Surface active agents — Determination of inorganic sulphate content in anionic surface active agents — Potentiometric lead selective electrode titration method

The European Standard EN 14880:2005 has the status of a British Standard

ICS 71.100.40

National foreword

This British Standard is the official English language version of EN 14880:2005.

The UK participation in its preparation was entrusted to Technical Committee CII/34, Methods of test for surface active agents, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this committee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of British Standards Online.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 11 and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 26 September 2005

a DCI oc C + 1 ocor

© BSI 26 September 2005

ISBN 0 580 46665 5

A 1 .	. 1	•	1 1 .	, •
Amendments	1661104	SINCA	nuhlic	atinn
	issucu	SILICE	public	auton

Amd. No.	Date	Comments

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 14880

August 2005

ICS 71.100.40

English Version

Surface active agents - Determination of inorganic sulphate content in anionic surface active agents - Potentiometric lead selective electrode titration method

Agents de surface - Détermination de la teneur en sulfate inorganique dans les agents de surface anioniques - Méthode potentiométrique de titrage avec électrode à membrane sélective au plomb

Grenzflächenaktive Stoffe - Bestimmung des Gehaltes an anorganischen Sulfaten in anionischen grenzflächenaktiven Stoffen - Potentiometrische Titration mit einer bleiselektiven Elektrode

This European Standard was approved by CEN on 8 July 2005.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Contents

	P	age
Forewo	ord	3
1	Scope	4
2	Normative references	4
3	Principle	4
4	Reagents	4
5	Apparatus	5
6	Sampling and preparation of the test solution	5
7	Procedure	5
8	Calculation and expression of results	7
9	Precision	7
10	Test report	7
Annex	A (informative) Titration apparatus settings	
	B (informative) Results of inter-laboratory test	
	graphy	

Foreword

This European Standard (EN 14880:2005) has been prepared by Technical Committee CEN/TC 276 "Surface active agents", the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2006, and conflicting national standards shall be withdrawn at the latest by February 2006.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

1 Scope

This European Standard specifies a method for the determination of the content of inorganic sulphate in anionic surface active agents. It can be applied to α -olefin sulphonates and n-olefin sulphonates, alcohol sulphates, alcohol ether sulphates, alkyl benzene sulphonates and other alkyl sulphonates. This method is used also for the determination of inorganic sulphate in alkyl benzene sulphonates or other alkyl sulphonates in their acid form. This method also applies to deep-coloured samples.

NOTE Sulphate can be present as sulphuric acid, ionic salts of this acid or mixture of these.

2 Normative references

The following referenced documents are indispensable for the application of this European Standard. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN ISO 3696, Water for analytical laboratory use - Specification and test methods (ISO 3696:1987)

ISO 607, Surface active agents and detergents – Methods of sample division

3 Principle

Potentiometric titration of the test sample containing inorganic sulphate is performed in non-aqueous medium with a lead nitrate standard volumetric solution. The reaction is the following:

$$Pb(NO_3)_2 + SO_4^{2-} \rightarrow PbSO_4 \downarrow +2NO_3^{-}$$

Lead sulphate precipitate is formed during the titration and the non-aqueous medium decreases its solubility. Nitric acid is added to remove possible interference from carbonates. The endpoint is related to an increase in lead ion activity, as measured by a lead-selective electrode.

4 Reagents

During the analysis, unless otherwise specified, use only reagents of recognised analytical grade that have been checked in advance as to not interfere with the analytical results.

4.1 Water, complying with grade 3 as defined in EN ISO 3696.

NOTE If the water is purified via ion-exchange resins, ensure that no cationic or anionic species from the resins cause interference.

- **4.2** Nitric acid, solution $c(HNO_3) = 1 \text{ mol/l.}$
- **4.3** Lead nitrate standard volumetric solution, $c(Pb(NO_3)_2) = 0.01 \text{ mol/l.}$

Weigh 3,312 g of lead nitrate, previously dried at 150 °C in a vacuum oven, dissolve in water, by using a small beaker. Quantitatively transfer the solution into a 1 000 ml volumetric flask and add water up to the mark.

4.4 Lead nitrate standard volumetric solution, $c(Pb(NO_3)_2) = 0,005 \text{ mol/l.}$

Weigh 1,656 g of lead nitrate, previously dried at 150 °C in a vacuum oven, dissolve in water, by using a small beaker. Quantitatively transfer the solution into a 1 000 ml volumetric flask and add water up to the mark.

4.5 Potassium sulphate solution, $c(K_2SO_4) = 0.01 \text{ mol/l.}$

Weigh approximately 1,74 g (m) of K₂SO₄, previously dried in an oven at 180 °C, dissolve with water in a 1 000 ml volumetric flask, make up to the mark and homogenize.

Calculate the factor, f, of the solution, according to the Equation (1):

$$f = \frac{m}{1,7425} \tag{1}$$

where

m is the mass of potassium sulphate weighted, in grams;

1,742 5 is the mass, in grams, of 0,01 mole of potassium sulphate K₂SO₄.

4.6 Propan-2-ol (C₃H₈O)

5 Apparatus

Ordinary laboratory apparatus and the following:

- **5.1 Automatic potentiometric titration apparatus**, with drift-controlled data acquisition and dynamic titrimetric dosing equipped with a piston burette delivery system of 20 ml capacity.
- **5.2** Lead-selective electrode (Metrohm 6.0502.170¹⁾, or similar).
- 5.3 Reference electrode Ag/AgCI filled with a saturated sodium nitrate ethanolic solution.

6 Sampling and preparation of the test solution

6.1 Sampling

The laboratory sample shall be taken and stored in accordance with ISO 607.

6.2 Preparation of the test solution

For non-homogeneous products, it will be better to dissolve a large sample (for example 5 g) in a suitable solvent (for example propan-2-ol/water) and take an aliquot for the titration.

Exactly weigh, in a 150 ml beaker, a quantity of the sample (m_0) so as to consume a maximum of 10 ml of Pb(NO₃)₂ solution (4.3 or 4.4) during the titration (typically, the mass is in the range 0,3 g to 1 g).

7 Procedure

7.1 Standardisation of the lead nitrate standard volumetric solution

Pipette 5,00 ml of the potassium sulphate solution (4.5) into a 150 ml beaker. Add approximately 1 ml of nitric acid solution (4.2) and 100 ml of propan-2-ol (4.6).

¹⁾ Metrohm 6.0502.170 is the trade name of instruments supplied by Metrohm Itd. (CH-9101 Herisau, Switzerland). This information is given for the convenience of users of this European Standard and does not constitute an endorsement by CEN of these instruments named.

EN 14880:2005 (E)

Prepare the potentiometer (5.1) for operation, immerse the electrodes in the solution and stir by using the electromagnetic stirrer.

Titrate with the lead nitrate volumetric solution (4.3 or 4.4). Record the reagent consumption, V_2 , at the inflection point of the titration curve.

NOTE An example for instrument settings and a titration curve are given in Annex A.

Run the standardization in triplicates. The concentration of the lead nitrate standard volumetric solution, c_a , expressed in moles per litre is calculated in accordance with the following Equation (2):

$$c_a = \frac{V_1 \times c \times f}{V_2} \tag{2}$$

where

- V_1 is the volume of potassium sulphate solution (4.5), in millilitres;
- c is the concentration of the lead nitrate solution, in moles per litre;
- f is the factor of the potassium sulphate solution determined according to 4.5;
- V_2 is the average volume of lead nitrate standard volumetric solution used in the titration, in millilitres.

NOTE In alternative, a solution of sulphuric acid, $c(H_2SO_4)=0.01$ mol/l, can be used to standardize the lead nitrate solution. In this case the sulphuric acid solution can be prepared diluting in the suitable ratio a standard reagent.

7.2 Determination

If the expected sulphate content is lower than 1% m/m, use the $Pb(NO_3)_2$, $c(Pb(NO_3)_2) = 0,005$ mol/l for the titration, otherwise use the $Pb(NO_3)_2$, $c(Pb(NO_3)_2) = 0,01$ mol/l.

Exactly weigh, in a 150 ml beaker, a quantity of the sample (m_0) so as to consume a maximum of 10 ml of Pb(NO₃)₂ standard volumetric solution during the titration.

NOTE Weighing more than 1g of surfactant should be avoided because the electrical behaviour of the ion-selective electrode is strongly dependent on the surfactant concentration and could give bad potentiometric curves. Approximately 1 ml of nitric acid solution (4.2) and 100 ml of propan-2-ol (4.6) should be added.

The solution should be acidic (lower than pH 3) before titration. If 1 ml of nitric acid solution (4.2) is not sufficient to achieve this, more acid should be added.

Prepare the potentiometer (5.1) for operation, immerse the electrodes in the solution and stir by using the electromagnetic stirrer.

Titrate with the lead nitrate volumetric solution (4.3 or 4.4). Record the reagent consumption, V, at the inflection point of the titration curve

Clean the ion-selective electrode tip before each titration by using a soft cloth or paper together with propan-2-ol.

8 Calculation and expression of results

The content of inorganic sulphate in the sample, c_b , expressed in percent by mass of sodium sulphate (Na₂SO₄) is calculated according to the Equation (3):

$$c_b = \frac{c_a \times 142,04 \times V}{m_0 \times 10}$$
 (3)

where

 m_0 is the mass of the test sample, in grams;

 c_a is the concentration of the lead nitrate standard volumetric solution, in moles per litre;

V is the average volume consumption of lead nitrate standard volumetric solution.

NOTE The value 142,04 is the molecular mass of Na₂SO₄ in grams.

9 Precision

9.1 Repeatability limit

The absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will not exceed the repeatability limit, r, in more than 5 % of cases.

Precision data are given in Annex B.

9.2 Reproducibility limit

The absolute difference between two independent single test results, obtained using the same method on identical test material in different laboratories by different operators using different equipment, will not exceed the reproducibility limit, R, in more than 5 % of cases.

Precision data are given in Annex B.

10 Test report

The test report shall include the following information:

- a) all necessary information for the complete identification of the sample;
- b) method used (a reference to this European Standard, i.e. EN 14880);
- c) test results:
- d) details of any operations not specified in this European Standard or in the standards to which reference is made, and any operations regarded as optional, as well as any incidents likely to have affected the results.

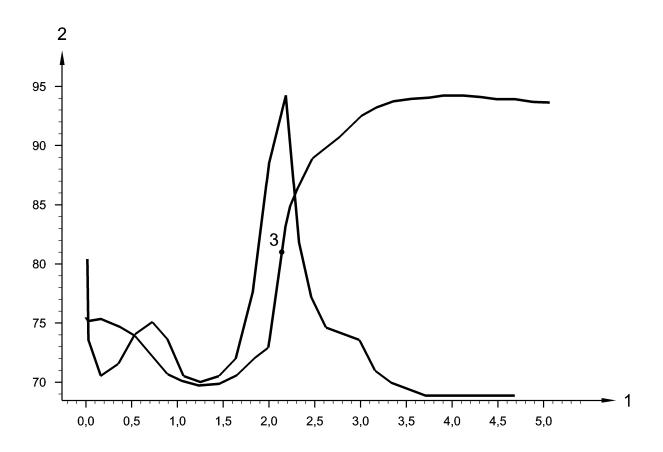
Annex A (informative)

Titration apparatus settings

A.1 Automatic potentiometric titration apparatus

The following parameters are the settings for the automatic potentiometric titration apparatus and are intended to act as a guideline, only (see Table A.1). The titration is carried out with dynamic dosing.

For samples of known concentration providing a suitable starting volume can shorten the titration time.


Table A.1 — Instrument settings

Parameter	Set point	
Start volume	0 ml	
Measuring point density	2	
Signal drift	20 mV/min	
Equilibration time	38 s	
Minimum increment	10 µl	
Burette volume/resolution	20 ml/2 μl	
Dose rate, max.	2 ml/min	
Pause	300 s	
Evaluation end point criteria	5	

NOTE 1 The parameter "Start volume" can be changed depending on the final titration volume of the lead nitrate solution. For instance, if the final titration volume is higher than 4 ml or 5 ml, "Start volume" can be set to 2 ml (that is just to save time).

NOTE 2 The parameter "Pause" is the waiting time before the start of the titration. The value of 300 s is just a conservative time for products difficult to solubilize. In the case of soluble products this time can be decreased to 60 s or 120 s.

A.2 Example of titration curve

Key

- 1 Volume, ml
- 2 Voltage, mV
- 3 Inflection point

Figure A.1 — Typical titration curve

Annex B (informative)

Results of inter-laboratory test

The inter-laboratory test was carried out in 2002 by CESIO/AISE WG "Surfactant Analysis". The test samples were commercial products (raw materials and formulated products). The results of inter-laboratory test were evaluated in accordance with ISO 5725-2 (see Table B.1).

Table B.1 — Results of inter-laboratory test

Designation	Α	В	С	D	E
Number of participating laboratories	6	6	6	6	6
Number of not eliminated laboratories	5	6	5	5	5
Number of individual measured values	27	33	29	30	30
Mean value, in % m/m	1,16	2,27	0,094	0,106	0,128
Repeatability standard deviation s_r , in % m/m	0,012	0,038	0,006 8	0,006 5	0,005 5
Repeatability limit $r = (2.8 \times s_r)$, in % m/m	0,03	0,11	0,019	0,018	0,015
Variation coefficient of repeatability, in %	1,0	1,7	7,2	6,1	4,3
Reproducibility standard deviation s_{R_s} in % m/m	0,023	0,14	0,012 2	0,010 4	0,009 9
Reproducibility limit, $R = (2.8 \times s_R)$, in % m/m	0,064	0,38	0,034	0,029	0,028
Variation coefficient of reproducibility, in %	1,95	6,1	12,9	9,8	7,8

Sample	Definition	CAS name	CAS number
А	Linear Alkyl Benzene Sulphonic Acid	Benzenesulphonicacid, 4-C10-13-sec- alkyl derivs.	85536-14-7
В	Heavy Alkylate Sulphonate	Benzene, mono-C10-14 alkyl. Derivs., fractionation bottoms	85117-41-5
С	Alcohol Ether Sulphate (Linear)	Poly(oxy-1,2-ethanediyl), alpha-sulpho, omega-hydroxy-, C12-14-alkyl ethers, sodium salt	68891-38-3
D	Alcohol Ether Sulphate (Branched)	Poly(oxy-1,2-ethanediyl), alpha-sulpho, omega-hydroxy-, C10-16-alkyl ethers, sodium salt	68585-34-2
Е	Alcohol Sulphate	Sulphuric acid, mono-C12-13-alkyl ester, sodium salt	91783-23-2

Bibliography

[1] ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.

Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com.

BSI 389 Chiswick High Road London W4 4AL