BS EN 13587:2016 BS 2000-519:2016

BSI Standards Publication

Bitumen and bituminous binders — Determination of the tensile properties of bituminous binders by the tensile test method

BS EN 13587:2016 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 13587:2016. It supersedes BS EN 13703:2003 (dual numbered as BS 2000-515:2003) and BS EN 13587:2010 (dual numbered as BS 2000-519:2010) which are withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PTI/13, Petroleum Testing and Terminology.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2016. Published by BSI Standards Limited 2016

ISBN 978 0 580 83322 9

ICS 75.140; 91.100.50

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 December 2016.

BS 2000 Series

Energy Institute, under the brand of IP, publishes and sells all Parts of BS 2000, and all BS EN and BS ISO petroleum test methods that would be part of BS 2000, both in its annual publication "IP Standard Test Methods for analysis and testing of petroleum and related products, and British Standard 2000 Parts" and individually.

Amendments/corrigenda issued since publication

Date Text affected

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 13587

November 2016

ICS 75.140; 91.100.50

Supersedes EN 13587:2010, EN 13703:2003

English Version

Bitumen and bituminous binders - Determination of the tensile properties of bituminous binders by the tensile test method

Bitumes et liants bitumineux - Détermination des caractéristiques de traction des liants bitumineux par la méthode d'essai de traction Bitumen und bitumenhaltige Bindemittel -Bestimmung der Streckeigenschaften von bitumenhaltigen Bindemitteln mit dem Zugprüfverfahren

This European Standard was approved by CEN on 22 July 2016.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

Con	tents Page	
Euro	pean foreword3	
1	Scope4	
2	Normative references4	
3	Terms and definitions4	
4	Principle 5	,
5	Apparatus 5	,
6	Preparation and conservation of samples7	
7	Procedure	
8	Calculation and expression of results7	
9	Precision8	
10	Test report9	ı
	ex A (normative) Cohesion specification criteria10	
Bibli	ography11	

European foreword

This document (EN 13587:2016) has been prepared by Technical Committee CEN/TC 336 "Bituminous binders", the secretariat of which is held by AFNOR/BNPé.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2017, and conflicting national standards shall be withdrawn at the latest by May 2017.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 13587:2010 and EN 13703:2003.

This document contains the following changes compared to EN 13587:2010:

- updated normative references;
- additional terms and definitions;
- deleting determination of deformation energy by EN 13703;
- introduction of calculation methods of deformation energy in the standard;
- updated bibliography;
- combining time frame EN 13589 with EN 13587;
- renaming "conventional energy" into "cohesion energy";

According to the CEN-CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

1 Scope

This European Standard specifies a method for determining the tensile properties of a bituminous binder, in particular those of a polymer modified bitumen, by means of a tensile test.

NOTE The tensile properties, more particularly the tensile stress, the elongation and energy, at the yield point and on fracture, are customarily used as a criterion for assessing the quality of these materials.

WARNING — The use of this European Standard may involve hazardous materials, operations and equipment. This European Standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this European Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 58, Bitumen and bituminous binders — Sampling bituminous binders

EN 12594, Bitumen and bituminous binders — Preparation of test samples

EN ISO 527 (all parts), Plastics — Determination of tensile properties

ISO 5893, Rubber and plastics test equipment — Tensile, flexural and compression types (constant rate of traverse) — Specification

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

tensile force

force undergone by a specimen subjected to extension, expressed in Newton (N)

3.2

elongation

increase in length of a specimen, expressed in metres

Note 1 to entry: Elongation is also expressed in % from the initial length. It is calculated as [(new length – initial length)/initial length] \times 100.

3.3

brittle break

rupture happening at the beginning of the test before the flowing threshold when the stress-strain curve is still linear

3.4

flow threshold

first maximum of the stress-strain curve

3.5

deformation energy

 $E_{\mathbf{i}}$

energy in joules (J) supplied by test pieces, until displacement, i, of the moving element

3.6

cohesion energy

 E^*_i

quotient of deformation energy, E_i (in joules) and the initial cross section of the test pieces (in square centimetres)

4 Principle

A specimen, held by its ends between two jaws, is extended in a chamber, regulated at the test temperature, at constant speed until a given elongation or fracture is achieved. In general, stress and elongation are noted at the flowing threshold, at an elongation of 400 % and at breaking.

The deformation energy (E_i) is determined from the recordings of the tensile curves (see Figure A.1) obtained according to chapter 7, by calculating the area delimited by:

- the abscissa axes corresponding to elongations;
- the recorded curve (force versus elongation);
- a parallel to the ordinates axis which passes by a given elongation or the breaking point (see Figure A.2).

Cohesion energy (E_i^*) is obtained as a quotient of the deformation energy at 400 % elongation (250 mm for H2 type specimen final length) and the initial cross-area of the test specimens.

5 Apparatus

Usual laboratory equipment and glassware, together with the following:

- **5.1 Test machine**. in accordance with ISO 5893.
- **5.1.1 The machine shall be capable** of maintaining a constant speed of the moving element at the speed chosen for the test to an accuracy of within 2 % of the chosen speed.
- **5.1.2** The specimen attachment device (located on the stationary part and on the moving part) shall:
- ensure sufficient clamping of the specimen heads throughout the entire test, to prevent slipping;
- not exert, on any part of the ends of the specimen, localized stresses liable to cause tearing or fracture of the specimen.
- **5.1.3 The equipment** shall permit the following measurements to be made:
- tensile force applied on the specimen over the range 1 N to 500 N to an accuracy of ± 1 %;
- elongation of the specimen, either by following the movement of the attachment points or by means of an optical extensometer over the range 0 mm to not less than 250 mm to an accuracy of ± 1 mm.

5.1.4 Optical extensometer.

If an optical extensometer is used its reflector devices shall be positioned on the bituminous specimen as near as possible to the specimen heads.

The distance between the two reflector devices is approximately 45 mm to 50 mm.

The type of extensometer used shall be recorded in the test report.

- **5.2 Temperature controlled chamber**, capable of maintaining the specimen and the attachment device at the specified temperature throughout the test to an accuracy of \pm 0,5 °C, provided with a means of checking the test temperature. The control thermometer shall be placed near the specimen.
- **5.3 Recording device**, for force applied and elongation of the test specimen.
- **5.4 Measurement apparatus**, capable of measuring the thickness of the test specimen to an accuracy of ± 0.1 mm.
- **5.5 Moulds** allowing moulding of specimens (see Figure 1), e.g. made in silicone elastomer.

Table 1 — Dimensions of the mould H2 in millimetres

Type of specimen	A	В	D	F	С	G	R	R'
Н2	25 ± 0,5	$4,0 \pm 0,1$	$3,0 \pm 0,3$	75 ± 2	12,5 ± 1,0	12,5 ± 1,0	$8,0 \pm 0,3$	12,5 ± 0,3

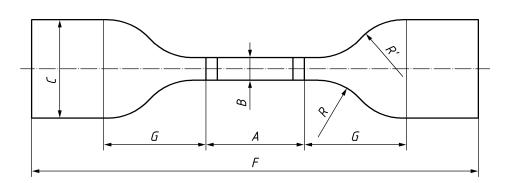


Figure 1 — Dumbbell-shaped binder specimen H2

The reference length or initial length of the H2 specimens is $K_0 = A + 2G$. Specimens of different geometry can be used (if the preparation of H2 specimens is too difficult or impossible) but should be in accordance with the reference standards (i.e. the EN ISO 527- series or ISO 5893); this should be mentioned explicitly in the test report. The results obtained from such specimens can be used only for comparison with a binder tested under the same conditions.

6 Preparation and conservation of samples

Take the sample in accordance with EN 58. Prepare the sample in accordance with EN 12594. Pour a surplus of material directly in the mould and allow the specimens to cool to room temperature for about one hour. Trim of the excess material with a heated spatula.

As an alternative for sample preparation, the dumbbell-shaped specimen can be produced by cutting a thin sheet of the bituminous binder having the correct thickness by a model which will produce a specimen with the dimensions given in Table 1.

Reject specimens exhibiting defects. Keep specimens in their moulds and in a refrigerator at a maximum temperature of $10\,^{\circ}$ C and for a maximum of $24\,h$ before the test.

7 Procedure

Measure the thickness, D, of the specimen with an accuracy of 0,1 mm.

Set the apparatus to the test temperature.

Maintain the chamber containing the specimen at the test temperature for at least one hour.

Attach the specimen in the attachment device in accordance with the EN ISO 527- series with a distance between the jaws, K_0 , of 50 mm \pm 0,5 mm for specimens of the H2 type.

Wait five minutes after stabilization of the test temperature ± 0,5 °C and start the test.

Record the force and elongation for the test specimen, as indicated in Clause 8.

Repeat any test in which a brittle break occurs (break before the flowing threshold). After three brittle breaks, in the thin part of the specimen, stop the test and record the binder as "brittle".

General values of test temperature and test speed are the following:

- Temperature: −20 °C, −15 °C, −10 °C, −5 °C, 0 °C, 5 °C, 10 °C, 15 °C, 20 °C.
- Speed: 1 mm/min, 10 mm/min, 50 mm/min, 100 mm/min, 500 mm/min.

8 Calculation and expression of results

The deformation Energy, E_i , is calculated as the definite integral of force as a function of elongation, see Formula (1).

The final results are expressed as cohesion energy, E^*_{i} , in joules per square centimetre.

Cohesion is calculated dividing the deformation energy, E_{i} , by the initial cross section of the test specimen expressed in square centimetres. The dimensions of the mould used to cast the specimen will be used to calculate the initial cross section of it.

The end calculation shall correspond to the average of three specimens tested without significant incidents.

For each test specimen, the energy calculation is accomplished from the computerized data of couples force/elongation. This calculation can be done using any specific reprocess data software or computer worksheet. This will be the calculation method to be used preferably.

If the equipment is not connected with a calculation device or computer Formula (1) can also be used:

$$\int_{L_1}^{L_2} f(x) dx = \Delta L \times \left(\frac{F_0}{2} + \frac{F_n}{2} + \sum_{i=1}^{n-1} F_i \right)$$
 (1)

where

 L_1 is the length at 0,000 m;

 L_2 is the length at 400 % elongation or the length at break after flowing threshold;

 ΔL is the incremental length between force determinations; normally 0,005 m;

 F_0 is the force at 0,000 m;

 F_i is the force at $(L_1 + i^* \Delta L)$;

 $F_{\rm n}$ is the force at break or Force at 400 % elongation;

is the total amount of force values used in the equation $(=\frac{L_2-L_1}{\Delta L})$; if needed rounded to the nearest integer value.

The reference length for the calculation of the percentage elongation is K_0 , the distance between the attachment points (50 mm for H2 type specimens).

For three significant tests, calculate stress and percentage elongation at the flowing threshold, at fracture, at a percentage elongation of 400 % and at maximum percentage elongation if fracture is not reached.

Give the result as the calculated mean of the three values.

9 Precision

The difference between two single and independent results obtained by different operators working in different laboratories on identical test material would, in the long run, in the normal and correct operation of the test method, exceed the values given in Table 1, in only one case in 20.

Table 2 — Repeatability and reproducibility

Test method	Cohesion	Repeatability r	Reproducibility R	
EN 13587 tensile test	E* _{0,2} (J/cm ²)	10 %	30 %	

10 Test report

The test report shall contain at least the following information:

- a) type and complete identification of the sample under test;
- b) reference to this European Standard;
- c) specimen preparation method;
- d) type of test specimens and the distance K_0 (50 mm for H2 type specimens);
- e) test temperature and the speed;
- f) number of specimens subjected to the test; and the number of specimens rejected;
- g) results of the test (see Clause 8);
- h) any deviation, by agreement or otherwise, from the procedure specified;
- i) date of the test.

Annex A (normative)

Cohesion specification criteria

Cohesion energy has been considered as the specification criteria that will allow the evaluation of the cohesion behaviour in bituminous binders.

The values to be compared with the specification tables limits are calculated as follows:

The values for tensile test are expressed as the cohesion corresponding to an elongation of 400 % or 0,200 m (specimen final length of 250 mm for H2 type specimen).

$$E_{S}^{*} = E_{0.2}^{*}$$
 (A.1)

where

 E_s^* is the value of the cohesion energy to be compared to the limits included in specification tables;

 $E^*_{0,2}$ is the cohesion energy corresponding to elongation of 400 % or 0,200 m (for H2 type specimen final length of 250 mm).

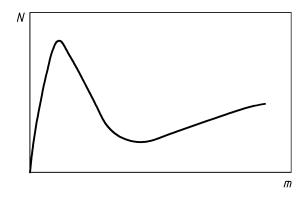


Figure A.1 — Force versus elongation

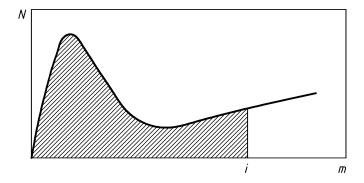


Figure A.2 — Energy for a given elongation

Bibliography

- [1] ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method
- [2] EN 13589, Bitumen and bituminous binders Determination of the tensile properties of modified bitumen by the force ductility method

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Copyright in BSI publications

All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use.

Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent.

Storing and using standards

Standards purchased in soft copy format:

- A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only.
- The standard may be stored on more than 1 device provided that it is accessible
 by the sole named user only and that only 1 copy is accessed at any one time.
- A single paper copy may be printed for personal or internal company use only.

Standards purchased in hard copy format:

- A British Standard purchased in hard copy format is for personal or internal company use only.
- It may not be further reproduced in any format to create an additional copy.
 This includes scanning of the document.

If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions').

Reproducing extracts

For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com.

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Useful Contacts

Customer Services

Tel: +44 345 086 9001

Email (orders): orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com

Subscriptions

Tel: +44 345 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

 $\textbf{Email:} \ knowledge centre @bsigroup.com$

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

