BS EN 4265:2013

BSI Standards Publication

Aerospace series — Bearing spherical plain, metal to metal in corrosion resisting steel — Wide series — Dimensions and loads — Inch series

BS EN 4265:2013 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of EN 4265:2013.

The UK participation in its preparation was entrusted to Technical Committee ACE/12, Aerospace fasteners and fastening systems.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2013. Published by BSI Standards Limited 2013.

ISBN 978 0 580 73964 4

ICS 49.035

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 January 2013.

Amendments issued since publication

Date Text affected

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 4265

January 2013

ICS 49.035

English Version

Aerospace series - Bearing spherical plain, metal to metal in corrosion resisting steel - Wide series - Dimensions and loads - Inch series

Série aérospatiale - Rotules lisses, métal à métal en acier résistant à la corrosion - Série large - Dimensions et charges - Séries en inches Luft- und Raumfahrt - Gelenklager, Metall auf Metall aus korrosionsbeständigem Stahl - Breite Reihe - Maße und Belastungen - Inch-Reihe

This European Standard was approved by CEN on 10 March 2011.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Cor	ntents	Page
Fore	eword	
1	Scope	4
2	Normative references	4
3	Terms and definitions	
4	Symbols and abbreviations	5
5 5.1 5.2	RequirementsConfiguration, dimensions, tolerances and massSurface roughness	5
5.2 5.3 5.4 5.5	Material	5
6	Designation	
7	Marking	14
8	Technical specification	14

Foreword

This document (EN 4265:2013) has been prepared by the Aerospace and Defence Industries Association of Europe - Standardization (ASD-STAN).

After enquiries and votes carried out in accordance with the rules of this Association, this Standard has received the approval of the National Associations and the Official Services of the member countries of ASD, prior to its presentation to CEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2013, and conflicting national standards shall be withdrawn at the latest by July 2013.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

1 Scope

This European Standard specifies the characteristics of spherical plain bearings, metal to metal, in corrosion resisting steel, passivated, wide series, inch series for aerospace applications.

They are intended for use in fixed or moving parts of the aircraft structure and their control mechanisms.

They shall be used in the temperature range -54 °C to 150 °C. As they are lubricated by means of the following greases:

Code A: Grease as per MIL-PRF-23827C, operating temperature range – 73 °C to 121 °C.

Code B: Grease as per MIL-PRF-81322G, operating temperature range – 54 °C to 177 °C.

The range of application for bearings lubricated with grease per code A is limited to 121 °C.

In both cases the spherical surface of the outer or inner ring have to be provided with a dry-film lubricant as per MIL-PRF-46010G or equivalent (anti-seizing protection).

The slide hole treatment either at the outer ring or inner ring.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 2030, Aerospace series - Steel FE-PM3501 (X105CrMo17) - Hardened and tempered - Bars $D \le 150 \, \text{mm}^{1)}$

EN 2337, Aerospace series — Spherical plain bearings — Technical specification

EN 2424, Aerospace series — Marking of aerospace products

EN 3161, Aerospace series — Steel FE-PM3801 (X5CrNiCu17-4) — Air melted — Solution treated and precipitation treated — Bar — a or $D \le 200 \text{ mm}$ — $R_m \ge 930 \text{ MPa}$

ISO 1132-1, Rolling bearings — Tolerances — Part 1: Terms and definitions

ISO 8075, Aerospace — Surface treatment of hardenable stainless steel parts

TR 4475, Aerospace series — Bearings and mechanical transmissions for airframe applications — Vocabulary 1)

MIL-PRF-23827C, Grease — Aircraft and instrument — Gear and actuator screw — NATO code number G-354 2)

MIL-PRF-46010G, Lubricant — Solid film — Heat cured — Corrosion inhibiting 2)

MIL-PRF-81322G, Grease — Aircraft — General purpose — Wide temperature range — NATO code number G-395 ²⁾

¹⁾ Published as ASD-STAN Technical Report at the date of publication of this standard, (www.asd-stan.org).

²⁾ Published by: Department of Defense (DoD), http://www.defenselink.mil/

3 Terms and definitions

For the purposes of this document, the terms and definitions given in TR 4475 apply.

4 Symbols and abbreviations

Symbols of limit deviations are in accordance with definitions of ISO 1132-1.

 α is the maximum angle of tilt of the outer ring with respect to the inner ring, with the spherical surface of the outer ring being completely in contact with the inner ring;

 C_{a} is the permissible static axial load;

 $C_{\rm s}$ is the permissible static radial load;

 Δ_{dmp} is the single plane mean bore diameter deviation;

 Δ_{Dmp} is the single plane mean outside diameter deviation;

 Δ_{ds} is the deviation of a single bore diameter;

 Δ_{Ds} is the deviation of a single outside diameter.

Definitions and vocabulary according to TR 4475.

5 Requirements

5.1 Configuration, dimensions, tolerances and mass

According to Figures 1 and 2 and Table 1. Dimensions and tolerances are expressed in millimetres (inches).

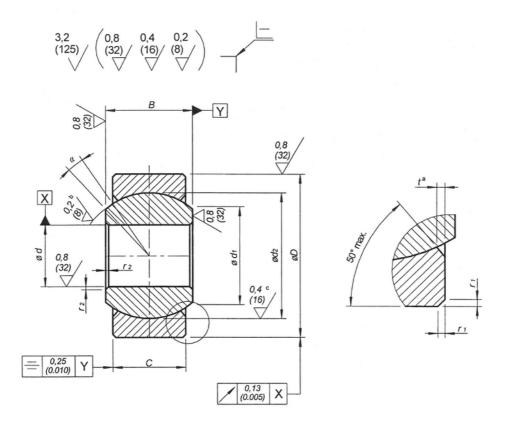
Values apply after to surface treatment.

5.2 Surface roughness

In accordance with Figures 1 and 2. Values in micrometres (micro inches), apply prior to surface treatment.

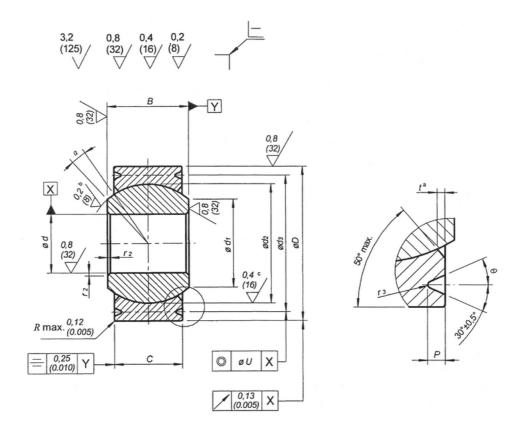
5.3 Material

Inner ring: According to EN 2030, hardness 55 < HRC < 62.


Outer ring: According to EN 3161, hardness 28 < HRC < 38 before swaging.

5.4 Surface treatment

Surface treatment according to ISO 8075 for inner ring before swaging.


5.5 Loads and clearances

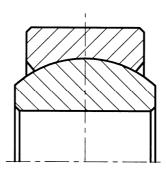
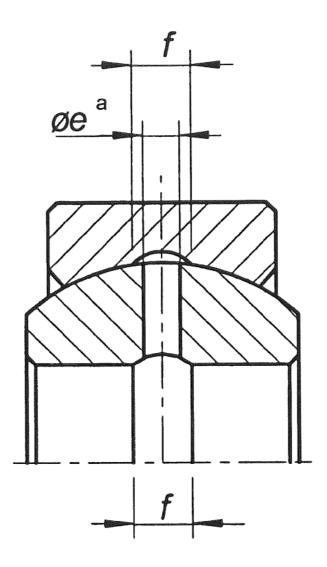
According to Tables 2 and 3.

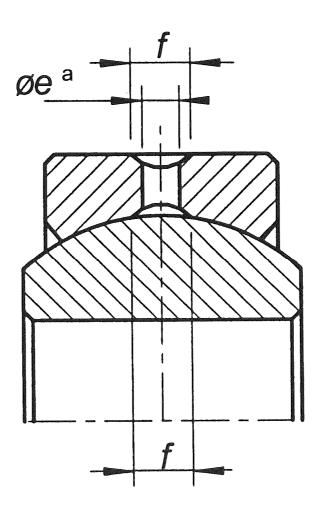
- a Set back
- b For the inner ring
- c For the outer ring

Figure 1 — Code S – Without swaging grooves

- a Set back
- b For the inner ring
- c For the outer ring

Figure 2 — Code R – With swaging grooves


Figure 3 — Grease hole code "E" – Without grease hole and lubricating groove

Three holes \emptyset e distributed over the circumference at distance of 120°

Figure 4 — Grease hole code "F" – With grease hole on inner ring and lubricating groove on:

- Bore of inner ring
- Spherical surface of the outer ring
 The hole should allow the passage of the grease

^a Three holes Ø *e* distributed over the circumference at distance of 120°

Figure 5 — Grease hole code "G" – With grease hole on outer ring and lubricating groove on:

- Outer surface of outer ring
- Spherical surface of the outer ring
- The hole should allow the passage of the grease

Table 1 — Dimensions, tolerances and mass (1 of 2)

Dimensions in millimetres (in inches)

			Dia	ımeter			В	C	d_1	d_2	d_3
Diameter	d	D		Limit de	eviation		0 - 0,05	+ 0,13 0			0 - 0,20
code ^a			$\Delta_{ m dmp}$	$\Delta_{ m ds}$	$\Delta_{ m Dmp}$	$\Delta_{ m Ds}$	0 - 0.002	(+ 0.005 0	min.	*	0 - 0.008
03 ^c	4,826 (0.190 0)	15,875			0			8,31	7,62	13,5	14,30
04 ^c		(0.625 0)			- 0.008 (0)		11,10 (0.437)	(0.327)	(0.300)	(0.53)	(0.563)
05 ^c	7,938 (0.312 5)	19,5 (0.687 5)			(- 0.000 3)			8,05 (0.317)	9,14 (0.360)	14,4 (0.57)	15,88 (0.625)
06 ^c	9,525 (0.375 0)	20,638 (0.812 5)					12,70 (0.500)	10,31 (0.405)	11,84 (0.466)	17,4 (0.69)	18,08 (0.712)
07	11,113	23,813 (0.937 5)		0		0	14,27	11,23	13,64	19,7	21,26 (0.837)
07A	(0.437 5) 23,017	23,017 (0.906 2)		- 0,013	0 - 0,009	- 0,013 (0)	(0.562)	(0.442)	(0.537)	(0.78)	20,52 (0.808)
08	12,700 (0.500 0)	25,400 (1.000 0)		(-0.000 5)	$\begin{pmatrix} 0 \\ -0.000 \ 4 \end{pmatrix}$	(- 0.000 5)	15,88 (0.625)	12,83 (0.505)	15,42 (0.607)	22,1 (0.87)	22,86 (0.900)
09	14,288 (0.562 5)	28,575 (1.125 0)	0 - 0,013				17,45 (0.687)	13,61 (0.536)	18,31 (0.721)	25,4 (1.00)	26,04 (1.025)
10	15,875 (0.625 0)	30,163 (1.187 5)	$\begin{pmatrix} 0 \\ -0.0005 \end{pmatrix}$				19,05 (0.750)	14,40 (0.567)	18,97 (0.747)	26,9 (1.06)	27,61 (1.087)
12	19,050 (0.750 0)	34,925 (1.375 0)			0 - 0,011		22,23	16,00 (0.630)	21,46 (0.845)	31,0 (1.22)	31,78 (1.251)
14	22,225 (0.875 0)	41,275 (1.625 0)			0 - 0.000 4		(0.875)	19,18 (0.755)	25,27 (0.995)	33,7 (1.33)	38,13 (1.501)
16	25,400 (1.000 0)	53,975 (2.125 0)					34,93 (1.375)	25,53 (1.005)	32,23 (1.269)	47,5 (1.87)	50,83 (2.001)
20	31,750 (1.250 0)	60,325 (2.375 0)		+ 0.003	0	+ 0.003	38,10 (1.500)	28,70 (1.130)	37,13 (1.462)	53,2 (2.09)	57,18 (2.251)
24	38,100 (1.500 0)	68,263 (2.687 5)		- 0,015 (+ 0.000 1)	- 0,013 (0)	- 0,015 (+ 0.000 1)	42,85 (1.687)	31,06 (1.223)	43,10 (1.697)	60,8 (2.39)	65,10 (2.563)
28	44,450 (1.750 0)	76,200 (3.00)		(-0.0006)	(- 0.000 5)	(-0.0006)	46,02 (1.812)	33,45 (1.317)	49,91 (1.965)	67,9 (2.67)	73,05 (2.876)
32	50,800 (2.000 0)	82,550 (3.250 0)					49,20 (1.937)	35,05 (1.380)	56,10 (2.209)	74,6 (2.94)	79,35 (3.124)

Table 1 (2 of 2)

Dimensions in millimetres (in inches)

	P	ø e	f	r_1	r_2	r_3	αb	θ	U	t	Mass		
Diameter code a	0 - 0,25	± 0,20	± 0,20	0 - 0,25			degree	degree			g/piece		
code	(0 - 0.010)	(± 0.008)	(± 0.008)	(0 - 0.010)			min.	± 0,5		max.	≈		
03 ^c						0,127 to	40.0				13		
04 ^c	0,64 (0.025) — —	0,64		(0.0050)	16,0	16,0 20	0,08 (0.003)	0,5 (0.02)	12				
05 ^c		_	(0.025)		to 0.010 0	15,5				13			
06 ^c							9,5				23		
07						0,76 (0.030)			44.0				33
07A	0,89	0,89 1,50 (0.035) (0.059)	2,80	_	0,13		11,0			0,8 (0.03)	30		
08	(0.035)						9,5				40		
09			(0.110)	0,76 (0.030)	to 0,38		10,5				56		
10		2,00			(0.005 0) to	0,254 to	12,0	30			63		
12		(0.079)			(0.015 0)	0,432 (0.010 0)	14,0	30	0,12 (0.005)		92		
14						(0.017 0)	6,0				146		
16							14,5				392		
20	1,40 (0.055)	(0.0==)	4,00	1,02 (0.040)			12,5			1,2 (0.05)	499		
24		(0.098)	(0.157)				14,0				668		
28							42.0				859		
32							13,0				1 005		

The diameter code corresponds to bore diameter d in 1/16 inch.

^b The acceptance value is the maximum value for the user.

^c Not available with lubrification code F or code G.

Table 2 — Loads

		Permissible k			Ultimate static load kN				
Diameter code ^a	Radial ^{b c} $C_{ m s}$		Axial ^{b d e} $C_{\rm a}$		Radial ^b		Axial ^{b d}		
	Code E	Code F/G	Code E	Code F/G	Code E	Code F/G	Code E	Code F/G	
03 f	10,7 ^g		10.2		16,1 ^g		29,0		
04 f	24,5 ^g		19,3		36,7 ^g		29,0	_	
05 f	47,8 ^g	_	18,0		71,6 ^g	_	26,9		
06 f	72,1 ^g		27,4		108,2 ^g		41,1		
07	100.0	71 5	22.5	20.7	151 1	107.0	E0.2	46,0	
07A	100,8	71,5	33,5	30,7	151,1	107,2	50,3	40,0	
08	131,7	99,0	45,6	42,7	197,6	148,3	68,3	64,1	
09	161,0	123,5	52,1	49,3	241,5	185,2	78,2	73,9	
10	182,4	142,5	59,2	56,4	273,6	213,7	88,8	84,5	
12	222,7	176,8	66,8	64,0	334,1	265,3	100,2	96,0	
14	299,3	228,0	101,7	96,0	449,0	342,0	152,6	143,9	
16	497,4 ^g	481,9	193,3	187,5	746,1 ^g	722,8	289,9	281,3	
20	741,6	628,8	249,9	244,1	1 112,3	943,2	374,8	366,2	
24	923,2	794,3	296,8	291,0	1 384,8	1 191,5	445,1	436,5	
28	1 117,2	973,3	348,3	342,5	1 675,8	1 460,0	522,5	513,8	
32	1 291,2	1 133,0	385,1	379,4	1 936,8	1 699,6	577,7	569,0	

a The diameter code corresponds to bore diameter d in 1/16 inch.

g Limit by bolt bending.

Definition: — solid shaft;

- rigid clamping on both sides;
- uniform load;
- permissible bending stress 1 350 MPa;
- permissible shear stress 1 200 MPa.

b Definition and testing for permissible and ultimate static loads according to EN 2337 and TR 4475.

Permissible surface pressure 530 MPa, definition per TR 4475.

d These values apply to loose spherical bearings. For installed bearings, the push-out loads may be smaller than these values.

e Permissible surface pressure 460 MPa, definition per TR 4475.

f Not available with lubrification code F or code G.

Table 3 — Clearance

Dimensions in millimetres (in inches)

	Clearance ^b							
Diameter	Radi	al	Axial					
code ^a	Normal Code N	Reduced Code P	Normal Code N max.	Reduced Code P max.				
03								
04								
05	0,010 to 0,030		0,12 (0.005)					
06	(0.000 4 to 0.001 2)	0,002 to 0,010 (0.0001 to 0.0004)		0,035 (0.001 4)				
07		,						
07A								
80								
09		0,003 to 0,012		0,040				
10		(0.000 1 to 0.000 5)		(0.001 6)				
12								
14	0,010 to 0,050		0,229 (0.009 0)					
16	(0.000 4 to 0.002 0)	0,004 to 0,015		0,050				
20		(0.000 15 to 0.000 6)		(0.002 0)				
24								
28								
32		0,005 to 0,020 (0.000 2 to 0.000 8)		0,060 (0.002 4)				

^a The diameter code corresponds to nominal diameter d in 1/16 inch.

 $^{^{\}mbox{\scriptsize b}}$ Definition and testing for clearance according to EN 2337.

6 Designation

EXAMPLE

	Description block	Identity block
	BEARING	EN4265BP16ER
Number of this standard ————		
Grease code (see Clause 1) ———		
Clearance code (see Table 3)		
Diameter code (see Table 1)		
Grease hole code (see Figures 3, 4	and 5)	
Swaging groove code (see Figures	1 and 2)	

NOTE If necessary, the code I9005 shall be placed between the description block and the identity block.

7 Marking

According to EN 2424, style A. In addition, the bearing may be marked with manufacturer's part number. Marking position and method are at manufacturer's option.

8 Technical specification

According to EN 2337.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

