Cryogenic vessels — Safety devices for protection against excessive pressure — Part 3: Determination of required discharge — Capacity and sizing The European Standard EN 13648-3:2002 has the status of a British Standard $ICS\ 23.020.40$ #### National foreword This British Standard is the official English language version of EN 13648-3:2002. The UK participation in its preparation was entrusted to Technical Committee PVE/18, Cryogenic vessels, which has the responsibility to: - aid enquirers to understand the text; - present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed: - monitor related international and European developments and promulgate them in the UK. A list of organizations represented on this committee can be obtained on request to its secretary. #### **Cross-references** The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of British Standards Online. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. This British Standard, having been prepared under the direction of the Engineering Sector Policy and Strategy Committee, was published under the authority of the Standards Policy and Strategy Committee on 6 December 2002 #### Summary of pages This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 11 and a back cover. The BSI copyright date displayed in this document indicates when the document was last issued. #### Amendments issued since publication © BSI 6 December 2002 | | Amd. No. | Date | Comments | |---|----------|------|----------| | | | | | | | | | | | • | | | | | | | | | | | | | | ISBN 0 580 40934 1 # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 13648-3 October 2002 ICS 23.020.40 #### **English version** Cryogenic vessels - Safety devices for protection against excessive pressure - Part 3: Determination of required discharge - Capacity and sizing Récipients cryogéniques - Dispositifs de protection contre les surpressions - Partie 3: Détermination du débit à évacuer - Capacité et dimensionnement Kryo-Behälter - Sicherheitseinrichtungen gegen Drucküberschreitung - Teil 3: Ermittlung des erforderlichen Ausflusses - Ausflussmassenstrom und Auslegung This European Standard was approved by CEN on 19 August 2002. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: rue de Stassart, 36 B-1050 Brussels © 2002 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 13648-3:2002 E ### EN 13648-3:2002 (E) # **Contents** | | P | age | |---------------------------------|--|--------| | Fore | word | 3 | | 1 | Scope | 5 | | 2 | Normative references | 5 | | 3
the c
3.1
3.2
3.3 | Calculation of the total quantity of heat transferred per unit time from the hot wall (outer jacket) toold wall (inner vessel) | 5
6 | | 4 | Calculation of the mass flow Q_m (kg h $^{ extstyle{-1}}$) to be relieved by the safety devices | 8 | | 5 | Rule for the safety devices installation | 9 | | 6
6.1
6.2
6.3 | Sizing of safety devices Safety valves Bursting disc Sizing of safety valves and bursting discs | 9
9 | | | ex ZA (informative) Clauses of this European Standard addressing essential requirements or other isions of EU Directives | | | Bibli | ography | 11 | #### **Foreword** This document (EN 13648-3:2002) has been prepared by Technical Committee CEN/TC 268 "Cryogenic vessels", the secretariat of which is held by AFNOR. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2003, and conflicting national standards shall be withdrawn at the latest by April 2003. This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s). For relationship with EU Directive(s), see informative annex ZA, which is an integral part of this document. EN 13648 consists of the following parts: EN 13648-1, Cryogenic vessels - Safety devices for protection against excessive pressure - Part 1: Safety valves for cryogenic service. EN 13648-2, Cryogenic vessels - Safety devices for protection against excessive pressure - Part 2: Bursting discs safety devices for cryogenic service. EN 13648-3, Cryogenic vessels - Safety devices for protection against excessive pressure - Part 3: Determination of required discharge - Capacity and sizing. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. EN 13648-3:2002 (E) #### Introduction The capacity of each of the pressure relief devices is established by considering all of the probable conditions contributing to internal excess pressure. The applicable conditions are specified in the product standard of each type of cryogenic vessel. This European Standard provides a separate calculation method for determining the contributing mass flow to be relieved for each of the specified conditions. Conformity of the pressure protection system with the requirement for each condition is assumed if the applicable method of this standard is adopted. This European Standard is based on CGA pamphlet, S-1.2 and S-1.3 and standards prepared by CEN/TC 69. #### 1 Scope This standard provides a separate calculation method for determining the contributing mass flow to be relieved resulting from each of the following specified conditions: - vacuum insulated vessels with insulation system (outer jacket + insulating material) intact under normal vacuum. Outer jacket at ambient temperature. Inner vessel at temperature of the contents at the relieving pressure; - vacuum insulated vessels with insulation system remaining in place but with loss of vacuum, or non vacuum insulated vessels with insulation system intact. Outer jacket at ambient temperature. Inner vessel at temperature of the contents at the relieving pressure; - vacuum or non vacuum insulated vessels with insulation system remaining fully or partially in place, but with loss of vacuum in the case of vacuum insulated vessels, and fire engulfment. Inner vessel at temperature of the contents at the relieving pressure; - vessels with insulation system totally lost and fire engulfment. Good engineering practice based on well established theoretical physical science shall be adopted to determine the contributing mass flow where an appropriate calculation method is not provided for an applicable condition. #### 2 Normative references This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text, and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments). prEN ISO 4126-1, Safety devices for protection against excessive pressure - Part 1: Safety valves (identical to ISO 4126-1). prEN ISO 4126-6:2000, Safety devices for protection against excessive pressure - Part 6: Application, selection and installation of bursting disc safety devices (ISO/DIS 4126-6:2000). # 3 Calculation of the total quantity of heat transferred per unit time from the hot wall (outer jacket) to the cold wall (inner vessel) #### 3.1 General p (bar abs) is the actual relieving pressure which is used for the sizing of a safety valve. This shall not be greater than 1,1 PS, where PS is the maximum allowable pressure for which the vessel is designed. - $T_a(K)$ is the maximum ambient temperature for conditions other than fire (as specified e.g.by regulation/standard) - $T_f(K)$ is the external environment temperature under fire conditions (in any case $T_f = 922$ K, i.e. 649°C or 1200 F) - 1) for subcritical fluids, T is the saturation temperature of the liquid at pressure p; - 2) for critical or supercritical fluids, T is calculated from 4.3. #### 3.2 For conditions other than fire **3.2.1** Vacuum insulated vessels under normal vacuum : quantity of heat transferred per unit time (Watt) by heat leak through the insulation system: $$W_1 = (T_a - T) U_1 \Sigma$$ where U_1 is the overall heat transfer coefficient of the insulating material under normal vacuum, in Wm⁻²K⁻¹ $$U_1 = \frac{\lambda_1}{e_1}$$ - λ_1 is the thermal conductivity coefficient of the insulating material under normal vacuum, between T and T_a , in W.m⁻¹K⁻¹: - e_1 is the nominal insulating material thickness, in m; - Σ is the arithmetic mean of the inner and outer surface areas of the vessel insulating material, in m². - **3.2.2** Vacuum insulated vessels in case of loss of vacuum or non vacuum insulated vessels; quantity of heat transferred per unit time (Watt) by heat leak through the insulating material: $$W_2 = (T_a - T) U_2 \Sigma$$ where U_2 is the overall heat transfer coefficient of the insulating material at atmospheric pressure, in Wm⁻²K⁻¹ $$U_2 = \frac{\lambda_2}{e_2}$$ - λ_2 is the thermal conductivity coefficient of the insulating material saturated with gaseous lading or air at atmospheric pressure, whichever provides the greater coefficient, between T and T_a , in Wm⁻¹K⁻¹. - e₂ is the minimum insulating material thickness taking into account the manufacturing tolerancies or effects of sudden loss of vacuum, in m. NOTE This formula cannot apply to application at very low temperatures with small thickness of insulating material, as the maximum heat transfer coefficient would be given by air condensation. This phenomena has been studied for helium in W. Lehmann, Sicherheitstechnische Aspekte bei Auslegung and Betrieb von Lhe-badgekühlten-SL-Badkyokasten." 3.2.3 Quantity of heat transferred per unit time (Watt) by supports and piping located in the interspace $$W_3 = (T_a - T)(w_1 + w_2 + \dots + w_n + \dots)$$ where w_n is the heat leak per degree K contributed by one of the supports or the pipes, in WK⁻¹ $$w_{\mathsf{n}} = \lambda_{\mathsf{n}} \, \frac{S_{\mathsf{n}}}{l_{\mathsf{n}}}$$ λ_n is the thermal conductivity coefficient of the support or pipe material between T and T_a , in Wm⁻¹K⁻¹; S_n is the support or pipe section area, in m^2 ; l_n is the support or pipe length in the vacuum interspace, in m. - **3.2.4** Quantity of heat transferred per unit time (Watt) by the pressure built up device circuit with the regulator fully open : - W_4 determined from the type (ambient air, water or steam, electrical ...) and the design of the pressure built up device circuit. For example, in the case of ambient air vaporiser: $$W_{4} = U_{4}A(T_{\alpha} - T)$$ where - U_4 is the overall convective heat transfer coefficient of the ambient air vaporiser, in Wm⁻²K⁻¹; - A is the external heat transfer surface area of the vaporiser, in m^2 . #### 3.3 Under fire conditions - 3.3.1 Quantity of heat transferred per unit time (Watt) by heat leak through the vessel walls - 3.3.1.1 Insulation system remains fully or partially in place during fire conditions $$W_5 = 2.6 (922 - T) U_5 \Sigma^{0.82}$$ where $$U_5 = \frac{\lambda_5}{e}$$, in Wm⁻² K⁻¹; - λ_5 is the thermal conductivity coefficient of the insulating material saturated with gaseous lading or air at atmosphere pressure whichever provides the greater coefficient between T and 922 K, in Wm⁻¹K⁻¹; - e is the thickness of the insulating material remaining in place during fire conditions, in m; - Σ is the mean surface area of the insulating material remaining in place during fire conditions, in m². If outer jacket remains in place during fire conditions, but if insulating material is entirely destroyed, U_5 is equal to the overall heat transfer coefficient with gaseous lading or air at atmospheric pressure in the space between outer jacket and inner vessel, whichever provides the greater coefficient between T and 922 K. Σ is equal to the mean surface area of the interspace. 3.3.1.2 Insulation system does not remain in place during fire conditions $$W_6 = 7.1 \cdot 10^4 \, \sigma^{0.82}$$ where - σ is the total outside surface area of the inner vessel, in m². - 3.3.2 Quantity of heat transferred by supports and piping located in the interspace: can be neglected in #### EN 13648-3:2002 (E) #### 3.3.3 Total quantity W (Watt) of heat transferred per unit time from the hot wall to the cold wall Total *W* is obtained by summing the relevant *W*s in accordance with requirements of the relevant cryogenic vessel standards. ## 4 Calculation of the mass flow Q_m (kg h⁻¹) to be relieved by the safety devices **4.1** The relieving pressure p is less than 40 % of the critical pressure: $$Q_m = 3.6 \frac{W}{L}$$ where L is the latent vaporization heat of the cryogenic liquid in relieving conditions, in kJkg $^{-1}$. **4.2** The relieving pressure *p* is below the critical pressure, but equal to or greater than 40 % of these pressure: $$Q_m = 3.6 \left(\frac{v_g - v_l}{v_g} \right) \frac{W}{L}$$ where v_g is the specific volume of saturated gas at the relieving pressure p, in m³kg⁻¹; v_l is the specific volume of saturated liquid at the relieving pressure p, in m³kg⁻¹. **4.3** The relieving pressure *p* is equal to or greater than the critical pressure: $$Q_m = 3.6 \frac{W}{L'}$$ where L' is the specific heat input: $v \left[\frac{\partial h}{\partial v} \right]_p$ at the relieving pressure p and at the temperature T (K), in kJkg⁻¹ where $$\frac{\sqrt{v}}{v\left[\frac{\partial h}{\partial v}\right]_{p}} \text{ is a maximum;}$$ v is the specific volume of critical or supercritical fluid at the relieving pressure p and any temperature within the operating range, in $m^3 kg^{-1}$; h is the enthalpy of the fluid in the same conditions as above, in kJkg⁻¹. EXAMPLE Calculate the value of L' and T to be used for liquid hydrogen relieving at pressure p = 13.8 bar abs as given in Table 1. | _ | | | - | |----|-----|--------|---| | Ta | h | \sim | 1 | | 10 | LJI | | | | Temperature | v | $v \left[\frac{\partial h}{\partial v} \right]_p$ | $\frac{\sqrt{v}}{v \left[\frac{\partial h}{\partial v}\right]_p}$ | |-------------|-----------------------|--|---| | (K) | (m³kg ⁻¹) | (kJkg ⁻¹) | | | 33,3 | 0,0271567 | 214,09 | 0,0007697 | | 34,7 | 0,0582961 | 236,56 | 0,0010206 | | 34,8 | 0,0588450 | 237,49 | 0,0010214 max | | 34,9 | 0,0593488 | 238,65 | 0,0010208 | | 38,9 | 0,0855371 | 304,53 | 0,0009603 | | 44,4 | 0,1109707 | 384,77 | 0,0008657 | At p = 13.8 bar abs, the maximum value of $\frac{\sqrt{v}}{v\left[\frac{\partial h}{\partial v}\right]_{D}}$ occurs at T = 34.8 K for hydrogen In these conditions: $L' = 237,49 \text{ kJkg}^{-1}$ #### 5 Rule for the safety devices installation The pipe between outer jacket and safety device should not be longer than 0,6 m otherwise, heat transfer to the released flow shall be taken into account. This heat transfer reduces the product density and consequently reduces the effective discharge rate of the relief system (see calculation methods in the bibliography). The maximum pressure drop of the pipework to the pressure relieving valve at the maximum flow capacity of the safety valve shall be 2% (of the set pressure of the pressure relief valve) less than the specified minimum blowdown of that pressure relief valve. Where the blowdown is not known, the pressure drop shall be no greater than 3% of the safety valve set pressure at the rated flow. #### 6 Sizing of safety devices #### 6.1 Safety valves According to prEN ISO 4126-1. #### 6.2 Bursting disc According to prEN ISO 4126-6:2000 annex B. #### 6.3 Sizing of safety valves and bursting discs For all safety devices which have to evacuate together the mass flow Q_m at the same relieving pressure p, Q_m shall be less than or equal to the sum of the relieving capacity of all the individual relieving devices. Without a separate justification, the following rules are valid. Under fire conditions and in case of transportable vessels for nitrogen, oxygen or argon having water capacity exceeding 450 liters, the minimum required mass flow of the pressure relief devices, shall not be less than 0,018 kg h⁻¹ of air per liter of water capacity, at T = 288 K and p = 2,7 bar abs. ## Annex ZA (informative) # Clauses of this European Standard addressing essential requirements or other provisions of EU Directives This European Standard has been prepared under a mandate given to CEN by the European Commission and the European Free trade Association and supports essential requirements of EU Directives: Pressure Equipment Directive 97/23/CE dated 29-05-1997. WARNING Other requirements and other EU Directives <u>may</u> be applicable to the product(s) falling within the scope of this standard. The clauses of this European Standard given in Table ZA.1 are likely to support requirements of Directives. Table ZA.1 — Comparison between the PED and this European Standard | Harmonised
clauses of
EN 13648-3 | Content | PED | | |--|---|---------------|--| | 3, 4 | Protection against exceeding the allowable limits of pressure equipment | Annex I, 2.10 | | | 5,6 | Safety accessories | Annex I, 2.11 | | | 3.3 | External fire | Annex I, 2.12 | | Compliance with the clauses of this standard provides one means of conforming to the specific essential requirements of the directive concerned and associated EFTA regulations. # **Bibliography** - [1] CGA S-1.2 1995, Pressure Relief Device Standards Part 2: Cargo and Portable Tanks for Compressed Gases. - [2] CGA S-1.3 1995, Pressure Relief Device Standards Part 3: Stationery Storage Containers for Compressed Gases. ## **BSI** — British Standards Institution BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at $\frac{\text{http://www.bsi-global.com}}{\text{http://www.bsi-global.com}}$. In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com. Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001. Email: membership@bsi-global.com. Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline. Further information about BSI is available on the BSI website at http://www.bsi-global.com. #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com. BSI 389 Chiswick High Road London W4 4AL