BS EN ISO 24502:2010 ## **BSI Standards Publication** Ergonomics — Accessible design — Specification of agerelated luminance contrast for coloured light (ISO 24502:2010) #### National foreword This British Standard is the UK implementation of EN ISO 24502:2010. The UK participation in its preparation was entrusted to Technical Committee PH/9/1, Ergonomics of the physical environment. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © BSI 2011 ISBN 978 0 580 68947 5 ICS 11.180.30; 13.180 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 January 2011. Amendments issued since publication Date Text affected ## **EUROPEAN STANDARD** ## **EN ISO 24502** # NORME EUROPÉENNE **EUROPÄISCHE NORM** December 2010 ICS 11.180.30; 13.180 ### **English Version** # Ergonomics - Accessible design - Specification of age-related luminance contrast for coloured light (ISO 24502:2010) Ergonomie - Conception accessible - Spécification du contraste de luminance lié à l'âge pour la lumière colorée (ISO 24502:2010) Ergonomie - Zugängliche Gestaltung - Leitlinien für die Spezifikation des altersbezogenen Leuchtdichte-Kontrastes für farbiges Licht (ISO 24502:2010) This European Standard was approved by CEN on 14 December 2010. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: Avenue Marnix 17, B-1000 Brussels ## **Foreword** This document (EN ISO 24502:2010) has been prepared by Technical Committee ISO/TC 159 "Ergonomics" in collaboration with Technical Committee CEN/TC 122 "Ergonomics" the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2011, and conflicting national standards shall be withdrawn at the latest by June 2011. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. #### **Endorsement notice** The text of ISO 24502:2010 has been approved by CEN as a EN ISO 24502:2010 without any modification. | Со | ntents | Page | |-------|-------------------------------------------------------------------------------------------------|------| | For | eword | iv | | Intro | oduction | ν | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 2 | | 4 | Age-related luminance contrast | 3 | | 5 | Using age-related luminance contrast | 6 | | Ann | nex A (informative) An example of calculation and application of age-related luminance contrast | 7 | | Bibl | liography | 10 | ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 24502 was prepared by Technical Committee ISO/TC 159, *Ergonomics*, Subcommittee SC 5, *Ergonomics of the physical environment*. ## Introduction Although the proportion of older people is increasing in many countries, the care for better visibility of signs and displays is not sufficiently taken for those older people. This prevents older people from actively being involved in social activities, as well as from living their life safely and comfortably. This International Standard provides a method of calculating age-related luminance contrast that can be used for assessing and designing signs and displays in our visual environment, so that they are clearly visible to older people. This method calculates age-related luminance contrast for people aged from 10 to 79 years based on age-related photopic spectral luminous efficiency of the eye. This International Standard adopts the principles of accessible design given in ISO/IEC Guide 71 and amplified in ISO/TR 22411. # Ergonomics — Accessible design — Specification of agerelated luminance contrast for coloured light ## 1 Scope This International Standard specifies the age-related luminance contrast of any two lights of different colour seen by a person at any age, by taking into account the age-related change of spectral luminous efficiency of the eve. This International Standard provides a basic method of calculation that can be applied to the design of lighting, visual signs and displays. It applies to light, self-luminous or reflected, in visual signs and displays seen under moderately bright conditions called photopic vision and whose spectral radiance is known or measurable. It does not apply to light seen under darker conditions called mesopic or scotopic vision. This International Standard specifies the luminance contrast for people aged from 10 to 79 years who have had no medical treatment or surgery on their eyes that may affect their spectral luminous efficiency. This International Standard does not apply to visual signs and displays seen by people with colour defects whose spectral luminous efficiency is different from those with normal colour vision, nor those seen by people with low vision. ### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3864-1:—¹⁾, Graphical symbols — Safety colours and safety signs — Part 1: Design principles for safety signs and safety markings ISO 3864-4:—²⁾, Graphical symbols — Safety colours and safety signs — Part 4: Colorimetric and photometric properties of safety sign materials ISO 9241-302:2008, Ergonomics of human-system interaction — Part 302: Terminology for electronic visual displays ISO 9241-303:2008, Ergonomics of human-system interaction — Part 303: Requirements for electronic visual displays ISO 23539/CIE S 010, Photometry — The CIE system of physical photometry CIE 15, Colorimetry CIE 17.4-1987, International lighting vocabulary 1 ¹⁾ To be published. (Revision of ISO 3864-1:2002) ²⁾ To be published. ### 3 Terms and definitions #### 3.1 ## luminous efficiency ratio of radiant flux weighted according to $V(\lambda)$ to the corresponding radiant flux [CIE 17.4-1987] #### 3.2 ### spectral luminous efficiency \langle of a monochromatic radiation of wavelength λ ($V(\lambda)$) for photopic vision; $V'(\lambda)$ for scotopic vision \rangle ratio of the radiant flux at wavelength λ_m to that at wavelength λ , such that both radiations produce equally intense luminous sensations under specified photometric conditions and λ_m is chosen so that the maximum value of this ratio is equal to 1 NOTE 1 Adapted from CIE 17.4-1987. NOTE 2 The values for spectral luminous efficiency in photopic vision are given in ISO 23539/CIE S 010. #### 3.3 #### radiant flux power emitted, transformed or received in the form of radiation NOTE The radiant flux is expressed in watts (W). [CIE 17.4-1987] #### 3.4 ## age-related photopic spectral luminous efficiency $V_{\alpha}(\lambda)$ spectral luminous efficiency defined as a function of age, a #### 3.5 ## luminance contrast ratio between the higher luminance, $L_{\rm H}$, and lower luminance, $L_{\rm I}$, that defines the feature to be detected NOTE 1 If measured by contrast modulation (or Michelson contrast) it is defined as: $$C_{\mathsf{m}} = \frac{L_{\mathsf{H}} - L_{\mathsf{L}}}{L_{\mathsf{H}} + L_{\mathsf{L}}} \tag{1}$$ or, if measured by contrast ratio (CR), it is defined as: $$CR = \frac{L_{H}}{L_{L}}$$ (2) NOTE 2 Contrast ratio, CR, is often used for high luminances. When near the luminance-detection threshold, some use the following form (also known as Weber contrast): $$C_{\rm W} = \frac{L_{\rm H} - L_{\rm L}}{L_{\rm I}} \tag{3}$$ NOTE 3 For some but not all displays, area-luminance targets can be used to approximate the luminances that define the feature to be detected because pixels are discrete and near-area luminance is sufficiently uniform. [ISO 9241-302:2008] NOTE 4 Equation (2) is used in this International Standard. Equations (1) and (3) may also be used to calculate agerelated luminance contrast. #### 3.6 ### age-related luminance contrast $C_a(\lambda)$ luminance contrast defined as a function of age, a NOTE The formula is given in Equation (4). #### 3.7 ## photopic vision vision by the normal eye when it is adapted to levels of luminance of at least several candelas per square metre [CIE 17.4-1987] #### 3.8 ## **CIE standard photometric observer** ideal observer having a relative spectral responsivity curve that conforms to the $V(\lambda)$ function for photopic vision or to the $V'(\lambda)$ function for scotopic vision, and that complies with the summation law implied in the definition of luminous flux [CIE 17.4-1987] ## 4 Age-related luminance contrast The equation for age-related luminance contrast, C_a , is derived from the luminance contrast equation in which the luminance term is accommodated to the value that takes into account the age-related change of spectral luminous efficiency. See Table 1. Equation (4) shall be applied when age-related luminance contrast is calculated for light P_1 and light P_2 with spectral radiance of $L_{e,\lambda,1}$ and $L_{e,\lambda,2}$, respectively. $$C_{a} = \frac{\sum_{280}^{780} L_{e,\lambda,1} V_{a}(\lambda) \Delta \lambda}{\sum_{280}^{780} L_{e,\lambda,2} V_{a}(\lambda) \Delta \lambda}$$ $$(4)$$ for $$\sum_{380}^{780} L_{e,\lambda,1} V_a(\lambda) \Delta \lambda > \sum_{380}^{780} L_{e,\lambda,2} V_a(\lambda) \Delta \lambda$$ where C_a is the age-related luminance contrast for age, a; $L_{e,\lambda,1}$ is the spectral radiance of light P_1 , expressed in W·m⁻²·sr⁻¹·nm⁻¹; $L_{e,\lambda,2}$ is the spectral radiance of light P_2 , expressed in W·m⁻²·sr⁻¹·nm⁻¹; $V_a(\lambda)$ is the age-related photopic spectral luminous efficiency of age, a, in years (values given in Table 1 in decade steps); $\Delta \lambda$ is the wavelength width (5 nm). NOTE 1 Age, a, is expressed in years but specified in decade steps such as 10-19 or 20-29 years, as indicated in Table 1. For example, C_{20} and $V_{20}(\lambda)$ mean the age-related luminance contrast and age-related photopic spectral luminous efficiency function, respectively, averaged for people in their twenties. NOTE 2 $L_{e,\lambda,1}$ and $L_{e,\lambda,2}$, as well as $V_a(\lambda)$, are tabulated in the range of 380 nm to 780 nm in 5 nm steps as shown in Table 1. $\Delta\lambda$ in Equation (4) is therefore 5 nm. For more accurate calculation, the 1 nm width is applied by using interpolation. There are a few methods for interpolation recommended by the CIE depending on the spectral composition (see CIE 15). NOTE 3 The quantity $\sum_{380}^{780} L_{e,\lambda,1} V_a(\lambda) \Delta \lambda$ is analogous to the luminance defined by the CIE, in which the standard luminous efficiency, $V(\lambda)$, and the maximum luminous efficacy, $K_{\rm m}$ (683 lm/W), are used. NOTE 4 In the definition of luminance by the CIE, the continuous integral equation is used to avoid the effect of the wavelength width. In practice, summation of spectral radiance weighted by spectral luminous efficiency in 5 nm steps is adequate. NOTE 5 Equation (4) is derived from one of the definitions for luminance contrast using $\sum_{380}^{780} L_{e,\lambda,\uparrow} V_a(\lambda) \Delta \lambda$ as a luminance component. Other definitions such as Michelson contrast (ISO 9241-302) may also be applied for the calculation of age-related luminance contrast. NOTE 6 Age-related change in $V_a(\lambda)$ and its implication to the visual efficiency of light are described in ISO/TR 22411. Table 1 — Age-related photopic spectral luminous efficiency | Wavelength | | | Photop | ic luminous ef | ficiency | | | | | |------------|-------------|-------------|-------------|----------------|-------------|-------------|--------------|--|--| | nm | 10-19 years | 20-29 years | 30-39 years | 40-49 years | 50-59 years | 60-69 years | 70-79 years | | | | 380 | 0,002 723 | 0,001 567 | 0,000 861 0 | 0,000 493 2 | 0,000 275 4 | 0,000 154 9 | 0,000 088 10 | | | | 385 | 0,004 295 | 0,002 523 | 0,001 435 | 0,000 843 3 | 0,000 485 3 | 0,000 281 8 | 0,000 164 4 | | | | 390 | 0,006 730 | 0,004 055 | 0,002 382 | 0,001 439 | 0,000 859 0 | 0,000 512 9 | 0,000 306 9 | | | | 395 | 0,010 12 | 0,006 237 | 0,003 784 | 0,002 371 | 0,001 455 | 0,000 891 3 | 0,000 547 0 | | | | 400 | 0,015 12 | 0,009 546 | 0,006 026 | 0,003 804 | 0,002 401 | 0,001 516 | 0,000 956 9 | | | | 405 | 0,021 59 | 0,014 00 | 0,009 076 | 0,005 885 | 0,003 816 | 0,002 474 | 0,001 604 | | | | 410 | 0,029 43 | 0,019 59 | 0,013 03 | 0,008 67 | 0,005 772 | 0,003 841 | 0,002 556 | | | | 415 | 0,038 33 | 0,026 16 | 0,017 85 | 0,012 18 | 0,008 313 | 0,005 673 | 0,003 872 | | | | 420 | 0,047 67 | 0,033 33 | 0,023 31 | 0,016 30 | 0,011 40 | 0,007 97 | 0,005 574 | | | | 425 | 0,056 62 | 0,040 54 | 0,029 02 | 0,020 78 | 0,014 88 | 0,010 65 | 0,007 627 | | | | 430 | 0,064 23 | 0,047 05 | 0,034 46 | 0,025 24 | 0,018 49 | 0,013 54 | 0,009 920 | | | | 435 | 0,070 56 | 0,052 83 | 0,039 56 | 0,029 62 | 0,022 18 | 0,016 61 | 0,012 43 | | | | 440 | 0,076 09 | 0,058 19 | 0,044 51 | 0,034 04 | 0,026 03 | 0,019 91 | 0,015 23 | | | | 445 | 0,080 55 | 0,062 87 | 0,049 08 | 0,038 31 | 0,029 90 | 0,023 34 | 0,018 22 | | | | 450 | 0,084 91 | 0,067 59 | 0,053 81 | 0,042 83 | 0,034 10 | 0,027 14 | 0,021 61 | | | | 455 | 0,090 40 | 0,073 33 | 0,059 48 | 0,048 25 | 0,039 14 | 0,031 75 | 0,025 75 | | | | 460 | 0,097 20 | 0,080 28 | 0,066 30 | 0,054 76 | 0,045 23 | 0,037 35 | 0,030 85 | | | | 465 | 0,105 5 | 0,088 69 | 0,074 52 | 0,062 62 | 0,052 62 | 0,044 21 | 0,037 15 | | | | 470 | 0,115 8 | 0,098 95 | 0,084 52 | 0,072 20 | 0,061 67 | 0,052 68 | 0,045 00 | | | | 475 | 0,128 6 | 0,111 6 | 0,096 81 | 0,084 00 | 0,072 88 | 0,063 23 | 0,054 86 | | | | 480 | 0,144 4 | 0,127 1 | 0,112 0 | 0,098 60 | 0,086 83 | 0,076 46 | 0,067 34 | | | | 485 | 0,164 0 | 0,146 4 | 0,130 8 | 0,116 8 | 0,104 3 | 0,093 15 | 0,083 19 | | | | 490 | 0,191 0 | 0,172 9 | 0,156 5 | 0,141 6 | 0,128 1 | 0,116 0 | 0,104 9 | | | | 495 | 0,231 6 | 0,212 3 | 0,194 5 | 0,178 2 | 0,163 3 | 0,149 6 | 0,137 1 | | | | 500 | 0,292 3 | 0,271 0 | 0,251 2 | 0,232 9 | 0,215 9 | 0,200 2 | 0,185 6 | | | | 505 | 0,383 9 | 0,359 8 | 0,337 2 | 0,316 0 | 0,296 2 | 0,277 6 | 0,260 2 | | | | 510 | 0,501 1 | 0,474 4 | 0,449 1 | 0,425 1 | 0,402 5 | 0,381 0 | 0,360 7 | | | | 515 | 0,620 6 | 0,593 0 | 0,566 6 | 0,541 4 | 0,517 3 | 0,494 3 | 0,472 3 | | | | 520 | 0,729 3 | 0,702 8 | 0,677 2 | 0,652 6 | 0,628 9 | 0,606 0 | 0,584 0 | | | | 525 | 0,813 3 | 0,789 8 | 0,766 9 | 0,744 7 | 0,723 2 | 0,702 2 | 0,681 9 | | | | 530 | 0,876 3 | 0,856 8 | 0,837 8 | 0,819 2 | 0,801 0 | 0,783 1 | 0,765 7 | | | | 535 | 0,929 0 | 0,913 9 | 0,899 0 | 0,884 4 | 0,870 0 | 0,855 8 | 0,841 9 | | | | 540 | 0,968 9 | 0,958 2 | 0,947 6 | 0,937 1 | 0,926 8 | 0,916 5 | 0,906 4 | | | | 545 | 0,994 2 | 0,987 6 | 0,981 1 | 0,974 6 | 0,968 2 | 0,961 8 | 0,955 5 | | | Table 1 (continued) | Wavelength | Photopic luminous efficiency | | | | | | | | |------------|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--| | nm | 10-19 years | 20-29 years | 30-39 years | 40-49 years | 50-59 years | 60-69 years | 70-79 years | | | 550 | 1,003 6 | 1,000 7 | 0,997 8 | 0,994 9 | 0,992 0 | 0,989 1 | 0,986 3 | | | 555 | 1,000 0 | 1,000 0 | 1,000 0 | 1,000 0 | 1,000 0 | 1,000 0 | 1,000 0 | | | 560 | 0,986 6 | 0,988 7 | 0,990 8 | 0,992 9 | 0,995 0 | 0,997 1 | 0,999 2 | | | 565 | 0,963 8 | 0,967 1 | 0,970 4 | 0,973 7 | 0,977 1 | 0,980 4 | 0,983 8 | | | 570 | 0,932 2 | 0,935 9 | 0,939 6 | 0,943 3 | 0,947 1 | 0,950 8 | 0,954 6 | | | 575 | 0,892 3 | 0,895 7 | 0,899 1 | 0,902 5 | 0,905 9 | 0,909 4 | 0,912 8 | | | 580 | 0,820 2 | 0,828 3 | 0,836 4 | 0,844 7 | 0,853 0 | 0,861 4 | 0,869 8 | | | 585 | 0,750 6 | 0,762 4 | 0,774 3 | 0,786 5 | 0,798 8 | 0,811 3 | 0,824 0 | | | 590 | 0,683 8 | 0,698 4 | 0,713 2 | 0,728 5 | 0,744 0 | 0,7599 | 0,7761 | | | 595 | 0,620 1 | 0,636 7 | 0,653 7 | 0,671 2 | 0,689 2 | 0,707 7 | 0,726 6 | | | 600 | 0,559 7 | 0,577 7 | 0,596 2 | 0,615 3 | 0,635 0 | 0,655 4 | 0,676 4 | | | 605 | 0,500 1 | 0,518 7 | 0,538 0 | 0,557 9 | 0,578 7 | 0,600 2 | 0,622 4 | | | 610 | 0,439 9 | 0,458 4 | 0,477 6 | 0,497 7 | 0,518 61 | 0,540 4 | 0,563 1 | | | 615 | 0,380 9 | 0,398 6 | 0,417 3 | 0,436 7 | 0,457 1 | 0,478 5 | 0,500 8 | | | 620 | 0,324 6 | 0,341 2 | 0,358 6 | 0,377 0 | 0,396 3 | 0,416 5 | 0,437 8 | | | 625 | 0,272 3 | 0,287 4 | 0,303 3 | 0,320 1 | 0,337 84 | 0,356 6 | 0,376 3 | | | 630 | 0,224 8 | 0,238 2 | 0,252 4 | 0,267 4 | 0,283 3 | 0,300 1 | 0,318 0 | | | 635 | 0,182 8 | 0,194 3 | 0,206 6 | 0,219 7 | 0,233 6 | 0,284 0 | 0,264 1 | | | 640 | 0,146 2 | 0,156 0 | 0,166 5 | 0,177 6 | 0,189 5 | 0,202 1 | 0,215 7 | | | 645 | 0,115 2 | 0,123 3 | 0,131 9 | 0,141 2 | 0,151 1 | 0,161 8 | 0,173 1 | | | 650 | 0,089 28 | 0,095 85 | 0,102 9 | 0,110 4 | 0,118 6 | 0,127 3 | 0,136 6 | | | 655 | 0,068 39 | 0,073 62 | 0,079 25 | 0,085 31 | 0,091 83 | 0,098 85 | 0,106 4 | | | 660 | 0,051 96 | 0,056 08 | 0,060 52 | 0,065 31 | 0,070 48 | 0,076 06 | 0,082 08 | | | 665 | 0,039 16 | 0,042 36 | 0,045 82 | 0,049 56 | 0,053 61 | 0,057 98 | 0,062 72 | | | 670 | 0,029 27 | 0,031 73 | 0,034 39 | 0,037 28 | 0,040 41 | 0,043 80 | 0,047 47 | | | 675 | 0,021 70 | 0,023 56 | 0,025 59 | 0,027 79 | 0,030 18 | 0,032 78 | 0,035 60 | | | 680 | 0,015 95 | 0,017 36 | 0,018 88 | 0,020 54 | 0,022 34 | 0,024 30 | 0,026 44 | | | 685 | 0,011 64 | 0,012 68 | 0,013 81 | 0,015 04 | 0,016 39 | 0,017 85 | 0,019 45 | | | 690 | 0,008 417 | 0,009 180 | 0,010 01 | 0,010 92 | 0,011 91 | 0,012 99 | 0,014 17 | | | 695 | 0,006 039 | 0,006 593 | 0,007 199 | 0,007 861 | 0,008 583 | 0,009 371 | 0,010 23 | | | 700 | 0,004 297 | 0,004 696 | 0,005 131 | 0,005 607 | 0,006 127 | 0,006 696 | 0,007 317 | | | 705 | 0,003 036 | 0,003 319 | 0,003 628 | 0,003 967 | 0,004 338 | 0,004 750 | 0,005 192 | | | 710 | 0,002 144 | 0,002 346 | 0,002 565 | 0,002 807 | 0,003 072 | 0,003 370 | 0,003 684 | | | 715 | 0,001 515 | 0,001 658 | 0,001 813 | 0,001 986 | 0,002 175 | 0,002 390 | 0,002 614 | | | 720 | 0,001 070 | 0,001 172 | 0,001 282 | 0,001 405 | 0,001 540 | 0,001 696 | 0,001 855 | | | 725 | 0,000 755 9 | 0,000 828 0 | 0,000 906 4 | 0,000 994 4 | 0,001 090 | 0,001 203 | 0,001 316 | | | 730 | 0,000 533 9 | 0,000 585 2 | 0,000 640 9 | 0,000 703 6 | 0,000 771 9 | 0,000 853 3 | 0,000 933 7 | | | 735 | 0,000 377 2 | 0,000 413 6 | 0,000 453 1 | 0,000 497 9 | 0,000 546 5 | 0,000 605 4 | 0,000 662 5 | | | 740 | 0,000 266 4 | 0,000 292 3 | 0,000 320 3 | 0,000 352 3 | 0,000 386 9 | 0,000 429 4 | 0,000 470 1 | | | 745 | 0,000 188 2 | 0,000 206 6 | 0,000 226 5 | 0,000 249 3 | 0,000 274 0 | 0,000 304 6 | 0,000 333 5 | | | 750 | 0,000 133 0 | 0,000 146 0 | 0,000 160 1 | 0,000 176 4 | 0,000 194 0 | 0,000 216 1 | 0,000 236 7 | | | 755 | 0,000 093 92 | 0,000 103 2 | 0,000 113 2 | 0,000 124 8 | 0,000 137 3 | 0,000 153 3 | 0,000 167 9 | | | 760 | 0,000 066 34 | 0,000 072 93 | 0,000 080 04 | 0,000 088 30 | 0,000 097 23 | 0,000 108 8 | 0,000 119 1 | | | 765 | 0,000 046 86 | 0,000 051 55 | 0,000 056 59 | 0,000 062 47 | 0,000 068 84 | 0,000 077 15 | 0,000 084 54 | | | 770 | 0,000 033 11 | 0,000 036 43 | 0,000 040 01 | 0,000 044 20 | 0,000 048 74 | 0,000 054 73 | 0,000 059 98 | | | 775 | 0,000 023 39 | 0,000 025 75 | 0,000 028 29 | 0,000 031 28 | 0,000 034 51 | 0,000 038 83 | 0,000 042 56 | | | 780 | 0,000 016 52 | 0,000 018 20 | 0,000 020 00 | 0,000 022 13 | 0,000 024 43 | 0,000 027 54 | 0,000 030 20 | | | | ata from Referenc | , | * | | | | | | ## 5 Using age-related luminance contrast - **5.1** Age-related luminance contrast shall be used as an equivalent value to the luminance contrast in assessing visibility, visual performance, and visual appearance in signs and displays. The quantitative evaluation of the luminance contrast depends on the context of use and shall be carried out by taking account of the following factors: - spatial and temporal configuration of the lights; - NOTE 1 The contrast sensitivity function of the eye for a spatial and temporal grating pattern is referred to for the evaluation of contrast values. - viewing conditions; - NOTE 2 Among the factors defining viewing conditions, the luminance level of the light mostly affects the visibility of the contrast. - visual tasks. - NOTE 3 Evaluation of the contrast value depends on the task being performed, e.g. detecting objects, reading characters, and evaluating visual impressions such as a legibility-ranking test. - **5.2** For some application fields, such as electronic visual displays and graphical symbols (safety signs), specific values of luminance contrast are required (ISO 9241-303:2008, 5.5.2; ISO 3864-1:—¹⁾, Table 6; and ISO 3864-4:—²⁾, Table 3). Age-related luminance contrast shall comply with those values. ## Annex A (informative) # An example of calculation and application of age-related luminance contrast ## A.1 Purpose This annex presents an example of calculation of the age-related luminance contrast for persons of different age to demonstrate contrast difference with age for the same visual sign. Additional examples for lighting design and implication of age-related photopic spectral luminous efficiency are also presented. ## A.2 Example of calculation According to the method described in Clause 4, the age-related luminance contrast for a person in his/her twenties and that for a person in his/her seventies can be calculated respectively for a given visual sign as shown in Figure A.1 a). The spectral radiance data of a sign and its background are provided in Figure A.1 b). Applying the spectral luminous efficiency of a person in his/her twenties, $V_{20}(\lambda)$, in Table 1, Equation (4) in Clause 4 is used to calculate the age-related luminance contrast of a person in his/her twenties, C_{20} , for the sign presented in Figure A.1 a) as follows: $$C_{20} = \frac{\sum\limits_{380}^{780} L_{e,\lambda,1} V_{20}(\lambda) \Delta \lambda}{\sum\limits_{380}^{780} L_{e,\lambda,2} V_{20}(\lambda) \Delta \lambda}$$ $$=\frac{0,003\,1}{0,001\,5}$$ $$= 2,07$$ The age-related luminance contrast is also calculated by using the same formula, but for a person in his/her seventies where $V_{70}(\lambda)$ applies, as follows: $$C_{70} = \frac{\sum_{380}^{780} L_{e,\lambda,1} V_{70}(\lambda) \Delta \lambda}{\sum_{380}^{780} L_{e,\lambda,2} V_{70}(\lambda) \Delta \lambda}$$ $$=\frac{0,0018}{0,0016}$$ $$=1,13$$ The age-related luminance contrast of the sign shown in Figure A.1 a) (for example, a blue letter on a dark brown background) is 2,07 for a person in his/her twenties and is 1,13 for a person in his/her seventies. It is assessed that the visibility of the sign is much lower for the older person. If the contrast to the older person should be kept at least at the same level as that achieved for the younger person ($C_a = 2,07$), the radiance of the blue letter should be raised by a factor of 1,83. NOTE The determination of the limit values for luminance contrast depends upon the context of design. a) Example of a letter and background b) Spectral radiance of a letter and background #### Key - X wavelength, nm - Y1 spectral radiance, W⋅m⁻²⋅sr⁻¹⋅nm⁻¹ - Y2 luminous efficiency - 1 $V_{20}(\lambda)$ - 2 $V_{70}(\lambda)$ - 3 a blue letter - 4 dark-brown background Figure A.1 — Example of a letter and backgroud used for the calculation of age-related luminance contrast ## A.3 Examples of application of age-related luminance contrast to lighting design The following are examples of the use of age-related luminance contrast for better lighting design. Evaluation of visual efficiency for a newly developed light source for older people With a standard lamp as a comparison, calculation of age-related luminance contrast for two areas (of the same sample), one being illuminated by a new lamp and the other by a comparison lamp, provides quantitative evaluation of visual efficiency of the new lamp for older people. Lighting design for better visibility for older people An adequate light source for lighting can be selected and evaluated by calculating age-related luminance contrast of objects or visual signs so that they are designed to be more visible by older people. # A.4 Implication of age-related photopic spectral luminous efficiency function in application The age-related photopic spectral luminous efficiency function $V_{\rm a}(\lambda)$ is measured by the method of flicker photometry and can be used for assessment of light in terms of visual tasks that concern spatial and temporal discrimination, such as visual acuity and flicker. This function is different from another type of photopic spectral luminous efficiency function, which is measured by the method of direct-brightness matching and can be used for assessment of light in terms of visual tasks that concern detectability or apparent brightness of coloured light. ## **Bibliography** - [1] ISO/IEC Guide 71:2001, Guidelines for standards developers to address the needs of older persons and persons with disabilities - [2] SAGAWA, K., TAKAHASHI, Y. Spectral luminous efficiency as a function of age. *J. Opt. Soc. Am.*, **A18**, 2001, pp. 2659-2667. - [3] ISO/TR 22411:2008, Ergonomics data and guidelines for the application of ISO/IEC Guide 71 to products and services to address the needs of older persons and persons with disabilities ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. ### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ## **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. ## **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. ## Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com ## Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com