCurrentTime();
 elapsedTime = curTime - timerInOut->lastUpdatedTime;
 if (elapsedTime >= timerInOut->curTimerValue)
 {
 timerInOut->curTimerValue = 0;
 }
 else
 {
 timerInOut->curTimerValue -= elapsedTime;
 }

 timerInOut->lastUpdatedTime = curTime;
}

/***
Function: MsTimerExpired
Returns: TRUE if the timer has expired. FALSE if the timer has
 not expired or it has expired but has already been
 reported as expired.
Reference: None
Purpose: To update given timer and test if it expired.
Comments: None
**/
Boolean MsTimerExpired(MsTimer *timerInOut)
{
 if (timerInOut->curTimerValue > 0)
 {
 UpdateMsTimer(timerInOut); /* Not expired. First update it. */
 }
 if (timerInOut->expired)
 {
 return(FALSE); /* Already expired. */
 }
 if (timerInOut->curTimerValue == 0)
 {
 /* First time expiry. */
 timerInOut->expired = TRUE; /* Remember this expiry */
 return(TRUE);
 }
 return(FALSE); /* Not expired yet */
}

/***
Function: NodeReset
Returns: None
Reference: None
Purpose: Initialization of node data structures.
Comments:
**/
void NodeReset(Boolean firstReset)
{
 void APPReset(void), TCSReset(void), TSAReset(void),
 NWReset(void), LKReset(void), PHYReset(void);
 void AppReset(void);
 uint32 seed;
#ifndef SIMULATION
 uint32 *StackTimerInit(void);
#endif
 int i;

#ifndef SIMULATION

BS EN 14908-1:2014

EN 14908-1:2014 (E)

321

 if (!firstReset)
 {
 PHYDisableSPMIsr();
 }
#endif

 /* Init variables that are not in EEPROM */
 memset(&nmp->stats, 0, sizeof(StatsStruct));
 if (firstReset)
 {
 nmp->errorLog = NO_ERRORS;
 }
 nmp->pxyData.pxyType = -1;
 gp->errorMsgIndex = 0;
 gp->errorMsgNumber = 0;
 gp->softwareTime = 0;
 gp->prevPinState[0] = 0;

#ifdef SIMULATION
 gp->currentTime = &gp->softwareTime;
#else
 if (firstReset)
 {
 gp->currentTime = StackTimerInit();
 }
#endif
 /* A node in soft off-line state should go on-line state */
 if (eep->readOnlyData.nodeState == CNFG_ONLINE && gp->appPgmMode == OFF_LINE)
 {
 gp->appPgmMode = ON_LINE; /* Normal state. on-line. */
 }

 /* If a node is reset while in unconfigured state, it will come back in
 offline mode when asked to go configured later. */
 if (NodeUnConfigured())
 {
 gp->appPgmMode = OFF_LINE;
 }

 /* First, Let each layer determine the address of all its
 data strcutures */
 gp->mallocUsedSize = 0;

 APPReset(); /* Application Layer */
 if (!gp->resetOk)
 {
 return;
 }
 TCSReset();
 if (!gp->resetOk)
 {
 return;
 }
 TSAReset();
 if (!gp->resetOk)
 {
 return;
 }
 NWReset();
 if (!gp->resetOk)
 {
 return;
 }
 LKReset();

BS EN 14908-1:2014

EN 14908-1:2014 (E)

322

 if (!gp->resetOk)
 {
 return;
 }
 PHYReset();

 if (!gp->resetOk)
 {
 return;
 }

 /* Call this function last as this function can call functions
 that will use data structures that should already exist. */
 AppReset(); /* Application Program Reset */
 if (!gp->resetOk)
 {
 return;
 }

#ifndef SIMULATION
 if (firstReset)
 {
 PHYInitSPM();
 }
 else
 {
 PHYEnableSPMIsr();
 }
#endif

 if (firstReset)
 {
 gp->prevChallenge[i] = 0; /* Init prevRand. Don't change during */
 /* other reset. */
 }

 /* Init Seed to some unpredictable value at start */
 seed = 0;
#ifndef SIMULATION
 seed = GetCurrentTime(); /* Current Value of Timer */
#endif
 srand((unsigned int) seed);

 if (nmp->resetCause == EXTERNAL_RESET || nmp->resetCause == POWER_UP_RESET)
 {
 SetMsTimer(&gp->tsDelayTimer, TS_RESET_DELAY_TIME);
 }
 else
 {
 SetMsTimer(&gp->tsDelayTimer, 0); /* Disable */
 }
 gp->resetNode = FALSE;
}

/***
Function: InitEEPROM
Returns: None
Reference: None
Purpose: To initialize the EEPROM data items based on constants
 in custom.h and values set in custom.c
Comments: Incomplete Initialization. Make sure it has the var you
 want or else add it here or in custom.h or custom.c
 depending on where it fits.
**/
void InitEEPROM(void)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

323

{
 int i;
 char *p;

 /* Init the entire readOnlyData to 0 first. */
 memset(&eep->readOnlyData, 0, sizeof(eep->readOnlyData));
 /* Init the entire configData to 0 first. */
 memset(&eep->configData, 0, sizeof(eep->configData));

 /* Init Based on custom.h and default values */
 eep->readOnlyData.modelNum = MODEL_NUM;
 eep->readOnlyData.minorModelNum = MINOR_MODEL_NUM;
 eep->readOnlyData.checkSum = 0;

 eep->readOnlyData.nvFixed[0] = 0xFF; /* not useful */
 eep->readOnlyData.nvFixed[1] = 0xFF;

 eep->readOnlyData.runWhenUnconf = RUN_WHEN_UNCONF;
 eep->readOnlyData.nvCount = 0;
 /* MIP uses 0xFFFF for snvtStruct field. p 9-8 */
 eep->readOnlyData.snvtStruct[0] = 0xFF;
 eep->readOnlyData.snvtStruct[1] = 0xFF;
 eep->readOnlyData.nodeState = CNFG_ONLINE;
 /* NUM_ADDR_TBL_ENTRIES can be larger than 15, but
 addressCnt is set to min(15, NUM_ADDR_TBL_ENTRIES).
 The remaining entries are not seen by the lonbuilder tool */
 eep->readOnlyData.addressCnt =
 (NUM_ADDR_TBL_ENTRIES <= 15)?NUM_ADDR_TBL_ENTRIES:15;
 eep->readOnlyData.receiveTransCnt =
 (RECEIVE_TRANS_COUNT < 16)?RECEIVE_TRANS_COUNT-1:15;
 eep->readOnlyData.appOutBufSize = APP_OUT_BUF_SIZE;
 eep->readOnlyData.appInBufSize = APP_IN_BUF_SIZE;
 eep->readOnlyData.nwOutBufSize = NW_OUT_BUF_SIZE;
 eep->readOnlyData.nwInBufSize = NW_IN_BUF_SIZE;
 eep->readOnlyData.nwOutBufPriCnt = NW_OUT_PRI_Q_CNT;
 eep->readOnlyData.appOutBufPriCnt = APP_OUT_PRI_Q_CNT;
 eep->readOnlyData.appOutBufCnt = APP_OUT_Q_CNT;
 eep->readOnlyData.appInBufCnt = APP_IN_Q_CNT;
 eep->readOnlyData.nwOutBufCnt = NW_OUT_Q_CNT;
 eep->readOnlyData.nwInBufCnt = NW_IN_Q_CNT;
 eep->readOnlyData.msgTagCnt = 0;

 eep->readOnlyData.readWriteProtect = READ_WRITE_PROTECT;
 eep->readOnlyData.txByAddress = 0;
 eep->readOnlyData.aliasCnt = 0; /* Host based node */

 /* Initialize configData */
 eep->configData.channelId = 0;
 eep->configData.commClock = 3;
 eep->configData.inputClock = 5;
 eep->configData.commType = SPECIAL_PURPOSE;
 eep->configData.commPinDir = 0x1E; /* 0x17 if wake-up pin is input */
 eep->configData.reserved[0] = 0x00; /* for special purpose mode. */
 eep->configData.reserved[1] = 0x3F; /* packet_cycle */
 eep->configData.reserved[2] = 0xA6; /* beta2 control */
 eep->configData.reserved[3] = 0x77; /* xmit_interpacket */
 eep->configData.reserved[4] = 0x67; /* recv_interpacket */
 eep->configData.nodePriority = 1; /* 0-255. 0 => no priority slot. */
 eep->configData.channelPriorities = 8; /* 0-255 */
 eep->configData.param.xcvrParams[0] = 0x0e;
 eep->configData.param.xcvrParams[1] = 0x01;
 eep->configData.param.xcvrParams[2] = 0;
 eep->configData.param.xcvrParams[3] = 0;
 eep->configData.param.xcvrParams[4] = 0;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

324

 eep->configData.param.xcvrParams[5] = 0;
 eep->configData.param.xcvrParams[6] = 0;
 /* dirParams only used for direct mode not special purpose mode */
 /* eep->configData.param.dirParams.bitSyncThreshHold = 1; */
 eep->configData.nonGroupTimer = NON_GROUP_TIMER;
 eep->configData.nmAuth = NM_AUTH;
 eep->configData.preemptionTimeout = 0;

 /* Initializaiton based on custom.c */
 memcpy(eep->readOnlyData.uniqueNodeId, cp->uniqueNodeId, UNIQUE_NODE_ID_LEN);
 eep->readOnlyData.twoDomains = cp->twoDomains;
 memcpy(eep->readOnlyData.progId, cp->progId, ID_STR_LEN);
 memcpy(eep->configData.location, cp->location, LOCATION_LEN);
 for (i = 0; i <= cp->twoDomains; i++)
 {
 eep->domainTable[i].len = cp->len[i];
 memcpy(eep->domainTable[i].domainId, cp->domainId[i],
 cp->len[i]);
 eep->domainTable[i].subnet = cp->subnet[i];
 eep->domainTable[i].node = cp->node[i];
 eep->domainTable[i].cloneDomain = 1;
 memcpy(eep->domainTable[i].key, cp->key[i], AUTH_KEY_LEN);
 }
 /* Init Address Table based on custom.c */
 for (i = 0; i < NUM_ADDR_TBL_ENTRIES; i++)
 {
 memcpy(&eep->addrTable[i], &cp->addrTbl[i], 5);
 }

 /* Init Alias Table based in custom.c */
 /* Since C initializes missing elements with 0 we use
 any non-zero value for hostPrimary field to indicate that
 we did initialize an entry. We don't need 0 anyway for
 hostPrimary as we can use primary for such entries. */

 for (i = 0; i < NV_ALIAS_TABLE_SIZE; i++)
 {
 memcpy(&nmp->nvAliasTable[i], &cp->aliasTbl[i], 6);
 }

 nmp->nvTableSize = 0;

 /* Initialize Alias Tables that are not initialized in custom.h */
 for (i = 0; i < NV_ALIAS_TABLE_SIZE; i++)
 {
 /* Init only those that are not given meaningful values
 in custom.h */
 if (nmp->nvAliasTable[i].hostPrimary != 0)
 {
 continue; /* Skip this as it was initialized in custom.c */
 }

 p = (char *)&nmp->nvAliasTable[i];
 *p = (char) 0x70;
 *(p + 1) = (char) 0x00;
 *(p + 2) = (char) 0x0F;
 *(p + 3) = (char) 0xFF;
 *(p + 4) = (char) 0xFF;
 *(p + 5) = (char) 0xFF;
 }
}

/***
Function: GetPrimaryIndex
Returns: The primary index of the given variable.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

325

Reference: None
Purpose: To compute the primary index
Comments: Given index can be either primary or alias.
**/
int16 GetPrimaryIndex(int16 nvIndex)
{
 int16 primaryIndex;
 uint16 nvAliasTableSize;

 /* Fetch the alias table size */
 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 if (nvIndex < 0 || nvIndex >= nmp->nvTableSize + nvAliasTableSize)
 {
 return(-1); /* Bad index value. */
 }

 if (nvIndex < nmp->nvTableSize)
 {
 primaryIndex = nvIndex; /* Primary index itself. */
 }
 else
 {
 nvIndex = nvIndex - nmp->nvTableSize; /* Get alias table index. */
 /* Compute the primary index. */
 primaryIndex = nmp->nvAliasTable[nvIndex].primary;
 if (primaryIndex == 0xFF)
 {
 primaryIndex = nmp->nvAliasTable[nvIndex].hostPrimary;
 }
 if (primaryIndex >= nmp->nvTableSize)
 {
 return(-1); /* Bad index in alias structure. */
 }
 }
 return(primaryIndex);
}

/***
Function: GetNVStructPtr
Returns: Pointer to the network variable structure.
Reference: None
Purpose: To compute the pointer to the network variable structure.
Comments: The given index can be either primary or alias.
**/
NVStruct *GetNVStructPtr(int16 nvIndexIn)
{
 uint16 nvAliasTableSize;

 /* Fetch the alias table size */
 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 if (nvIndexIn < 0 || nvIndexIn >= nmp->nvTableSize + nvAliasTableSize)
 {
 return(NULL); /* Bad index value. */
 }

 if (nvIndexIn < nmp->nvTableSize)
 {
 return(&nmp->nvConfigTable[nvIndexIn]);
 }

 return(&nmp->nvAliasTable[nvIndexIn - nmp->nvTableSize].nvConfig);
}

BS EN 14908-1:2014

EN 14908-1:2014 (E)

326

/***
Function: CheckSum4
Returns: 4 bit checksum of a given data.
Reference: None
Purpose: To Compute the checksum of an array of bytes of
 a given length. The check sum is the successive
 application of exclusive or of successive 4 bits.
Comments: None
**/
uint8 CheckSum4(void *dataIn, uint16 lengthIn)
{
 unsigned char *p;
 uint16 i;
 uint8 result = 0; /* Final checksum in low order 4 bits. */

 p = dataIn;
 for (i = 0; i < lengthIn; i++)
 {
 result = result ^ (*p >> 4); /* exclusive or with high order
 4 bits */
 result = result ^ (*p & 0x0F); /* With low order 4 bits */
 p++;
 }
 return(result);
}

/***
Function: CheckSum8
Returns: 8 bit checksum of a given data
Reference: None
Purpose: To compute the checksum of an array of bytes of
 a given length. The check sum is the successive
 application of exclusive or of successive 4 bits.
Comments: None
**/
uint8 CheckSum8(void *dataIn, uint16 lengthIn)
{
 unsigned char *p;
 uint16 i;
 uint8 result = 0; /* Final checksum */

 p = dataIn;
 for (i = 0; i < lengthIn; i++)
 {
 result = result ^ *p;
 p++;
 }
 return(result);
}

/***
Function: ComputeConfigCheckSum
Returns: The configuration checksum.
Reference: None
Purpose: To compute the configuration checksum.
Comments: Do not include reserved portion as it does not have
 any configuration data. Since, reference implementation
 has nv tables in nmp structure rather than EEPROM,
 we should include them in the computation.
**/
uint8 ComputeConfigCheckSum(void)
{
 uint8 checkSum;
 uint16 size;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

327

 size = (char *)&eep->addrTable[NUM_ADDR_TBL_ENTRIES] - (char *)eep;
 checkSum = CheckSum8(eep, size);
 size = (char *)&nmp->nvFixedTable[NV_TABLE_SIZE] -
 (char *)&nmp->nvConfigTable[0] + 2;
 checkSum = checkSum ^ CheckSum8(&nmp->nvConfigTable, size);
 return(checkSum);
}

/***
Function: IOChanges
Returns: TRUE if the state of input pin changed.
Reference: None
Purpose: To determine whether there is a state change in input
 Pin 0.
Comments: None
**/
Boolean IOChanges(uint8 pinNumberIn)
{
 if (pinNumberIn != 0)
 {
 return(FALSE); /* Only Input Pin 0 is supported for now */
 }

 if (gp->prevPinState[0] == 0 && gp->ioInputPin0)
 {
 /* Prev state = released curstate = pressed */
 gp->prevPinState[0] = 1;
 return(TRUE);
 }
 if (gp->prevPinState[0] == 1 && !gp->ioInputPin0)
 {
 /* prevstate = pressed and curstate = released */
 gp->prevPinState[0] = 0;
 return(TRUE);
 }
 return(FALSE);
}

Boolean IsTagBound(uint8 tagIn)
{
 return(tagIn < nmp->snvt.mtagCount &&
 tagIn < NUM_ADDR_TBL_ENTRIES &&
 eep->addrTable[tagIn].addrFormat != UNBOUND);
}

/**
Function: IsNvBound
Returns: TRUE if the variable is bound. FALSE otherwise.
Purpose: To determine if a primary variable is bound or not.
Comment: A variable is bound if its address index is not 0xF
 or there is an alias attached to it whose address
 index is not 0xF.
**/
Boolean IsNVBound(int16 nvIndexIn)
{
 uint16 i;
 int16 primaryIndex;
 uint16 addrIndex;
 uint16 nvAliasTableSize;

 if (nvIndexIn < 0 || nvIndexIn >= nmp->nvTableSize)
 {
 return(FALSE); /* not an index of a primary network variable */
 }

BS EN 14908-1:2014

EN 14908-1:2014 (E)

328

 /* If the primary has a valid address table index and the address
 table entry is not unbound, then the variable is bound */
 addrIndex = nmp->nvConfigTable[nvIndexIn].nvAddrIndex;
 if (addrIndex != 0x0F &&
 (eep->addrTable[addrIndex].addrFormat != UNBOUND ||
 eep->addrTable[addrIndex].turnaEntry.turnaround == 1))
 {
 return(TRUE);
 }

 nvAliasTableSize = nmp->snvt.aliasPtr->hostAlias;

 /* Primary is not bound. See if there is an alias for this variable
 that is bound. */
 for (i = 0; i < nvAliasTableSize; i++)
 {
 primaryIndex = GetPrimaryIndex(i + nmp->nvTableSize);
 addrIndex = nmp->nvAliasTable[i].nvConfig.nvAddrIndex;
 /* If the alias matches the primary, has a valid address table
 index and the address table entry is not UNBOUND, then
 the primary variable is bound */
 if (primaryIndex == nvIndexIn &&
 addrIndex != 0x0F &&
 (eep->addrTable[addrIndex].addrFormat != UNBOUND ||
 eep->addrTable[addrIndex].turnaEntry.turnaround == 1))
 {
 return(TRUE);
 }
 }
 return(FALSE); /* No alias entry for this primary that is bound. */
}

/***
Function: AppPgmRuns
Returns: TRUE if the application program is running on the node.
 FALSE otherwise.
Purpose: To determine whether the application program is running or not.
 This is used to determine whether to deliver messages, responses,
 and events to the application. Also used to determine whether
 to call DoApp or not.
***/
Boolean AppPgmRuns(void)
{
 /* Normal Mode. Configured and running. */
 if (eep->readOnlyData.nodeState == CNFG_ONLINE &&
 gp->appPgmMode == ON_LINE)
 {
 return(TRUE);
 }

 /* Unconfigured and running. */
 if (eep->readOnlyData.nodeState == APPL_UNCNFG &&
 eep->readOnlyData.runWhenUnconf &&
 gp->appPgmMode == ON_LINE)
 {
 return(TRUE);
 }

 return(FALSE);
}

/***
Function: NodeConfigured
Returns: TRUE if the node configured is valid.
Purpose: To determine whether currently the node is configured.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

329

***/
Boolean NodeConfigured(void)
{
 return(eep->readOnlyData.nodeState == CNFG_ONLINE ||
 eep->readOnlyData.nodeState == CNFG_OFFLINE);
}

/***
Function: NodeUnConfigured
Returns: TRUE if the node is configured.
Purpose: To determine whether currently node is unconfigured.
***/
Boolean NodeUnConfigured(void)
{
 return(eep->readOnlyData.nodeState == APPL_UNCNFG ||
 eep->readOnlyData.nodeState == NO_APPL_UNCNFG);
}

/*************************End of node.c*************************/

A.13 Include files for the reference implementation

/***
 File: cnp_1.h

 Version: 1.7

 Purpose: To define constants and types that are needed
 by all files. Most .c files will include
 cnp_1.h either directly or indirectly.

 Note: Reference implementation does not support
 special purpose nodes such as routers, repeaters
 etc. Additional code is required to implement
 these nodes.

 To Do: None.
***/
#ifndef _CNP_1_H
#define _CNP_1_H

/*--
Section: Includes
--*/
/* None */

/*--
Section: Macro Definitions
--*/
#define MIN(x,y) (((x)<(y))?(x):(y))
#define MAX(x,y) (((x)>(y))?(x):(y))
#define INCR_STATS(x) ((x < (uint16)0xFFFF)?x++:x)

/*--
Section: Constant Definitions
--*/
/* Reference implementation supports the use of alternate structures such
 as msg_in, msg_out etc for ease of porting application
 programs. However, the disadvantage is the extra copy needed to
 use these structures. Uncomment this constant if you do not want
 to use the alternate structures (i.e you prefer to use reference implementation
 structures that use a different naming convention.) */
#define ALTERNATE_STRUCTURES_NEEDED

BS EN 14908-1:2014

EN 14908-1:2014 (E)

330

#define UNIQUE_NODE_ID_LEN 6 /* Length of the Unique Node Id. */
#define ID_STR_LEN 8 /* Length of the program id string. */
#define AUTH_KEY_LEN 6 /* Length of the authentication key. */
#define DOMAIN_ID_LEN 6 /* Maximum length for a domain id. */
#define LOCATION_LEN 6 /* Maximum length for location string. */
#define NUM_COMM_PARAMS 7 /* Max # of parameters for a tranceiver. */
#define PROTOCOL_VERSION 0 /* 0 for reference implementaion. */
#define MAX_DOMAINS 2 /* Maximum # of domains allowed. */

/* Set the size of the array to log error messages from the protocol stack.
 The error messages wrap around, if there are too many errors.
 Errors seldom happen. So, there is no need for this to be too large. */
#define ERROR_MSG_SIZE 1 000 /* 20 messages each with 50 chars */

#define FLEX_DOMAIN 2 /* Indicates that the message was received
 in flex domain when domain index is 2 */
#define COMPUTE_DOMAIN_INDEX 3 /* When application layer communicates
 with transport or session layer,
 the domainIndex for the outgoing message
 can be either set by the application layer
 or computed by transport or session layer
 based on the destination address.
 This value is used only in TSASenParam
 structure. */
#define MAX_GROUP_NUMBER 63 /* Maximum number of a node in a group */

/*--
Section: Type Definitions
--*/
/* The following type definitions need to be changed based on the
 compiler used. The rest of the files should use only int8,
 int16, uint8 etc. Application programs should use
 nint (8-bit int), nlong etc as much as possible. */
typedef char int8;
typedef short int int16;
typedef long int int32;
typedef unsigned char uint8;
typedef unsigned short int uint16;
typedef unsigned long int uint32;

/* Typical definitions for int long etc. */
typedef int8 nshort;
typedef int8 nint;
typedef uint8 nuint;
typedef uint8 nushort;
typedef int16 nlong;
typedef uint16 nulong;

typedef unsigned char Byte;
typedef unsigned char Bits;
typedef int16 MsgTag; /* Lots of Tags!!! */

/* This type definition may need #ifndef macro wrapped
 around when porting to other platforms. */
typedef enum
{
 FALSE = 0,
 TRUE = 1
} Boolean;

typedef Boolean boolean; /* For nc compatibility. */

typedef enum
{
 NOBIND = 0,

BS EN 14908-1:2014

EN 14908-1:2014 (E)

331

 NON_BINDABLE = 0, /* Same as NOBIND. */
 BIND = 1,
 BINDABLE = 1 /* Same as BIND. */
} BindNoBind;

typedef enum
{
 NV_INPUT = 0,
 NV_OUTPUT = 1
} NVDirection;

/* Address Types. */
typedef enum
{
 UNBOUND = 0,

 SUBNET_NODE = 1,

 UNIQUE_NODE_ID = 2,

 BROADCAST = 3,

 MULTICAST = 4,

 MULTICAST_ACK = 5,

 BROADCAST_GROUP = 0x23 /* Used for broadcast req/resp requiring
 up to N responses to be delivered. */
} AddrMode;

/* In the reference implementation, the application is always loaded
 when downloading the code into the system. There is no provision
 to download application program from management tools. However,
 application can be placed in offline by calling GoOffline fn.
 Thus the node state NO_APPL_UNCNFG is not possible.
 gp->appPgmMode indicates the state of the application program. */
typedef enum
{
 /* For nodeState */
 APPL_UNCNFG = 2, /* Application is loaded but conf is not */
 NO_APPL_UNCNFG = 3, /* Application is not loaded yet or bad */
 CNFG_ONLINE = 4, /* Normal operation mode */
 CNFG_OFFLINE = 6, /* same as hard offline state */
 HARD_OFFLINE = 6,

 SOFT_OFFLINE = 0xC, /* For reporting purpose */
 CNFG_BYPASS = 0x8C /* Not supported in reference imp. */
} NodeState;

/* These constants are used to represent the mode when the node is
 configured. */
typedef enum
{
 OFF_LINE = 0, /* For soft off-line */
 ON_LINE = 1, /* For normal mode */
 NOT_RUNNING = 2 /* For hard-offline. Not used in reference impl.
 unless commanded to enter this state. */
} ConfigMode;

/* The order of the first 4 items is important as it is used by
 network layer to determine the type of PDU. */
typedef enum
{
 /* Do not change the order. The values are sent across the network */
 TPDU_TYPE,

BS EN 14908-1:2014

EN 14908-1:2014 (E)

332

 SPDU_TYPE,
 AUTHPDU_TYPE,
 APDU_TYPE,

 /* Something extra for internal use of the protocol stack */
 NPDU_TYPE,
 LPDU_TYPE,
} PDUType;

/* Services offered to application program. These are not sent over
 the network */
typedef enum
{
 ACKD, /* Transport Layer */
 UNACK_RPT, /* Transport Layer */
 UNACKD, /* Network Layer */
 REQUEST, /* Session Layer */

 RESPONSE /* Session Layer. Used by resp_send function */
} ServiceType;

/* Tranceiver types. Only the constants are used */
typedef enum
{
 BLANK = 0,
 SINGLE_ENDED = 1,
 SPECIAL_PURPOSE = 2,
 DIFFERENTIAL = 5
} TranceiverType;

/* Return status for all functions. */
typedef enum
{
 SUCCESS = 0,
 FAILURE = 1,
 INVALID = 2
} Status;

/* Reset cause */
typedef enum
{
 POWER_UP_RESET = 0x01,
 EXTERNAL_RESET = 0x02,
 WATCHDOG_RESET = 0x0C,
 SOFTWARE_RESET = 0x14,
 CLEARED = 0x00
} ResetCause;

/* Turn alignment on so that structures packed tightly */
#pragma maxalign(1)

/* Software Timer definition. */
typedef struct
{
 uint32 curTimerValue; /* Number of clock ticks left in timer. */
 uint32 lastUpdatedTime; /* The time when the timer was last updated. */
 Boolean expired; /* TRUE => it has already expired. */
} MsTimer;

typedef uint8 TransNum; /* For transaction numbers. */
typedef uint16 RequestId; /* For matching responses with requests. */

typedef Byte BroadcastAddress;
typedef Byte MulticastAddress;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

333

typedef struct
{
 Byte subnet;
 Bits selField :1; /* Used by network layer for 2b. */
 Bits node :7;
} SubnetAddress;

typedef struct
{
 MulticastAddress group;
 Byte member;
} GroupAddress;

typedef struct
{
 SubnetAddress subnetAddr;
 GroupAddress groupAddr; /* Acknowledging group member. */
} MulticastAckAddress;

typedef struct
{
 Byte subnet; /* For routing purpose. */
 Byte uniqueId[UNIQUE_NODE_ID_LEN];
} UniqueNodeIdAddress;

/***
 DestinationAddress is used to indicate network layer that address
 mode is used to send the message. The destination address
 is always one of the five possibilities.
 domainIndex indicates the domain table to use to determine
 domain length and domain id.
 If domainIndex = FLEX_DOMAIN, then it is flexdomain.
 In this case, src subnet/node is 0/0.
***/
typedef struct
{
 Byte domainIndex;
 uint8 flexDomainLen; /* Use if domainIndex == FLEX_DOMAIN */
 Byte flexDomainId[DOMAIN_ID_LEN]; /* Use if domainIndex == FLEX_DOMAIN */
 AddrMode addressMode;
 union {
 BroadcastAddress addr0;
 MulticastAddress addr1;
 SubnetAddress addr2a;
 MulticastAckAddress addr2b;
 UniqueNodeIdAddress addr3;
 } addr;
} DestinationAddress;

/***
 SourceAddress is used by network layer to indicate to upper levels
 who sent the message and what mode was used.
 Thus this structure is used only for receiving messages.
 domainIndex is used to respond back in the domain in which
 the message was received.
***/
typedef struct
{
 SubnetAddress subnetAddr; /* Subnet of source node. */
 AddrMode addressMode; /* What mode used. */
 Byte domainIndex; /* 0 or 1 or FLEX_DOMAIN (i.e 2) */
 uint8 flexDomainLen;/* Used if domainIndex == FLEX_DOMAIN. */
 Byte flexDomainId[DOMAIN_ID_LEN]; /* Used if domainIndex == FLEX_DOMAIN. */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

334

 /* group is used only if addressMode is MULTICAST.
 It is the group of the source node sending this message. */
 MulticastAddress group;
 /* ackNode is used only if addressMode is MULTICAST_ACK.
 It is the destSubnet used and the group of the node sending the ack
 or response. */
 MulticastAckAddress ackNode;
 /* Destination subnet for broadcast messages. */
 Byte broadcastSubnet;
} SourceAddress;

#pragma maxalign()

#endif /* #ifndef _CNP_1 */
/**********************************cnp_1.h***********************************/
/***
 File: node.h (node.h)

 Version: 1.7

 Purpose: To define all the type definitions needed by all
 the upper layers of the stack.
 To also define all function to interface with
 some of these data structures

 Note: None

 To Do: None.
***/
#ifndef _NODE_H
#define _NODE_H

/*--
Section: Includes
--*/
#include <cnp_1.h>
#include <api.h>
#include <queue.h>

/*---
Section: Constant Definitions
---*/
/* Define the size of the table maintained by the transaction control
 sublayer that keeps track of each possible destination address
 in packets sent to make sure that we don't assign the same tid as in the
 last transaction to that destination. This constant is needed here
 so that we can use it in the type definition of protocol stack data. */
#define TID_TABLE_SIZE 100

/* Init this constant to reflect the number of clock ticks in
 the 32 bit clock for every 1 ms. Some computation may be
 needed to determine this number. For simulation, we consider
 each clock tick as equivalent to 1 ms. */
#ifdef SIMULATION
#define CLOCK_TICKS_PER_MS 1
#else
#define CLOCK_TICKS_PER_MS 0x61
#endif

/* Given a valid primary index of a network variable, get its address */
#define NV_ADDRESS(i) (nmp->nvFixedTable[i].nvAddress)

/* Given a valid primary index of a network variable, get its length */
#define NV_LENGTH(i) (nmp->nvFixedTable[i].nvLength)

BS EN 14908-1:2014

EN 14908-1:2014 (E)

335

/* Given a valid primary index of a network variable, check if it is sync */
#define NV_SYNC(i) (nmp->nvFixedTable[i].nvSync)

/*---
Section: Type Definitions
---*/
/* Reference:

/* Turn off alignment by compiler to make sure that the structure sizes
 are as we intend them to be with no padding */
#pragma maxalign(1)
typedef struct
{
 Byte uniqueNodeId[UNIQUE_NODE_ID_LEN]; /* 48-bit unique ID. */
 Byte modelNum; /* Model Number for Ref. Impl. */
 Bits checkSum : 4; /* For Unique Node ID. */
 Bits minorModelNum : 4; /* 0-128. */
 Byte nvFixed[2]; /* Location of nv fixed table. */
 Bits readWriteProtect : 1; /* read+write protect flag. */
 Bits runWhenUnconf : 1; /* 1=> Application runs. */
 Bits nvCount : 6; /* 0 for reference implementation. */
 Byte snvtStruct[2]; /* 0xFFFF for reference implementation. */
 char progId[ID_STR_LEN]; /* Program Id string. */
 Bits : 1; /* nvProcessingOff not used in Ref. Impl.*/
 Bits twoDomains : 1; /* 1 if node is in 2 domains. */
 Bits : 1; /* explicitAddr not used in Ref. Impl. */
 Bits : 1; /* Unused. */
 Bits : 1; /* Unused. */
 Bits nodeState : 3; /* Node State. See cnp_1.h */
 Bits addressCnt : 4; /* # of entries in address table. */
 Bits : 4; /* Unused. */
 Bits : 4; /* Unused. */
 Bits receiveTransCnt : 4; /* RR Cnt = this field + 1 */
 Bits appOutBufSize : 4; /* Special Size Encoding. */
 Bits appInBufSize : 4; /* Special Size Encoding. */
 Bits nwOutBufSize : 4; /* Special Size Encoding. */
 Bits nwInBufSize : 4; /* Special Size Encoding. */
 Bits nwOutBufPriCnt : 4; /* Special Count Enconding. */
 Bits appOutBufPriCnt : 4; /* Special Count Enconding. */
 Bits appOutBufCnt : 4; /* Special Count Enconding. */
 Bits appInBufCnt : 4; /* Special Count Enconding. */
 Bits nwOutBufCnt : 4; /* Special Count Enconding. */
 Bits nwInBufCnt : 4; /* Special Count Enconding. */
 Byte reserved0; /* Unused */
 Byte reserved1[2]; /* Unused. */
 Byte reserved2[3]; /* Unused. */
 Bits : 6; /* Unused. */
 Bits txByAddress : 1; /* 0 in reference implementation. */
 Bits : 1; /* Unused. */
 Bits : 2; /* Unused. */
 Bits aliasCnt : 6; /* 0 in reference implementation. */
 Bits msgTagCnt : 4; /* 0 in reference implementation. */
 Bits : 4; /* Unused. */
 Byte reserved3[3]; /* Unused. */
} ReadOnlyDataStruct;

/* Reference:
typedef struct
{
 Byte domainId[DOMAIN_ID_LEN];
 Byte subnet;
 Bits cloneDomain : 1;
 Bits node : 7;
 Byte len;
 Byte key[AUTH_KEY_LEN];

BS EN 14908-1:2014

EN 14908-1:2014 (E)

336

} DomainStruct;

typedef struct
{
 AddrMode addrMode; /* UNBOUND (0) => turnaround. */
 Byte turnaround; /* 1=>turnaround; 0=>not in use.*/
 Bits unacdkRptTimer : 4; /* unackd_rpt timer. */
 Bits retryCount : 4; /* retry count. */
 Bits : 4; /* UNUSED. */
 Bits txTimerIndex : 4; /* transmit timer index. */
} TurnaroundStruct;

/* Other types used in the following structure are defined in api.h. */
typedef union
{
 uint8 addrFormat; /* Format of entry. */
 GroupAddrMode groupEntry;
 SNodeAddrMode snodeEntry;
 BcastAddrMode bcastEntry;
 TurnaroundStruct turnaEntry;
} AddrTableEntry;

typedef struct
{
 Bits collisionDetect :1;
 Bits bitSyncThreshHold :2;
 Bits filter :2;
 Bits hysteresis :3;
 Bits unUsed :6;
 Bits cdTail :1;
 Bits cdPreamble :1;
} DirectParamStruct;

typedef struct
{
 int16 channelId; /* Id of channel assigned */
 Byte location[LOCATION_LEN]; /* 6 byte ascii string */
 Bits commClock :5; /* bit rate ratio */
 Bits inputClock :3; /* input clk osc freq */
 Bits commType :3; /* type of receiver */
 Bits commPinDir :5; /* dir comm port pins */
 Byte reserved[5];
 Byte nodePriority; /* priority slot used */
 Byte channelPriorities; /* # of priority slots */
 union {
 Byte xcvrParams[NUM_COMM_PARAMS];
 DirectParamStruct dirParams;
 } param;
 Bits nonGroupTimer :4;
 Bits nmAuth :1; /* NetMgt msgs needs auth? */
 Bits preemptionTimeout :3; /* free buffer wait time in
 preemption mode */
} ConfigDataStruct;

/* Reference:
/* Network Variable Tables */
typedef struct
{
 Bits nvPriority :1; /* NV uses priority messaging */
 Bits nvDirection :1; /* 1 => output var */
 Bits nvSelectorHi :6; /* Hi & Lo form NV selector */
 Byte nvSelectorLo ; /* Range 0-0x3FFF */
 Bits nvTurnaround :1; /* 1 ==> bound to a nv in this node */
 Bits nvService :2; /* ACKD or UNACKD_RPT or UNACKD */
 Bits nvAuth :1; /* 1 => NV used auth transactions */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

337

 Bits nvAddrIndex :4; /* index into addr table. 15 is spcl */
} NVStruct;

typedef struct
{
 NVStruct nvConfig;
 uint8 primary; /* index into NV Cfg tbl. 0xFF => next fld */
 uint16 hostPrimary; /* NV cfg tbl index. For host nodes */
} AliasStruct;

typedef struct
{
 Bits nvSync :1; /* 1 ==> Synchronous network var */
 Bits :2; /* unused */
 Bits nvLength :5; /* # of bytes in the Network Var */
 void *nvAddress; /* Ptr to variable's data */
} NVFixedStruct;

/* Statistics */
typedef struct
{
 uint16 transmissionErrors;
 uint16 transmitTXFailures;
 uint16 receiveTXFull;
 uint16 lostMessages;
 uint16 missedMessages;
 uint16 layer2Received;
 uint16 layer3Received;
 uint16 layer3Transmitted;
 uint16 transmitTXRetries;
 uint16 backlogOverflow;
 uint16 lateAcknowledgements;
 uint16 collisions;
 uint8 eepromLock;
 uint16 expansion[11]; /* Room for expansion */

 /* Reference Implementation Specific Statistics */
 uint16 layer6_7MsgsRcvd;
 uint16 layer6_7RespRcvd;
 uint16 layer6_7MsgsSent;
 uint16 layer6_7RespSent;
 uint16 lateResponses; /* No matching req */
 uint16 lateChallenges; /* No matching transmit record */
 uint16 lateReplies; /* No matching receive record */
} StatsStruct;

/* yes: Yes, error is implemented in reference implementation */
/* na: Not applicable (not implemented) in ref. imp. */
typedef enum
{
 NO_ERRORS = 0, /* yes */
 BAD_EVENT = 129, /* na */
 NV_LENGTH_MISMATCH = 130, /* yes */
 NV_MSG_TOO_SHORT = 131, /* yes */
 EEPROM_WRITE_FAIL = 132, /* na */
 BAD_ADDRESS_TYPE = 133, /* yes */
 PREEMPTION_MODE_TIMEOUT = 134, /* na */
 ALREADY_PREEMPTED = 135, /* na */
 SYNC_NV_UPDATE_LOST = 136, /* na */
 INVALID_RESP_ALLOC = 137, /* na */
 INVALID_DOMAIN = 138, /* yes */
 READ_PAST_END_OF_MSG = 139, /* na */
 WRITE_PAST_END_OF_MSG = 140, /* na */
 INVALID_ADDR_TABLE_INDEX = 141, /* yes */
 INCOMPLETE_MSG = 142, /* na */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

338

 NV_UPDATE_ON_OUTPUT_NV = 143, /* na */
 NO_MSG_AVAIL = 144, /* na */
 ILLEGAL_SEND = 145, /* na */
 UNKNOWN_PDU = 146, /* yes */
 INVALID_NV_INDEX = 147, /* yes */
 DIVIDE_BY_ZERO = 148, /* na */
 INVALID_APPL_ERROR = 149, /* na */
 MEMORY_ALLOC_FAILURE = 150, /* yes */
 WRITE_PAST_END_OF_NET_BUFFER = 151, /* na */
 APPL_CS_ERROR = 152, /* na */
 CNFG_CS_ERROR = 153, /* na */
 INVALID_XCVR_REG_ADDR = 154, /* na */
 XCVR_REG_TIMEOUT = 155, /* na */
 WRITE_PAST_END_OF_APPL_BUFFER = 156, /* na */
 IO_READY = 157, /* na */
 SELF_TEST_FAILED = 158, /* na */
 SUBNET_ROUTER = 159, /* na */
 AUTHENTICATION_MISMATCH = 160, /* yes */
 SELF_INST_SEMAPHORE_SET = 161, /* na */
 READ_WRITE_SEMAPHORE_SET = 162, /* na */
 APPL_SIGNATURE_BAD = 163, /* na */
 ROUTER_FIRMWARE_VERSION_MISMATCH = 164 /* na */
} ErrorLog;

/*---
 NWSendParam is used to process Send Request to Network Layer
 from other layers. When other layers deposit a new PDU into the
 Output Queue, they should also fill in the details of this
 data structure to indicate the kind of request.

 altPath is set by transport/session layers for the last 2 retries.
 destAddr has the domainIndex that is used to determine the
 domainId, source subnet/node. The possible values for the
 domainIndex are 0 or 1 or 2. 0 or 1 ==> use the corresponding
 domainTable. 2 ==> use the flex domain.
---*/
typedef struct
{
 DestinationAddress destAddr; /* To give dest addr */
 PDUType pduType; /* APDU, SPDU, TPDU, AuthPDU */
 MsgTag tag; /* used only for APDU */
 uint8 deltaBL; /* Upper Layers supply this */
 Boolean altPath;
 uint16 pduSize; /* Size of the PDU sent */

 Boolean dropIfUnconfigured; /* drop the packet if the
 node is unconfigured. */
} NWSendParam;

/*---
 NWReceiveParam: Is used by Link Layer when it supplies an incoming
 NPDU to the network layer. This data structure contains information
 regarding the incoming NPDU.
***/
typedef struct
{
 Boolean priority; /* Was it a priority message? */
 Boolean altPath;
 uint16 pduSize; /* Size of NPDU in queue */
} NWReceiveParam;

/* Type Definitions for Application Layer */
typedef struct
{
 DestinType code;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

339

 Byte data[MAX_DATA_SIZE];
} APDU;

typedef APDU *APDUPtr;

/* APPSendParam is used by API to give info to app layer
 regarding APDU that is going out. Most info is available
 in msg_out in the Application Out Buffers */

/* APPSendParam has everything in MsgOut except code and data. */
typedef struct
{
 MsgTag tag; /* to correlate completion codes */
 uint8 len; /* message length in app data */
 Boolean authenticated; /* TRUE if to be authenticated */
 ServiceType service; /* service type used to send msg */
 RequestId reqId; /* Request ID for responses */
 MsgOutAddr addr; /* destination address (see above)*/
 Boolean nullResponse; /* For responses */
} APPSendParam;

/* Types of messages that are received by application layer */
typedef enum {
 MESSAGE = 0,
 COMPLETION = 1, /* Indication by Transport/Session layers */
} APIndType;

/* APPReceiveParam is used by Application Layer to figure out
 information regarding incoming APDU. */
typedef struct
{
 APIndType indication; /* Type of APDU received */
 Boolean success; /* Used if indication ==
 COMPLETION */
 MsgTag tag; /* Tag for indication
 or for matching response */
 SourceAddress srcAddr; /* Who sent it? */
 ServiceType service; /* Which service type? */
 Boolean priority; /* Was it a priority msg? */
 Boolean altPath; /* Was it sent in alt path? */
 uint16 pduSize; /* Size of incoming APDU */
 uint16 taIndex; /* Turnaround var Index */
 Boolean auth; /* Was it authenticated? */
 RequestId reqId; /* Assigned by session to match
 responses later */
} APPReceiveParam;

/* Type Definition for Transaction Control SubLayer */
typedef struct
{
 TransNum transNum; /* initial value = 0. Range 0..15 */
 Boolean inProgress; /* Is the transaction in progress */
} TransCtrlRecord;

/* Type definition for table used while assigning new TId. */
/* For more information, see tcs.h or tcs.c */
typedef struct
{
 Byte domainId[DOMAIN_ID_LEN];
 uint8 len; /* domain length */
 AddrMode addressMode;
 union
 {
 SubnetAddress subnetNode;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

340

 MulticastAddress group; /* group number of multicast */
 BroadcastAddress subnet; /* 0 if domainwide broadcast */
 Byte uniqueNodeId[UNIQUE_NODE_ID_LEN];
 } addr;
 MsTimer timer;
 TransNum tid; /* Last TID Used for this addr */
} TIDTableEntry;

/* Type Definitions for transport, Session, Auth Layers */

typedef enum
{
 TRANS_CURRENT,
 TRANS_NOT_CURRENT,
 TRANS_NEW,
 TRANS_DUPLICATE
} TransStatus;

typedef enum
{
 UNUSED_TX, /* Transmit Record is unused */
 SESSION_TX, /* Transmit Record is used by Session */
 TRANSPORT_TX /* Transmit Record is used by Transport */
} TXStatus;

typedef enum
{
 UNUSED_RR, /* Receive Record is unused */
 SESSION_RR, /* Receive Record is used by Session */
 TRANSPORT_RR /* Receive Record is used by Transport */
} RRStatus;

typedef enum
{
 JUST_RECEIVED, /* Msg just received. Nothing has been done */
 DELIVERED, /* Msg has been delivered to app layer. Receive
 Timer has not expired yet. Waiting for Resp */
 DONE, /* Msg delivered & a null resp received.
 Or Msg delivered and Server received has received
 the response.
 Timer has not expired yet */
 AUTHENTICATED, /* Msg has been authenticated. Not delivered */
 AUTHENTICATING, /* Msg is being authenticated. reply expected */
 RESPONDED, /* Rsp has been recvd from app layer & responded
 at least once. Recv Timer not expired yet */
} TransactionState; /* Constant used by Transport & Session */

typedef struct
{
 TXStatus status; /* Who owns it? if not free */
 DestinationAddress nwDestAddr; /* Destination Address */
 Boolean ackReceived[MAX_GROUP_NUMBER+1];
 /* Array[0..MAX_GROUP_NUMBER] of Boolean */
 uint8 destCount; /* Number of destinations */
 uint8 ackCount; /* Or respCount */
 TransNum transNum;
 uint16 xmitTimerValue;
 MsTimer xmitTimer; /* Transmit Timer */
 uint8 retriesLeft; /* How many left? */
 APDU *apdu; /* APDU transmitted */
 uint16 apduSize; /* Size of APDU */
 Boolean auth; /* Does this msg need auth? */
} TransmitRecord;

typedef struct

BS EN 14908-1:2014

EN 14908-1:2014 (E)

341

{
 RRStatus status; /* used? Who is using? */
 SourceAddress srcAddr; /* Who sent this? */
 TransNum transNum;
 RequestId reqId; /* For matching response */
 MsTimer recvTimer; /* receive timer */
 TransactionState transState; /* What state is it in */
 Boolean priority;
 Boolean altPath; /* Was alt path used? */
 Boolean auth; /* TRUE if auth succeeded */
 Boolean needAuth; /* Need authentication */
 ServiceType serviceType; /* What type of service */
 Byte rand[8]; /* For authentication */
 APDU *response; /* Store the response */
 uint16 rspSize;
 APDU *apdu; /* Store the APDU received */
 uint16 apduSize;
} ReceiveRecord;

/**
 TSASendParam is used to provide the necessary information
 needed to process the transaction.
 MsgOutAddr has all the necessary information for forming the
 destination address. It also has the domainIndex that can be
 used to determine the domainId, source subnet/node.
 However to facilitate sending of messages even when a node
 is not in any domain (such as sending ManualServiceRequest) this structure
 provides a way to specify the domainIndex with different
 possible values.
 domainIndex = 0 or 1 --> use the corresponding domain table
 domainIndex = 2 ---> use the flexDomain given
 domainIndex = 3 ---> use the domain table as given in destAddr.
 For response messages, several fields such as the destAddr or
 domainIndex is not needed.They are determined from the
 corresponding request message in the receive records.
**/
typedef struct
{
 MsgOutAddr destAddr; /* Whom to send? Need Timers too */
 Byte domainIndex;
 uint8 flexDomainLen;
 Byte flexDomainId[DOMAIN_ID_LEN];
 ServiceType service; /* What type of service? */
 Boolean auth; /* Need Authentication? */
 uint16 apduSize; /* Size of APDU to be sent */
 MsgTag tag; /* For service indication */
 Boolean nullResponse; /* TRUE => no resp goes out */
 RequestId reqId; /* Set if service=RESPONSE */

 Boolean altPathOverride;
 Boolean altPath; /* Used only if altPathOverride is true */
} TSASendParam;

/**
 TSAReceiveParam is used to receive the necessary
 information to process incoming PDU (TPDU or SPDU or AuthPDU).
 Receive Timer is set based on info in srcAddr.
 srcAddr has the source subnet/node, domainIndex used, group if
 any etc.
**/
typedef struct
{
 SourceAddress srcAddr; /* Who send it? */
 Boolean priority; /* Was it a priority msg? */
 uint16 pduSize; /* Size of incoming PDU */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

342

 PDUType pduType; /* What type of PDU? */
 Boolean altPath; /* Was it sent in alt path? */
} TSAReceiveParam;

typedef struct
{
 uint8 deltaBL; /* What is the backlog generated by this msg? */
 Boolean altPath; /* Should altPath be used? */
 uint16 pduSize; /* Size of NPDU */
} LKSendParam;

/* SNVT data structures */

/* See comment in app.c in APPReset and AddNV for a description */
/* of how the SNVT area is layed out and managed. */

typedef struct
{
 Bits extRec : 1;
 Bits nvSync : 1;
 Bits nvPolled : 1;
 Bits nvOffline : 1;
 Bits nvServiceConfig : 1;
 Bits nvPriorityConfig : 1;
 Bits nvAuthConfig : 1;
 Bits nvConfigClass : 1;
 uint8 snvtTypeIndex;
} SNVTdescStruct;

typedef struct
{
 Bits bindingII : 1;
 Bits queryStats : 1;
 Bits aliasCount : 6;
 uint16 hostAlias;
} AliasField;

typedef struct
{
 uint16 length;
 uint8 numNetvars;
 uint8 version;
 uint8 msbNumNetvars;
 uint8 mtagCount;
 char sb[SNVT_SIZE];
 SNVTdescStruct *descPtr; /* Point to next SNVTdesc entry in sb */
 /* Actually, it points Node Self-Doc
 String. Just before that is the
 self-id info for the last netwar */
 AliasField *aliasPtr; /* Point to alias structure in sb */
} SNVTstruct;

typedef struct
{
 Bits mre : 1; /* Maximum rate */
 Bits re : 1; /* Rate */
 Bits nm : 1; /* Name */
 Bits sd : 1; /* Self Doc String */
 Bits nc : 1; /* Array Count */
 Bits : 3; /* Unused */
} SNVTextension;

/* Partial list of SNVT type index values */
/* Unused in Ref Impl. Given for illustration */
typedef enum

BS EN 14908-1:2014

EN 14908-1:2014 (E)

343

{
 SNVT_STR_ASC = 36,
 SNVT_LEV_CONT = 21,
 SNVT_LEV_DISC = 22,
 SNVT_COUNT_F = 51,
} SNVTType;

typedef struct
{
 int16 nvIndex; /* Base index of array network variables */
 int16 dim; /* The dimension of the array */
} NVArrayTbl;

/* Type Definition for Protocol Stack Data */
typedef struct
{
 /* Number of bytes used so far */
 uint16 mallocUsedSize;

 /* Array of storage space for dynamic allocation of buffers etc */
 Byte mallocStorage[MALLOC_SIZE];

 /* Variables to store error messges generated using ErrorMsg fn */
 char errorMsg[ERROR_MSG_SIZE];
 uint16 errorMsgNumber;
 uint16 errorMsgIndex;

 /* Variable to keep track of current Time. Points to time */
 uint32 softwareTime;
 uint32 *currentTime; /* Points to softwareTime or
 actual hardware timer loc */

 /* Variables for Transaction Control Sublayer */
 TransCtrlRecord priTransCtrlRec;

 TransCtrlRecord nonpriTransCtrlRec;

 TransNum priTransID;
 TransNum nonpriTransID;

 TIDTableEntry priTbl[TID_TABLE_SIZE];
 TIDTableEntry nonpriTbl[TID_TABLE_SIZE];
 /* # entries currently used */
 uint16 priTblSize;
 uint16 nonpriTblSize;

 /* Timer to delay Transport/Session layers after an external or
 power-up reset. */
 MsTimer tsDelayTimer;

 /* Transmit and Receive Records */
 TransmitRecord xmitRec;
 TransmitRecord priXmitRec;

 ReceiveRecord *recvRec; /* Pool of records */
 uint16 recvRecCnt; /* How many Records allocated? */

 RequestId reqId; /* Running count for request numbers */
 Byte prevChallenge[8]; /* Used in generation of new challenge. */

 /* Various Queues */
 /**
 There are 3 queues associated with Each Layer except Physical.
 1. Input Queue 2. Output Queue 3. Output Priority Queue

BS EN 14908-1:2014

EN 14908-1:2014 (E)

344

 Each item in a queue has appropriate Param Structure
 followed by appropriate PDU.

 Buffer Sizes and Count Values are available in readOnlyData
 **/
 /* Input Queue For App Layer */
 Queue appInQ;
 uint16 appInBufSize;
 uint16 appInQCnt;

 /* Output Queue For APP Layer */
 Queue appOutQ;
 uint16 appOutBufSize;
 uint16 appOutQCnt;

 /* Output Priority Queue for APP Layer */
 Queue appOutPriQ;
 uint16 appOutPriBufSize;
 uint16 appOutPriQCnt;

 /* Input Queue For Transport, Session, Authentication Layers */
 Queue tsaInQ;
 uint16 tsaInBufSize;
 uint16 tsaInQCnt;

 /* Output Queue For Transport, Session, Authentication Layers */
 Queue tsaOutQ;
 uint16 tsaOutBufSize;
 uint16 tsaOutQCnt;

 /* Output Priority Queue For Transport, Session, Auth Layers */
 Queue tsaOutPriQ;
 uint16 tsaOutPriBufSize;
 uint16 tsaOutPriQCnt;

 /* Output Queue for Responses. Just one queue is sufficient.
 Priority or Non-priority is determined based on request */
 Queue tsaRespQ;
 uint16 tsaRespBufSize;
 uint16 tsaRespQCnt;

 /* Input Queue For network Layer */
 Queue nwInQ;
 uint16 nwInBufSize;
 uint16 nwInQCnt;

 /* Output Queue For network Layer */
 Queue nwOutQ;
 uint16 nwOutBufSize;
 uint16 nwOutQCnt;

 /* Output Priority Queue For network Layer */
 /* Buffer size is same as the buffer size for Output Queue */
 Queue nwOutPriQ;
 uint16 nwOutPriBufSize;
 uint16 nwOutPriQCnt;

 /* Input Queue For Link Layer */
 Byte *lkInQ;
 uint16 lkInBufSize; /* Size of buffer in lkInPDUQ */
 uint16 lkInQCnt; /* # of Buffers allocated. */
 Byte *lkInQHeadPtr;
 Byte *lkInQTailPtr;

 /* Output Queue For Link Layer */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

345

 Queue lkOutQ;
 uint16 lkOutBufSize;
 uint16 lkOutQCnt;

 /* Output Priority Queue For Link Layer */
 /* Buffer size is same as the buffer size for Output Queue */
 Queue lkOutPriQ;
 uint16 lkOutPriBufSize;
 uint16 lkOutPriQCnt;

 /* Output Queue For Physical Layer */
 Byte *phyOutQ; /* Not a regular Queue unlike others */
 uint16 phyOutBufSize;
 uint16 phyOutQCnt;
 Byte *phyOutQHeadPtr;
 Byte *phyOutQTailPtr;

 /* Output Priority Queue For Physical Layer */
 /* Buffer size is same as the buffer size for Output Queue */
 Byte *phyOutPriQ; /* Not a regular Queue unlike others */
 uint16 phyOutPriBufSize;
 uint16 phyOutPriQCnt;
 Byte *phyOutPriQHeadPtr;
 Byte *phyOutPriQTailPtr;

 /* API Flags */
 Boolean msgReceive; /* TRUE when data in gp->msgIn */
 Boolean respReceive; /* TRUE when data in gp->respIn */

 Boolean callMsgFree; /* Flag to help implicit call to msg_free */
 /*after DoApp */
 Boolean callRespFree; /* Flag to help implicit call to resp_free */
 /* after DoApp */

 /* API Variables */
 RespIn respIn;
 RespOut respOut;
 MsgIn msgIn;
 MsgOut msgOut;

 /* Flag to determine if selected for Net Mgmt queries */
 Boolean selectQueryFlag;

 /* Unbound selector counter for automatic assignement in AddNV. */
 uint16 unboundSelector;

 /* Table to keep track of array network variables and dim */
 NVArrayTbl nvArrayTbl[MAX_NV_ARRAYS];
 uint16 nvArrayTblSize;

 /* Queue of nvIndex for network output variables.
 This queue stores the indices of network variables
 (primary or alias) that are scheduled for sending out
 NVUpdate messages. Each index takes 2 bytes. The index
 is optionally followed by the value of the variable to
 be used with the NVUpdate message. This is done for sync
 network output variables so that we use the value when the
 request was made rather than the current value.

 Update to one network output variable may involve zero or one (primary)
 and zero or more alias indices. Thus we have a collection of indices to be
 scheduled. Alias entries can have different service type or priority
 attributes. To make scheduling work properly, we will have only one
 queue for storing these indices. After scheduling all the alias
 indices, if any, for the primary, we will add an extra entry

BS EN 14908-1:2014

EN 14908-1:2014 (E)

346

 that is equal to NV_UPDATE_LAST_TAG_VALUE to indicate end of
 one scheduling of a primary. When these indices are actually processed,
 we will process one at a time. i.e. we don't send NV message unless
 the previous one is completed.

 An NVUpdate for a primary succeeds if all the transactions for
 scheduled for the NVUpdates succeed. We keep track of this in
 the flag nvOutStatus. The flag nvOutSchedule is set to TRUE if
 scheduling can be done, FALSE otherwise. This is reset to TRUE at
 the completion of the primary and all alias schedules. */

 Queue nvOutIndexQ;
 uint16 nvOutIndexQCnt;
 uint16 nvOutIndexBufSize;
 Boolean nvOutStatus; /* Used to give NVUpdateCompletes for */
 /* Propagate. */
 Boolean nvOutCanSchedule; /* TRUE --> can continue to schedule. */
 int16 nvOutIndex; /* current primary index scheduled. */

 /* Queue of nvIndex for network input variables.
 This queue stores the input variables that scheduled
 to be polled. Each item exactly 2 bytes to store the index
 of the variable scheduled. Also, see the comment above for the
 nvOutIndexQ. The comment is valid for this queue for the poll
 messages too.

 Polling one network input variable may involve zero or one (primary)
 and zero or more alias indices. Thus we have a collection of indices to be
 scheduled. The alias can have different service type or priority.

 A poll succeeds if both nvInDataStatus and nvInTranStatus are true. */

 Queue nvInIndexQ;
 uint16 nvInIndexQCnt;
 Status nvInDataStatus; /* true if any valid data from external node
 is received or nv is turnaround only. */
 Status nvInTranStatus; /* true if all transactions for the poll */
 /* succeeded. */
 Boolean nvInCanSchedule; /* TRUE --> can continue to schedule. */
 int16 nvInIndex; /* current primary index scheduled. */

 int16 nvArrayIndex;
 NvInAddr nvInAddr;

 /* Flag to indicate scheduler whether reset is needed or not */
 Boolean resetNode; /* TRUE ==> reset needed */
 Boolean resetPinPrevState; /* For PHYIO's use */

 /* To Check if reset was successful */
 Boolean resetOk;

 /* To Check if the manual service request button was pressed or not */
 Boolean manualServiceRequest;
 Boolean manualServiceRequestPrevState; /* For PHYIO's use */

 /* To Check if generic io input pin 0 is pressed or not */
 Boolean ioInputPin0;
 Boolean ioInputPin0PrevState; /* For PHYIO's use */

 /* To set generic io output pin 0 */
 Boolean ioOutputPin0;

 /* To set generic io output pin 1 */
 Boolean ioOutputPin1;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

347

 /* To Remember prev state of the buttons. For IOChanges's use */
 Boolean prevPinState[1]; /* Currently only one pin is supported */

 /* Represents the mode for the application program in configured state. */
 Byte appPgmMode; /* Possible Values: OFF_LINE OFF_LINE NOT_RUNNING */

 /* For Msg Tag assignments */
 uint16 nextBindableMsgTag;
 uint16 nextNonbindableMsgTag;
} ProtocolStackData;

typedef struct
{
 ReadOnlyDataStruct readOnlyData;
 ConfigDataStruct configData;
 DomainStruct domainTable[MAX_DOMAINS];
 AddrTableEntry addrTable[NUM_ADDR_TBL_ENTRIES];

 /* Checksum for config structure */
 Byte configCheckSum; /* Exclusive or of successive bytes in
 config structure */

 /* Define some space above EEPROM to allow EEPROM expansion */
 /* The following variable makes the EEPROM exactly 3k in size */
 /* If actual EEPROM size is < 3k, it should handle addresses
 that are not in range */
 Byte reserved[3 * 1 024 -
 sizeof(ReadOnlyDataStruct) -
 sizeof(ConfigDataStruct) -
 sizeof(DomainStruct) * MAX_DOMAINS -
 sizeof(AddrTableEntry) * NUM_ADDR_TBL_ENTRIES -
 1];

} EEPROM;

typedef struct
{
 char pxyType; /* Proxy type (Green Book p. 51). -1 => not in use. */
 RequestId reqId; /* Request ID of proxy */
} ProxyData;

typedef struct
{
 /* Firmware space. Not used for anything in Ref Imp.
 Usable by users */
 Byte firmwareSpace[16 * 1 024]; /* 16 K size */
 Byte userSpace[42 * 1 024]; /* User space */
 /* RAM starts here */
 StatsStruct stats;
 SNVTstruct snvt;
 ProxyData pxyData;
 ErrorLog errorLog;
 uint8 resetCause;
 Byte restOfRAM[2 * 1 024 -
 sizeof(StatsStruct) -
 sizeof(SNVTstruct) - sizeof(ProxyData) -
 sizeof(ErrorLog) - sizeof(uint8)];
 /* EEPROM goes here. But kept separate as it can be loaded
 into Actual EEPROM more easily if it is isolated */
 /* Memory Mapped Space */
 Byte memMapSpace[1 024]; /* 1k in size */

 /* Place network varibale information above the 64K nmap so
 that we can support large number of variables. Since these
 are not kept in EEPROM, some other mechanism should be used

BS EN 14908-1:2014

EN 14908-1:2014 (E)

348

 to make sure that these values are preserved after a power up */
 NVStruct nvConfigTable[NV_TABLE_SIZE];
 AliasStruct nvAliasTable[NV_ALIAS_TABLE_SIZE];
 NVFixedStruct nvFixedTable[NV_TABLE_SIZE];
 uint16 nvTableSize; /* Config or Fixed */
} NmMap; /* Memory Map */

/* Turn the alignment off */
#pragma maxalign()

/*---
Section: Global Variables
---*/
/* Node Data Structures */
extern ProtocolStackData protocolStackDataGbl[NUM_STACKS];
extern ProtocolStackData *gp; /* Pointer to current Structure */
extern EEPROM eeprom[NUM_STACKS];
extern EEPROM *eep; /* Pointer to current eeprom str */
extern NmMap nm[NUM_STACKS];
extern NmMap *nmp;

#if defined(ALTERNATE_STRUCTURES_NEEDED)
extern msg_in_type msg_in;
extern msg_out_type msg_out;
extern resp_in_type resp_in;
extern resp_out_type resp_out;
extern nv_in_addr_type nv_in_addr;
extern int16 nv_array_index;
#endif

/*---
Section: Function Prototypes
---*/
DomainStruct *AccessDomain(uint8 indexIn);
void UpdateDomain(DomainStruct *domainInp, uint8 indexIn);
void UpdateCloneDomain(DomainStruct *domainInp, uint8 indexIn);
AddrTableEntry *AccessAddress(uint16 indexIn);
void UpdateAddress(AddrTableEntry *addrEntryInp, uint16 indexIn);
uint16 AddrTableIndex(Byte domainIndexIn, uint8 groupIn);
Boolean IsGroupMember(Byte domainIndex, uint8 groupIn,
 uint8 *groupMemberOut);
uint16 DecodeBufferSize(uint8 bufSizeIn);
uint16 DecodeBufferCnt(uint8 bufCntIn);
uint16 DecodeRptTimer(uint8 rptTimerIn);
uint16 DecodeRcvTimer(uint8 rcvTimerIn);
uint16 DecodeTxTimer(uint8 txTimerIn);
uint16 DecodeNonGroupTimer(uint8 nonGroupTimerIn);
NVStruct *AccessNV(uint16 indexIn);
void UpdateNV(NVStruct *nvStructInp, uint16 indexIn);
AliasStruct *AccessAlias(uint16 indexIn);
void UpdateAlias(AliasStruct *aliasStructInp, uint16 indexIn);
uint16 NVTableIndex(char varNameIn[]);
uint16 AliasTableIndex(char varNameIn[]);
void ErrorMsg(char errMessageIn[]);
void DebugMsg(char debugMsg[]);
void *AllocateStorage(uint16 size);
uint32 GetCurrentTime(void);
uint32 GetCurrentMsTime(void);
void SetMsTimer(MsTimer *timerOut, uint16 initValueIn);
void UpdateMsTimer(MsTimer *timerInOut);
Boolean MsTimerExpired(MsTimer *timerInOut);
void NodeReset(Boolean firstReset);
void InitEEPROM(void);
Boolean IOChanges(uint8 pinNumberIn);
uint8 CheckSum4(void *data, uint16 lengthIn);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

349

uint8 CheckSum8(void *data, uint16 lengthIn);
uint8 ComputeConfigCheckSum(void);
int16 GetPrimaryIndex(int16 nvIndexIn);
NVStruct *GetNVStructPtr(int16 nvIndexIn);
Boolean IsTagBound(uint8 tagin);
Boolean IsNVBound(int16 nvIndexIn);
Boolean AppPgmRuns(void);
Boolean NodeConfigured(void);
Boolean NodeUnConfigured(void);

#endif /* #ifndef _NODE_H */
/*******************************node.h*******************************/
/***
 File: custom.h (custom.h)

 Version: 1.7

 Purpose: Contains constant definitions that can be
 used to customize the characteristics of the
 node running the reference implementation.

 Note: None.

 To Do: None.

***/
#ifndef _CUSTOM_H
#define _CUSTOM_H

/*--
Section: Includes
--*/
#include <cnp_1.h> /* To get constants and types (e.g. Byte) */

/*--
Section: Constant Definitions
--*/
/* ReadOnlyData. Reference: */
#define MODEL_NUM 128
#define MINOR_MODEL_NUM 0
#define READ_WRITE_PROTECT 0
#define RUN_WHEN_UNCONF 0 /* Set to 1 if applicaiton needs to run
 even if the node is unconfigured */

/***
 NUM_ADDR_TBL_ENTRIES:
 The address table in reference implementation supports more than
 15 entries. However, network management tools might support only
 upto 15 entries. So, other entries should be managed by the
 application program itself. The maximum supported value is 255.
**/
#define NUM_ADDR_TBL_ENTRIES 15 /* # of entries in addr tbl */

#define RECEIVE_TRANS_COUNT 50 /* Can be > 16 for Ref. Impl */

#define NV_TABLE_SIZE 100 /* Check management tool for any
 restriction on maximum size */

#define NV_ALIAS_TABLE_SIZE 10 /* Check management tool for any
 restriction on maximum size */

#define SNVT_SIZE 1 050 /* Maximum allowed storage space
 for SNVT structures */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

350

/***
Warning!!! The following constants are encoded. So, don't use the
actual values
***/
#define APP_OUT_BUF_SIZE 15
#define APP_IN_BUF_SIZE 15 /* 11 ==> buf size is 66 */
#define NW_OUT_BUF_SIZE 15
#define NW_IN_BUF_SIZE 15

#define APP_OUT_Q_CNT 3
#define APP_OUT_PRI_Q_CNT 8 /* 3 ==> 2 8 ==> 15 */
#define APP_IN_Q_CNT 3

#define NW_OUT_Q_CNT 5
#define NW_OUT_PRI_Q_CNT 8
#define NW_IN_Q_CNT 3

#define NGTIMER_SPCL_VAL 8192

#define NON_GROUP_TIMER 8

#define NM_AUTH 0

/* Node Self Documentation String */
#define NODE_DOC "Ref. Impl. Pgm."

/* If the node is a member of group A(say), then typical 709 applications
 set group size to 1 more than actual group size if node is not
 a member of group A. This is done so that the number of
 acknowledgements to be expected is always (groupsize - 1).
 In reference implementation, there is an option
 to set this to the true group size and let the transport
 and session layers take care of this. Comment the following
 line to do this. For backward compatibility, uncomment it.
*/
#define GROUP_SIZE_COMPATIBILITY

/* Maximum number of array network variables allowed in
 the application program. This constant is used to allocate
 space that keeps track of all arrays and their dimension */
#define MAX_NV_ARRAYS 10

/* Maximum number of network output variables that can
 be scheduled to be sent out at any point in time */
#define MAX_NV_OUT 50

/* To implement synchronous variables, the values of the
 variables are to be stored along with index in the queue.
 Define the maximum size (in bytes) of a network variable
 in the application program. This is used for storage allocation. */
#define MAX_NV_LENGTH 50

/* Maximum number of network input variables that can
 be scheduled to be polled at any point in time */
#define MAX_NV_IN 50

/* Maximum number of bytes in data array for msg_in, msg_out, resp_in etc.
 This value is indepedent of application buffer sizes mentioned
 earlier. Clearly it does not make sense for this value to be
 larger than application buffer size (out or in). */
#define MAX_DATA_SIZE 100

/* The following constant is used to delay transport and session
 layers on an external or power-up reset for sending messages
 to make sure that messages sent after a reset are not discarded

BS EN 14908-1:2014

EN 14908-1:2014 (E)

351

 as duplicates. The dealy should be small enough to ensure that
 there will be no message in receive transaction records of
 target nodes. Normal default is 2 seconds. The amount is given
 in milliseconds.
 The timer duration would be set based on the maximum expected receive
 timer value in all target nodes. */
#define TS_RESET_DELAY_TIME 2000

/***
 Protocol Stack Implementation uses an array to allocate storage
 space dynamically. The size of the array used for this allocation
 is determined by this constant. If it is too low, it may be
 impossible to allocate necessary buffers or data structures.
 If it is too high, some memory is unused.
 Set to some high value, run program, stop, and check
 gp->mallocUsedSize to determine the current usage.
 This array space is allocated during Reset of all layers.
 Tracing through the Reset code of all layers will indicate
 the approximate size of this array necessary.
 If AllocateStorage function in node.c is rewritten to use malloc, then
 this constant will be of no use.
***/
#define MALLOC_SIZE 52000

/***
Section: Type Definitions
***/
typedef Byte DomainId[DOMAIN_ID_LEN];
typedef Byte AuthKey[AUTH_KEY_LEN];

/* Other values that can be initialized are in the following structure.
 The actual values are given in custom.c file. */
typedef struct
{
 /* ReadOnlyData Members */
 Byte uniqueNodeId[UNIQUE_NODE_ID_LEN];
 Byte twoDomains;
 char progId[ID_STR_LEN];

 /* ConfigData Members */
 char location[LOCATION_LEN];

 /* Domain Table Members */
 DomainId domainId[MAX_DOMAINS];
 Byte len[MAX_DOMAINS];
 Byte subnet[MAX_DOMAINS]; /* One for each domain */
 Byte node[MAX_DOMAINS];
 AuthKey key[MAX_DOMAINS]; /* 6 byte authentication key */

 /* Address Table Info. Enter all 5 byte values */
 /* Note: LonBuilder will overwrite the first 15 entries during
 Load/Start. This was used for only for testing purpose */
 /* Alias tables are not handled by some management tools
 and hence this initialization might be useful. */
 Byte addrTbl[NUM_ADDR_TBL_ENTRIES][5];
 Byte aliasTbl[NV_ALIAS_TABLE_SIZE][6];

} CustomData;

extern CustomData customDataGbl[NUM_STACKS];
extern CustomData *cp;

#endif /* #ifndef _CUSTOM_H */
/********************************End of custom.h*******************************/

BS EN 14908-1:2014

EN 14908-1:2014 (E)

352

/***
 Reference: Section 8, Network layer

 File: network.h

 Version: 1.7

 Purpose: This is the interface file for network layer.

 Note: Ref. Impl. does not support Router Nodes.

 To Do: None.
***/
#ifndef _NETWRK_H
#define _NETWRK_H

/*--
Section: Includes
--*/
/* None */

/*--
Section: Constant Definitions
--*/
/* None */

/*--
Section: Type Definitions
--*/
/* None */

/*--
Section: Globals
--*/
/* None */

/*--
Section: Function Prototypes
--*/
void NWReset(void);
void NWSend(void);
void NWReceive(void);

#endif
/*------------------------------End of network.h------------------------------*/
/***
 File: tcs.h

 Version: 1.7

 Purpose: Interface for Transaction Control Sublayer.
 Outgoing Sequencing
 Incoming Sequencing and Duplicate Detection.

 Note: For assigning TIds, a table is used. We
 remember the last TID for each unique dest
 addr. When a new TId is requested for a
 destination, this table is searched for that
 destination. If found, we make sure that we
 don't assign the same TId used for that
 destination. If the destination is not
 found, we make a new entry in the table.

 We have an entry in the table for each

BS EN 14908-1:2014

EN 14908-1:2014 (E)

353

 subnet/node, group, broadcast, subnet
 broadcast, unique node id. When a table entry
 is assigned, we remember the time stamp too.
 If the table does not have space for a new
 dest addr, we get rid of one that has
 remained more than 24 sec. If no such entry,
 then we fail to allocate the new trans ID.
 The table size is configurable.

 To Do: None

***/
#ifndef _TCS_H
#define _TCS_H

/*--
Section: Includes
--*/
#include <cnp_1.h>
#include <node.h>

/*---
Section: Constant Definitions
---*/
/* None */

/*---
Section: Type Definitions
---*/
/* None */

/*---
Section: Globals
---*/
/* None */

/*---
Section: Function Prototypes
---*/
void TCSReset(void);

void TransDone(Boolean priorityIn);

/* Return Values: SUCCESS or FAILURE */
Status NewTrans(Boolean priorityIn, DestinationAddress addrIn,
 TransNum *transNumOut);

/* Return Values: TRAN_CURRENT or TRAN_NOT_CURRENT */
TransStatus ValidateTrans(Boolean priorityIn, TransNum transNumIn);

#endif
/*------------------------End of tcs.h------------------------*/
/***
 Reference: Sections 10, 11

 File: tsa.h (Transport Session Authentication)

 Version: 1.7

 Purpose: Interface file for tsa.c

 Note: None

 To Do: None
***/

BS EN 14908-1:2014

EN 14908-1:2014 (E)

354

#ifndef _TSA_H
#define _TSA_H

/*--
Section: Includes
--*/
/* None */

/*---
Section: Constant Definitions
---*/
/* None */

/*---
Section: Type Definitions
---*/
/* None */

/*---
Section: Globals
---*/
/* None */

/*---
Section: Function Prototypes
---*/
void TSAReset(void);

void TPSend(void);
void TPReceive(void);

void SNSend(void);
void SNReceive(void);

void AuthSend(void);
void AuthReceive(void);

#endif
/*------------------------End of tsa.h------------------------*/
/***
 Reference: Section 12, Presentation/Application Layer

 File: netmgmt.h

 Version: 1.7

 Purpose: App Layer / Network Management

 Note: For more information, see netmgmt.c.

 To Do: None

***/
#ifndef _NETMGMT_H
#define _NETMGMT_H

/*--
Section: Includes
--*/
#include <cnp_1.h>
#include <queue.h>
#include <tsa.h>
#include <network.h>
#include <api.h>

BS EN 14908-1:2014

EN 14908-1:2014 (E)

355

/*--
Section: Constant Definitions
--*/
typedef enum
{
 ND_MESSAGE,
 NM_MESSAGE
} NtwkMgmtMsgType;

/* Message codes */

#define NM_QUERY_ID 0x1
#define NM_RESPOND_TO_QUERY 0x2
#define NM_UPDATE_DOMAIN 0x3
#define NM_LEAVE_DOMAIN 0x4
#define NM_UPDATE_KEY 0x5
#define NM_UPDATE_ADDR 0x6
#define NM_QUERY_ADDR 0x7
#define NM_QUERY_NV_CNFG 0x8
#define NM_UPDATE_GROUP_ADDR 0x9
#define NM_QUERY_DOMAIN 0xA
#define NM_UPDATE_NV_CNFG 0xB
#define NM_SET_NODE_MODE 0xC
#define NM_READ_MEMORY 0xD
#define NM_WRITE_MEMORY 0xE
#define NM_CHECKSUM_RECALC 0xF
#define NM_INSTALL 0x10
#define NM_WINK 0x10 /* Alias for NM_INSTALL */
#define NM_MEMORY_REFRESH 0x11
#define NM_QUERY_SNVT 0x12
#define NM_NV_FETCH 0x13
#define NM_MANUAL_SERVICE_REQUEST 0x1F

/* Define offsets and masks for constructing request and response codes */

#define NM_opcode_base 0x60
#define NM_opcode_mask 0x1F
#define NM_resp_mask 0xE0
#define NM_resp_success 0x20
#define NM_resp_failure 0x00

#define ND_opcode_base 0x50
#define ND_opcode_mask 0x0F
#define ND_resp_mask 0xF0
#define ND_resp_success 0x30
#define ND_resp_failure 0x10

/* Network Diagnostic Message Codes */
#define ND_QUERY_STATUS 0x01
#define ND_PROXY_COMMAND 0x02
#define ND_CLEAR_STATUS 0x03
#define ND_QUERY_XCVR 0x04

/*--
Section: Type Definitions
--*/
#pragma maxalign(1)

typedef enum {
 ABSOLUTE_MEM_ADDR = 0,
 READ_ONLY_RELATIVE = 1,
 CONFIG_RELATIVE = 2,
 STAT_RELATIVE = 3,

BS EN 14908-1:2014

EN 14908-1:2014 (E)

356

} ModeType;

typedef enum
{
 UNCONFIGURED = 0,
 SELECTED = 1,
 SELECTED_UNCFG = 2, /* selected *AND* unconfigured */
} Selector;

typedef enum
{
 NO_ACTION = 0,
 BOTH_CS_RECALC = 1,
 CNFG_CS_RECALC = 4,
 ACTION_RESET = 8,
} Form;

typedef struct {
 Selector selector;
 ModeType mode;
 uint16 offset;
 Byte count;
 Byte data[MAX_DATA_SIZE];
} NMQueryIdRequest;

typedef struct {
 ModeType mode;
 uint16 offset;
 Byte count;
 Form form;
 Byte data[MAX_DATA_SIZE];
} NMWriteMemoryRequest;

#pragma maxalign()

/*--
Section: Globals
--*/
/* None */

/*--
Section: Function Prototypes
--*/
void HandleNM(APPReceiveParam *appReceiveParamPtr, APDU *apduPtr);
void HandleND(APPReceiveParam *appReceiveParamPtr, APDU *apduPtr);
void HandleProxyResponse(APPReceiveParam *appReceiveParamPtr, APDU *apduPtr);

#endif
/*-----------------------------End of netmgmt.h-------------------------------*/
/***

 File: app.h

 Version: 1.7

 Purpose: App Layer
 Data Structures for App Layer.
 (See app.c for more information.)

 Note: None

 To Do: None

***/
#ifndef _APP_H

BS EN 14908-1:2014

EN 14908-1:2014 (E)

357

#define _APP_H

/*--
Section: Includes
--*/
#include <cnp_1.h>
#include <queue.h>
#include <tsa.h>
#include <network.h>
#include <api.h>

/*--
Section: Constant Definitions
--*/

/***
Define tags for use by the application layer for the messages it generates.
There are several types of messages the application layer generates. Proxy,
ManualServiceRequest, network variable updates, and network variable polls. The tag
for these messages will be set up in such a way that we can tell what type of
message got completed when the application layer receives completion indication
from transport/session layer. Since tags are also used by the application
program and they are all >= 0, we will use negative tags for the application
layer. For tags for the application layer are used as follows:

0xFFFF ==> tag for proxy command.
0xFFFE ==> tag for manual service request.
For all NV tags,
bit15 is 1 (negative tag)
bit14 is 1 => nv update 0 => nv poll
bit13 is 1 => last tag.
bit12 to bit0 is the actual primary index of network variable.

The tag for which bit13 is set is a special tag value that is recognized
by transport layer. In this case, the transport layer sends an indication
right away with that tag. No message is sent by the transport layer.

Network variable updates and polls are scheduled sequentially. When the
completion event for the last tag is received, completion event is
generated.
***/
#define PROXY_TAG_VALUE ((MsgTag) 0xFFFF)
#define MANUAL_SERVICE_REQ_TAG_VALUE ((MsgTag) 0xFFFE)
#define NV_UPDATE_LAST_TAG_VALUE ((MsgTag) 0xE000)
#define NV_POLL_LAST_TAG_VALUE ((MsgTag) 0xA000)

#define PROXY_TAG(tag) (tag == PROXY_TAG_VALUE)
#define MANUAL_SERVICE_REQUEST_TAG(tag) (tag == MANUAL_SERVICE_REQ_TAG_VALUE)

#define NV_UPDATE_TAG(tag) ((tag & 0xC000) == 0xC000)
#define NV_POLL_TAG(tag) ((tag & 0xC000) == 0x8000)
#define NV_INDEX_OF_TAG(tag) (tag & 0x1FFF)
#define NV_LAST_TAG(tag) ((tag & 0xA000) == 0xA000)

#define GET_NV_UPDATE_TAG(index) (0xC000 | index)
#define GET_NV_POLL_TAG(index) (0x8000 | index)

/* Explicit application message codes */
#define APPL_MSG_OFFLINE 0x3F
#define FOREIGN_FRAME_OFFLINE 0x4F
/*--
Section: Type Definitions
--*/
/* None */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

358

/*--
Section: Globals
--*/
/* None */

/*--
Section: Function Prototypes
--*/
void APPInit(void);
void APPReset(void);
void APPSend(void);
void APPReceive(void);

#endif
/*--------------------------------End of app.h--------------------------------*/

A.14 Application protocol state variables and address recognition Structures

#define DOMAIN_ID_LEN 6
#define AUTH_KEY_LEN 6
#define Unique_Node_ID_LEN 6

typedef enum addr_type { UNBOUND, SUBNET_NODE, UNIQUE_NODE_ID, BROADCAST }
addr_type;

typedef struct domain_struct{
 unsigned id[DOMAIN_ID_LEN];
 unsigned subnet;
 unsigned :1;
 unsigned node :7;
 unsigned len;
 unsigned key[AUTH_KEY_LEN];
} domain_struct;

typedef union address_struct{
 group_struct gp;
 snode_struct sn;
 bcast_struct bc;
 turnaround_struct ta;
} address_struct;

typedef struct group_struct {
 unsigned type : 1; /* 1 => group */
 unsigned size : 7; /* group size (0 => huge group) */
 unsigned domain : 1; /* domain index */
 unsigned member : 7; /* member num */
 unsigned rpt_timer : 4; /* unackd_rpt timer */
 unsigned retry : 4; /* retry count */
 unsigned rcv_timer : 4; /* receive timer index */
 unsigned tx_timer : 4; /* transmit timer index */
 unsigned group; /* group ID */
} group_struct;

typedef struct snode_struct {
 addr_type type; /* SUBNET_NODE */
 unsigned domain : 1; /* domain index */
 unsigned node : 7; /* node number */
 unsigned rpt_timer : 4; /* unackd_rpt timer */
 unsigned retry : 4; /* retry count */
 unsigned : 4;
 unsigned tx_timer : 4; /* transmit timer index */
 unsigned subnet; /* subnet ID */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

359

} snode_struct;

typedef struct bcast_struct {
 addr_type type; /* BROADCAST */
 unsigned domain : 1; /* domain index */
 unsigned : 1;
 unsigned backlog : 6; /* backlog override value */
 unsigned rpt_timer : 4; /* unackd_rpt timer */
 unsigned retry : 4; /* retry count */
 unsigned : 4;
 unsigned tx_timer : 4; /* transmit timer index */
 unsigned subnet; /* subnet ID (0 = domain bcast */
} bcast_struct;

typedef struct unid_struct {
 addr_type type;
 unsigned domain : 1;
 unsigned : 7;
 unsigned rpt_timer : 4;
 unsigned retry : 4;
 unsigned : 4;
 unsigned tx_timer : 4;
 unsigned subnet;
 unsigned nid [UNIQUE_NODE_ID_LEN];
} unid_struct;

typedef union msg_out_addr {
 addr_type no_address; /* UNBOUND 0 if no address */
 group_struct group; /* Defined above */
 snode_struct snode; /* Defined above */
 unid_struct unid; /* Defined above */
 bcast_struct bcast; /* Defined above */
} msg_out_addr;

/* Typedef for 'msg_in_addr', which is the type of the field 'msg_in.addr' */

typedef struct msg_in_addr {
 unsigned domain : 1;
 unsigned flexible_domain : 1;
 unsigned format : 6; /* NOT the 'addr_type' enum. */
 /* INSTEAD: 0 => Bcast, 1 => */
 /* Group, 2 = > Subnet/Node, */
 /* 3 => Unique_Node_ID */
 struct {
 unsigned subnet;
 unsigned : 1;
 unsigned node : 7;
 } src_addr;
 union {
 unsigned bcast_subnet;
 unsigned group;
 struct {
 unsigned subnet;
 unsigned : 1;
 unsigned node : 7;
 } snode;
 struct {
 unsigned subnet;
 unsigned nid [UNIQUE_NODE_ID_LEN];
 } unid;
 } dest_addr;
} msg_in_addr;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

360

/* Typedef for 'resp_in_addr', the type of the field 'resp_in.addr' */

typedef struct resp_in_addr {
 unsigned domain : 1;
 unsigned flexible_domain : 1;
 struct {
 unsigned subnet;
 unsigned is_snode : 1; /* 0=>group resp, */
 /* 1=>snode resp */
 unsigned node : 7;
 } src_addr;
 union {
 struct {
 unsigned subnet;
 unsigned : 1;
 unsigned node : 7;
 } snode;
 struct {
 unsigned subnet;
 unsigned : 1;
 unsigned node : 7;
 unsigned group;
 unsigned : 2;
 unsigned member : 6;
 } group;
 } dest_addr;
} resp_in_addr;

struct {
 byte code; /* message code */
 byte len; /* length of message data */
 byte data[]; /* message data */
 boolean authenticated; /* TRUE if message was authenticated */
 service_type service; /* Service type used to send the msg */
 boolean duplicate; /* TRUE if message is a duplicate */
 unsigned rcvtx; /* index to the transaction record */
 msg_in_addr addr; /* destination address (see above) */
 } msg_in;

struct {
 boolean priority_on; /* TRUE if a priority message */
 msg_tag tag; /* to correlate completion codes */
 byte code; /* message code */
 byte data[]; /* message data */
 boolean authenticated; /* TRUE if to be authenticated */
 service_type service; /* service type used to send the msg */
 msg_out_addr dest_addr; /* destination address (see above) */
 } msg_out;

struct {
 byte code; /* message code */
 byte len; /* message length */
 byte data[]; /* message data */
 resp_in_addr addr; /* destination address (see above) */
 } resp_in; /* struct for receiving responses */

struct {
 byte code; /* message code */
 byte data[]; /* message data */
 } resp_out; /* structure for sending responses */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

361

A.15 Query-id data structures

struct query_id_request {
 byte command; /* value = 1 */
 byte selector; /* 0 = unconfigured nodes */
 /* 1 = respond to query set */
 /* 2 = respond to query set and unconfigured */
 byte address_mode; /* See “read memory” command */
 byte address_hi;
 byte address_lo;
 byte count;
 byte data; /* “count” bytes of data */
};

struct query_id_response {
 byte command; /* value = 1 */
 byte Unique_Node_ID[6];
 byte program_id_string[8];
};

A.16 Respond to query data structure

struct respond_to_query_cmd {
 byte command; /* value = 2 */
 byte mode; /* 1 => ON; 0 => OFF */
};

struct respond_to_query_resp {
 byte command; /* value = 2 */
};

A.17 Update somain data structures

struct update_domain_request {
 byte command; /* value = 3 */
 byte domain_index; /* 0 or 1 */
 byte domain_id[6];
 byte subnet;
 byte node; /* msb shall be set */
 byte did_length; /* 0, 1, 3, or 6 */
 byte encrypt_key[6];
};

struct update_domain_response {
 byte command; /* value = 3 */
};

A.18 Leave domain data structures

struct leave_domain_request {
 byte command; /* value = 4 */
 byte domain_index; /* 0 or 1 */
};

struct leave_domain_response {
 byte command; /* value = 4 */
};

BS EN 14908-1:2014

EN 14908-1:2014 (E)

362

A.19 Update key data structures

struct update_key_request {
 byte command; /* value = 5 */
 byte domain_index; /* 0 or 1 */
 byte encrypt_key[6];
};

struct update_key_response {
 byte command; /* value = 5 */
};

A.20 Update address data structures

struct group_s {
 byte field1; /* b7: 1 */
 /* b0 to b6: group size, 0 for huge group */
 byte field2; /* b7: domain ref */
 /* b0 to b6: member number, 0 for huge group */
 byte field3; /* b4 to b7: unackd_rpt timer */
 /* b0 to b3: retry count */
 byte field4; /* b4 to b7: receive timer index */
 /* b0 to b3: transmit timer index */
 byte group; /* group id. */
};

struct snode_s {
 byte type; /* 1 */
 byte field2; /* b7: domain ref set by target b0 to b6: node number */
 byte field3; /* b4 to b7: unackd_rpt timer */

 /* b0 to b3: retry count */
byte field4; /* b0 to b3: transmit timer index */
byte subnet; /* subnet */
};

struct bdcst_s {
 byte type; /* 3 */
 byte field2; /* b7: domain ref set by target */
 /* b0 to b5: backlog; 0 == unknown */
 byte field3; /* b4 to b7: unackd_rpt timer */
 /* b0 to b3: retry count */
 byte field4; /* b0 to b3: transmit timer index */
 byte subnet; /* subnet */
};

struct ta_s { /* Turnaround entry */
 byte type; /* 0 */
 byte ta; /* 1 */
 byte field3; /* b4 to b7: unackd_rpt timer */
 /* b0 to b3: retry count */
 byte field4; /* b0 to b3: transmit timer index */
};

struct empty_s { /* Empty entry */
 byte type /* 0 */
 byte empty; /* 0 */
};

struct update_addr_request {
 byte command; /* value = 6 */
 byte index; /* 0–14 */
 union {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

363

 struct group_s;
 struct snode_s;
 struct bdcst_s;
 struct ta_s;
 struct empty_s;
 } address;
};

struct update_addr_response {
 byte command; /* value = 6 */
};

A.21 Query address data structures

struct query_addr_request {
 byte command; /* value = 7 */
 byte index; /* 0–14 */
};

struct query_addr_response {
 byte command; /* value = 7 */
 union {
 struct group_s;
 struct snode_s;
 struct bdcst_s;
 struct ta_s;
 struct empty_s;
 } address;
};

A.22 Query NV Cnfg data structures

struct query_nv_cnfg_request {
 byte command; /* value = 8 */
 byte nv_index; /* index of nv when < 255 */
 [uint16 nv_index16;] /* 16-bit index iff nv_index == 255 */
 byte pri_index; /* index of primary NV when nv_index refers to an */
 /* alias */
 [uint16 pri_index16;] /* 16 bit index of primary NV when pri_index == 255 */
};

struct query_nv_cnfg_response {
 byte command; /* value = 8 */
 byte field1; /* b7: priority */
 /* b6: direction */
 /* b0 to b5: net var selector—msb */
 byte idlo; /* net var selector—lsb */
 byte field2; /* b7: turnaround */
 /* b5 to b6: service */
 /* b4: authenticated */
 /* b0 to b3: address table index */
};

A.23 Update group address data structures

struct update_group_addr_request {
 byte command; /* value = 9 */
 struct group_s;
 } address;
};

BS EN 14908-1:2014

EN 14908-1:2014 (E)

364

struct update_group_addr_response {
 byte command; /* value = 9 */
};

A.24 Query domain data structures

struct query_domain_request {
 byte command; /* value = 10 */
 byte index; /* Domain index, 0 or 1 */
};

struct query_domain_response {
 byte command; /* value = 10 */
 byte domain_id[6];
 byte subnet;
 byte node;
 byte did_length; /* 0,1,3, or 6 */
 byte encrypt_key[6];
};

A.25 Update network variable configuration data structures

struct update_nv_cnfg_request {
 byte command; /* value = 11 */
 byte nv_index; /* 0-255; */
 [uint16 nv_index16;] /*16-bit index iff nv_index == 255 */

 byte field1; /* b7: priority */
 /* b6: direction */
 /* b0 to b5: net var selector—msb */
 byte idlo; /* net var selector—lsb */
 byte field2; /* b7: turnaround */
 /* b5 to b6: service */
 /* b4: secure */
 /* b0 to b3: address table index */
 byte pri_index; /* index of primary nv iff nv_index is to */
 [uint16 nv_index16;] /* an alias. 16 bit primary index if */
 /* pri_nv == 255. */
};

struct update_nv_cnfg_response {
 byte command; /* value = 11 */
};

A.26 Set node mode data structures

struct set_node_mode_request {
 byte command; /* value = 12 */
 byte state; /* 0: offline */
 /* 1: online */
 /* 2: reset */
 /* 3: change state */
 byte state_data; /* Iff state=3; see “Node States” for values */

struct set_node_mode_response {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

365

 byte command; /* value = 12 Note, no response is provided*/
 /* for offline, online or reset commands */
};

A.27 Read memory data structures

struct read_memory_request {
 byte command; /* value = 13 */
 byte address_mode; /* See below */
 byte address_hi;
 byte address_lo;
 byte count;
};

struct read_memory_response {
 byte command; /* value = 13 */
 byte data[count];
};

/* where “address_mode” determines the physical address as follows: */
/* 0: address = address_hi*256 + address_lo */
/* 1: address = non-volatile memory read-only address+address_hi*256+address_lo */
/* 2: address = non-volatile memory configuration address + address_hi*256 + */
/* address_lo */

A.28 Write memory data structures

struct write_memory_request {
 byte command; /* value = 14 */
 byte address_mode; /* See comment in read_memory command above */
 byte address_hi;
 byte address_lo;
 byte count;
 byte form; /* 0: no reset, no checksum */
 /* 1: recalculate both checksums */
 /* 4: recalculate just configuration checksum */
 /* 8: reset */
 /* 9: reset, recalc both checksums */
 /* 12: reset, recalc configuration checksum */
 byte data[count];
};

struct write_memory_response { /* used only for non-reset writes */
 byte command; /* value = 14 */
};

A.29 Checksum recalculate data structures

struct checksum_request {
 byte command; /* value = 15 */
 byte which; /* 1: do application and configuration */
 /* 4: do configuration only */
};

struct checksum_response {
 byte command; /* value = 15 */
};

BS EN 14908-1:2014

EN 14908-1:2014 (E)

366

A.30 Install command data structures

typedef struct {
 unsigned reserved :3; /* Shall be set to 0 */
 unsigned nv_direction :1;
 unsigned nv_auth :1;
 unsigned nv_priority :1;
 unsigned nv_service :2;
} nv_dflts;

typedef struct {
 unsigned reserved :1; /* Shall be set to 0 */
 unsigned nv_sync :1;
 unsigned nv_polled :1;
 unsigned nv_offline :1;
 unsigned nv_service_type_config :1;
 unsigned nv_priority_config :1;
 unsigned nv_auth_config :1;
 unsigned nv_config_class :1;
 byte snvt_type_index; /* use enum SNVT_t */
} nv_attr;

typedef struct {
 unsigned mre :1; /* Max Rate Est data is available */
 unsigned re :1; /* Rate Estimate data is available */
 unsigned nm :1; /* NV Name is available */
 unsigned sd :1; /* NV SD text is available */
 unsigned nm_supplied :1; /* For QUERY_NV_INFO/NV_INFO_DESC, */
 /* name is appended to message */
 unsigned reserved1 :3; /* Shall be set to 0 */
} nv_exten;

typedef struct {
 unsigned length :5; /* # of bytes in NV value */
 unsigned origin :3; /* How NV was defined */
 nv_dflts dflts; /* Default NV Configuration settings */
 nv_attr attr; /* Basic NV attributes */
 nv_exten ext; /* Available NV Extension attributes */
 nv_array array; /* NV array attributes */
} nv_desc;

typedef enum{
 APP_WINK = 0, /* basic command */

APP_INSTALL = 1, /* get information from multiple stacks */
APP_NV_DEFINE = 2, /* define a new network variable on a node */
APP_NV_REMOVE = 3, /* remove a network variable from the node */

 APP_QUERY_NV_INFO = 4, /* get network variable information */
 APP_QUERY_NODE_INFO = 5, /* get node self documentation information */
 APP_UPDATE_NV_INFO = 6 /* modify nv info. Change its type, etc. */
} AppCommand;
struct install_msg {
 byte command; /* value = 16 */
 byte subcommand; /* one of AppCommand above */
 byte subdata[*]; /* length dependent upon the command/subcommand pair */
};
struct install_response {
 byte command; /* value = 16 */
 union {
 struct manual_service_request_message; /* if subcommand == 0 */
 } data;
};

/* Request to define new NV(s) on the node. The app should respond successfully
even

BS EN 14908-1:2014

EN 14908-1:2014 (E)

367

 if the NV is already defined.
*/
typedef struct
{
 byte app_command; /* APP_NV_DEFINE (AppCommand enum) */
 uint16 nv_index; /* New NV index */
 uint16 array_len; /* # of elements in NV array, */
 /* 0 if new NV is not an array */
 byte nv_length; /* # of bytes in NV value (1-31) */
 nv_dflts dflts; /* Default NV Configuration settings */
 nv_attr attr; /* NV self-documentation attributes */
} NM_app_define_nv;

typedef struct
{
 byte code; /* NM_app_cmd */
 NM_app_define_nv data;
} CMD_app_define_nv;

typedef struct
{
 byte code; /* NM_app_cmd_fail/NM_app_cmd_succ */
} CMD_app_response;

/* Request to remove a set of NVs. The host should respond successfully
 even if 1 or more of the specified NVs does not exist.
*/
typedef struct
{
 byte app_command; /* APP_NV_REMOVE (AppCommand enum) */
 uint16 nv_index; /* Index of first NV to remove */
 uint16 nv_count; /* # of NVs to remove */
} NM_app_remove_nv;

typedef struct
{
 byte code; /* NM_app_cmd */
 NM_app_remove_nv data;
} CMD_app_remove_nv;

/**
 Query Network Variable Self-documentation data
 **/

#define NV_INFO_DESC 0
#define NV_INFO_RATE_EST 1
#define NV_INFO_NAME 2
#define NV_INFO_SD_TEXT 3
#define NV_INFO_SNVT_INDEX 4

typedef struct
{
 byte app_command; /* APP_QUERY_NV_INFO (AppCommand enum) */
 byte nv_info; /* Requested NV Info (NV_INFO...) */
 uint16 nv_index;
 union {
 struct {
 uint16 offset;
 byte length;
 } sd; /* For requesting NV_INFO_SD_TEXT */
 } addl;
} NM_app_query_nv_info;

typedef struct
{

BS EN 14908-1:2014

EN 14908-1:2014 (E)

368

 byte code; /* NM_app_cmd */
 NM_app_query_nv_info data;
} CMD_app_query_nv_info;

typedef union
{
 /* Response for requested info NV_INFO_DESC */
 struct {
 nv_desc desc;
 byte nv_name[NV_NAME_LEN]; /* Optional field - Included only if
 desc.ext.nm_supplied is set */
 } desc;

 /* Response for requested info NV_INFO_RATE_EST */
 struct {
 byte nv_rate_est; /* Encoded rate estimate. Only valid if 're'
 Is set in NV desc */
 byte nv_max_rate_est; /* Encoded max rate estimate. Only valid if
 'mre' is set in NV desc */
 } rate; /* Response for requested info NV_INFO_NAME */
 byte nv_name[NV_NAME_LEN]; /* NV name. Only valid if 'nm' set in */
 /* NV desc */

 /* Response for requested info NV_INFO_SD_TEXT */
 struct {
 byte length;
 byte text[*]; /* depends upon length field */
 } sd;

 /* Response for requested info NV_INFO_SNVT_INDEX */
 byte snvt_type_index;
} NM_app_query_nv_info_response;

typedef struct
{
 byte code; /* NM_app_cmd_fail/NM_app_cmd_succ */
 NM_app_query_nv_info_response data;
} CMD_app_query_nv_info_response;

/**
 Update Network Variable Self-documentation data
 **/

typedef struct
{
 byte app_command; /* APP_UPDATE_NV_INFO (AppCommand enum) */
 byte nv_info; /* NV Info to be updated (NV_INFO...) */
 uint16 nv_index; /* NV index - If the target NV represents an
 array,then the update applies to all elements
 of the array. */
 union {
 /* Data for updated info NV_INFO_NAME */
 nv_name[NV_NAME_LEN]; /* NV name (ascii) - 0 terminated
 if < 16 characters */
 /* Data for updated info NV_INFO_SD_TEXT */
 struct {
 byte length;
 uint16 offset;
 byte text[*]; /* May not be null (0x00) terminated */
 } sd;

 /* Data for updated info NV_INFO_RATE_EST */
 struct {
 unsigned reserved : 4; /* Shall be set to 0 */
 unsigned clear_mre : 1; /* Clear 'ext' rec 'mre' field */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

369

 unsigned clear_re : 1; /* Clear 'ext' rec 're' field */
 unsigned update_mre : 1; /* Update max rate est with nv_max_rate_est */
 unsigned update_re : 1; /* Update rate est with nv_rate_est */
 byte nv_rate_est; /* Encoded rate estimate. */
 byte nv_max_rate_est; /* Encoded max rate estimate. */
 } rate;

 /* Data for updated info NV_INFO_SNVT_INDEX */
 byte snvt_type_index;
 } info;
} NM_app_update_nv_info;

typedef struct
{
 byte code; /* NM_app_cmd */
 NM_app_update_nv_info data;
} CMD_app_update_nv_info;

/**
 Query Node Self-documentation data
 **/

#define NODE_INFO_SD_TEXT 3

typedef struct
{
 byte app_command; /* APP_QUERY_NODE_INFO (AppCommand enum) */
 byte node_info; /* Requested Node Info (NODE_INFO...) */
 union {
 struct {
 uint16 offset;
 byte length;
 } sd; /* For requesting NODE_INFO_SD_TEXT */
 } addl;
} NM_app_query_node_info;

typedef struct
{
 byte code; /* NM_app_cmd */
 NM_app_query_node_info data;
} CMD_app_query_node_info;

typedef union
{
 /* Response for requested info NODE_INFO_SD_TEXT */
 struct {
 byte length;
 byte text[*]; /* May not be 0 terminated */
 } sd;
} NM_app_query_node_info_response;

typedef struct
{
 byte code; /* NM_app_cmd_fail/NM_app_cmd_succ */
 NM_app_query_node_info_response data;
} CMD_app_query_node_info_response;

Extended Network Management Message Structures

NM_GET_CAPABILITY_INFO

typedef struct {
unsigned command; // NM_GET_CAPABILITY_INFO
NetWord offset; // base is start of alias_field
Unsigned count; // number of bytes to read

BS EN 14908-1:2014

EN 14908-1:2014 (E)

370

} NmGetCapabilityInfo;

NM_SET_NV

typedef struct {
 unsigned command; // NM_SET_NV
 NetWord index; // NV index
 unsigned value[1]; // NV value
} NmSetNv;

NM_NODE::NM_INITIALIZE

typedef struct {
 unsigned command; // NM_INITIALIZE
 unsigned resource; // NM_NODE
 nm_node_state state; // if non-zero, the state to go to afterwards
} NmNodeInitializeReq;

NM_DOMAIN::NM_INITIALIZE

typedef struct {
 unsigned command; // NM_INITIALIZE
 unsigned resource; // NM_DOMAIN
 NetWord index; // start index
NetWord index_end; // end index. All 1's means all remaining entries
} NmDomainInitializeReq;

NM_DOMAIN::NM_CREATE and NM_DOMAIN::NM_UPDATE

typedef struct
{
 nme_command command; /* NM_UPDATE */
 nme_resource resource; /* NM_DOMAIN */
 NetWord index; /* domain index */
 domain_struct value; /* entry data */
} NmDomainUpdateReq;

NM_DOMAIN::NM_ENUMERATE

typedef struct {
 unsigned command; // NM_ENUMERATE
 unsigned resource; // NM_DOMAIN
 NetWord index; // domain table index
} NmDomainEnumerateReq;

typedef struct {
 NetWord index; // specified or next non-empty entry
 domain_struct value; // entry data
} NmDomainEnumerateResp;

NM_DOMAIN::NM_SET_AUTH

typedef struct {
 unsigned command; // NM_SET_AUTH
 unsigned resource; // NM_DOMAIN
 NetWord index; // the domain index to update, or 0xFFFF for all
domains
 unsigned increment : 1; // True to treat the authentication key below as an
 // increment based on the current key,
 //false to use it as an absolute value.
 unsigned : 7;
 unsigned authKey[AUTH_KEY_LEN];
} NmDomainSetAuthenticationReq;

Expanded Address Table Structure

BS EN 14908-1:2014

EN 14908-1:2014 (E)

371

typedef enum
{
 GRP_NORMAL = 0,
 GRP_OUTPUT_ONLY = 1,
 GRP_INPUT_NO_ACK = 2,
} group_restriction;

/* extended address table structure */
typedef struct {
 /* group_struct: */
 bits type : 1; /* 1 => group */
 bits size : 7; /* group size (0 => huge group) */
 bits restriction : 2; /* group_restriction */
 bits member : 6; /* member num (if huge group, only use 0) */
 bits rpt_timer : 4; /* unackd_rpt timer */
 bits retry : 4; /* retry count */
 bits rcv_timer : 4; /* receive timer index */
 bits tx_timer : 4; /* transmit timer index */
 unsigned group; /* group ID */
 NetWord domain; /* 16-bit domain index */
} group_struct_ext;

typedef struct {
 /* snode_struct: */
 bits : 2; /* shall be zero */
 bits type : 6; /* SUBNET_NODE */
 bits : 1 /* formerly domain index bit */
 bits node : 7; /* node number */
 bits rpt_timer : 4; /* unackd_rpt timer */
 bits retry : 4; /* retry count */

 bits : 4;
 bits tx_timer : 4; /* transmit timer index */
 unsigned subnet; /* subnet ID */
 NetWord domain; /* 16-bit domain index */
} snode_struct_ext;

typedef struct {
 /* bcast_struct: */
 bits : 2; /* shall be zero */
 bits type : 6; /* BROADCAST */
 bits : 1; /* formerly domain index bit */
 bits : 1;
 bits backlog : 6; /* backlog override value */
 bits rpt_timer : 4; /* unackd_rpt timer */
 bits retry : 4; /* retry count */
 bits max_responses : 4;
 bits tx_timer : 4; /* transmit timer index */
 unsigned subnet; /* subnet ID (0 => domain broadcast) */
 NetWord domain; /* 16-bit domain index */
} bcast_struct_ext;

typedef turnaround_struct turnaround_struct_ext;

typedef union address_struct_ext
{
 group_struct_ext gp;
 snode_struct_ext sn;
 bcast_struct_ext bc;
 turnaround_struct_ext ta;
 struct
 {
 address_struct base_struct;
 NetWord domain;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

372

 } common; /* another way of looking at the structure */
} address_struct_ext;

The address structure for Unique Node ID addressing is also modified, though it is
not stored in the address table:

typedef struct {
 /* UnId_struct: */
 bits key_override : 2;
 bits type : 6; /* Unique Node_ID */
 bits : 1; /* formerly domain index bit */
 bits : 7;
 bits rpt_timer : 4;
 bits retry : 4;
 bits : 4;
 bits tx_timer : 4;
 unsigned subnet;
 unsigned unid [Unique Node_ID_LEN];
 NetWord domain; /* 16-bit domain index */
} UnId_struct_ext;

NM_ADDRESS::NM_INITIALIZE

typedef struct {
 unsigned command; // NM_INITIALIZE
 unsigned resource; // NM_ADDRESS
 NetWord index; // start index.
 NetWord index end; // end index. All 1's means all
 // remaining entries
} NmAddressInitializeReq;

NM_ADDRESS::NM_CREATE and NM_ADDRESS::NM_UPDATE

typedef struct {
 unsigned command; // NM_UPDATE
 unsigned resource; // NM_ADDRESS
 NetWord index; // address table index
 address_struct_ext value; // entry data
} NmAddressUpdateReq;

NM_ADDRESS::NM_ENUMERATE

typedef struct {
 unsigned command; // NM_ENUMERATE
 unsigned resource; // NM_ADDRESS
 NetWord index; // address table index
} NmAddressEnumerateReq;

typedef struct {
 NetWord index; // specified or next non-empty entry
 address_struct_ext value; // entry data
} NmAddressEnumerateResp;

NV Configuration Table Entry Structure

typedef struct nv_struct_ext
{
 /* unsigned 0: */
 bits nv_priority : 1; /* (same as nv_struct) */
 bits nv_direction : 1; /* (same as nv_struct) */
 bits nv_selector_hi : 6; /* (same as nv_struct) */
 /* unsigned 1: */
 unsigned nv_selector_lo ; /* (same as nv_struct) */
 /* unsigned 2: */
 bits nv_turnaround : 1; /* (same use as nv_struct) */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

373

 bits nv_auth : 1; /* (same use as nv_struct) */
 bits nv_write_by_index : 1; /* target NV can be written by index, for
 outputs only) */
 bits nv_remote_nm_auth : 1; /* target node is nm authenticated */
 bits : 4;
 bits nv_read_by_index : 1; /*target NV is be read fetching, not polling
*/
 bits nv_service : 2; /* for outputs only: same use as nv_struct */
 bits : 5;
 /* Bytes 4 to 7 */
 NetWord nv_addr_index; /*0xffff indicates no corresponding address table entry
*/
 NetWord nv_target index; /* nv index of the target 0xffff means no target */
} nv_struct_ext;

NM_NV_CONFIG::NM_INITIALIZE

typedef struct {
 unsigned command; // NM_INITIALIZE
unsigned resource; // NM_NV_CONFIG
NetWord index; // start index.
NetWord index_end; // end index. All 1's
 // means all remaining entries
} NmNvConfigInitializeReq;

NM_NV_CONFIG::NM_CREATE and NM_NV_CONFIG::NM_UPDATE

typedef struct {
 unsigned command; // NM_UPDATE
 unsigned resource; // NM_NV_CONFIG
 NetWord index; // nv table index
 nv_struct_ext value; // entry data
} NmNvConfigUpdateReq;

NM_NV_CONFIG::NM_ENUMERATE

typedef struct {
 unsigned command; // NM_ENUMERATE
 unsigned resource; // NM_NV_CONFIG
 NetWord index; // nv index
} NmNvConfigEnumerateReq;

typedef struct {
 NetWord index; // specified or next allocated nv
 nv_struct_ext value; // entry data
} NmNvConfigEnumerateResp;

Alias Configuration Table Structures

typedef struct alias_struct_ext
{
 nv_struct_ext alias_nv;
 NetWord alias_primary; /* 0xffff means no primary index */
} alias_struct_ext;

NM_ALIAS_CONFIG::NM_INITIALIZE

typedef struct {
 unsigned command; // NM_INITIALIZE
 unsigned resource; // NM_ALIAS_CONFIG
 NetWord index; // start index.
 NetWord index_end; // end index. All 1's means all remaining entries
} NmAliasConfigInitializeReq;

NM_ALIAS_CONFIG::NM_CREATE and NM_ALIAS_CONFIG::NM_UPDATE

BS EN 14908-1:2014

EN 14908-1:2014 (E)

374

typedef struct {
 unsigned command; // NM_UPDATE
 unsigned resource; // NM_ALIAS_CONFIG
 NetWord index; // nv table index
 alias_struct_ext value; // entry data
} NmAliasConfigUpdateReq;

NM_ALIAS_CONFIG::NM_ENUMERATE

typedef struct {
 unsigned command; // NM_ENUMERATE
 unsigned resource; // NM_ALIAS_CONFIG
 NetWord index; // alias index
} NmAliasConfigEnumerateReq;

typedef struct {
 NetWord index; // specified or next allocated alias
 alias_struct_ext value; // entry data
} NmAliasConfigEnumerateResp;

A.31 Memory refresh data structures

struct memory_refresh_request {
 byte command; /* value = 17 */
 uint16 offset; /* 16 bit offset from start of non-volatile memory */
 byte count; /* Number of bytes to write */
 byte offchip; /* 1=> refresh off chip memory */
};

struct memory_refresh_response {
 byte command; /* value = 17 */
};

A.32 Query SI data structures

struct query_SI_request {
 byte command; /* value = 18 */
 uint16 offset; /* 16 bit offset into micro’s SNVT table */
 byte count; /* number of bytes to return (up to 16) */
};

struct query_SI_response {
 byte command; /* value = 18 */
 byte data[count]; /* return data (count bytes) */
};

A.33 NV fetch data structures

struct nv_fetch_request {
 byte command; /* value = 19 */
 byte index; /* Network Variable selector */
 [uint16 index16;] /* 16-bit index, used only if index == 255 */
 /* This format supported only by host nodes */
};

struct nv_fetch_response {

BS EN 14908-1:2014

EN 14908-1:2014 (E)

375

 byte command; /* value = 19 */
 byte index; /* Network Variable selector */
 [uint16 index16;] /* Iff index == 255; host nodes only */
 byte data[NVLEN]; /* return data (based on NV length) */
};

A.34 Manual service request message ddata structures

struct manual_service_request_message {
 byte command; /* value = 31 */
 byte Unique_Node_ID[6];
 byte program_id_string[8];
 };

A.35 Product query data structures

struct product_query_request {
 byte command; /* Destination: NM, code: 0x7D (escape) */
 byte data[2]; /* Product query subcode = 0x01 */
 /* Product query command = 0x01 */
};

struct product_query_short_response {
 byte command; /* success = 0x3D, failure = 0x1D */
 byte product_ID; /* product identifier */
}

struct product_query_complete_response {
 byte response; /* success = 0x3D, failure = 0x1D */
 byte product; /* product identifier */
 byte model[2]; /* model number */
 byte version; /* version number */
 byte config; /* current configuration or mode of device */
 byte Xcvr_ID; /* transceiver type */
};

A.36 Router mode data structures

struct router_mode_request {
 byte command; /* Destination: NM, code: 20 */
 byte mode; /* 0: resume, 1: init subnet table, 2: mode flood */
};

struct router_mode_response {
 byte command; /* Destination: APPL, code: 20 */
};

A.37 Router table clear group or subnet table data structures

struct router_table_clear_request {
 byte command; /* Destination: NM, code: 21 */
 byte field1; /* b7: 1 = group, 0 = subnet */
 /* b6: domain ref */
 /* b0-3: 8x index */
};

struct router_group_clear_response {
 byte command; /* Destination: APPL, code: 21 */

BS EN 14908-1:2014

EN 14908-1:2014 (E)

376

};

A.38 Router group or subnet download data structures

struct groupsubnet_table_download {
 byte command; /* Destination: NM, code: 22 */
 byte field1; /* b7: 1 = group, 0 = subnet */
 /* b6: domain ref */
 /* b0-3: 8x index */
 byte table[8]; /* l.s. bit is l.s. group/subnet # */
};

struct groupsubnet_table_download_response {
 byte command; /* Destination: APPL, code: 22 */
};

A.39 Router group forward data structures

struct group_forward_request {
 byte command; /* Destination: NM, code: 23 */
 byte field1; /* b0: 0: RAM only, 1: RAM + non-volatile memory */
 /* b6: domain ref */
 byte group; /* 0-255 */
};

struct group_forward_response {
 byte command; /* Destination: APPL, code: 23 */
};

A.40 Router subnet forward data structures

struct subnet_forward_request {
 byte command; /* Destination: NM, code: 24 */
 byte field1; /* b0: 0: RAM only, 1: RAM + non-volatile memory */
 /* b6: domain ref */
 byte subnet; /* 1-255 */
};

struct subnet_forward_response {
 byte command; /* Destination: APPL, code: 24 */
};

A.41 Router group No-Forward data structures

struct group_noforward_request {
 byte command; /* Destination: NM, code: 25 */
 byte field1; /* b0: 0: RAM only, 1: RAM + non-volatile memory */
 /* b6: domain ref */
 byte group; /* 0-255 */
};

struct group_noforward_response {
 byte command; /* Destination: APPL, code: 25 */
};

BS EN 14908-1:2014

EN 14908-1:2014 (E)

377

A.42 Router subnet No-Forward data structures

struct subnet_noforward_request {
 byte command; /* Destination: NM, code: 26 */
 byte field1; /* b0: 0: RAM only, 1: RAM + non-volatile memory */
 /* b6: domain ref */
 byte subnet; /* 1-255 */
};

struct subnet_noforward_response {
 byte command; /* Destination: APPL, code: 26 */
};

A.43 Group / subnet table report data structures

struct groupsubnet_table_report_request {
 byte command; /* Destination: NM, code: 27 */
 byte field1; /* b7: 1 = group, 0 = subnet */
 /* b6: domain ref */
 /* b0-3: 8x index */
};

struct groupsubnet_table_report_response {
 byte command; /* Destination: APPL, code: 27 */
 byte table[8]; /* l.s. bit is l.s. group/subnet # */
};

A.44 Router status data structures

struct router_status_request {
 byte command; /* Destination: NM, code: 28 */
};

struct router_status_response {
 byte command; /* Destination: APPL, code: 28 */
 byte router_cnfg; /* type: 1 = learning, 0 = configured */
 /* 2 = bridge, 3 = bridge_repeater */
 byte mode; /* 0 = normal, 2 = flood */
};

A.45 Query status data structures

struct query_status_request {
 byte command; /* value = 1 */
};

struct query_status_response {
 byte command; /* value = 1 */
 struct status_response data; /* see below */
};

struct status_response {
 uint15 transmission_errors;
 uint16 transaction_timeouts;
 uint16 receive_transaction_full;
 uint16 lost_messages;
 uint16 missed_messages;
 byte reset_cause;
 byte node_state;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

378

 byte version;
 byte error_log;
 byte model_number;
};

A.46 Proxy status data structures

struct proxy_command {
 byte command; /* value = 2 */
 byte sub_command; /* 0=> query id (unconfigured); 1=> status */
 /* 2=> transceiver status request */
 union {
 struct group_s;
 struct snode_s;
 struct bdcst_s;
 struct nid_s;
 } address; /* Address structures as defined in the network
 management modify address command and below */
};

struct nid_s {
 byte type; /* 2 */
 byte field2; /* b7: domain ref set by target */
 byte field3; /* b0 to b3: retry count */
 byte field4; /* b0 to b3: transmit timer index */
 byte subnet; /* subnet */
 byte nid[6]; /* Unique_Node_ID */
};

struct proxy_response {
 byte command; /* value = 2 */
 byte resp_data; /* data and length are functions of the sub_command */

};

A.47 Clear status data structures

struct clear_status_command {
 byte command; /* value = 3 */
};

struct clear_status_response {
 byte command; /* value = 3 */
};

A.48 Query transceiver status data structures

struct query_xcvr_status_command {
 byte command; /* value = 4 */
};

struct query_xcvr_status_response {
 byte command; /* value = 4*/
 byte data[7]; /* register values */
};

BS EN 14908-1:2014

BS EN 14908-1:2014

EN 14908-1:2014 (E)

380

Annex B
(normative)

Additional Data Structures

B.1 General

This annex contains information on additional protocol processor data structures. The bit-field ordering
in all data structures presented here are from high-order to low-order bit within a byte. The byte
ordering is high-order to low-order byte within a field.

The software in the protocol processor may be divided into three main sections: system image,
application image, and network image.

B.1.1 System image

This contains the control network protocol and the runtime environment used in a particular
implementation.

B.1.2 Application image

This contains the code generated from the user’s application program, along with other application-
specific parameters. A network management tool may query these parameters. They include:

— network variable fixed and self-identification data;

— program ID string;

— optional self-identification and self-documentation data;

— number of address table entries;

— number of domain table entries;

— number and size of network buffers;

— number and size of application buffers;

— number of receive transaction records;

— transceiver type and bit rate.

The application image data structures described here are:

— fixed read-only structure, whose size is independent of the application on the node;

— network variable fixed table, with entries for every network variable defined by this node;

— optional self-identification and self-documentation information describing this node and its network
variables.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

381

B.1.3 Network image

The network image contains:

— address assignments of the node;

— binding information connecting network variables and message tags between the nodes in the
network;

— parameters of the protocol that may be set at installation time; and

— configuration variables of the application program.

A network management tool typically downloads the network image over the network into on-chip
EEPROM memory when a node is installed. For simple networks, a node can update its own network
image.

This subclause is intended for application programmers who need to understand the internal data
structures of the protocol processor that are used for address assignment, binding, and network
configuration.

These data structures shall be accessible by network management messages received over the
network from a network management tool.

The network image data structures described here are:

— domain table, with an entry for every domain to which this node belongs;

address table, with an entry for every network address referenced by this node;

— network variable configuration table, with entries for every network variable defined by this node;

— channel configuration structure, defining the transceiver interface of the node;

B.2 Read-only structures

The structures defined in the following subclauses begin with a memory address of 0xF000 for the
fixed read-only data structures. This need not map to the actual physical memory in the node.
However, commands for read and write memory will provide addresses as though this is the physical
layout.

B.2.1 Fixed read-only data structures

This structure defines the node identification, as well as some of the application image parameters.

#define UNIQUE_NODE_ID_LEN 6
#define ID_STR_LEN 8
typedef struct {
 unsigned unique_node_id[UNIQUE_NODE_ID_LEN]; // offset 0x00
 unsigned model_num; // offset 0x06
 unsigned Checksum : 4; // XOR of each of the
 // 4 bit quantities
 // in unique_node_id
 // and model_num
 unsigned minor_model_num : 4; // offset 0x07

BS EN 14908-1:2014

EN 14908-1:2014 (E)

382

 const nv_fixed_struct *nv_fixed; // offset 0x08
 unsigned read_write_protect : 1; // offset 0x0A
 unsigned run_when_unconfigured : 1;
 unsigned nv_count : 6;
 const snvt_struct *snvt; // offset 0x0B
 unsigned id_string[ID_STR_LEN]; // offset 0x0D
 unsigned NV_processing_off : 1; // offset 0x15
 unsigned two_domains : 1;
 unsigned explicit_addr : 1;
 unsigned reserved : 1;
 unsigned msg_process : 1;
 unsigned state : 3; // node state
 // 2: unconfigured
 // 3: applicationless
 // 4: configured
 // 6: hard offline
 unsigned address_count : 4; // offset 0x16
 unsigned reserved : 4;
 unsigned reserved : 4;
 unsigned receive_trans_count : 4; // offset 0x17
 unsigned app_buf_out_size : 4; // offset 0x18
 unsigned app_buf_in_size : 4;
 unsigned net_buf_out_size : 4; // offset 0x19
 unsigned net_buf_in_size : 4;
 unsigned net_buf_out_priority_count : 4; // offset 0x1A
 unsigned app_buf_out_priority_count : 4;
 unsigned app_buf_out_count : 4; // offset 0x1B
 unsigned app_buf_in_count : 4;
 unsigned net_buf_out_count : 4; // offset 0x1C
 unsigned net_buf_in_count : 4;
 byte reserved1[6];
 unsigned : 6; // offset 0x22
 unsigned tx_by_address : 1;
 unsigned idempotent_duplicate : 1;
} read_only_data_struct;

typedef struct {
 unsigned : 2;
 unsigned alias_count : 6;
 unsigned msg_tag_count : 4;
 unsigned : 4;
 byte reserved2[3];
} read_only_data_struct_2;

const read_only_data_struct read_only_data;
const read_only_data_struct_2 read_only_data_2;

The application program may read from but not write to these structures, using the global declaration
read_only_data and read_only_data_2. The structure may be read and mostly written (except for the
first eight bytes) over the network using the Read Memory and Write Memory network management
messages with address_mode=1. It is written during the process of downloading a new application
image into the node.

B.2.2 Read-only structure field descriptions

unsigned unique_node_id[UNIQUE_NODE_ID_LEN]; // offset 0x00

BS EN 14908-1:2014

EN 14908-1:2014 (E)

383

This field is a 6-byte ID assigned by the manufacturer of the protocol processor that is unique to each
unit manufactured. It may be read over the network using the Query ID network management
message. It is also part of the unsolicited Manual Service Request network management message.

unsigned model_num; // offset 0x06
unsigned minor_model_num : 4; // offset 0x07
These are two fields that specify the model of the protocol processor.

Unsigned checksum : 4; // offset 0x07
This field contains the exclusive OR of the other 15 nibbles in the 8 bytes composed of the
unique_node_id, model_num, and minor_model_num.

const nv_fixed_struct *nv_fixed; // offset 0x08
This field is a pointer to the Network Variable fixed data table (see B.4). If there are no network
variables on the node, or this node is a network interface and processing network variable selectors in
the application, then this pointer is not used.

unsigned read_write_protect : 1; // offset 0x0A
This bit specifies that parts of the protocol processor’s memory may not be read or written over the
network with the Read Memory and Write Memory network management messages. If this bit is set,
only the Read-only Structure (B.1), the SNVT Structures (B.5), the Configuration Structure (B.6), and
the application data area may be read, and only the Configuration Structure may be written. The write-
protected data includes the read_write_protect bit itself, so that once set, the bit may not be reset over
the network.

Unsigned run_when_unconfigured : 1;
This bit specifies that the application will run when the node is in the unconfigured state.

unsigned nv_count : 6;
This field specifies the number of network variables declared in the application program running on
this node (0 to 62). Each element of a network variable array is counted separately. If this node is a
network interface that is processing network variable selectors in the application, this field is zero.

const si_struct *si; // offset 0x0B
This field is a pointer to the data structure that gives self-identification information for the network
variables (see B.5). The self-identification information may be read directly with the read memory
command. If the self-identification information is not present, this is a null (0) pointer. A pointer
containing all 1’s means that the self-identification information is located outside the addressable
space of the protocol processor (e.g., on a co-processor). The Query SI command (see 13.7.18) is
used in that case to read the self-identification information.

unsigned id_string[ID_STR_LEN]; // offset 0x0D
This field contains an 8-byte program identifying information as specified in either of the following
directives:

#pragma set_id_string "ssssssss"
 or

#pragma set_std_prog_id fm:mm:mm:cc:cc:uu:tt:nn

The second format is called "the standard program ID (SPID)". The 16 hex digits of the SPID are
organized as 6 fields that identify the format (f), manufacturer (mmmmm), device class (cccc), usage
(uu), channel type (tt), and model number (nn) of the device. The organization and the description of
these 6 fields is defined in EN 14908-5.

http://dx.doi.org/10.3403/30149067U

BS EN 14908-1:2014

EN 14908-1:2014 (E)

384

The standard program ID string may be read over the network using the Query ID network
management message. It is also part of the unsolicited Manual service request network management
message.

unsigned two_domains : 1;
This bit specifies that the domain table has two entries (see B.3). If this bit is zero, the domain table
has one entry.

unsigned explicit_addr : 1;
This bit specifies that the node uses explicit message addressing in its application. If this bit is set, the
application buffers contain an 11-byte explicit address field. This is set for any application using explicit
addressing or the nv_in_addr structure.

Unsigned msg_process : 1;
When this bit field is set to 1, it means that the application can process explicit messages

Unsigned state : 3;
This three bit field represents the node state. The values for the different states are described in 13.4

unsigned address_count : 4; // offset 0x16
This field specifies the number of entries (0 to 15) in the address table (see B.3).

unsigned receive_trans_count : 4; // offset 0x17
This field specifies the number of receive transactions. The number of receive transactions is one
more than the number specified in this field. A value of 0xF means that there are 16 or more receive
transactions. .

unsigned app_buf_out_size : 4; // offset 0x18
unsigned app_buf_in_size : 4;
unsigned net_buf_out_size : 4; // offset 0x19
unsigned net_buf_in_size : 4;

These fields specify the sizes of the application and network buffers. The fields are encoded as
follows:

Table B. 1 — Buffer size encodings

Field Value Buffer Size

0 255

2 20

3 21

4 22

5 24

6 26

7 30

8 34

9 42

10 50

11 66

12 82

BS EN 14908-1:2014

EN 14908-1:2014 (E)

385

13 114

14 146

15 210
unsigned net_buf_out_priority_count : 4; // offset 0x1A
unsigned app_buf_out_priority_count : 4;
unsigned app_buf_out_count : 4; // offset 0x1B
unsigned app_buf_in_count : 4;
unsigned net_buf_out_count : 4; // offset 0x1C
unsigned net_buf_in_count : 4;

These fields specify the number of application and network buffers. Note that if one of the priority
output buffer counts is zero, then both of them shall be zero. The fields are encoded as follows:

Table B. 2 — Buffer Count Encodings

Field Value Number of Buffers

0 0

2 1

3 2

4 3

5 5

6 7

7 11

8 15

9 23

10 31

11 47

12 63

13 95

14 127

15 191

unsigned tx_by_addr : 1;
This bit specifies that the node is maintaining a separate outgoing transaction space for each unique
destination address in the address table.

unsigned idempotent_duplicate : 1;
This bit specifies that the protocol processor sets the idempotent retry bit in the application buffer
when a request retry is sent up to the application.

unsigned alias_count : 6;
This field specifies the number of entries in the network variable alias table. If this node is an network
interface and is processing network variable selectors in the application, this field is zero. Maximum
value for this field is 62.

unsigned msg_tag_count : 4;
This field specifies the number of bindable message tags used by the node. The range is 0 to 15.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

386

B.3 Domain table

This table defines the domains to which this node belongs. It is located in non-volatile memory, and is
part of the network image written during node installation. During development, the contents of this
table are downloaded when the node is loaded.

#define AUTH_KEY_LEN 6
#define DOMAIN_ID_LEN 6
typedef struct {
 unsigned id[DOMAIN_ID_LEN]; // offset 0x00
 unsigned subnet; // offset 0x06
 unsigned : 1;
 unsigned node : 7; // offset 0x07
 unsigned len; // offset 0x08
 unsigned key[AUTH_KEY_LEN]; // offset 0x09
} domain_struct;

B.3.1 Domain table field descriptions

unsigned id[DOMAIN_ID_LEN];
Each domain in a control protocol network has a unique ID of 0, 1, 3 or 6 bytes in length. If the ID is
shorter than 6 bytes, it is left-justified in this field.

unsigned subnet;
This field specifies the ID of the subnet within this domain to which this node belongs. A subnet ID
may be in the range 1 to 255 for each domain. Zero is an invalid subnet ID.

unsigned node;
This field specifies the ID of the node within this subnet (1 – 127). Zero is an invalid node ID.

unsigned len;
This field specifies the length of the domain ID in bytes (0, 1, 3 or 6). The value 0xFF (255) means that
this domain table entry is not in use.

unsigned key[AUTH_KEY_LEN];
This field specifies the six-byte authentication key to be used in this domain for authenticated
transactions. This key shall match the key of all the other nodes on this domain that participate in
authenticated transactions with this node. The authentication key may be incremented over the
network using the Update Key network management message.

B.4 Address table

This table defines the network addresses to which this node may send implicitly-addressed messages
and network variables. It also defines the groups to which this node belongs. It is located in non-
volatile memory, and is part of the network image written during node installation.

typedef enum { UNBOUND, SUBNET_NODE, Unique_Node_ID, BROADCAST } addr_type;
typedef union {
 group_struct gp;
 snode_struct sn;
 bcast_struct bc;
 turnaround_struct ta;
} address_struct;
const address_struct *access_address(byte index);

BS EN 14908-1:2014

EN 14908-1:2014 (E)

387

update_address(const address_struct * address_entry, byte index);
byte addr_table_index(message_tag_name);

The application program may read and write any entry in this table using the access routines
access_address() and update_address(). The index of the address table entry corresponding to any
message tag declared in the program may be determined with the function addr_table_index(). The
address table consists of up to 15 entries, each 5 bytes in length.

Each entry may be in one of five formats: group address, subnet/node address, broadcast address,
turnaround address, or not in use. A group address is used for multicast addressing, when a network
variable or message tag is used in a connection having more than two members. A subnet/node
address is used for unicast addressing, when an output network variable or message tag is used in a
connection with one other node. A turnaround address is used for network variables that are only
bound to other network variables in the same node, and not to any network variables on other nodes.
Destination addresses in the 48-bit Unique_Node_ID format are never used in the address table, but
they may be used as destination addresses in explicitly addressed messages. For completeness, this
format is described below.

The entries in this table may be read and written over the network with the Query Address and Update
Address Table network management messages. An entry using group address format may be updated
over the network with the Update Group Address Data network management message.

The first byte in an address table entry specifies the format of the entry:

0 not in use / turnaround format

1 (subnet, node) format

3 broadcast format

128 to 255 group format

Any bindable message tags declared in the application program are assigned to the first entries in the
address table in order of declaration. This is followed by address table entries used for network
variables – typically, the binder assigns these entries.

The repeat timer, retry count, receive timer, and transaction timer are common to several of these
address formats, and are described in B.4.11.

B.4.1 Declaration of group address format

typedef struct {
 unsigned type : 1; // offset 0x00
 unsigned size : 7;
 unsigned domain : 1; // offset 0x01
 unsigned member : 7;
 unsigned rpt_timer : 4; // offset 0x02
 unsigned retry : 4;
 unsigned rcv_timer : 4; // offset 0x03
 unsigned tx_timer : 4;
 unsigned group : 8; // offset 0x04
} group_struct;
B.4.2 Group address field descriptions

unsigned type : 1;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

388

This bit is 1 for a group address, 0 for any of the other formats.

unsigned size : 7;
This field specifies the size of the group (2 to 64). The size of a group includes the sender of the
message. If this field is 0, then the group is of unlimited size, and unacknowledged or repeated service
shall be used.

unsigned domain : 1;
This field specifies the index into the domain table for this address (0 or 1).

unsigned member : 7;
This field specifies the member ID of this node within this group (0 to 63). A group of unlimited size
has 0 in this field. The member ID is used in acknowledgments to allow the sender of an
acknowledged multicast message to keep track of which nodes have responded.

unsigned group : 8;
This field specifies the ID of this group within this domain. A group ID may be in the range of 0 to 255.
The group ID is typically allocated by a network variable binder.

B.4.3 Declaration of subnet/node address format

typedef struct {
 addr_type type; // offset 0x00
 unsigned domain : 1; // offset 0x01
 unsigned node : 7;
 unsigned rpt_timer : 4; // offset 0x02
 unsigned retry : 4;
 unsigned : 4; // offset 0x03
 unsigned tx_timer : 4;
 unsigned subnet : 8; // offset 0x04
} snode_struct;

B.4.4 Subnet/node address field descriptions

addr_type type;
This field contains the value SUBNET_NODE (1).

unsigned domain : 1;
This field specifies the index into the domain table for this address (0 or 1).

unsigned node : 7;
This field specifies the node ID (1 to 127) within the specified subnet and domain. Zero is not a valid
node ID.

unsigned subnet : 8;
This field specifies the subnet ID (1 to 255) within the specified domain. Zero is not a valid subnet ID.

B.4.5 Declaration of broadcast address format

typedef struct {
 addr_type type; // offset 0x00
 unsigned domain : 1; // offset 0x01
 unsigned : 1;
 unsigned backlog : 6;
 unsigned rpt_timer : 4; // offset 0x02
 unsigned retry : 4;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

389

 unsigned : 4; // offset 0x03
 unsigned tx_timer : 4;
 unsigned subnet : 8; // offset 0x04
} bcast_struct;
B.4.6 Broadcast address field descriptions

addr_type type;
This field contains the value BROADCAST (3).

unsigned domain : 1;
This field specifies the index into the domain table for this address (0 or 1).

unsigned backlog : 6;
This field specifies an estimate of the channel backlog that would be created by an acknowledged or
request/response message broadcast using this address. It should be set to the expected number of
acknowledgements or responses. For example, this might be the worst case number of nodes
expected to respond to a Query ID message on a channel. If this is unknown, this field can be set to
zero in which case a backlog of fifteen is assumed.

unsigned subnet : 8;
This field specifies the subnet number (1 to 255) within the specified domain. The message is
delivered to all nodes in this subnet. If the subnet number is 0, the message is delivered to all nodes in
the domain. If request/response or acknowledged service is used with a broadcast address, the
transaction completes as soon as the first response or acknowledgment is received. Subsequent
responses or acknowledgments are discarded.

B.4.7 Declaration of turnaround address format

typedef struct {
 addr_type type; // offset 0x00
 unsigned turnaround; // offset 0x01
 unsigned rpt_timer : 4; // offset 0x02
 unsigned retry : 4;
 unsigned : 4; // offset 0x03
 unsigned tx_timer : 4;
} turnaround_struct;

B.4.8 Turnaround address field descriptions

addr_type type;
Contains the value UNBOUND (0)

unsigned turnaround;
This field contains the value one. If the turnaround field is zero, this address table entry is not in use.

B.4.9 Declaration of protocol processor’s address format

NOTE This format is not used in the address table, but it may be used as a destination address for an
explicitly addressed message.

typedef struct {
 addr_type type; // offset 0x00
 unsigned domain : 1; // offset 0x01
 unsigned : 7;
 unsigned rpt_timer : 4; // offset 0x02
 unsigned retry : 4;
 unsigned : 4; // offset 0x03

BS EN 14908-1:2014

EN 14908-1:2014 (E)

390

 unsigned tx_timer : 4;
 unsigned subnet : 8; // offset 0x04
 unsigned nid[UNIQUE_NODE_ID_LEN]; // offset 0x05
} unid_struct;
B.4.10 Protocol processor address field descriptions

addr_type type;
This field contains the value UNIQUE_NODE_ID (2).

unsigned domain : 1;
This field specifies the index into the domain table for the destination address (0 or 1). However,
Unique_Node_ID-addressed messages may be sent on any domain. Unconfigured nodes will receive
messages addressed in Unique_Node_ID format on any domain. When this occurs, the message is
said to be received on the flexible domain, and any response or acknowledgement will be sent back
on the domain in which it was received, with source subnet and node identifiers of zero.

unsigned subnet : 8;
This field specifies the destination subnet number (1 to 255) within the domain. It is only used for
routing of the message, and may be set to zero if the message should pass through all routers in the
domain.

unsigned nid[Unique_Node_ID_LEN];
This field specifies the unique 48-bit Unique_Node_ID of the destination node.

B.4.11 Timer field descriptions

unsigned rpt_timer : 4;
This field specifies the time interval between repetitions of an outgoing message when repeated
service is used. The encoding of this field is in Table 6.

unsigned retry : 4;
This field specifies the number of retries for acknowledged, request/response, or repeated service
(0 to 15). The maximum number of messages sent is one more than this number.

unsigned rcv_timer : 4;
When the node receives a multicast (group) message, the receive timer is set to the time interval
specified by this field. If a message with the same transaction ID is received before the receive timer
expires, it is considered to be a retry of the previous message. The encoding of this field is in Table 6.

unsigned tx_timer : 4;
This field specifies the time interval between retries when acknowledged or request/response service
is used. The transaction retry timer is restarted when each attempt is made and when any
acknowledgment or response (except for the last one) is received. For request/response service, the
requesting node should take into account the delay necessary for the application to respond when
setting the transaction timer. This is important, for example, for network management messages that
write into non-volatile memory. The encoding of the transaction timer field is specified in Table B3.

See B.7.2 for a description of the non_group_timer field defined in Table B3.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

391

Table B. 3 — Encoding of timer field values

Value rpt_timer ms rcv_timer ms tx_timer ms non_group_timer ms

0 16 128 16 128

1 24 192 24 192

2 32 256 32 256

3 48 384 48 384

4 64 512 64 512

5 96 768 96 768

6 128 1,024 128 1,024

7 192 1,536 192 1,536

8 256 2,048 256 2,048

9 384 3,072 384 3,072

10 512 4,096 512 4,096

11 768 6,144 768 6,144

12 1,024 8,192 1,024 8,192

13 1,536 12,288 1,536 12,288

14 2,048 16,384 2,048 16,384

15 3,072 24,576 3,072 24,576

B.5 Network variable tables - informative

There are three tables associated with network variables: the network variable configuration table, the
network variable alias table, and the network variable fixed table. The network variable configuration
table defines the configurable attributes of the network variables in the node. It is located in non-
volatile memory so that it can be modified during node installation and is part of the network image
written during node installation. The network variable alias table defines the configurable attributes of
the alias network variables in the node, and is located in non-volatile memory, immediately following
the network variable configuration table. The structure of the network variable fixed table within a node
is implementation specific. The structures documented here are the same ones manipulated by the
corresponding network management messages, so the description and use of the data in this
subclause matches that described in Annex A for network variables.

typedef struct {
 unsigned nv_priority : 1; // offset 0x00
 unsigned nv_direction : 1;
 unsigned nv_selector_hi : 6;
 unsigned nv_selector_lo : 8; // offset 0x01
 unsigned nv_turnaround : 1; // offset 0x02
 unsigned nv_service : 2;
 unsigned nv_auth : 1;
 unsigned nv_addr_index : 4;
} nv_struct;
typedef struct {
 nv_struct nv_cnfg; // offset 0x00
 unsigned primary; // offset 0x03
 unsigned long host_primary; // offset 0x04
} alias_struct;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

392

const nv_struct *access_nv(byte index);
void update_nv(const nv_struct *nv_entry, byte index);
const alias_struct *access_alias (byte index);
void update_alias (const alias_struct *alias_entry, byte index);

typedef struct {
 unsigned nv_sync : 1; // offset 0x00
 unsigned : 2;
 unsigned nv_length : 5;
 void *nv_address; // offset 0x01
} nv_fixed_struct;

Entries in the network variable configuration table may be read and written over the network with the
Query/Update Net Variable Configuration network management messages. The network variable fixed
table may not be written, except when downloading the application image.

The network variable alias table can have up to 62 entries.

B.5.1 Network variable configuration table field descriptions - informative

unsigned nv_priority : 1;
This bit is set to 1 if the network variable uses priority messaging.

unsigned nv_direction : 1;
This bit is set to one if this is an output network variable, zero if an input. This bit shall not be changed
by the application program or an Update Net Variable Configuration network management message.
This bit is technically not network configuration memory data; it resides in this table for efficiency.

unsigned nv_selector_hi : 6;
unsigned nv_selector_lo : 8;
These two fields form a 14-bit network variable selector in the range (0 to 0x3FFF). Selector values
0x3000 to 0x3FFF are reserved for unbound network variables, with the selector value equal to
0x3FFF minus the network variable index. Selector values 0 to 0x2FFF are available for bound
network variables. The input network variables on any one node shall all have different selectors. The
output network variables on any one node shall all have different selectors.

unsigned nv_turnaround : 1;
This bit is set to one if this is a turnaround network variable, that is, bound to another network variable
on the same node.

unsigned nv_service : 2;
This field specifies the type of service used to deliver this network variable.

unsigned nv_auth : 1;
This bit is set to one if this network variable uses authenticated transactions.

unsigned nv_addr_index : 4;
This field specifies the index into the address table for this network variable (0 to 14). The value 15
(0x0F) is used if the network variable is not associated with an address table entry. Multiple network
variables may use the same address table index.

B.5.2 Network variable alias table field descriptions - informative

nv_struct nv_cnfg;
This has the same definition as in the network variable configuration table above.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

393

unsigned primary;
This is the index into the network variable configuration table. A value of 0xFF indicates that the
following two bytes should be used for the index instead.

unsigned long host_primary;
Network variable configuration table index. This field is present only if the primary field is set to 0xFF.
These bytes are only necessary if the network variable index used is larger than 254.

B.5.3 Network variable fixed table field descriptions - informative

unsigned nv_sync : 1;
This bit is set to one if this is a synchronous network variable.

unsigned nv_length : 5;
This field specifies the number of bytes in the network variable (1 to 31).

void *nv_address;
This field is a pointer to the location of the network variable’s data in memory.

B.6 Self-Identification structures

There are three versions of the node Self-Identification structures. Version 0 is obsolete, but is
included for support of legacy nodes. Version 1 is used for nodes that do not support dynamic network
variables or the extended network management commands described under the Install command in
13.7.17 of this document. Version 2 is used for nodes that implement dynamic network variables
and/or nodes that implement the extended network management command set.

There are five structures associated with all three versions of the self-identification (SI) information as
follows:

— fixed size SI structure;

— table containing a self-identification descriptor for each network variable;

— self-documentation string for the node;

— self-documentation information for network variables;

— self identification data for binding and status information.

This information forms part of the application image written during node manufacture.

typedef struct {
 unsigned long length; // offset 0x00
 unsigned num_netvars; // offset 0x02
 unsigned version; // offset 0x03
 union {
 struct {
 unsigned msb_num_netvars; // offset 0x04
 unsigned mtag_count; // offset 0x05
 } ver1;
 struct {
 unsigned mtag_count; // offset 0x04
 } ver0;
 } variable_part;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

394

} snvt_struct;
typedef struct {
 unsigned ext_rec : 1; // offset 0x00
 unsigned nv_sync : 1;
 unsigned nv_polled : 1;
 unsigned nv_offline : 1;
 unsigned nv_service_type_config : 1;
 unsigned nv_priority_config : 1;
 unsigned nv_auth_config : 1;
 unsigned nv_config_class : 1;
 unsigned snvt_type_index; // offset 0x01
} snvt_desc_struct;
typedef struct {
 unsigned binding_II :1;
 unsigned query_stats :1;
 unsigned alias_count :6;
 unsigned long host_alias; // Host node only
} alias_field;

The SI header structure for version 0 and 1 is five bytes long. The NV descriptor table follows
immediately afterwards, and it has one entry for every network variable declared in the application
program. Version 0 format has a separate entry for each element of a network variable array. Version
1 format allows elements of a network variable array elements to share a single entry. Each entry in
the NV descriptor table is two bytes long.

Following the NV descriptor table is a null-terminated text string containing the self-documentation of
the node. This string may be up to 255 bytes in length. If there is no self-documentation string, the null
termination byte is still present.

Following the self-documentation string for the node are extension records for those network variables
that require them.

Following the extension records for the network variables are the self identification bits that reflect the
state of the various binding and query status conditions.

B.6.1 SI Structure field descriptions

unsigned long length;
This field specifies the total number of bytes in the self-identification and self-documentation data
structures described here.

unsigned num_net_vars;
This field specifies the number of network variables declared in this node. Each element of a network
variable array counts separately. In version 1 format, this byte is the least significant byte of the
number of network variables declared in this node, where an NV array counts as only one item.

unsigned version;
This field specifies the format of the NV structures to follow. Versions 0 and 1 are defined.

unsigned msb_num_net_vars;
If the version number in the previous byte is zero, this byte is not present. If the version number is one,
this byte is the most significant byte of the number of network variables declared in this node, where
an NV array counts as only one item.

unsigned mtag_count;
This field specifies the number of bindable message tags declared by the application program on this
node. These message tags take the first entries in the address table (see B.4).

BS EN 14908-1:2014

EN 14908-1:2014 (E)

395

B.6.2 NV descriptor table field descriptions

unsigned ext_rec : 1;
This bit is set to one if this network variable has an extension record following the node’s self-
documentation string.

unsigned nv_sync : 1;
This bit is set to one if this is a synchronous network variable.

unsigned nv_polled : 1;
This bit is set to one if this network variable is polled.

unsigned nv_offline : 1;
This bit is set to one if a network management tool should take the node off-line before this network
variable is updated.

unsigned nv_service_type_config : 1;
This bit is set to one if the service type of this network variable (ACKD, UNACKD, UNACKD_RPT)
may be modified by a network management message.

unsigned nv_priority_config : 1;
This bit is set to one if the priority of this network variable may be modified by a network management
message.

unsigned nv_auth_config : 1;
This bit is set to one if the authentication of this network variable may be modified by a network
management message.

unsigned nv_config_class : 1;
This bit is set to one if this is a configuration network variable whose value is stored in non-volatile
memory.

unsigned snvt_type_index;
If this is a network variable of a standard type (i.e., a SNVT), this field specifies the type (1 to 250).

B.6.3 SNVT table extension records

Extension records may be present for any of the network variables. If an extension record is present,
the field ext_rec is set to one in the SNVT descriptor. The extension records appear in the order that
the network variables were declared in the application program. Each extension record begins with a
one-byte bit-mask defining which fields are to follow. The fields follow in the order of the bits in the bit
mask defined here. These bits appear in the mask starting with the most significant bit.

unsigned mre : 1;
If this bit is set to one, the extension record contains an estimate of the maximum rate at which this
network variable is updated. The field is an unsigned byte in the range (0 to 127) bytes representing
the rate in the range (0 to 1 878). The rate is given by the formula 2 (n / 8) - 5 messages/s, rounded
to the nearest tenth of a message per second.

unsigned re : 1;
If this bit is set to one, the extension record contains an estimate of the average rate at which this
network variable is updated. The field is an unsigned byte in the range 0 to 127 representing the rate
in the range 0 to 1 878,0. The rate is given by the formula (2 (n / 8) - 5 messages/s, rounded to the
nearest tenth of a message per second.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

396

unsigned nm : 1;
If this bit is set to one, the extension record contains the name of the network variable. The name is
represented as a null terminated string of up to 17 bytes, or up to 22 bytes if it is a network variable
array element. Each array element has its own extension record containing the name of the array, a
left square bracket, one, two, or three decimal digits denoting the index of the element, and a right
square bracket.

unsigned sd : 1;
If this bit is set to one, the extension record contains the self-documentation string for the network
variable. This is a null-terminated string of up to 1 023 bytes.

unsigned nc : 1;
If this bit is set, the extension record contains a 16-bit count of the number of network variables of this
type (version 1 format only). This is used to define network variable arrays. If this bit is clear, one
variable of this type is defined by this record.

B.6.4 SNVT alias field descriptions

unsigned binding_II :1;
This bit is one if the node is using the new binding constraints. Nodes supporting these binding
constraints do not require that a unique selector be assigned to output network variables in non-polling
connections. For example, two different output network variables in a node supporting these
constraints could be connected to the same input network variable in any type of node as long as that
input network variable does not initiate polls. Note that polling of such output network variables by a
network management or monitor node would have to be done using Fetch Network Variable network
management messages rather than network variable poll messages.

unsigned query_stats :1;
This bit is one if the query statistics addressing mode of the Read Memory network management
command can be used to extract the extended statistics information.

unsigned alias_count :6;
This field specifies the number of alias network variables used by the node (0 to 62). A value of 63
indicates that the next two bytes contain the actual number of alias network variables.

unsigned long host_alias;
This field specifies the number of alias network variables used by the node (0 to 4 095). This field is
only present if alias_count is 63.

B.6.5 Version 2 SI data

The new capacities and capabilities of nodes are appended to the SI data structure of all versions. To
eliminate the need for scanning all the preceding NV information in Version 0 and 1, a new command
NM_GET_CAPABILITY_INFO is provided for querying information after the end of the NV extension
records (i.e., beginning with alias_field). The SI data structure for version 0 and 1 is defined above. All
nodes that implement dynamic network variables and/or support the extended network management
protocol described in 13.7.19 shall implement the NM_GET_CAPABILITY_INFO command and
append capability information to their current SI data as described below.

Version 0 and 1 SI data describe a node’s capacities, self-documentation, and static network
variables. The two versions differ in that version 0 has one NV Descriptor record per array element,
while version 1 has one per array. The current organization is extended with two new records: the SI
Extended Header Record and Capability Info Record. Figure B. 1 shows the organization of the
SI data:

BS EN 14908-1:2014

EN 14908-1:2014 (E)

397

Header
Record

NV Descriptor
Records

Node SD
String

NV Extension
Records

Alias Record
(1 or 3 bytes)

SI Extended
Header Record

Capability
Info Record

Figure B. 1 —SI data

B.6.5.1 Alias record (alias_field Annex B.6.4 above)

alias_count and host_alias_count

If the number of aliases exceed 62, set alias_count to 62 and store the actual count in
host_alias_count. Note that read_only_data_struct_2.alias_count is capped at 62.

B.6.5.2 SI Extended header record (si_header_ext)

The SI Extended Header Record contains useful fields that are not in the previous Version 0 and 1
records. The SI Extended Header Record is required when the Capability Info Record is also present,
and the Alias Record is required when the SI Extended Header Record is present.

typedef struct
{
NetWord node_sd_text_length;
NetWord static_nv_count; // static NV count
}si_header_ext;

node_sd_text_length

This is the length of the node SD string, excluding the zero terminator. It enables the network
manager to obtain the length without scanning the entire string. The start of the NV extension
record may be computed as the sum of the sizes of the header, nv descriptor records,
node_sd_text_length, plus one byte of node sd string terminator.

static_nv_count

The number of static NVs. Each array element counts as one. This field allows the network
manager to obtain the total number of discrete NVs without parsing the NV extension records for
array counts.

B.6.5.3 Clarification of the use of existing fields in the snvt_struct (Annex B.6)

length

The value of this field includes the size of the SI Extended Header Record plus the Capability Info
Record when using the new capabilities described in this European Standard (si_header_ext +
snvt_capability_info).

num_netvars(version 0 & 1) and msb_num_netvars(version 1)

This count includes the sum of static and dynamic NVs, but not aliases. Alias counts are indicated
in snvt_alias_field.

version

Encode this as version 0 or 1 as before.

mtag_count

BS EN 14908-1:2014

EN 14908-1:2014 (E)

398

This count is superseded by snvt_capability_info.static_mtag_capacity. If the number of message
tags exceeds 15, this count should be set to 15. This allows the node to be functional, but with a
lower capacity, when installed by a legacy network manager. By setting it to 15, it prevents the
legacy network manager from allocating any address table entries for network variable bindings.

B.6.5.4 Capability info record (snvt_capability_info)

The Capability Info Record describes the expanded capacities and level of support described in this
document. This record is appended to the end of all versions of SI data.

#define EXTCAP_FIXED_STATIC_NVS = 0x01
#define EXTCAP_INCOMING_GROUP_RESTRICTED = 0x02
typedef struct
{
 NetWord length // length of structure, including the length field.
 unsigned ver_struct; // version number of structure. Current version
is 1
 unsigned ver_nm_min; // minimum nm version supported. See ver_nm_max.
 unsigned ver_nm_max; // 0 or 1(supports dynamic NVs and/or extended
 // network management commands)
 unsigned ver_binding; // 1, or 2 see Annex B.5.4
 ExtCapFlags flags[6]; // an array of bits specifying capabilities
 NetWord domain_capacity; // maximum number of domain entries
 NetWord address_capacity; // maximum number of address table entries
 NetWord static_mtag_capacity; // maximum number of statically defined
message
 // tags
} snvt_capability_info;

length

Length of this structure, including the length field.

ver_struct

Version of this data structure. Currently 1.

ver_nm_min

The minimum network management version number as defined in ver_nm_max. To support all
versions, set this value to zero. However, regardless of the value, a node shall always support the
normative network management messages.

ver_nm_max

A number representing the version of extended network management protocol supported. Value 0
indicates that the node does not support extended commands. Value 1 indicates the support for
the protocol and structure defined in this document. Versions are cumulative, so each version
also supports all prior versions except for obsolete commands. The version is to be incremented
whenever an existing command’s data structure is changed in a non-backward compatible way,
or when additional commands or resources are introduced. A node shall support all commands
defined between ver_nm_min to ver_nm_max inclusive, and the normative network management
messages defined in this European Standard.

ver_binding

BS EN 14908-1:2014

EN 14908-1:2014 (E)

399

A number representing the binding constraint level. Binding constraints are cumulative, so each
level implies the capabilities of the prior levels. See B.5.4.

flags[6]

EXTCAP_FIXED_STATIC_NVS 0x01

If this bit is not set, the name, sd string, and rate estimates of static NVs are configurable via
UPDATE_NV_INFO. However, the change is not reflected in the SI data; a network manager
shall query them using QUERY_NV_INFO rather than parsing the SI data.

If this bit is set, static NVs’ name, sd string, and rate estimates are not configurable. The nv’s
attributes may be queried by parsing the nv descriptor and nv extension records in the SI data, a
more efficient method since more data is transferred at a time.

EXTCAP_INCOMING_GROUP_RESTRICTED 0x02

If this bit is set, the incoming groups are restricted to the address table elements whose count is
indicated in read_only_data_struct.address_count. This allows existing implementations to take
advantage of some of the capabilities of the extended network management commands.

domain_capacity

The maximum number of domain entries.

address_capacity

The maximum number of address table entries.

static_mtag_capacity

The number of statically declared message tags defined. This is semantically equivalent to the
same field in snvt_struct, but is expanded to 16 bits. If the number of message tags exceeds 254,
set the snvt_struct mtag_count to 255; otherwise, set both fields to the same value.

B.6.5.5 Read-Only Data Structure

The read-only data structure is modified in a backward compatible manner by utilizing a spare bit in
the structure to indicate that the node has extended capability information. The definitions for these
two data structures is in B.2.1.

read_only_data_struct

The field definitions are as defined in B.2.1 except for these encodings.

nv_count

If the number of network variables exceed 62, this count should be set to 0. This prevents a
legacy network manager from binding any NVs, but is less harmful than allowing a limited number
of NVs to be bound. The actual number of nvs is reflected in snvt_struct.

address_capacity

If the number of address table entries exceed 15, this count should be set to 15. This allows the
node to be functional, but with a lower capacity, when installed by a legacy network manager.

read_only_data_struct_2

BS EN 14908-1:2014

EN 14908-1:2014 (E)

400

Only nodes that do not support the QUERY_SNVT command use the read_only_data_struct_2.
The field definitions are as defined in B.2.1 except that one of the previously undefined bits is now
defined to indicate that the node supports the new command:

NM_GET_CAPABIBILITY_INFO.

typedef struct read_only_data_struct_2
{
bits : 2; // reserved shall be zero
bits alias_count : 6;
bits msg_tag_count : 4;
bits capability_info : 1; // new – supports NM_GET_CAPABILITY_INFO
bits : 3; // unused
unsigned reserved2 [3]; // reserved, shall be zero
} read_only_data_struct_2;

alias_count

This count is superseded by the alias_count/host_alias fields in B.6.4. If the number of aliases
exceed 62, this count should be set to 62. This allows the node to be functional, but with a lower
capacity, when installed by a legacy network manager that relies on this count instead of
snvt_alias_field.

mtag_count

This count is superseded by snvt_capability_info.static_mtag_capacity. If the number of message
tags exceeds 15, this count should be set to 15. This allows the node to be functional, but with a
lower capacity, when installed by a legacy network manager. By setting it to 15, it prevents the
legacy network manager from allocating any address table entries for network variable bindings.

capability_info

When set, the node supports the NM_GET_CAPABILITY_INFO command as described in this
standard.

B.7 Configuration structure

B.7.1 General

This structure defines the hardware and transceiver properties of this node. It is located in non-volatile
memory, and parts of it belong to the application image written during node manufacture, and to the
network image written during node installation.

#define LOCATION_LEN 6
#define NUM_COMM_PARAMS 7
typedef struct {
 unsigned long channel_id; // offset 0x00
 char location[LOCATION_LEN]; // offset 0x02
 unsigned comm_clock : 5; // offset 0x08
 unsigned input_clock : 3;
 unsigned comm_type : 3; // offset 0x09
 unsigned comm_pin_dir : 5;
 unsigned preamble_length; // offset 0x0A
 unsigned packet_cycle; // offset 0x0B
 unsigned beta2_control; // offset 0x0C

BS EN 14908-1:2014

EN 14908-1:2014 (E)

401

 unsigned xmit_interpacket; // offset 0x0D
 unsigned recv_interpacket; // offset 0x0E
 unsigned node_priority; // offset 0x0F
 unsigned channel_priorities; // offset 0x10
 union {
 unsigned xcvr_params[NUM_COMM_PARAMS];
 direct_param_struct dir_params; // offset 0x11
 }
 unsigned non_group_timer : 4; // offset 0x18
 unsigned nm_auth : 1;
 unsigned preemption_timeout : 3;
} config_data_struct;
typedef struct {
 unsigned collision_detect : 1; // offset 0x11
 unsigned bit_sync_threshold : 2;
 unsigned filter : 2;
 unsigned hysteresis : 3;
 unsigned cd_to_end_packet : 6; // offset 0x12
 unsigned cd_tail : 1;
 unsigned cd_preamble : 1;
} direct_param_struct;
const config_data_struct config_data;
void update_config_data(const config_data_struct * config_data);

The structure is 25 bytes long, and it may be read and written over the network using the Read
Memory and Write Memory network management messages with address_mode=2. The Media
Access Control processor reads the channel parameters (offsets 0x08 through 0x17) from the
configuration structure when the node is reset and initializes the transceiver. Therefore, after changing
any of the channel parameters, the node should be reset for the changes to take effect.

B.7.2 Configuration structure field descriptions

unsigned long channel_id;
This field specifies the ID of the channel to which this node is assigned.

char location[LOCATION_LEN];
The location field is used to pass a 6-byte ASCII string describing the physical location of the node to
the network management tool.

unsigned node_priority;
This field specifies the priority slot used by the node when sending priority messages on the channel
(1–255). It should not be greater than the number of priority slots on the channel. If the node has no
priority slot allocated, this is zero.

unsigned channel_priorities;
This field specifies the number of priority slots on the channel (0 to 255). The slots are numbered
starting at one.

unsigned non_group_timer : 4;
When the node receives a unicast or broadcast (non-group) message requiring a response or
acknowledgment, the receive timer is set to the time interval specified by this field. If a message with
the same transaction ID, priority, and source and destination address is received before the receive
timer expires, it is considered to be a retry of the previous message. The encoding is of this field is in
Table 7. When network management messages using Unique_Node_ID addressing are received, a
receive timer of 8 192 s is used, instead of the value of this field.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

402

unsigned nm_auth : 1;
This field specifies that network management messages are to be authenticated. Setting this bit
prevents the node from being configured by an unauthorized network management tool. However,
network management messages received when the node is unconfigured cannot be authenticated.
Before setting a node’s state to configured, a network management tool should ensure that the
network management authentication bit is set to the desired state.

unsigned preemption_timeout : 3;
This field specifies the maximum time the node will wait for a free buffer in preemption mode. A
preemption mode timeout logs an error and resets the node. The encoding is as follows:

Table B. 4 — Buffer timeout encoding

Encoding Times

0 forever

1 2

2 4

3 6

4 8

5 10

6 12

7 14

B.8 Statistics relative structure

The following structure definition should be used for a read Memory command with statistics relative
addressing mode:

Typedef struct [
 unsigned long transmission_errors;
 unsigned long transmit_tx_failures;
 unsigned long receive_tx_full;
 unsigned long lost_messages;
 unsigned long missed_messages;
 unsigned long layer2_received;
 unsigned long layer3_received;
 unsigned long layer3_transmitted;
 unsigned long transmit_tx_retries;
 unsigned long backlog_overflows;
 unsigned long late_acknowledgements;
 unsigned long collisions;
 unsigned long eeprom_lock;
} stats_struct;

The fields for the above structure are defined as follows:

unsigned long transmission_errors;
The number of CRC errors detected during packet reception. These may be due to collisions or noise
on the transceiver input.

unsigned long transmit_tx_failures;

BS EN 14908-1:2014

EN 14908-1:2014 (E)

403

The number of times that the node failed to receive expected acknowledgments or responses after
retrying the configured number of times.

unsigned long receive_tx_full;
The number of times that an incoming packet was discarded because there was no room in the
transaction database.

unsigned long lost messages;
The number of times that an incoming packet was discarded because there was no application buffer
available. If the incoming message is too large for the application buffer, an error is logged, but the lost
message count is not incremented

unsigned long missed_messages;
The number of times that an incoming packet was discarded because there was no network buffer
available.

unsigned long layer2 received;
The number of Layer-2 messages received by this node. Layer-2 messages are those that have
correct CRC and can be addressed to any node.

unsigned long layer3 received;
The number of messages transmitted from layer 3 of the protocol processor. These can include
network variable updates, explicit messages, acknowledgments, retries, reminders, service pin
messages, and any other type of message.

unsigned long transmit_tx_ retries;
The number of retries sent by this node. This does not include retries used for messages sent with
repeated service.

unsigned long backlog overflows;
The number of times the backlog reached its maximum value of 63.

unsigned long late_acknowledgements;
The number of acknowledgments or responses that arrived at this node after the transmit transaction
had expired.

unsigned long collisions;
This field specifies the number of occurrences of either collision detection or collision resolution, if
those features are enabled.

unsigned long eeprom_lock;
The state of the EEPROM lock for the node. If this field has a value of one, then the checksummed
EEPROM on the node is protected against memory write.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

404

Annex C
(informative)

Behavioral characteristics

C.1 Channel capacity and throughput

In defining the key performance parameters, the following notations are used:

— bps raw channel speed in bits/sec

— Beta randomizing slot size (bits)

— w size of the MAC randomizing window: 16 slots

— Dmean= w/2 mean busy channel interpacket spacing: 8 slots

— p=(1/2w+pe) probability of packet loss from collisions and transmission errors

— pe probability of loss due to transmission error

— AvgPktSize length of the packet including preamble

— Ccost collision cost (2 packets)

Assuming zero collisions and zero transmission errors, the number of frames that can be transmitted
while using randomizing window w = 2*Dmean is as follows:

[pkts/sec] e) AvgPktSiz Beta1 slots) pri #(D*(Beta2 / bps frames mean +++=

Some frames are lost because of collisions and some because of transmission errors. The packet
bandwidth Net_L3 available to the L3 Network Service is then:

c]p)[pkts/se -(1 * frames Net_L3 =

When packets are lost due to collisions, the LAYER 4 and LAYER 5 protocols retransmit, thus further
reducing the effective bandwidth. The net bandwidth available to the LAYER 4 and LAYER 5 protocols
when the probability of packet loss is p, is Net_L4:

ec]p)[TPDUs/s*C-(1 * Net_L3 Net_L4 cost=

Net_L4 is maximized by choosing the proper value of w. This “net bandwidth” defines the maximum
Transaction Rate. With the exception of authenticated transactions, a transaction within a group of N
requires N PDUs to be transmitted. Assuming that all groups have the same size, this rate is:

][trans/sec group_size / Net_L4 Trans_Rate =

Table C1 shows the key throughput parameters for an existing implementation of a protocol processor
running at 10MHz. The following assumptions are made: error free channel, correct backlog
estimation, physical NPDU length of 120 bits, no priority slots configured on the channel. The number

BS EN 14908-1:2014

EN 14908-1:2014 (E)

405

of transactions per second assumes acknowledged service. The 120 bit packet length assumes a
domain id length of 1 byte, and average user data size of 3–4 bytes.

Table C. 1 — Key throughput parameters

 Channel Speed

 10 kbits/s 78 kbits/s

Capacity

(Net TPDUs/Second)

 43 388

 36 329

L4 or L5

Transactions/Second

(for Group Size N)

N = 2 ~ 18 ~ 164

N = 4 ~ 9 ~ 82

N = 8 ~ 4 ~ 41

N = 16 ~ 2 ~ 20

(For Single Error Free Channel @ 10 kbits/s, and @ 78 kbits/s)

C.2 Network metrics

For a single channel with backlog BL, the expected mean Network Delay is

busy_cycle * 1) (BL/2 Ndelay +=

where

e AvgPktSiz Beta1 slots) pri #(Dmean*Beta2 busy_cycle +++=

In the general case, the delay over k hops is

k1,..., iidelay } busy_cycle * 1) /2(BL { SUM N =+=

For a channel or a network where the load exceeds throughput (i.e., BL = 1 is never true), the worst
case Ndelay is unbounded. This may happen with some very small probability but it may happen. When
BL = 1 at least occasionally, Ndelay is bounded. Its worst-case value is then determined by the arrival
rate distribution—the more uniform the distribution, the less is the worst case delay.

Assuming constant transmission error probability pe, and a constant randomizing window w over each
of the k hops, the probability of successful delivery is

*k*p) -(1 (L3) P =

where

)p (1/2w p e+= is the probability of packet loss

1/2w is the probability of loss due to collision

pe is the probability of the packet being corrupted by a transmission error

Figure C.1 plots the probability of successful delivery (P) of a single packet over k hops where pe is
1 % and w is 16. This yields a probability of error over a single channel of 4,13 %. The probability of a
failure in delivery is 1 - P. The probability of failure is used to calculate the optimal number of attempts
to send the packet since the probability of failure is given by (1-P)**attempts.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

406

Figure C. 1 — Probability of successful delivery over k hops

C.3 Transaction metrics

The Transaction Completion Time in the single channel, single transaction environment is:

nptime T busy_cycle * group_size T +=

Where Tnp is the transaction processing time at the destination node. This time is negligible for
transport transactions, and it may vary considerably for Request-Response transactions.

Above, collisions (or transmission errors) were ignored. When collisions and multiple transactions are
considered, this time increases.

nptime T busy_cycle * y L4_timer * x T ++=

where

x = 0, 1, ..., L4_retries

y ≤ max (group_size, BL)

Given that the combined collision + error probability is p, the probability of a transaction in a group of n
completing within k retries is

=

P {no retry} = (1–p)
n

p
i
(1–p)

(k–i+1)
1–p

(n–1)Σ
i=0

k
k+1

i() (k–i+1)()
 k ≥ 0, n ≥ 2

P {≤ k retries}

BS EN 14908-1:2014

EN 14908-1:2014 (E)

407

where

p is the probability of packet loss over the channel.

P{≤ k retries} is computed as a product of the following two probabilities:

P {lose i messages in k+1 attempts}

P {successfully receive all n-1 ACKs given k-i+1 successful msgs}

The first probability is the binomial probability represented by the first three terms in the equation; the
second probability is given by the last term. The above probabilities are plotted in Figure C1.

C.4 Boundary conditions — power-up

Power-up has an impact on the Transaction Control sublayer: no duplicate detection is done for the
first transaction following the reset (transaction number 0). For this reason, the first application
operation after a reset should be idempotent.

Rebooting a learning router also has an effect: messages to a specific (subnet, node) address are
routed by flooding until the router learns about the location of that subnet. This normally happens with
the first acknowledgment from that subnet.

C.5 Boundary conditions — high load

Loads exceeding channel capacity will result in increased delays for some transactions. This may lead
to timeouts and transactions being aborted with failure or only partial success.

As long as the estimated and the real backlogs match, channel capacity will stay constant at the
level(s) defined in Table C.1. Backlog mismatch will always reduce channel capacity. The negative
effect of underestimating tends to produce excessive collisions and loss of throughput. Overestimating
the backlog by a small amount has a relatively small impact on channel throughput, so backlog
calculations in the protocol tend to overestimate rather than underestimate the backlog.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

408

Annex D
(normative)

PDU summary

This annex provides a summary description of all Protocol Data Units (PDUs). PDU syntax is specified
pictorially in Figure D.1.

The Physical Protocol Data Unit (PPDU) shown includes the bit sync and byte sync fields that precede
the MPDU/LPDU. See relevant channel specification for bit sync and byte sync format for a given
channel.

The following explanatory comments accompany Figure D.1.

— Field Size. The number above each field specifies the field size in bits;

— Field Values. In order to facilitate the description of semantics, most field values are defined as
symbolic ranges. A symbolic range (S0, S1, S2, ..., Sn) always maps onto a numeric range (0, 1, 2,
..., n) in the order specified;

— Bit Ordering. Bit transmission order within a byte is “most significant first”, meaning that the most
significant bit is transmitted first. In the attached figures, the most significant bit is the leftmost bit of a
byte;

— Byte Ordering. Byte transmission order is also “most significant first”, meaning that the most
significant byte of a field is transmitted first. In the attached figures, the most significant byte is the
leftmost byte of a field.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

409

Figure D. 1 — Protocol PDU summary

BS EN 14908-1:2014

EN 14908-1:2014 (E)

410

Annex E
(normative)

Naming and addressing

E.1 Address types and formats

The addresses of this protocol are hierarchically structured. There are three basic address types, with
three components per address, as shown below.

(Domain, Subnet, Node)

(Domain, Subnet, Unique_Node_ID)

(Domain, Group, Member)

The syntax and semantics of the individual address components are described in E.2–E.5. The source
and destination addresses are transported within every PDU. For this purpose, the basic addressing
formats shown above are further combined into addressing pairs, defined in E.6.

Each address is a combined layer 3 and layer 4 address; no addressing is employed at layer 2. The
domain and subnet address components are used in routing and could be called a network address. The
Unique_Node_ID is a name rather than an address, since it does not change when the node is moved.
Thus, address components used in routing (layer 3) and naming (layer 4) are combined in the addressing.

Address size varies in general while being invariant within each domain. The size of the domain field
varies (0, 1, 3, or 6 bytes); the subnet and group fields are 8 bits wide, allowing for up to 256 groups and
255 subnets per domain (subnet 0 is a reserved value); the size of the node field is 7 bits (an all zeros
field not being used); the size of the group member field is 6 bits with a range of 0.to.63; and the
Unique_Node_ID field is 48 bits wide. This yields 28-1 *27-1 or ~215 nodes per domain. Multiple domains
can be used in a single system to increase the number of group addresses, nodes, etc.

E.2 Domains

The domain identifier is the first component of the addressing hierarchy. This identifier uniquely identifies
a domain within some context. The size of the domain identifier depends on this context; 48-bit domain
identifiers are provided for worldwide uniqueness. When or where this context is otherwise limited (e.g.,
physically, say within a single building), domain identifiers of smaller size may be used.

A domain is a virtual network, with all communication being limited to a single domain. One reason is that
the source and destination addresses of an NPDU/TPDU shall belong to the same domain (see E.3
below). Another reason is that the protocol stack does not support the equivalent of an inter-net protocol;
where inter-domain communication is needed, it shall be facilitated by application level gateways.

A domain is also the unit of management and administration. In particular, group and subnet addresses
are assigned by the administrator responsible for the domain, and they have meaning only in the context
of that domain.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

411

E.3 Subnets and nodes

The subnet identifier is the second component of the addressing hierarchy. Its value uniquely identifies a
subnet within a domain; the subnet address of 0 signifies that the subnet is undefined or unknown.

A subnet is a domain subset containing 0 to 127 nodes with the property that there is no routing within a
subnet. Subnets are a routing abstraction for a channel; that is, subnets are logical channels, and need
not correspond to the physical channel topology. One or more subnets may be mapped onto a single
channel (or onto two or more channels connected via store and forward repeaters or bridges).

NOTE The term subnet is normally used in communications when referring to a subset of a network such that
there is no routing within that subset. Subnets of this protocol have the additional property that they contain at most
127 nodes. As a result, two or more subnets may be contained in what would normally be called a subnet. In this
protocol, this is referred to as a channel. That is, a channel is a physical unit of bandwidth and a subnet is a logical
construct used for routing in this protocol. Note also that a channel is a physical unit of bandwidth, so a channel is
composed of one or more network segments. When a channel consists of multiple segments, these segments shall
be connected by physical layer repeaters so that the bandwidth of the channel remains constant regardless of the
number of segments that it contains.

The node identifier identifies a (logical) node within a subnet. A physical node may belong to more than
one subnet; when it does, it is assigned one (logical) node number for each subnet to which it belongs. A
physical node may belong to at most two subnets, and those subnets shall be in different domains.

E.4 Groups

The group identifier is the second component of the addressing hierarchy. It uniquely identifies a set of
nodes within a domain. Within this set, individual members are identified by the third addressing
component (i.e., the member number).

Group addressing facilitates one-to-many communication. Groups are intended to support functional
addressing, and, in particular, the concept of network variables used in the application protocol.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

412

Figure E. 1 — Physical topology and logical addressing (single domain)

E.5 Unique_Node_ID and node address assignment

Each compliant node is assigned a unique 48-bit identifier called Unique_Node_ID. This ID is unique
worldwide and is set at the time of manufacture. The value of this identifier does not change from the time
of manufacture.

An unconfigured node has no assigned address apart from its 48-bit Unique_Node_ID. These
unconfigured nodes receive packets from all domains, looking for and responding to any packet
containing the node’s 48-bit Unique_Node_ID.

A node may be assigned multiple addresses. In addition to its Unique_Node_ID, a node is usually
assigned one address of type (domain, subnet, node) and zero to fifteen addresses of type (domain,
group, member). A node is typically a member of only one domain; a node may be a member of up to two
domains, however. Nodes that belong to multiple domains have two (domain, subnet, node) addresses—
one for each domain.

When the Unique_Node_ID is used as an address, it may only be used as a destination address, and it
shall be combined with the domain and the source subnet addressing components (see E.6).

BS EN 14908-1:2014

EN 14908-1:2014 (E)

413

E.6 NPDU addressing

For NPDU addressing, the basic addressing formats introduced in Figure E1 are combined into (Source,
Destination) address pairs as defined in Table E1 and Figure E2. An NPDU carries both the source and
the destination address in one of the five possible addressing formats.

Table E. 1 — NPDU/TPDU/SPDU addressing - logical address formats

Type Logical Address Format Used with TPDU/SPDU Type

#0: (Domain, sourceSub-Node, destSubnet) broadcas
t:

Domain wide or by
individual subnet

#1: (Domain, sourceSub-Node, destGroup) multicast: Message or
Reminder

#2a: (Domain, sourceSub-Node, destSub-Node) uni-cast: Message, Reminder,
or Acknowledgment

#2b: (Domain, sourceSub-Node, destSub-Node, Group, Mem) multicast: Acknowledgment

#3: (Domain, sourceSub-Node, destSub, Unique_Node_ID) unicast: Message or
Reminder

In each address format, a source subnet of 0 means that the node does not know its subnet number. This
is the condition of a node prior to configuration with network management messages. In Figure E2, note
that each of the address formats contains a 7 bit source node field. The eighth bit in the source node field
byte is the selector field. It is used to supply sub-variants of addressing formats. Address format #2 is the
only address format using this capability. In figure E2, the numbers above each of the fields represent
their bit widths. The first byte of the NPDU contains the NPDU header, that contains the protocol version,
the format of the enclosed PDU, the addressing format, and the length of the domain field. The next part
of the NPDU header specifies one of the four primary address formats. The final part of the NPDU header
contains the length of the domain. The address field immediately follows the NPDU header.

Figure E. 2 — NPDU/TPDU/SPDU addressing—physical address formats

The first part of the address field is the source subnet field. This field is used for routers to both learn the
topology and to prevent packet looping. The combination of the source subnet field and the source node
field is used for acknowledgments, authentication challenges, replies to authentication challenges,
responses (when the request/response mechanism is used), and rejection of packets that are received
from the same node to which they were sent. The domain field of the length specified in the NPDU header
follows the source and destination address pair. Finally, the PDU of the format specified in the NPDU
header.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

414

Address format #0 facilitates domain-wide broadcast. The NPDU contains the (subnet, node) address of
the source node and the destination subnet. A destination subnet of 0 implies all subnets, while a
destination subnet ranging from 1 to 255 shall broadcast only to the nodes on the named destination
subnet.

Address format #1 supports multicast message delivery. It uses a source address of the form (subnet,
node), while the destination address is (group), implying message delivery to the entire group.

Address format #2 has two variants. With variant #2a, both the source and the destination address are of
the form (subnet, node). Variant 2a is used for unicast message delivery and acknowledgments. Variant
#2b supports group acknowledgments. Its source component is (subnet, node). The source and
destination fields are identical to format #2a to facilitate routing. Then, appended to the source and
destination fields, are the group and member numbers of the acknowledging node.

Address format #3 supports addressing by Unique_Node_ID. Since the primary intention of this
addressing mode is to facilitate address assignment, Unique_Node_ID can only be used as destination
address. The ID may be obtained from the node via a special network management message described
in the Network Management chapter, and can also be had by initiating a Manual Service Request for the
node (also described in the Network Management chapter). In cases where the destination subnet is
unknown, a destination subnet of zero is used to propagate the packet throughout the network.

BS EN 14908-1:2014

EN 14908-1:2014 (E)

415

Bibliography

[1] EN 14908-6, Open Data Communication in Building Automation, Controls and Building
Management - Control Network Protocol - Part 6: Application elements

[2] ISO 7498-1:1994, Information Technology - Open Systems Interconnection - Basic Reference
Model:The Basic Model

http://dx.doi.org/10.3403/30186913U

This page deliberately left blank

This page deliberately left blank

BSI is the national body responsible for preparing British Standards and other
standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization
products are published by BSI Standards Limited.

British Standards Institution (BSI)

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

About us
We bring together business, industry, government, consumers, innovators
and others to shape their combined experience and expertise into standards
-based solutions.

The knowledge embodied in our standards has been carefully assembled in
a dependable format and refined through our open consultation process.
Organizations of all sizes and across all sectors choose standards to help
them achieve their goals.

Information on standards
We can provide you with the knowledge that your organization needs
to succeed. Find out more about British Standards by visiting our website at
bsigroup.com/standards or contacting our Customer Services team or
Knowledge Centre.

Buying standards
You can buy and download PDF versions of BSI publications, including British
and adopted European and international standards, through our website at
bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development
Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions
Our range of subscription services are designed to make using standards
easier for you. For further information on our subscription products go to
bsigroup.com/subscriptions.

With British Standards Online (BSOL) you’ll have instant access to over 55,000
British and adopted European and international standards from your desktop.
It’s available 24/7 and is refreshed daily so you’ll always be up to date.

You can keep in touch with standards developments and receive substantial
discounts on the purchase price of standards, both in single copy and subscription
format, by becoming a BSI Subscribing Member.

PLUS is an updating service exclusive to BSI Subscribing Members. You will
automatically receive the latest hard copy of your standards when they’re
revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits
of membership, please visit bsigroup.com/shop.

With a Multi-User Network Licence (MUNL) you are able to host standards
publications on your intranet. Licences can cover as few or as many users as you
wish. With updates supplied as soon as they’re available, you can be sure your
documentation is current. For further information, email bsmusales@bsigroup.com.

Revisions
Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your
business. If you find an inaccuracy or ambiguity within a British Standard or other
BSI publication please inform the Knowledge Centre.

Copyright
All the data, software and documentation set out in all British Standards and
other BSI publications are the property of and copyrighted by BSI, or some person
or entity that owns copyright in the information used (such as the international
standardization bodies) and has formally licensed such information to BSI for
commercial publication and use. Except as permitted under the Copyright, Designs
and Patents Act 1988 no extract may be reproduced, stored in a retrieval system
or transmitted in any form or by any means – electronic, photocopying, recording
or otherwise – without prior written permission from BSI. Details and advice can
be obtained from the Copyright & Licensing Department.

Useful Contacts:
Customer Services
Tel: +44 845 086 9001
Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions
Tel: +44 845 086 9001
Email: subscriptions@bsigroup.com

Knowledge Centre
Tel: +44 20 8996 7004
Email: knowledgecentre@bsigroup.com

Copyright & Licensing
Tel: +44 20 8996 7070
Email: copyright@bsigroup.com

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

www.bsigroup.com/standards
www.bsigroup.com/shop
www.bsigroup.com/shop
www.bsigroup.com/subscriptions

	Contents
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Symbols and abbreviations
	4.1 Symbols and graphical representations

	Figure 1 — Network topology & symbols
	Figure 2 — Protocol terminology
	4.2 Abbreviations

	5 Overview of protocol layering
	Figure 3 — Protocol layering
	6 MAC sublayer
	6.1 General
	6.2 Service provided
	6.3 Interface to the link layer

	Figure 4 — Interface between the MAC and the link layers
	6.4 Interface to the physical layer
	6.5 MPDU format

	Figure 5 — MPDU/LPDU format
	6.6 Predictive p-persistent CSMA — overview description

	Figure 6 — Predictive p-persistent CSMA concepts and parameters
	6.7 Idle channel detection
	6.8 Randomising
	6.9 Backlog estimation
	6.10 Optional priority

	Figure 7 — Allocation of priority slots within the Busy Channel Packet Cycle
	6.11 Optional collision detection
	6.12 Beta1, Beta2 and Preamble Timings

	7 Link layer
	7.1 Assumptions
	7.2 Service provided
	7.3 CRC

	Figure 8 — CRC register state behaviour example
	7.4 Transmit algorithm
	7.5 Receive Algorithm

	8 Network layer
	8.1 Assumptions

	Figure 9 — Single channel topologies
	Figure 10 — Typical tree-like domain topology
	8.2 Service provided
	8.3 Service interface

	Figure 11 — Network service interface
	8.4 Internal structuring of the network layer

	Figure 12 — Network layer—internal structure
	8.5 NPDU format

	Figure 13 — NPDU format
	8.6 Address recognition
	8.7 Routers
	8.8 Routing algorithm
	8.9 Learning algorithm — subnets

	9 Transaction control sublayer
	9.1 Assumptions
	9.2 Service provided
	9.3 Service interface

	Figure 14 — Transaction control service interface
	9.4 State variables
	9.5 Transaction control algorithm

	10 Transport layer
	10.1 Assumptions
	10.2 Service provided
	10.3 Service interface

	Figure 15 — Transport interface to upper layers
	10.4 TPDU types and formats

	Figure 16 — TPDU types and formats
	10.5 Protocol diagram

	Figure 17 — Transport protocol diagram for multicast message with a loss of both the message and the ACK TPDUs
	10.6 Transport protocol state variables
	10.7 Send algorithm

	Figure 18 — Transport protocol—Send FSM
	10.8 Receive algorithm

	Figure 19 — Transport protocol—Receive FSM
	10.9 Receive transaction record pool size and configuration engineering
	10.9.1 General
	10.9.2 Number of retries

	Figure 20 — Probability of transaction completion in k Retries
	10.9.3 Transport layer timers

	Figure 21 — Methodology for calculating timer values
	11 Session layer
	11.1 Assumptions
	11.2 Service Provided
	11.3 Service interface

	Figure 22 — Session layer interface to application layer
	11.4 Internal structure of the session layer

	Figure 23 — Session layer—internal structuring
	11.5 SPDU types and formats

	Figure 24 — SPDU types and formats
	11.6 Protocol timing diagrams

	Figure 25 — Non-Idempotent request with multiple SPDU losses
	Figure 26 — Secure idempotent request with multiple SPDU losses
	11.7 Request-response state variables
	11.8 Request-response protocol — client part

	Figure 27 — Request-response protocol—client FSM
	11.9 Request-response protocol — server part

	Figure 28 — Request-response protocol—simplified server FSM
	11.10 Request-response protocol timers
	11.11 Authentication protocol
	11.12 Encryption algorithm
	11.13 Retries and the role of the checksum function
	11.14 Random Number Generation
	11.15 Using Authentication

	12 Presentation/application layer
	12.1 Assumptions
	12.2 Service provided
	12.3 Service interface

	Figure 29 — Application layer interface
	Table 1 — Application layer primitives
	12.4 APDU types and formats

	Figure 30 — APDU format
	12.5 Protocol diagrams

	Figure 31 — Application protocol diagram for multicast acknowledged transaction
	Figure 32 — Application protocol diagram for multicast request/response transaction
	12.6 Application protocol state variables
	12.7 Request - response messaging in offline state
	12.8 Network variables
	12.8.1 General
	12.8.2 Network variable processing

	12.9 Error notification to the application program
	12.9.1 General
	12.9.2 Error notification for messages
	12.9.3 Error notification for network variables

	13 Network management & diagnostics
	13.1 Assumptions
	13.2 Services provided
	13.3 Network management and diagnostics application structure
	13.4 Node states
	13.5 Using the network management services
	13.5.1 General
	13.5.2 Addressing considerations
	13.5.3 Making network configuration changes
	13.5.4 Downloading an Application Program
	13.5.5 Error handling conditions (informative)

	13.6 Using router network management commands
	13.7 NMPDU formats and types
	13.7.1 General
	13.7.2 Query ID
	13.7.3 Respond to query
	13.7.4 Update domain
	13.7.5 Leave domain
	13.7.6 Update key
	13.7.7 Update address
	13.7.8 Query address
	13.7.9 Query network variable configuration
	13.7.10 Update group address
	13.7.11 Query domain
	13.7.12 Update network variable configuration
	13.7.13 Set node mode
	13.7.14 Read memory
	13.7.15 Write memory
	13.7.16 Checksum recalculate
	13.7.17 Install

	Table 2 —Resource codes
	Table 3 —Space of the property ID
	13.7.18 Memory refresh
	13.7.19 Query SI
	13.7.20 Network variable value fetch
	13.7.21 Manual service request message
	13.7.22 Network management escape code
	13.7.23 Router mode
	13.7.24 Router clear group or subnet table
	13.7.25 Router group or subnet table download
	13.7.26 Router group forward
	13.7.27 Router subnet forward
	13.7.28 Router Do Not forward group
	13.7.29 Router Do Not forward subnet
	13.7.30 Router group or subnet table report
	13.7.31 Router status
	13.7.32 Router half escape code
	13.8 DPDU types and formats
	13.8.1 General
	13.8.2 Query status
	13.8.3 Proxy status
	13.8.4 Clear status
	13.8.5 Query transceiver status

	Annex A (normative) Reference implementation
	A.1 General
	A.2 Predictive CSMA algorithm
	A.3 LPDU transmit algorithm
	A.4 LPDU receive algorithm
	A.5 Routing algorithm
	A.6 Learning algorithm
	A.7 Transaction control algorithm
	A.8 Network layer algorithm
	A.9 TPDU and SPDU send algorithm with authentication
	A.10 Application Layer
	A.11 Network Management Commands
	A.12 Configuration data structures
	A.13 Include files for the reference implementation
	A.14 Application protocol state variables and address recognition Structures
	A.15 Query-id data structures
	A.16 Respond to query data structure
	A.17 Update somain data structures
	A.18 Leave domain data structures
	A.19 Update key data structures
	A.20 Update address data structures
	A.21 Query address data structures
	A.22 Query NV Cnfg data structures
	A.23 Update group address data structures
	A.24 Query domain data structures
	A.25 Update network variable configuration data structures
	A.26 Set node mode data structures
	A.27 Read memory data structures
	A.28 Write memory data structures
	A.29 Checksum recalculate data structures
	A.30 Install command data structures
	A.31 Memory refresh data structures
	A.32 Query SI data structures
	A.33 NV fetch data structures
	A.34 Manual service request message ddata structures
	A.35 Product query data structures
	A.36 Router mode data structures
	A.37 Router table clear group or subnet table data structures
	A.38 Router group or subnet download data structures
	A.39 Router group forward data structures
	A.40 Router subnet forward data structures
	A.41 Router group No-Forward data structures
	A.42 Router subnet No-Forward data structures
	A.43 Group / subnet table report data structures
	A.44 Router status data structures
	A.45 Query status data structures
	A.46 Proxy status data structures
	A.47 Clear status data structures
	A.48 Query transceiver status data structures

	Annex B (normative) Additional Data Structures
	B.1 General
	B.1.1 System image
	B.1.2 Application image
	B.1.3 Network image
	B.2 Read-only structures
	B.2.1 Fixed read-only data structures
	B.2.2 Read-only structure field descriptions
	Table B. 1 — Buffer size encodings
	Table B. 2 — Buffer Count Encodings
	B.3 Domain table
	B.3.1 Domain table field descriptions
	B.4 Address table
	B.4.1 Declaration of group address format
	B.4.2 Group address field descriptions
	B.4.3 Declaration of subnet/node address format
	B.4.4 Subnet/node address field descriptions
	B.4.5 Declaration of broadcast address format
	B.4.6 Broadcast address field descriptions
	B.4.7 Declaration of turnaround address format
	B.4.8 Turnaround address field descriptions
	B.4.9 Declaration of protocol processor’s address format
	B.4.10 Protocol processor address field descriptions
	B.4.11 Timer field descriptions
	Table B. 3 — Encoding of timer field values
	B.5 Network variable tables - informative
	B.5.1 Network variable configuration table field descriptions - informative
	B.5.2 Network variable alias table field descriptions - informative
	B.5.3 Network variable fixed table field descriptions - informative
	B.6 Self-Identification structures
	B.6.1 SI Structure field descriptions
	B.6.2 NV descriptor table field descriptions
	B.6.3 SNVT table extension records
	B.6.4 SNVT alias field descriptions
	B.6.5 Version 2 SI data
	Figure B. 1 —SI data
	B.6.5.1 Alias record (alias_field Annex B.6.4 above)
	B.6.5.2 SI Extended header record (si_header_ext)
	B.6.5.3 Clarification of the use of existing fields in the snvt_struct (Annex B.6)
	B.6.5.4 Capability info record (snvt_capability_info)
	B.6.5.5 Read-Only Data Structure
	B.7 Configuration structure
	B.7.1 General
	B.7.2 Configuration structure field descriptions
	Table B. 4 — Buffer timeout encoding
	B.8 Statistics relative structure
	Annex C (informative) Behavioral characteristics
	C.1 Channel capacity and throughput
	Table C. 1 — Key throughput parameters
	C.2 Network metrics
	Figure C. 1 — Probability of successful delivery over k hops
	C.3 Transaction metrics
	C.4 Boundary conditions — power-up
	C.5 Boundary conditions — high load
	Annex D (normative) PDU summary
	Figure D. 1 — Protocol PDU summary
	Annex E (normative) Naming and addressing
	E.1 Address types and formats
	E.2 Domains
	E.3 Subnets and nodes
	E.4 Groups
	Figure E. 1 — Physical topology and logical addressing (single domain)
	E.5 Unique_Node_ID and node address assignment
	E.6 NPDU addressing
	Table E. 1 — NPDU/TPDU/SPDU addressing - logical address formats
	Figure E. 2 — NPDU/TPDU/SPDU addressing—physical address formats
	Bibliography

