BS EN 1971-2:2011 # **BSI Standards Publication** # Copper and copper alloys — Eddy current test for measuring defects on seamless round copper and copper alloy tubes Part 2: Test with an internal probe on the inner surface BS EN 1971-2:2011 BRITISH STANDARD ## National foreword This British Standard is the UK implementation of EN 1971-2:2011. Together with BS EN 1971-1:2011, it supersedes BS EN 1971:1999 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee NFE/34/1, Wrought and unwrought copper and copper alloys. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2012 ISBN 978 0 580 70541 0 ICS 77.150.30 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 January 2012. Amendments issued since publication Date Text affected # EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 1971-2 December 2011 ICS 23.040.15; 77.150.30 ## **English Version** Copper and copper alloys - Eddy current test for measuring defects on seamless round copper and copper alloy tubes - Part 2: Test with an internal probe on the inner surface Cuivre et alliages de cuivre - Méthode de contrôle par courants de Foucault pour le mesurage des défauts des tubes ronds sans soudure en cuivre et alliages de cuivre -Partie 2: Essai avec un capteur interne sur la paroi interne Kupfer und Kupferlegierungen - Wirbelstromprüfung an Rohren zur Messung von Fehlern an nahtlos gezogenen runden Rohren aus Kupfer und Kupferlegierungen - Teil 2: Prüfung mit Innensonde auf der Innenseite This European Standard was approved by CEN on 5 November 2011. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: Avenue Marnix 17, B-1000 Brussels | Cor | ntents | Page | |------------------------|---|--------| | Fore | word | 3 | | Introduction | | 4 | | 1 | Scope | 5 | | 2 | Normative references | | | 3 | Terms and definitions | 5 | | 4
4.1
4.2
4.3 | General requirementsPersonnel qualification | 5
5 | | 5 | Reference standard tube | | | 6
6.1
6.2
6.3 | Acceptance criteria Detection of local discontinuities by internal probes systems Detection of non-local discontinuities by internal probes systems with lower detection levels Other test methods | 7
7 | | 7 | Instrument adjustment | | | Biblio | ography | | | Figur | res | | | Figur | re 1 — Simplified representation of eddy current testing using internal probe | 6 | ## **Foreword** This document (EN 1971-2:2011) has been prepared by Technical Committee CEN/TC 133 "Copper and copper alloys", the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2012, and conflicting national standards shall be withdrawn at the latest by June 2012. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. Within its programme of work, Technical Committee CEN/TC 133 requested CEN/TC 133/WG 3 "Copper tubes (installation and industrial)" to prepare the following document: EN 1971-2, Copper and copper alloys — Eddy current test for measuring defects on seamless round copper and copper alloy tubes — Part 2: Test with an internal probe on the inner surface This is one of two parts of the standard for the eddy current test for measuring defects on seamless round copper and copper alloy tubes. The other part is: EN 1971-1, Copper and copper alloys — Eddy current test for measuring defects on seamless round copper and copper alloy tubes — Part 1:Test with an encircling test coil on the outer surface # Introduction The eddy current test with internal probe described in this standard has the objective of detecting potential leaks and serious defects in seamless round copper and copper alloy tubes. The eddy current test is able to detect material inhomogeneities and their positions throughout the length of tubes. The eddy current signals of material inhomogeneities are compared with reference signals of artificially produced test defects. It is possible to identify these inhomogeneities on the inner and outer surfaces as well as within the tube wall. Since the distribution of eddy currents decreases as the distance from the test coil increases, the amplitude of defect signals also decreases with increasing distance from the test coil. Thus the eddy current test with internal probe on the inner surface is less sensitive to defects on the outer surface. The purpose of this standard is not to define a method of measuring the actual extent of the material inhomogeneities as the signal amplitude is dependent on, amongst other factors, volume, form and position of the inhomogeneity. Due to end effects, it is not possible to effectively test the ends of the tubes. The purchaser and the supplier could agree that the end effect may be overcome by cutting to length after testing. ## 1 Scope This European Standard specifies a procedure for the eddy current test with an internal probe for measuring defects on the inner surface of seamless round copper and copper alloy tubes. This European Standard applies particularly for finned tubes with high fins according to EN 12452. NOTE The eddy current test method(s) required, together with the size range and acceptance level, are defined in the relevant product standard. The choice of the method for eddy current test: with an encircling test coil on the outer surface according EN 1971-1 or with an internal probe on the inner surface according EN 1971-2 is at the discretion of the manufacturer if there are no other agreements between the purchaser and the supplier. Especially for finned tubes according to EN 12452 with high fins, it is recommended to use eddy current test with internal probe as described in this standard. ## 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. EN 473, Non-destructive testing — Qualification and certification of NDT personnel — General principles EN ISO 12718, Non-destructive testing — Eddy current testing — Vocabulary (ISO 12718:2008) ## 3 Terms and definitions For the purposes of this document, the terms and definitions given in EN ISO 12718 apply. ## 4 General requirements # 4.1 Personnel qualification The eddy current test shall be made by operators trained in this technique and it shall be done under the responsibility of qualified staff. When agreed upon between the purchaser and the supplier, qualification of the personnel shall be certified according to EN 473. ### 4.2 Condition of tube to be tested Tubes shall be sufficiently clean and straight to permit satisfactory operation of optionally drive mechanism and eddy current test equipment. ## 4.3 Equipment The internal probe shall be moved through the tubes as vibration-free as possible. The variation in test sensitivity due to changes of speed and internal probe position within the tubes shall be maintained within ± 2 dB. The internal probe can be moved manually or by using a drive mechanism (see Figure 1). ## Key - 1 tube with fins on the outside - 2 internal probe Figure 1 — Simplified representation of eddy current testing using internal probe Test speed over the length of the tube shall be as constant as possible. The distance between the probe and the inner surface of the tube shall be kept as small as possible so that the sensitivity of the test is sufficient. NOTE For internal probes, the usual frequencies are in the range 1 kHz to 125 kHz. ## 5 Reference standard tube Unless otherwise specified in the relevant product standard, a reference standard tube is made of a defectfree tube of the same dimensions and specified properties as the tube to be tested. During the reference test, the influence of dynamic conditions shall be taken into account. NOTE The producer can ensure that this requirement is met by the appropriate option subject to the type of the installation, such as: a) for control devices not in-line with production, the reference tube should be long enough to ensure the same dynamic conditions for the reference test as for normal line operating speed; or b) the control devices should include a dynamic effect compensating unit to take into account the speed differences between the reference tube throughput speed and the normal line operating speed. Either the reference standard tube shall have three holes located on three generating lines at 120°, or only one hole. If a reference standard tube with three holes is used, the holes shall be spaced from each other and from each end, sufficiently to obtain separate signals from each hole without interference from the tube ends. If a reference standard tube with only one hole is used, then this tube shall be used three times being turned by 120°. The maximum drill diameter for the various dimension ranges is defined in the relevant product standards. Other reference standard tube types may be considered if they are demonstrated as more relevant for certain products; they shall be defined in the relevant product standards. ## 6 Acceptance criteria ## 6.1 Detection of local discontinuities by internal probes systems Local discontinuities of the tubes, including beginning and end of long regular discontinuities and variations of long discontinuities, are detected as defects with internal probes systems. The sorting limit shall be the smallest amplitude of the three signals produced by the hole or holes in the reference standard tube. # 6.2 Detection of non-local discontinuities by internal probes systems with lower detection levels Non-local discontinuities of the tube could be identified as defects by one of the methods defined for this purpose, according to the requirements of the relevant product standards. Some discontinuities of the tube, which individually are not considered as defective, might cause signals lower than the detection threshold of the normal sorting limit for local defects but higher than a second selected lower detection threshold $S_{\rm l}$. The signals for the lower and normal detection thresholds are related by a ratio K_2 , which shall be determined by the manufacturer of the tube, as follows: $$K_2 = \frac{S_l}{S_n} \tag{1}$$ where S_1 is the signal for the lower detection threshold; S_n is the signal for the normal detection threshold. A maximum density of defects d_0 shall be calculated as follows: $$d_0 = \frac{N_0}{L_0} \tag{2}$$ where N_0 is the maximum permissible number of discontinuities in a pre-set length; L_0 is the pre-set length. NOTE Both N_0 and L_0 should be determined by the tube manufacturer if they are not specified in the relevant product standard. Discontinuity signals ranging between the two sorting limits of the lower and normal detection thresholds along the pre-set length L_0 shall be counted as N. When the real density $d = N/L_0$ exceeds d_0 , the entire pre-set length affected shall be considered defective. ## 6.3 Other test methods For other test methods the acceptance criteria shall be defined specifically, such as for a system involving relative rotational motion between the tube and the surface probe. Equal or higher sensitivity shall be demonstrated. # 7 Instrument adjustment The test system shall be adjusted, using a reference standard tube in accordance with Clause 5. If the test instrument operates with phase selection, the signals from the defects to be detected shall lie within the determined phase ranges. The sensitivity of the instrument shall be adjusted so that the smallest of the three signals exceeds the response threshold of the sorting limit. Adjustment of the instrument shall be carried out and checked for each change of product and at regular intervals of not more than 8 h during periods of continuous operation. If any check shows that a loss of sensitivity exceeding 2 dB has occurred, all the tubes tested since the last check shall be considered as not tested. # **Bibliography** EN 12452, Copper and copper alloys — Rolled, finned, seamless tubes for heat exchangers # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. ### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. ## Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. ## **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ## **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. ## **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK ## **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. # Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com ## Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com