BS EN ISO 22600-3:2014 ## **BSI Standards Publication** # Health informatics — Privilege management and access control Part 3: Implementations #### National foreword This British Standard is the UK implementation of EN ISO 22600-3:2014. It supersedes DD ISO/TS 22600-3:2009 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee IST/35, Health informatics. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 80570 7 ICS 35.240.80 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 October 2014. #### Amendments issued since publication Date Text affected # EUROPEAN STANDARD # NORME EUROPÉENNE EUROPÄISCHE NORM October 2014 **EN ISO 22600-3** ICS 35.240.80 #### **English Version** # Health informatics - Privilege management and access control - Part 3: Implementations (ISO 22600-3:2014) Informatique de santé - Gestion de privilèges et contrôle d'accès - Partie 3: Mises en oeuvre (ISO 22600-3:2014) Medizinische Informatik - Privilegienmanagement und Zugriffssteuerung - Teil 3: Implementierungen (ISO 22600-3:2014) This European Standard was approved by CEN on 21 June 2014. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels #### **Foreword** This document (EN ISO 22600-3:2014) has been prepared by Technical Committee ISO/TC 215 "Health informatics" in collaboration with Technical Committee CEN/TC 251 "Health informatics" the secretariat of which is held by NEN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2015, and conflicting national standards shall be withdrawn at the latest by April 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### **Endorsement notice** The text of ISO 22600-3:2014 has been approved by CEN as EN ISO 22600-3:2014 without any modification. | Contents | | Page | |----------|---|------| | Fore | eword | iv | | Intro | oduction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | | | 4 | Abbreviated terms | 13 | | 5 | Structures and services for privilege management and access control | | | 6 | Interpretation of ISO 22600-2 formal models in healthcare settings | | | 7 | Concept representation for health information systems 7.1 Overview | 18 | | | 7.2 Domain languages | 19 | | | 7.3 OCL constraint modelling | | | 0 | • | | | 8 | Consent 8.1 Overview | | | | 8.2 Patient consent | | | | 8.3 Patient consent management | | | 9 | Emergency access | 22 | | 10 | Refinement of the control model | 23 | | 11 | Refinement of the delegation model | 23 | | Anne | ex A (informative) Privilege management infrastructure | 24 | | Anne | ex B (informative) Attribute certificate extensions | 60 | | Anne | ex C (informative) Terminology comparison | 62 | | | ex D (informative) Examples for policy management and policy representation | | | Bibli | iography | 66 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 215, Health informatics. This first edition of ISO 22600-3 cancels and replaces ISO/TS 22600-3:2009, which has been technically revised. ISO 22600 consists of the following parts, under the general title *Health informatics* — *Privilege management and access control*: - Part 1: Overview and policy management - Part 2: Formal models - Part 3: Implementations #### Introduction The distributed architecture of shared care information systems supporting service-oriented architecture (SOA) is increasingly based on corporate networks and virtual private networks. For meeting the interoperability challenge, the use of standardized user interfaces, tools, and protocols, which ensures platform independence, but also the number of really open information systems, is rapidly growing during the last couple of years. As a common situation today, hospitals are supported by several vendors providing different applications, which are not able to communicate authentication and authorization since each has its own way of handling these functions. For achieving an integrated scenario, it takes a remarkable amount of money, time, and efforts to get users and changing organizational environments dynamically mapped before starting communication and cooperation. Resources required for the development and maintenance of security functions grow exponentially with the number of applications, with the complexity of organizations towards a regional, national, or even international level, and with the flexibility of users playing multiple roles, sometimes even simultaneously. The situation becomes even more challenging when inter-organizational communications happens, thereby crossing security policy domain boundaries. Moving from one healthcare centre to another or from country to country, different rules for privileges and their management can apply to similar types of users, both for execution of particular functions and for access to information. The policy differences between these domains have to be bridged automatically or through policy agreements, defining sets of rules followed by the parties involved, for achieving interoperability. Another challenge to be met is how to improve the quality of care by using IT without infringing the privacy of the patient. To provide physicians with adequate information about the patient, a virtual electronic health care record is required which makes it possible to keep track of all the activities belonging to one patient regardless of where and by whom they have been performed and documented. In such an environment, a generic model or specific agreement between the parties for managing privileges and access control including the patient or its representative is needed. Besides a diversity of roles and responsibilities, typical for any type of large organization, also ethical and legal aspects in the
healthcare scenario due to the sensitivity of person-related health information managed and its personal and social impact have to be considered. Advanced solutions for privilege management and access control are required today already, but this challenge will even grow over the next couple of years. The reason is the increase of information exchanged between systems in order to fulfil the demands of health service providers at different care levels for having access to more and more patient-related information to ensure the quality and efficiency of patient's diagnosis and treatment, however combined with increased security and privacy risks. The implementation of this International Standard might be currently too advanced and therefore not feasible in certain organizational and technical settings. For meeting the basic principle of best possible action, it is therefore very important that at least a policy agreement is written between the parties stating to progress towards this International Standard when any update/upgrade of the systems is intended. The level of formalization and granularity of policies and the objects these policies are bound to defines the solution maturity on a pathway towards the presented specification. The policy agreement also has to contain defined differences in the security systems and agreed solutions on how to overcome the differences. For example, the authentication service and privileges of a requesting party at the responding site have to be managed according to the policy declared in the agreement. For that reason, information and service requester, as well as information and service provider on the one hand, and information and services requested and provided on the other hand, have to be grouped and classified in a limited number of concepts for enabling the specification of a limited number of solution categories. Based on that classification, claimant mechanisms, target sensitivity mechanisms, and policy specification and management mechanisms can be implemented. Once all parties have signed the policy agreement, the communication and information exchange can start with the existing systems if the parties can accept the risks. If there are unacceptable risks which have to be eliminated before the information exchange starts, they also have to be recorded in the policy agreement together with an action plan stating how these risks have to be removed. The policy agreement also has to contain a time plan for this work and an agreement on how it has to be financed. The documentation of the negotiation process is very important and provides the platform for the policy agreement. Privilege management and access control address security and privacy services required for communication and cooperation, i.e. distributed use of health information. It also implies safety aspects, professional standards, and legal and ethical issues. This International Standard introduces principles and specifies services needed for managing privileges and access control. Cryptographic protocols are out of the scope of this International Standard. This three-part International Standard references existing architectural and security standards as well as specifications in the healthcare area such as ISO, CEN, ASTM, OMG, W3C, etc., and endorses existing appropriate standards or identifies enhancements or modifications or the need for new standards. It comprises of: - ISO 22600-1: describes the scenarios and the critical parameters in information exchange across policy domains. It also gives examples of necessary documentation methods as the basis for the policy agreement. - ISO 22600-2: describes and explains, in a more detailed manner, the architectures and underlying models for privilege management and access control which are necessary for secure information sharing including the formal representation of policies. - ISO 22600-3: describes examples of implementable specifications of application security services and infrastructural services using different specification languages. It accommodates policy bridging. It is based on a conceptual model where local authorization servers and cross-border directory and policy repository services can assist access control in various applications (software components). The policy repository provides information on rules for access to various application functions based on roles and other attributes. The directory service enables identification of the individual user. The granted access will be based on four aspects: - the authenticated identification of principals (i.e. human users and objects that need to operate under their own rights) involved; - the rules for access to a specific information object including purpose of use; - the rules regarding authorization attributes linked to the principal provided by the authorization manager; - the functions of the specific application. This International Standard supports collaboration between several authorization managers that can operate over organizational and policy borders. This International Standard is strongly related to other ISO/TC 215 works such as ISO 17090 (all parts), ISO 22857, ISO 21091, and ISO 21298. This International Standard is meant to be read in conjunction with its complete set of associated standards. Based on the Unified Process, a three-dimensional architectural reference model has been derived for defining the constraint models needed. The dimensions of the Generic Component Model used are the domain axis, the decomposition/composition axis, and the axis describing the views on a system and its components. For being future-proof, sustainable, flexible, portable, and scalable, only the constraining process and the resulting security-related meta-models are presented. The instantiation and implementation, e.g. the specification of mechanisms and encoding definitions, is a long-term process, dedicated to other standards and projects or the vendor/provider community, respectively. After shortly summarizing the basics of ISO 22600-2, the different ways of representing different levels of maturity with different levels of interoperability below the ideal situation of a semantically valid one are discussed. For those different environments and levels, this part of ISO 22600 introduces examples for specializing and implementing the formal high-level models for architectural components based on ISO/IEC 10746 and defined in ISO 22600-2. These examples and related services are grouped in different Annexes. The specifications are provided using derivates of the Extensible Markup Language (XML), especially Security Assertion Markup Language (SAML) and Extensible Access Control Markup Language (XACML) specified by OASIS. Additional specifications are also presented in the traditional ASN.1 syntax. This International Standard has been harmonized in essential parts with ASTM E2595-07. # Health informatics — Privilege management and access control — #### Part 3: ### **Implementations** #### 1 Scope This multi-part International Standard defines principles and specifies services needed for managing privileges and access control to data and/or functions. It focuses on communication and use of health information distributed across policy domain boundaries. This includes healthcare information sharing across unaffiliated providers of healthcare, healthcare organizations, health insurance companies, their patients, staff members, and trading partners by both individuals and application systems ranging from a local situation to a regional or even national situation. It specifies the necessary component-based concepts and is intended to support their technical implementation. It will not specify the use of these concepts in particular clinical process pathways. This part of ISO 22600 instantiates requirements for repositories for access control policies and requirements for privilege management infrastructures. It provides implementation examples of the formal models specified in ISO 22600-2. This part of ISO 22600 excludes platform-specific and implementation details. It does not specify technical communication security services, authentication techniques, and protocols that have been established in other International Standards such as e.g. ISO 7498-2, ISO/IEC 10745 (ITU-T X.803), ISO/IEC/TR 13594 (ITU-T X.802), ISO/IEC 10181-1 (ITU-T X.810), ISO/IEC 9594-8 (ITU-T X.509), ISO/IEC 9796 (all parts), ISO/IEC 9797 (all parts), and ISO/IEC 9798 (all parts). #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/IEC 9594-8, Information technology — Open Systems Interconnection — The Directory — Part 8: Public-key and attribute certificate frameworks ${\tt ISO/IEC~10181-3,}\ Information\ technology-Open\ Systems\ Interconnection-Security\ frameworks\ for\ open\ systems: Access\ control\ framework-Part\ 3$ ASTM E2084-00, Standard Specification for Authentication of Healthcare Information Using Digital Signatures #### 3 Terms and definitions #### 3.1 #### access control means of ensuring that the resources of a data processing system can be accessed only by authorized entities in authorized ways [SOURCE: ISO/IEC 2382-8:1998] #### 3.2 #### access control decision function #### **ADF** specialized function that makes access control decisions by applying access control policy rules to a requested action #### 3.3 #### access control enforcement function #### AEF specialized function that is part of the access path between a requester and a protected resource that enforces the decisions made by the ADF #### 3.4 #### access control information information used for access control purposes, including contextual information #### 3.5 #### accountability
property that ensures that the actions of an entity can be traced uniquely to the entity [SOURCE: ISO 7498-2:1989] #### 3.6 #### asymmetric cryptographic algorithm algorithm for performing encipherment or the corresponding decipherment in which the keys used for encipherment and decipherment differ [SOURCE: ISO/IEC 10181-1:1996] #### 3.7 #### attribute authority #### $\mathbf{A}\mathbf{A}$ authority which assigns privileges by issuing attribute certificates [SOURCE: ISO/IEC 9594-8:2008] #### 3.8 #### attribute authority revocation list #### **AARL** revocation list containing a list of references to attribute certificates issued to AAs that are no longer considered valid by the certificate issuing authority #### 3.9 #### attribute certificate data structure, digitally signed by an attribute authority, that binds some attribute values with identification about its holder [SOURCE: ISO/IEC 9594-8:2008] #### 3.10 #### attribute certificate revocation list #### **ACRL** revocation list containing a list of references to attribute certificates that are no longer considered valid by the certificate issuing authority #### 3.11 #### authentication provision of assurance of the claimed identity of an entity by securely associating an identifier and its authenticator [SOURCE: ISO/IEC 15944-5:2008, 3.5] Note 1 to entry: See also *data origin authentication* (3.49) and peer entity authentication. #### 3.12 #### authentication token information conveyed during a strong authentication exchange, which can be used to authenticate its sender #### 3.13 #### authority entity, which is responsible for the issuance of certificates Note 1 to entry: Two types are defined in this part of ISO 22600: certification authority which issues public key certificates and attribute authority which issues attribute certificates. #### 3.14 #### authority certificate certificate issued to a certification authority or an attribute authority [SOURCE: ISO/IEC 9594-8:2008, modified] #### 3.15 #### authority revocation list #### ARL revocation list containing a list of public key certificates issued to authorities, which are no longer considered valid by the certificate issuer #### 3.16 #### authorization granting of privileges, which includes the granting of privileges to access data and functions [SOURCE: ISO 7498-2:1989, modified] #### 3.17 #### authority certificate certificate issued to an authority (e.g. either to a certification authority or to an attribute authority) #### 3.18 #### authorization credential signed assertion of a user's permission attributes #### 3.19 #### availability property of being accessible and useable upon demand by an authorized entity [SOURCE: ISO 7498-2:1989] #### 3.20 #### base CRL CRL that is used as the foundation in the generation of a dCRL #### 3.21 #### business partner agreement document used to demarcate the legal, ethical, and practical responsibilities between subscribers to a PMI and between cooperating PMI implementations #### 3.22 #### **CA** certificate certificate for one CA issued by another CA #### 3.23 #### certificate public key certificate #### 3.24 #### certificate distribution act of publishing certificates and transferring certificates to security subjects #### 3.25 #### certificate management procedures relating to certificates: certificate generation, certificate distribution, certificate archiving, and revocation #### 3.26 #### certificate policy named set of rules that indicates the applicability of a certificate to a particular community and/or class of application with common security requirements Note 1 to entry: For example, a particular certificate policy might indicate applicability of a type of certificate to the authentication of electronic data interchange transactions for the trading of goods within a given price range. #### 3.27 #### certificate revocation act of removing any reliable link between a certificate and its certificate holder because the certificate is not trusted anymore whereas it is unexpired #### 3.28 #### certificate revocation list #### CRL asigned list indicating a set of certificates that are no longer considered valid by the certificate issuer Note 1 to entry: In addition to the generic term CRL, some specific CRL types are defined for CRLs that cover particular scopes. A published list of the suspended and revoked certificates (digitally signed by the CA). #### 3.29 #### certificate serial number integer value, unique within the issuing authority, which is unambiguously associated with a certificate issued by that CA #### 3.30 #### certificate suspension list #### **CSL** published list of the suspended certificates (digitally signed by the CA) #### 3.31 #### certificate user entity that needs to know, with certainty, the public key of another entity #### 3.32 #### certificate using system implementation of those functions defined in this part of ISO 22600 that are used by a certificate user #### 3.33 #### certificate validation process of ensuring that a certificate was valid at a given time, including possibly the construction and processing of a certification path, and ensuring that all certificates in that path were valid (i.e. were not expired or revoked) at that given time #### 3.34 #### certificate verification verifying that a certificate is authentic #### 3.35 #### certification authority #### CA certificate issuer; an authority trusted by one or more relying parties to create, assign, and manage certificates [SOURCE: ISO 9594-8:2008] Note 1 to entry: Optionally, the certification authority can create the relying parties' keys. Note 2 to entry: Entity that issues certificates by signing certificate data with its private signing key. Note 3 to entry: Authority in the CA term does not imply any government authorization, only that it is trusted. Certificate issuer can be a better term but CA is used very broadly. #### 3.36 #### certification authority revocation list #### **CARL** revocation list containing a list of public key certificates issued to certification authorities, that are no longer considered valid by the certificate issuer #### 3.37 #### certification path ordered sequence of certificates of objects in the DIT which, together with the public key of the initial object in the path, can be processed to obtain that of the final object in the path #### 3.38 #### ciphertext data produced through the use of encipherment Note 1 to entry: The semantic content of the resulting data is not available. [SOURCE: ISO 7498-2:1989] #### 3.39 #### claimant entity requesting that a sensitive service be performed or provided by a verifier, based on the claimant's privileges as identified in their attribute certificate or subject directory attributes extension of their public key certificate #### 3.40 #### confidentiality property that information is not made available or disclosed to unauthorized individuals, entities, or processes [SOURCE: ISO 7498-2:1989] #### 3.41 #### consent special policy which defines an agreement between an entity playing the role of the subject of an act and an entity acting #### 3.42 #### credential prerequisite issued evidence for the entitlement of, or the eligibility for, a role; information describing the security attributes (identity or privilege or both) of a principal Note 1 to entry: Credentials are claimed through authentication or delegation and used by access control. #### 3.43 #### **CRL** distribution point directory entry or other distribution source for CRLs Note 1 to entry: A CRL distributed through a CRL distribution point can contain revocation entries for only a subset of the full set of certificates issued by one CA or can contain revocation entries for multiple CAs. #### 3.44 #### cryptography discipline which embodies principles, means, and methods for the transformation of data in order to hide its information content, prevent its undetected modification, and/or prevent its unauthorized use [SOURCE: ISO 7498-2:1989] #### 3.45 #### cryptographic algorithm #### cipher method for the transformation of data in order to hide its information content, prevent its undetected modification, and/or prevent its unauthorized use [SOURCE: ISO 7498-2:1989] #### 3.46 #### cryptographic system #### cryptosystem collection of transformations from plaintext into ciphertext and vice versa, the particular transformation(s) to be used being selected by keys Note 1 to entry: The transformations are normally defined by a mathematical algorithm. #### 3.47 #### data confidentiality service that can be used to provide for protection of data from unauthorized disclosure Note 1 to entry: The data confidentiality service is supported by the authentication framework. It can be used to protect against data interception. #### 3.48 #### data integrity property that data has not been altered or destroyed in an unauthorized manner [SOURCE: ISO 7498-2:1989] #### 3.49 #### data origin authentication corroboration that the source of data received is as claimed [SOURCE: ISO 7498-2:1989] #### 3.50 #### decipherment #### decryption process of obtaining, from a ciphertext, the original corresponding data [SOURCE: ISO/IEC 2382-8:1998] Note 1 to entry: A ciphertext can be enciphered a second time, in which case a single decipherment does not produce the original plaintext. #### 3.51 #### delegation conveyance of privilege from one entity that holds such privilege, to another entity #### 3.52 #### delegation path ordered sequence of certificates which, together with authentication of a privilege asserter's identity, can be processed to verify the authenticity of a privilege asserter's privilege #### 3.53 #### delta CRL #### dCRL partial revocation list that only contains entries for certificates that have had their revocation status changed since the issuance of the referenced base CRL #### 3 54 #### digital signature data appended to, or a cryptographic transformation [see *cryptography* (3.44)] of, a data unit that allows a recipient of the data unit
to prove the source and integrity of the data unit and protect against forgery e.g. by the recipient [SOURCE: ISO 7498-2:1989] #### 3.55 #### encipherment #### encryption cryptographic transformation of data [see cryptography (3.44)] to produce ciphertext [SOURCE: ISO 7498-2:1989] #### 3.56 #### end entity certificate subject that uses its private key for purposes other than signing certificates or an entity that is a relying party #### 3.57 #### end-entity attribute certificate revocation list #### EARI. revocation list containing a list of attribute certificates that are no longer considered valid by the certificate issuer and that were issued to certificate holders that were not also AAs #### 3.58 ### end-entity public key certificate revocation list EPRL revocation list containing a list of public key certificates issued to subjects that are not also CAs, that are no longer considered valid by the certificate issuer #### 3.59 #### environmental variables aspects of policy required for an authorization decision that are not contained within static structures, but are available through some local means to a privilege verifier (e.g. time of day or current account balance) #### 3.60 #### full CRL complete revocation list that contains entries for all certificates that have been revoked for the given scope #### 3.61 #### functional role role which is bound to an act Note 1 to entry: Functional roles can be assigned to be performed during an act. Note 2 to entry: Functional roles correspond to the ISO/HL7 21731 RIM participation. Note 3 to entry: See also *structural role* (3.105). [SOURCE: ISO 21298:—, definition 3.10, modified] #### 3.62 #### hash function (mathematical) function which maps values from a large (possibly very large) domain into a smaller range Note 1 to entry: A "good" hash function is such that the results of applying the function to a (large) set of values in the domain will be evenly distributed (and apparently at random) over the range. #### 3.63 #### holder entity to whom some privilege has been delegated either directly from the source of authority or indirectly through another attribute authority #### 3.64 #### identification performance of tests to enable a data processing system to recognize entities [SOURCE: ISO/IEC 2382-8:1998] #### 3.65 #### identifier piece of information used to claim an identity, before a potential corroboration by a corresponding authenticator [SOURCE: ENV 13608-1:2000] #### 3.66 #### indirect CRL #### iCRL revocation list that at least contains revocation information about certificates issued by authorities other than that which issued this CRL #### 3.67 #### integrity proof that the message content has not been altered, deliberately or accidentally in any way, during transmission [SOURCE: ISO 7498-2:1989] #### 3.68 #### key sequence of symbols that controls the operations of encipherment and decipherment [SOURCE: ISO 7498-2:1989] #### 3.69 #### key agreement method for negotiating a key value online without transferring the key, even in an encrypted form, e.g. the Diffie-Hellman technique Note 1 to entry: See ISO/IEC 11770-1:2010 for more information on key agreement mechanisms. #### 3.70 #### key management generation, storage, distribution, deletion, archiving, and application of keys in accordance with a security policy [SOURCE: ISO 7498-2:1989] #### 3.71 #### lightweight directory access protocol #### LDAP standard access protocol for directories allowing public or controlled access to certificates and other information needed in a PKI #### 3.72 #### non-repudiation service providing proof of the integrity and origin of data (both in an unforgeable relationship) which can be verified by any party [SOURCE: ISO 17090-1:2013] #### 3.73 #### object identifier #### **OID** unique alphanumeric/numeric identifier registered under the ISO registration standard to reference a specific object or object class Note 1 to entry: This is a name for a certificate policy that is recorded in a field of each certificate issued in conformance with the policy. #### 3.74 #### object method action that can be invoked on a resource (e.g. a file system can have read, write, and execute object methods) #### 3.75 #### one-way function (mathematical) function f which is easy to compute, but which for a general value y in the range, it is computationally difficult to find a value x in the domain such that f(x) = y Note 1 to entry: There can be a few values *y* for which finding *x* is not computationally difficult. #### 3.76 #### certificate holder entity that is named as the subject of a valid certificate #### 3.77 #### permission approval for performing an operation on one or more RBAC protected objects [SOURCE: INCITS 359-2004] #### 3.78 #### policy set of legal, political, organizational, functional, and technical obligations or omissions for communication and cooperation #### 3.79 #### policy agreement written agreement where all involved parties commit themselves to a specified set of policies #### 3.80 #### policy decision point #### . PNP system entity that evaluates applicable policy and renders an authorization decision Note 1 to entry: This term is defined in a joint effort by the IETF Policy Framework Working Group and the Distributed Management Task Force (DMTF)/Common Information Model (CIM) in RFC 3198:2001. Note 2 to entry: This term corresponds to "Access Decision Function" (ADF) in ISO/IEC 10181-3:1996. #### 3.81 #### policy enforcement point #### PFP system entity that performs access control, by making decision requests and enforcing authorization decisions Note 1 to entry: This term is defined in a joint effort by the IETF Policy Framework Working Group and the Distributed Management Task Force (DMTF)/Common Information Model (CIM) in RFC 3198:2001. Note 2 to entry: This term corresponds to "Access Enforcement Function" (AEF) in ISO/IEC 10181-3:1996. #### 3.82 #### policy mapping recognizing that, when a CA in one domain certifies a CA in another domain, a particular certificate policy in the second domain can be considered by the authority of the first domain to be equivalent (but not necessarily identical in all respects) to a particular certificate policy in the first domain #### 3.83 #### principal human users and objects that need to operate under their own rights [SOURCE: OMG Security Services Specification:2001] #### 3.84 #### private key key that is used with an asymmetric cryptographic algorithm and whose possession is restricted (usually to only one entity) [SOURCE: ISO/IEC 10181-1:1996] #### 3.85 #### privilege capacity assigned to an entity by an authority according to the entity's attribute #### 3.86 #### privilege asserter privilege holder using their attribute certificate or public key certificate to assert privilege #### 3.87 #### privilege management infrastructure #### **PMI** infrastructure able to support the management of privileges in support of a comprehensive authorization service and in relationship with a public key infrastructure #### 3.88 #### privilege policy policy that outlines conditions for privilege verifiers to provide/perform sensitive services to/for qualified privilege asserters Note 1 to entry: Privilege policy relates attributes associated with the service as well as attributes associated with privilege asserters. #### 3.89 #### privilege verifier entity verifying certificates against a privilege policy #### 3.90 #### public key key that is used with an asymmetric cryptographic algorithm and that can be made publicly available [SOURCE: ISO/IEC 10181-1:1996] #### 3.91 #### public key certificate X.509 public key certificates (PKCs), binding an identity and a public key [SOURCE: ISO/IEC 9594-8:2008] Note 1 to entry: The identity can be used to support identity-based access control decisions after the client proves that it has access to the private key that corresponds to the public key contained in the PKC. [SOURCE: RFC 2459] #### 3.92 #### public key infrastructure #### **PKI** infrastructure used in the relation between a key holder and a relying party that allows a relying party to use a certificate relating to the key holder for at least one application using a public key-dependent security service Note 1 to entry: PKI includes a certification authority, a certificate data structure, means for the relying party to obtain current information on the revocation status of the certificate, a certification policy, and methods to validate the certification practice. #### 3.93 #### relying party recipient of a certificate who acts in reliance on that certificate and/or digital signature verified using that certificate [SOURCE: RFC 2527:1999] #### 3.94 #### role set of competences and/or performances that are associated with a task [SOURCE: ISO 21298:—, definition 3.22] Note 1 to entry: For managing role relationships between the entities, structural and functional roles can be defined. #### 3.95 #### role assignment certificate certificate that contains the role attribute, assigning one or more roles to the certificate holder #### 3.96 #### role certificate certificate that assigns privileges to a role rather than directly to individuals Note 1 to entry: Individuals assigned to that role, through an attribute certificate or public key certificate with a subject directory attributes extension containing that assignment, are indirectly assigned the privileges contained in the role certificate. #### 3.97 #### role specification certificate certificate that contains the assignment of privileges to a role #### 3.98 #### sensitivity characteristic of a resource that implies its value or importance #### 3.99 #### security combination of availability, confidentiality, integrity, and accountability [SOURCE: ENV 13608-1:2000] #### 3.100 #### security policy plan or course of action adopted for providing computer security [SOURCE: ISO/IEC 2382-8:1998] Note 1 to entry: This is a set of rules laid down by the security authority governing the
use and provision of security services and facilities. #### 3.101 #### security service service, provided by a layer of communicating open systems, which ensures adequate security of the systems or of data transfers [SOURCE: ISO 7498-2:1989] #### 3.102 #### simple authentication authentication by means of simple password arrangements #### 3.103 #### source of authority #### SoA attribute authority that a privilege verifier for a particular resource trusts as the ultimate authority to assign a set of privileges Note 1 to entry: This is a special type of attribute authority upon which a verifier endows unlimited privilege. Note 2 to entry: The verifier trusts the source of authority to delegate that privilege to certificate holders, some of which can further delegate that privilege to other certificate holders. #### 3.104 #### strong authentication authentication by means of cryptographically derived multi-factor credentials #### 3.105 #### structural role role specifying relations between entities in the sense of competence, often reflecting organizational or structural relations (hierarchies) Note 1 to entry: Structural roldes corresponde to the ISO7HL7 21731 RIM role. Note 2 to entry: See also functional role (3.61). [SOURCE: ISO 21298:—, definition 3.27, modified] ### 3.106 target resource being accessed by a claimant Note 1 to entry: Its sensitivity is modelled in this part of ISO 22600 as a collection of attributes, represented as either ASN.1 attributes or XML elements. #### 3.107 #### trust circumstance existing between two entities whereby one entity makes the assumption that the other entity will behave exactly as the first entity expects Note 1 to entry: This trust applies only for a specific function. The key role of trust in this framework is to describe the relationship between an authenticating entity and an authority; an entity must be certain that it can trust the authority to create only valid and reliable certificates. #### 3.108 #### third party party other than data originator, or data recipient, required to perform a security function as part of a communication protocol #### 3.109 #### trusted third party #### TTP third party which is considered trusted for purposes of a security protocol [SOURCE: ENV 13608-1:2000] Note 1 to entry: This term is used in many ISO/IEC standards and other documents describing mainly the services of a CA. The concept is however broader and includes services like time stamping and possibly escrowing. TTPs provide basic services, infrastructural services, and value added services. #### 3.110 #### verifier entity responsible for performing or providing a sensitive service for/to qualified claimants Note 1 to entry: The verifier enforces the privilege policy. When validating certification paths, a verifier is a type of relying party. #### 4 Abbreviated terms This list of abbreviations includes all abbreviations used in all three parts of this International Standard. AA Attribute Authority AARL Attribute Authority Revocation List ACO Access Control Information ACRL Attribute Certificate Revocation List ADF Access Decision Function ADI Access Control Decision Information AEF Access Enforcement Function ANSI American National Standards Institute ARL Authority Revocation List CA Certification Authority CARL Certification Authority Revocation List CIM Common Information Model COBRA Common Object Request Broker Architecture CRL Certificate Revocation List dCRL Delta Certificate Revocation List DAP Directory Access Protocol DEA Drug Enforcement Administration DIB Directory Information Base DIT Directory Information Tree DMTF Distributed Management Task Force DSA Directory System Agent DTD Data Type Definition DUA Directory User Agent EARL End-entity Attribute Certificate Revocation List EHR Electronic Health Record EPRL End-entity Public Key Certificate Revocation List HL7 Health Level Seven iCRL Indirect Certificate Revocation List IETF Internet Engineering Task Force ISO International Standards Organization IT Information Technology LDAP Lightweight Directory Access Protocol OASIS Organization for the Advancement of Structured Information Standards OCSP Online Certificate Status Protocol OMG Object Management Group PA Privilege Allocator PDP Policy Decision Point PEP Policy Enforcement Point PKC Public Key Certificate PKCS Public Key Cryptosystem PKI Public Key Infrastructure PMI Privilege Management Infrastructure PPS Permission Policy Set RA Registration Authority RBAC Role-Based Access Control RPS Role Policy Set S/MIME Secure Multipurpose Internet Mail Extensions SAML Security Assertion Markup Language SOA Service-Oriented Architecture SoA Source of Authority SPML Service Provisioning Markup Language TTP Trusted Third Party UDDI Universal Description, Discovery and Integration UHID Universal Healthcare Identifier UML Unified Modeling Language URI Uniform Resource Identifier XACML eXtensible Access Control Markup Language XML eXtensible Markup Language #### 5 Structures and services for privilege management and access control Privilege management and access control are ruled by policies, which should be formally expressed for enabling interoperability. In reference to the Generic Component Model, the base class structure of policies has been defined in ISO 22600-2 (see Figure 1). As mentioned in ISO 22600-2, policies can be represented differently. For example, OASIS WS-policy provides a general purpose model and syntax to describe and communicate the policies of a Web service. It specifies a set of common message policy assertions within a policy and attachment mechanisms for using policy expressions with existing XML service technologies. This part of ISO 22600 does not enforce a policy representation language. Figure 1 — Policy base class diagram Privilege management and access control are based on a series of infrastructural services directly or indirectly related to security and privacy services. In that context, a series of PKI services and trusted third party services have to be mentioned such as ID management, role management, privilege management, policy management, object management, etc. Additionally, services such as audits, LDAPs, intrusion detection, etc. have to be discussed. Instantiations including the services' mechanisms or encoding definitions are dynamically changing or informative issues deferred to the Annexes. This part of the ISO 22600 has been harmonized as much as possible with the ASTM E2595-07. Regarding the specific requirements and conditions of healthcare, the underlying security model shall consider the whole spectrum of security services and mechanisms that can be accomplished by secure micro-domains. #### Interaction between Security Domains Separate security domains in the domain model can exchange privilege information by agreement of the parties. This interaction between security domains shall be coordinated on both a technical and documentary level. The creating and exchange of privilege sets should take into consideration organizational structure. #### Technical basis Exchanges of privilege information shall be examined to ensure the meaning of privileges is consistent between security domains. This can be accomplished by creating a standard set of privileges. The standard set of privileges can include a mutually defined mapping of equivalent privileges between the domains. The equivalence of the exchanged privileges shall be reviewed on a technical basis to ensure the intended security implications are achieved. #### Administrative basis - 1) Privilege information exchanged between security domains can involve separate administrative entities (for example, distinct business partners or companies). An agreement as to the exchange of privileges and their use shall be documented, typically in a "business partner agreement." The use of a business partner agreement is required to distinguish the legal, ethical, and practical responsibilities between business partners and that can extend between other cooperating PMI implementations. An equivalent procedure is performed in a PKI through the use of a certificate practices statement and certificate policies. An alternative procedure uses "policy assertions" in WS-policy. - 2) Multiple security domains can exist within a single company or organization. An agreement documenting responsibilities between such domains should also be set forth in a business partner agreement or a memorandum of understanding (MOU). The document should be periodically reviewed to ensure privileges extended across security domains exist only as long as required to meet the needs of the enterprise. #### Organizational considerations Privilege information exchanged between security domains should be structured to reflect organizational considerations. Establishing a security domain that encompasses an organizational objective (for example, accounting or human resources) is an essential element of a coherent approach. The resulting standard set of privileges suitable for inter-domain exchange, coupled with other environmental factors (e.g. threats), will then, as a result, be highly cohesive. That is, the privilege set provides privileges to a subset of the organization (for example, accounting) without extending privileges required in an unrelated subset of the organization (for example, human resources). In addition, a cohesive privilege set provides all privileges that are required to meet a specific objective. This part of ISO 22600 is restricted to those issues presented in the shaded boxes in Figure 2. Figure 2 — Security issues this part of ISO 22600 deals with (after TP 20[1]) All management services include creation, naming, definition, grouping/classification, assignment, maintenance, correlation, synchronization and deactivation, etc. Based on the given policy model, privilege management and access control have to be policy driven as expressed in ISO 22600-1 and ISO 22600-2 as well as in Figure
3.[2][3] Figure 3 — Policy-driven RBAC schema #### 6 Interpretation of ISO 22600-2 formal models in healthcare settings The formal models introduced in ISO 22600-2 are based on the Generic Component Model.^{[3][4]} The Generic Component Model describes an architectural approach consisting of formal representations of concepts and their relationships, both representing knowledge and derived from references using constraint modelling. For supporting the understanding of the models presented in this part of ISO 22600, a short summary of the basic principles follows, combined with some refinements or profiles of the models introduced in ISO 22600-2. For understanding, communicating, and changing the reality according to our social, environmental, organizational, or technical business objectives, the reality shall be observed, described, and interpreted properly in a closed cycle using models. [5][6][7][8] A model is a representation of something helpful in thinking about the real world without having to deal with every detail of reality. A purpose of models is to create knowledge. An outcome of developing mathematical models is that it helps model builders and decision makers understand the relationships between important variables in a business situation. On the other hand, description and especially the interpretation of real systems are based on knowledge. Knowledge is a combination of instincts, ideas, rules, and procedures that guide actions and decisions. It is used to transform data into information that is useful in a situation. Knowledge helps users interpret and act on information. Building terms implies knowledge. Therefore, the classification of term sets deals with the ordering of knowledge. A model for classification of terms consists of items and their instances (semantic concepts, terms), relationships between terms of a terminology, and the classification for explicit presentation of that relation. [9] #### 7 Concept representation for health information systems #### 7.1 Overview A concept is a formal model. It shall be uniquely identifiable, accepted by experts and users, as well as independent. A concept as a knowledge component can be specialized and generalized as components can. It provides a coherent description of domain entities, which can be identified and independently used by domain users for recording information. The sum of concepts is called "ontology". An ontology provides the formalization of the domain knowledge. Knowledge representation is frequently provided in two of many possible ways: through rules (production rules, if-then rules) or frames. Production rules focus on the logic of making inferences. Frames are object-oriented approaches that focus on objects' important characteristics. A frame consists of slots identifying attributes for the particular kind of entity. The data in a frame can be used to identify which aspects of a situation are pertinent, to organize the data, and to identify exceptions. Any of the slots in a frame could have default values or references to other frames. In other words, a concept is a coherent description of domain entities (components), which are separately identified and useable for recording information. Knowledge consists of concepts that can be composed or decomposed through generalization or specialization, respectively, representing relationships between them. Analysis, conceptualization, design, implementation, and maintenance of information systems in their combination of work practices, information, people, and information technologies organized to accomplish goals in an organization will be considered. Like knowledge representation in the world of objects or components, also concepts are structured (organized) in slots. This has been done with all existing health concept representations such as Archetypes, Arden Syntax MLMs, OCL, but also with security policy representations using formal expression means such as first order logics or predicate logics or formal languages such as SAML, XACML, etc. #### 7.2 Domain languages For expressing and sharing knowledge, the underlying concepts shall be expressed properly, deploying common languages, domain-specific languages, formal languages, and formal models. Terms and knowledge applied can be summarized in terminologies and ontologies. A meta-thesaurus defines the presentation of domain knowledge as shown in Table 1. Domain-specific concepts results from business requirements. Therefore, any development framework for advanced information systems has to start with processes and methods to developing requirements and enterprise architecture, i.e. the creation of a business model. A business model collection of related architectures or blueprints of, by, and for domain experts is aimed toward capturing the business essence, but not the ICT perspective. In the next phase, a methodology has to be provided to develop, deploy, test, maintain, and integrate applications. Providing the complete development framework, the Generic Component Model describes any business model through the Enterprise View. The model's three-dimensional architecture allows for knowledge representation by concepts and their relationships including generalization and specialization. Alternatively, Archetypes have been established for healthcare business concept modelling. #### Table 1 — Knowledge presentation through a meta-thesaurus[10] - Concepts - Synonymous terms are clustered into a concept. - Properties are attached to concepts, e.g. - unique identifier and - definition. - Relations - Concepts are related to other concepts. - Properties are attached to relations, e.g. - type of relationship and - source. Different levels of concept and rule representation as different ways for knowledge representation provide different levels of interoperability. At the highest level of a sustainable architecture following the Generic Component Model and the formal models derived in ISO 22600-2 in regard to privilege management and access control, autonomous semantic interoperability is provided. Depending on the expression means used for concept representation covering structural and functional information in a processable or manually interpretable way, the interoperability level moves down. While the first allows for policy negotiation, the latter is based on attribute assignments provided by administrators or other system users (e.g. patients). In that context, the interrelationship of concept representation in different domains using different domain languages has to be managed. Different policy presentation, assignment, and implementation means are shortly discussed. #### 7.3 OCL constraint modelling OCL is a standard extension to UML that allows for querying model elements, constraining them (at modelling time), and defining query operations. [5][11] It enables the integration in the architectural process. Defining business rules is a challenge to be met in the General Component Model paradigm. OCL is constraining models with specific behaviour. OCL expressions consist of three parts: package context (optional), expression context (mandatory), and one or more expressions. OCL constraints are organized in expressions as shown in Table 2. #### Table 2 — OCL constraint modelling package <packagePath> package context context <contextualInstanceName>:<modelElement> expression context <expressionType><expressonName>: expression <expressionBody> <expressionType><expressionName>: expression <expressionBody> ... endpackage #### 7.4 Other constraint representations #### 7.4.1 General According to the Generic Component Model, healthcare and its supporting information systems are dealing with other domains beside medicine and biology. In that context, finance, technology, legislation and security, etc. have to be mentioned. Regarding the latter one, legal and policy concepts have to be modelled. A policy covers all implications on health and health information systems such as legal, social, organizational, psychological, functional, and technical. Managing security policy can include some or all of the following steps: writing, reviewing, testing, approving, issuing, combining, analysing, modifying, withdrawing, retrieving, and enforcing policy. The complete policy applicable to a particular decision request can be composed of a number of individual rules or policies. For instance, in a personal privacy application, the subject of care of the personal information can define certain aspects of disclosure policy, whereas the enterprise that is the custodian of the information can define certain other aspects. In order to render an authorization decision, it shall be possible to combine the two separate policies to form the single policy applicable to the request. OASIS' Security Assertion Markup Language (SAML) defines security services assigned to entities in a header-body-reference structure using XML. For formally modelling policies and ruling access control, the Extensible Access Control Markup Language (XACML) has been developed at OASIS with the XML meta-language. #### 7.4.2 Extensible Access Control Markup Language (XACML) The Extensible Access Control Markup Language (XACML) defines three top-level policy elements: <Rule>, <Policy>, and <PolicySet>.[12] The <Rule> element contains a Boolean expression that can be evaluated in isolation. However, authorization decisions (e.g. by a PDP) should not be performed without reference to the corresponding policy. XACML offers rule-combing algorithms allowing for, e.g. deny-overrides (ordered and unordered), permit-overrides (ordered and unordered), first or only applicable. The <Policy> element contains a set of <Rule> elements and a specified procedure for combining the results of their evaluation. It serves as basis for authorization decisions by a PDP. The <PolicySet> element contains a set of <Policy> or other <PolicySet> elements and a specified procedure for
combining the results of their evaluation. It is the standard means for combining separate *policies* into a single combined *policy*. The main components of a <Rule> are: a target, an effect, and a condition. The target defines the set of resources, subjects, actions, and environment. Therefore, a policy comprises the main components target, a rule-combining algorithm identifier, a set of rules, and obligations. The presented structure and function is partially reflecting the component architecture for policies according to ISO 22600-2, simplifying the defined policy sub-components, however. For details, please refer to the XACML definition.[12] #### 7.4.3 Web Services Description Language The Web Services Description Language is an XML grammar for describing Web services, defining information regarding the interface for all publicly available functions, data types for all messages, bindings to the transport protocol used, as well as addresses to locate specified services. It represents a contract between the service requester and the service provider in a platform- and language-independent way. #### 7.4.4 Business Process Execution Language The Business Process Execution Language is an XML-based language for describing a business process in a distributed cooperating environment. It formalizes the components and exceptions to be managed. The BPEL4WS process model is layered on top of the service model defined by WSDL. #### **7.4.5 WS Policy** The Web Services Policy Language (WSPL) provides a flexible and extensible XML grammar for expressing the capabilities, requirements, and general characteristics of entities in a Web Services-based system, summarized as domain-specific Web Service Policy information. It defines a collection of policy alternatives, where each of them is a collection of policy assertions such as authentication scheme, transport protocol selection, privacy policy, QoS characteristics, etc. Compatible policies have to agree on vocabulary and semantics. Web Services Policy Attachment (WS-PolicyAttachment) defines how to associate policies with the subjects to which they apply, using WSDL descriptors. #### 7.4.6 Web Services Policy Language The Web Services Policy Language (WSPL), as a strict subset of the OASIS extensible Access Control Markup Language (XACML) standard, supports policy bridging. The merged policies can be based on fine-grained attributes such as time of day, cost, or network. WSPL supports the Boolean operators exclusive-OR and AND. A <PolicySet> represents the policies of a particular service, while each policy containing a sequence of Rules represents a single aspect of the service. The rules represent an acceptable set of Attributes expressed by predicates. It supports the decision between sets of attributes regarding the acceptability. #### 7.4.7 Domain-Independent Web Services Policy Assertion Language (DIPAL) The DIPAL concerns the deployment choices (policies) rather than the business logic and interfaces of the service, using domain-specific information. #### 7.4.8 Security Assertion Markup Language The Security Assertion Markup Language (SAML) provides a grammar for wrapping security and identity information and exchanging them across domain boundaries. It allows business entities to make assertions (claims) regarding the identity, attributes, and entitlements of a subject (an entity that is often a human user) to other entities. SAML Protocols define the structure of Request/Response pairs to obtain assertions and manage identity, for this purpose establishing assertion query/request protocols, authentication request protocols, name/identifier management protocols, and Single Login and Single Logout protocols. SAML Bindings define the ways how the SAML protocols are used with the standard messaging and communication protocols to specify e.g. SAML SOAP binding, SAML PAOS (reverse SOAP) binding, HTTP Redirect binding, or HTTP post binding. SAML Profiles combine selected assertions, protocols, and bindings and define how to handle defined use-cases. Here, Web Single Sign On (SSO) profiles, Enhanced Client and Proxy (ECP) profiles, Single Logout profiles, assertion query/request profiles, and SAML and attribute profiles should be mentioned. SAML Authentication Context defines types and strengths of existing authentication methods (e.g. Internet Protocol Password, Kerberos, Public Key X.509, Smartcard PKI, SSL-TLS-based client authentication). SAML metadata enable SAML actors to define their preferences and configurations. #### 8 Consent #### 8.1 Overview While a policy provides a statement about legal, organizational, social, functional, etc. implications to be met thereby providing the rules for constraining related concepts of the other domain, a consent is a special policy agreed between entities inclusively expressing approval or acceptance of the statements contained. Therefore, in many jurisdictions, legislation requires that entities involved be informed in detail about the concerns and their consequences to provide a legally and ethically acceptable basis for such approval (informed consent). Consent shall be formulated according to the established policy model and expressed through a formal policy representation language. #### 8.2 Patient consent For meeting the aforementioned requirements, a patient consent has to be defined in a technology-challenging way, expressing fine-grained and detailed concepts and relationships concerning data, functionalities, and services. Thus, consent can cover relationships to all entities occurring in health such as data and information, documents, functions, systems, persons, organizations, applications, etc., i.e. principals as well as their actions/products. #### 8.3 Patient consent management Patient consent management has to meet all policy principles including definition, negotiation, harmonization, assignment, revocation, etc. #### 9 Emergency access Emergency access has to be provided according to the needs meeting all basic principles such as legal constraints, the need-to-know principle, etc., fixed in the emergency access policy. An important rule for emergency access policies is the complete logging of all actions performed. #### 10 Refinement of the control model The generality of this model makes the names of its parts appear somewhat abstract; however, with suitable interpretation, it can be applied to all the situations introduced discussed in this part of ISO 22600. Use of Push or Pull The control model uses a verifier that acquires access control information to make an access control decision. The claimant can provide the information (for example, in a token) along with the request to the verifier, push, or the verifier can get the required information from a trusted source, pull. In deciding whether to use a push or pull model, several factors should be considered. - 1) Push - Tokens should have a short time to live. - Tokens shall be validated against an authentication service. - Token delivery should be encrypted. - Tokens should include a nonce or a unique key within the encrypted token. - 2) Pull - Authentication services shall be accessible. - Authentication service ACI repository shall be accessible. - A trusted communication path to the ACI repository is required. - Tokens holding authentication information shall be sufficiently secure for the environment to guard against the possibility of replay attacks. #### 11 Refinement of the delegation model Restrictions on delegation can be established by the SoA, claimant, or by the target, and include: - Delegation level For example, the claimant in delegate role cannot be allowed to further delegated privilege. - Delegation context For example, delegate my "assigned-radiologist" privilege only for a given patient identity and only for a given set of X-ray images and only for a specified period of time. - Delegate set For example, no restrictions on number of levels of delegation, but all delegates shall be from a specified set of claimants. - Reference restriction The privileges to use an object under specified circumstances are passed as part of the object reference to the recipient. For example, in privilege delegation, the initiating principal's access control information (that is, its security attributes) can be delegated to further objects in the chain to give the recipient the privileges to act on the initiating principal's behalf under specified circumstances. - Improper delegation Restrictions that prevent a delegate from assigning privileges to inappropriate delegates, for example, a clinician assigning privileges to order medications to administrative staff. #### Annex A (informative) #### Privilege management infrastructure #### A.1 Use of this Annex in wide harmonization with ASTM E2595-07 Existing standards, including ANSI X9.45, ISO/IEC 9594-8, IETF RFC 3280 X.509, OASIS SPML, SAML, WS-*, and XACML, define a number of mechanisms that can be used to construct a healthcare-specific PMI specification. This would include the following features. - Privileges needed to access a target are conveyed in a claimant's authorization credential. The claimant's authorization credential can be an authorization certificate compliant with ISO/IEC 9594-8 (a particular form of attribute certificate) or a policy set description compliant with XACML or other referenced authorization standards. - The sensitivity or other properties of the target being accessed can be held in a local database or in a signed data structure. This guide does not define a standard way to represent this information, since this is a local matter. It does provide guidance on how such information might be represented and manipulated using common mechanisms such as ASN.1 and XML. For a given target object, there can be multiple operations that can be performed; each such operation can have a different set of sensitivity attributes. - The privilege policy can be held centrally, locally, or
can be conveyed as a signed data structure. Different operations on a target can be subject to different privilege policies. This guide defines several standard policies, and applications can define additional policies. - In the document authorization paradigm, co-signature requirements can be associated with a user or document, such that the signed document is considered authorized only if all necessary signatures are attached. - Users can delegate privileges to other users. - Users can be assigned to roles that convey permissions. - Some authorizations can be sufficiently dynamic that it is not feasible to place them in an enterprise authorization infrastructure (that is, the cost of maintenance is too high given the short lifetime or rapid frequency of change of the privileges or constraints). Such authorizations can be kept in a local authorization server's database and accessed as environmental variables. The remaining clauses of this part of ISO 22600 discuss mechanisms to convey privilege, sensitivity, and policy information in a distributed PMI. #### A.2 Privilege management infrastructure framework #### A.2.1 PMI services The privilege management infrastructure (PMI) framework establishes relationships between components of an abstract role system to the components of the underlying security infrastructure. Figure A.1 — Extended control model The control model of ISO 22600-1 has been extended to the security-distributed or service-oriented architecture according to Figure A.1. The verifier is shown with its component PDP/PEP. In the security SOA, infrastructure security authentication and authorization is provided to applications as a service. The figure abstracts the access control models of ISO/IEC 10181-3 (the PDP/PEP terminology follows OASIS XACML). If the external (to the target) verifier is removed, then we have the traditional control model. Various implementations are achieved by functional allocations of service between application-level and SOA levels. Access control information is used to inform the verifier PDP of additional conditions affecting the decision. #### A.2.2 Access control information ISO access control information (ACI) includes: Initiator ACI, User ACI - individual access control identities; - identifier of hierarchical group in which membership is asserted, for example, organizational position; - identifier of functional group in which membership is asserted, for example, membership of a project or task group; - role that can be taken; - sensitivity markings to which access is allowed; - integrity markings to which access is allowed; - target access control identity and the actions allowed on the target that is a capability; - security attributes of delegates; - location, for example, sign-on workstation. #### Target ACI - target access control identities; - individual initiator access control identities and the actions on the target allowed or denied them; - hierarchical group membership access control identities and the actions on the target allowed or denied them; - functional group membership access control identities and the actions on the target allowed or denied them; role access control identities and the actions on the target allowed or denied them; authorities and the actions authorized for them; sensitivity markings; integrity markings. **Action ACI** ACI associated with operating zoning action (data ACI), for example: sensitivity markings; integrity markings; originator identity; subject of care identity;¹⁾ ACI associated with the action as a whole, for example: — initiator ACI; permitted initiator and target pairs: — permitted targets: permitted initiators (claimants); allowed class of operations (for example, read, write); required integrity level. Contextual ACI time periods; route (an access can be granted only if the route is being used to specific characteristics); location (an access can be granted only if two initiators are specified: as specific in-systems, workstations or terminals, or specific physical locations); system status (an access can be granted only for a particular ACI when the system has a particular status, for example during a disaster recovery); strength of authentication (an access can only be granted when authentication mechanisms of at least a given strength are used); other access currently active for this or other initiators. There are two types of high-level healthcare roles supported by the infrastructure: structural roles and functional roles. Structural roles reflect the structural aspects of relationships between entities. Structural roles describe prerequisites, feasibilities, or competences for acts. Functional roles reflect functional aspects of relationships between entities. Functional roles are bound to the realization/performance of acts. Possible examples for structural roles of healthcare professionals are medical director. director of clinic. ¹⁾ This is termed 'Owner identity' in the ASTM E2595-07. - head of the department, - senior physician, - resident physician, - physician, - medical assistant, - trainee, - head nurse. - nurse, and - medical student. Possible examples for functional roles of healthcare professionals are - caring doctor (responsible doctor), - member of diagnostic team, - member of therapeutic team, - consulting doctor, - admitting doctor, - family doctor, and - function-specific nurse. A detailed description of structural and functional roles is presented in the following subclauses. #### A.2.3 Governance, risk, and compliance An effective security governance framework involves establishing chains of responsibility, authority, and communication to empower people to control the system effectively. Governance is very important for the security services, as managing the security policy and implementation is vital to the integrity of the environment. Governance in the service creation scenario involves monitoring compliance of the security services with the security policies, monitoring compliance with governance structures in place, and monitoring the overall security effectiveness of the environment. Security compliance management measures the performance of the security implementation relative to the measures defined by the security policy. These can be realized based on reporting on system behaviour using audit information and comparing that behaviour to configured policies in systems. When these are viewed in the context of business-defined policies, they can provide an overarching view of where a business stands in implementation and enforcement of intended policies. ## A.2.4 Trust management From a business viewpoint, trust management includes the liability and legal aspects around the services. It also includes protection messages that the service provider can implement for sensitive data. At a technology level, trust management can include: — The protocols for the service consumer to contact the service provider. For example, this can require a simple object access protocol (SOAP) message carried on HTTPS. The security token and its contents that need to be included in a WS-security message. For example, a SAML assertion carrying role-based information is required. ## A.2.5 Identity management The following enterprise identity management needs are identified: - to provide an enterprise identity management service/capability to support the various business lines within the enterprise; - to identify all persons of interest uniquely. This includes persons that have customer, contractual, and/or employee roles; - to facilitate the sharing of information between internal lines of business and with external partners. A provisioning policy, for example, is defined to create automatically user accounts (an LDAP directory or a database, with an account identifier *joe* for Joe Smith) in the enterprise repository (account identifier *joesmith* for Joe Smith) and in the entity identification service (EIS) system (an application-level account with *joey1234* as the identifier for the same person Joe Smith). This provisioning policy can be extended to cross the enterprise boundaries so the user is also created in the registry used for the external service consumer (account identifier *homejoe* for Joe Smith). This provisioning policy can include several workflow activities, for example, getting user management approvals. As part of these provisioning policies, identifier and password policies have to be taken into account. Identifier policies define how the different attributes for the different accounts are created based on the user identity information and the company security rules. In this example, an identifier policy can be defined to create the accounts on a system using the first letter of the first name and the letters of the family name for a user (for example, *jsmith* for Joey Smith). This can also apply to other attributes, such as an e-mail address. Password policies can be used to enforce the way passwords for the different user accounts are created and managed. For example, it can be decided to define a policy requiring a minimum length, the inclusion of numeric and special characters, and expiration date so that the user needs to change his password every three months. This enforces security, as password weakness is known as a common risk for the systems. Federation policies are another foundation layer of the scenario. They allow the validation, mapping, and exchange of the different security tokens that are used between the domains or systems. Enterprises shall provide a capability that provides access on a least-privilege basis with a need-to-know for protected health information that is based upon users' roles in the organization and the tasks they are assigned. Organizations therefore require an integrated approach to security that provides the infrastructure to meet the following needs: - to authenticate consistently users across enterprise and extranet/federated boundaries; - to
authorize/grant consistently users permissions to protected information assets; - to enforce robustly access by authenticated and authorized users to protected information assets; - to audit access to and use of sensitive information and functions; - to meet applicable guidelines and mandates for information security. Users might need to use a user name and password to authenticate to their portal or a strong authentication (for example, homejoe, jsmith, or joe). A SAML assertion can be required at the service components level to authenticate a user accessing the service through an external consumer, while a user name token can be enough for an internal application. The user name token provided can be different from the one used to authenticate to the local portal (for example, *joesmith*). Finally, on the application, the user credential is validated and mapped to the local account identity. In the case of the direct exposure scenario, the internal service consumers have to use the trust service to exchange the identity information they have regarding the user to a valid consumable credential. For example, the local identity *jsmith* or *joe* is exchanged to a credential generated for user *joey1234*. The application then validates the credential. The trusted security token service (STS) needs to be configured so the security tokens are correctly mapped to ones suitable for the receiving entities in this scenario. ## A.3 Privilege management infrastructure services expressed in ASN.1 ## A.3.1 X.509-based certificate specifications #### A.3.1.1 General The X.509 role-based PMI model uses attribute certificates (ACs) described in ISO/IEC 9594-8. An example of use of an X.509 role-based PMI is the Permis project. [13] ACs are issued by AAs. The AC is bound to the identity using the holder field of an X.509 identity certificate. This coupling permits separate management of PMI and PKI. [13] Decoupling PMI and PKI allows sensitive access control information to remain private, while identity certificates can be managed by a third party. At least three types of ACs are used in an X.509 role-based PMI: role-specification ACs, role-assignment ACs, and policy ACs. All ACs are digitally signed by the AA and are therefore tamper resistant. Role-specification ACs hold the permission assignments granted to each role. Role-assignment ACs hold the roles assigned to each identity. Policy ACs indicate the root of the PMI trust and contain a pointer to a policy file as an attribute value. ACs are typically stored in a lightweight directory access protocol (LDAP)-enabled directory service. The verifier finds all role-assignment ACs granted to a user and validates the digital signatures and that a certificate has not been revoked. The verifier also finds the role-assignment ACs for each identified user role. This process can be optimized in several ways while keeping the overall strategy. The X.509 role-based PMI can use a policy language such as Ponder, Keynote, or XACML. Use of a domain-wide authorization policy by the verifier provides a secure, centrally managed approach. The local SoA for a security domain creates the domain-wide authorization policy. Privilege allocators (PA) use the policies signed by the SoA, possibly from a different security domain, to generate and authenticate digitally policy ACs. The SoA or the AA uses the PA to sign and publish role-assignment ACs to an LDAP directory. The resulting role-assignment ACs are used by the verifier to make access control decisions. The following implementable specifications, available in existing standards or are de facto standards, have been copied into the document for convenience, adapting the current practice in similar specifications. Therefore, they are expressed in ASN.1 notation. The implementation part of this part of ISO 22600 provides specifications developed independently of the formal models established in ISO 22600-2. #### A.3.1.2 Authentication certificates The authentication certificate follows the X.509V3 specification: # BS EN ISO 22600-3:2014 ISO 22600-3:2014(E) ``` issuer validity subject subjectPublicKeyInfo issuerUniqueIdentifier extensions Name, SubjectPublicKeyInfo SubjectPublicKeyInfo, IMPLICIT UniqueIdentifier OPTIONAL, SubjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL Extensions MANDATORY ``` **version** is the version of the encoded certificate. The certificate version SHALL be v3. There are several ways for binding key-related ID certificates to key-less attribute certificates: the monolithic approach, the autonomic approach, and the approach of chained signatures. In the monolithic approach, the attribute certificate is part of the ID certificate. In the autonomic approach, some relevant information in the ID certificate is referred to bind with the attribute certificate. In the binding approach using chained signatures, the ID certification authority's signature is referred to bind with the attribute certificate. ISO 17090 (all parts) fixed the first approach. #### A.3.1.3 Attribute certificates #### **A.3.1.3.1** General Claimant privileges are conveyed as attributes, in either a public key certificate (in the **subjectDirectoryAttributes** extension), or (more frequently) in an attribute certificate. The syntax of an attribute certificate is specified in X.509: ``` AttributeCertificate ::= SIGNED {AttributeCertificateInfo} AttributeCertificateInfo ::= SEQUENCE AttCertVersion DEFAULT v1, version holder Holder, issmer AttCertIssuer. AlgorithmIdentifier, signature serialNumber CertificateSerialNumber, attrCertValidityPeriod AttCertValidityPeriod, serialNumber attributes SEQUENCE OF Attribute issuerUniqueID UniqueIdentifier OPTIONAL, OPTIONAL extensions Extensions ::= INTEGER \{v1(0), v2(1)\} AttCertVersion Holder ::= SEQUENCE baseCertificateID [0] IssuerSerial OPTIONAL, -- the issuer and serial number of the holder's Public Key Certificate entityName [1] GeneralNames OPTIONAL, -- the name of the entity or role objectDigestInfo [2] ObjectDigestInfo OPTIONAL -- if present, version must be v2 --at least one of baseCertificateID, entityName or objectDigestInfo must be present--} ObjectDigestInfo ::= SEQUENCE digestedObjectType ENUMERATED { publicKey (0), publicKeyCert (1), (2) }, otherObjectTypes otherObjectTypeID OBJECT IDENTIFIER OPTIONAL, digestAlgorithm AlgorithmIdentifier, objectDigest BIT STRING } AttCertIssuer ::= CHOICE { v1Form GeneralNames, -- v1 or v2 v2Form [0] V2Form -- v2 only V2Form ::= SEQUENCE ``` ``` issuerName GeneralNames OPTIONAL, baseCertificateID [0] IssuerSerial OPTIONAL, objectDigestInfo [1] ObjectDigestInfo OPTIONAL -- At least one component must be present (WITH COMPONENTS { \dots, issuerName PRESENT } | WITH COMPONENTS { ..., baseCertificateID PRESENT } WITH COMPONENTS { \dots, objectDigestInfo PRESENT }) IssuerSerial ::= SEQUENCE { issuer GeneralNames, serial CertificateSerialNumber, issuerUID UniqueIdentifier OPTIONAL } CertificateSerialNumber ::= INTEGER UniqueIdentifier ::= BIT STRING Attribute ::= CLASS OBJECT IDENTIFIER UNIQUE, &id &singleValued BOOLEAN DEFAULT FALSE, &Syntax } Attribute ::= SEQUENCE attrType ATTRIBUTE.&id ({SupportedAttrs}), attrValues ATTRIBUTE.&Syntax ({SupportedAttrs} {@attrType}) } AttCertValidityPeriod ::= SEQUENCE notBefore GeneralizedTime, notAfter GeneralizedTime } ``` The components of the attribute certificate are used as follows. The **version** number differentiates between different versions of the attribute certificate. If **objectDigestInfo** is present or if **issuer** is identified with **baseCertificateID**, **version** shall be **v2**. The **holder** field conveys the identity of the attribute certificate holder. In this part of ISO 22600, use of the issuer name and serial number of a specific public key certificate is required; use of the general name(s) is optional; and use of the object digest is prohibited. There is a risk with use of **GeneralNames** by itself to identify the certificate holder, in that there is insufficient binding of a name to a public key to enable the authentication process of the certificate holder's identity to be bound to the use of an attribute certificate. Also, some of the options in **GeneralNames** (e.g. **IPAddress**) are inappropriate for use in naming an attribute certificate holder which is a role rather than an individual entity. General name forms should be restricted to distinguished name, RFC 822 (email) address, and (for role names) object identifiers. The **issuer** field conveys the identity of the AA which issued the certificate. Use of the issuer name and serial number of a specific public key certificate is required, and use of the general name(s) is optional. The **signature** identifies the cryptographic algorithm used to digitally sign the attribute certificate. The **serialNumber** is the serial number that uniquely identifies the attribute certificate within the scope of its issuer. The **attrCertValidityPeriod** field conveys the time period during which the attribute certificate is considered valid, expressed in **GeneralizedTime** format. The **attributes** field contains the attributes associated with the certificate holder which are being certified (e.g. the privileges). The **issuerUniqueID** can be used to identify the issuer of the attribute certificate in instances where the issuer name is not sufficient. The **extensions** field allows addition of new fields to the attribute certificate. Standard extensions from ISO/IEC 9594-8 are described in <u>Annex B</u>. ## A.3.1.3.2 Confidentiality of attribute certificates In some applications, it might be desirable to protect the contents of attribute certificates from entities other than the certificate holder and the relying party (which uses the certificate). This can be done by using the certificate holder's public key certificate(s) to establish an authenticated, encrypted path to the relying party (e.g. using SSL). This path can then be used to send
the attribute certificates confidentially. ## A.3.1.3.3 Attribute certificate paths Just as with public key certificates, there might be a requirement to convey an attribute certificate path (e.g. within an application protocol to assert privileges). The following ASN.1 data type can be used to represent an attribute certificate path: #### A.3.1.4 Role certificates A user's attribute certificate can contain a reference to another attribute certificate which contains additional privileges. This provides an efficient mechanism for implementing privileged roles. The following specifications are possible: - any number of roles can be defined by any AA; - the role itself and the members of a role can be defined and administered separately, by separate AAs; - the privileges assigned to a given role can be placed into one or more attribute certificates; - a member of a role can be assigned only a subset of the privileges associated with a role, if desired; - role membership can be delegated; - roles and membership can be assigned any suitable lifetime. An entity is assigned an attribute certificate containing an attribute asserting that the entity occupies a certain role. That certificate can have an extension pointing to another attribute certificate which defines the role (i.e. this role certificate specifies the role of the certificate holder and contains a list of privileges assigned to that role). The issuer of the entity certificate can be independent of the issuer of the role certificate and these can be administered (e.g. expired, revoked, and so on) entirely separately. Not all forms of **GeneralName** are appropriate for use as role names. The most useful choices are object identifiers and distinguished names. #### A.3.1.5 Credentials Credential is a prerequisite for the entitlement of, or the eligibility for, a role. Credentials are related to their environment (they are localized). Credentials are typically matched by type (e.g. "physician") or type and issuer (e.g. "physician licensed in Virginia"). If the issuer name is absent, then the issuer name from the enclosing attribute or public key certificate is used. If the certificate issuer name is absent, the credential issuer name shall be present. (Note that a certificate can explicitly have more than one credential, from more than one issuer, in order to minimize the number of AAs in a system.) ### A.3.2 Clearance The clearance attribute is compared with target security labels. This provides a coarse-grained authorization and access control mechanism. ``` Clearance::= SEQUENCE { OBJECT IDENTIFIER, policyId classList ClassList DEFAULT {unclassified}, securityCategories SET OF SecurityCategory OPTIONAL } ClassList::= BIT STRING unmarked (0), unclassified (1), restricted (2), confidential (3), secret (4) topSecret (5)} SECURITY-CATEGORY::= TYPE-IDENTIFIER SecurityCategory::= SEQUENCE [0] SECURITY-CATEGORY.&id({Categories}), type value [1] SECURITY-CATEGORY.&Syntax({Categories}{@type}) } ``` The security policy identifier identifies the semantics of the label (allowable classification levels and security categories). The policy identifier shall be the same for both the clearance and the target's security label for a comparison to be possible. The class list includes a list of hierarchical classification levels. The levels in the clearance are compared against the level in a target's security label; at least one level in the clearance shall be greater than or equal to the level in the label. The security categories contain other, non-hierarchical information. The value of a category in the clearance shall "dominate" that in the corresponding category in the label; the meaning of "dominance" is specified when the category is defined. For example, in military applications, a label can contain a set of codewords or compartments. To dominate a label, a clearance shall contain all of the codewords/compartments in the label (and possibly additional ones as well). More details on security labels can be found in <u>A.3.4.3</u> and A.9.17. #### A.3.3 Claimant mechanisms Current approaches to management of user privileges include - a) centralized storage of privileges (e.g. in an LDAP directory), where they can easily be retrieved, - b) storage of privileges in the **subjectDirectoryAttributes** extension in a user's public key certificate, and - c) storage of privileges in attribute certificates. The last two approaches represent the mechanism of storing user privileges in digitally signed credentials. Option a) is easy to implement, but requires the privilege server to be continuously available. The other two options allow the authorization information to be conveyed in certificates, eliminating the need for an online server. There are several reasons why it can be preferable for a separate attribute authority (AA) to place privileges in attribute certificates rather than placing the privileges in a public key certificate. These include - a) different lifetimes for privileges vs. public keys, - b) separation of duties (the CA is not the entity responsible for privilege management), - c) need-to-know (it might not be desirable for all entities to know all privileges of a claimant), and - d) the principle of least privilege (the user only receives/presents the minimum privileges needed to perform a particular operation). ## A.3.4 Target sensitivity mechanisms #### A.3.4.1 General Management of target attributes (e.g. access control lists and security labels) has traditionally been done on a per-system basis, and there has been little standardization of the representation of this information. This part of ISO 22600 does not dictate how such information is represented, but does give suggestions based on several document syntaxes (ASN.1 or XML). #### A.3.4.2 Signed data encapsulation Attributes and other sensitivity information can be bound to the digest of the target using the **SignedData** construct of ASTM E2084. In particular, the use of detached signatures (with the object conveyed separately from the signature structure) would be appropriate. Sensitivity information would be carried as signed attributes, with the originator of the information being the signer. The types of authorization information which can be attached to a target include - access control information (ACI), as described in ISO/IEC 10181-3, - co-signature requirements, as described in <u>A.9.19</u>, and - descriptive information about the document (e.g. document type), described in A.11.3. #### A.3.4.3 Security labels The security label syntax is taken from RFC 2634. ``` ESSSecurityLabel::= SET security-policy-identifier SecurityPolicyIdentifier, security-classification SecurityClassification OPTIONAL, privacy-mark ESSPrivacyMark OPTIONAL, SecurityCategories OPTIONAL } security-categories id-aa-securityLabel OBJECT IDENTIFIER: := { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) id-aa(2) 2} SecurityPolicyIdentifier::= OBJECT IDENTIFIER SecurityClassification::= INTEGER { unmarked (0), unclassified (1) restricted (2), confidential (3), secret (4), top-secret (5) } (0..ub-integer-options) ub-integer-options INTEGER::= 256 ESSPrivacyMark::= CHOICE { PrintableString SIZE (1..ub-privacy-mark-length), pString utf8String UTF8String SIZE (1..MAX) } ub-privacy-mark-length INTEGER::= 128 SecurityCategories::= SET SIZE (1..ub-security-categories) OF ``` ``` SecurityCategory ub-security-categories INTEGER::= 64 ``` see A.3.2 for definition of SecurityCategory A security policy is a set of criteria for the provision of security services. The security-policy-identifier is used to identify the security policy in force to which the security label relates. It indicates the semantics of the other security label components. This part of ISO 22600 defines the use of the Security Classification field exactly as is specified in RFC 2634 and ITU-T X.411, which states in part: If present, a security classification can have one of a hierarchical list of values. The basic security-classification hierarchy is defined in this Recommendation, but the use of these values is defined by the security policy in force. Additional values of security classification, and their position in the hierarchy, can also be defined by a security policy as a local matter or by bilateral agreement. The basic security-classification hierarchy is, in ascending order: unmarked, unclassified, restricted, confidential, secret, top-secret. This means that the security policy in force (identified by the security-policy-identifier) defines the **SecurityClassification** integer values and their meanings. An organization can develop its own security policy that defines the **SecurityClassification** INTEGER values and their meanings. However, the general interpretation is that the values of 0 through 5 are reserved for the "basic hierarchy" values of unmarked, unclassified, restricted, confidential, secret, and top-secret. There is no universal definition of the rules for using these "basic hierarchy" values. Each organization (or group of organizations) will define a security policy which documents how the "basic hierarchy" values are used (if at all) and how access control is enforced (if at all) within their domain. Therefore, the security-classification value shall be accompanied by a security-policy-identifier value to define the rules for its use. For example, a company's "secret" classification can convey a different meaning than the US Government "secret" classification. In summary, a security policy should not use integers 0 through 5 for other than their X.411 meanings, and should instead use other values in a hierarchical fashion. Note that the set of valid security-classification values shall be hierarchical, but these values do not necessarily need to be in ascending numerical order. Further, the values do not need to be contiguous. For example, in the Defence Message System security policy, the
security-classification value of 11 indicates sensitive-but-unclassified and 5 indicates top-secret. The hierarchy of sensitivity ranks top-secret as more sensitive than sensitive-but-unclassified even though the numerical value of top-secret is less than sensitive-but-unclassified. (Of course, if security-classification values are both hierarchical and in ascending order, a casual reader of the security policy is more likely to understand it.) An example of a security policy that does not use any of the X.411 values might be: - 10 anyone - 15 Morgan Corporation and its contractors - 20 Morgan Corporation employees - 25 Morgan Corporation board of directors An example of a security policy that uses part of the X.411 hierarchy might be: - 0 unmarked - 1 unclassified, can be read by everyone - 2 restricted to Timberwolf Productions staff - 6 can only be read to Timberwolf Productions executives A possible set of hierarchical security levels might be administrative (unclassified), clinical, sensitive (AIDS/mental health info), and can be anonymized. If present, the privacy-mark is not used for access control. The content of the privacy-mark can be defined by the security policy in force (identified by the security-policy-identifier) which can define a list of values to be used. Alternately, the value can be determined by the originator of the security label. If present, the security categories provide further granularity for the sensitivity of the message. The security policy in force (identified by the security-policy-identifier) is used to indicate the syntaxes that are allowed to be present in the security categories. Alternately, the security categories and their values can be defined by bilateral agreement. There might be many labels to the same object with different evaluation schemes, e.g. requiring all permissions or only some (or even a single) to be met for access permission. #### A.3.5 Access control framework This subclause defines an access control information (ACI) attribute which can be used to indicate to a recipient (or trusted third party) which entities can read the target's contents. ``` ACCESS-CONTROL-SCHEME::= TYPE-IDENTIFIER AccessControlScheme::= INSTANCE OF ACCESS-CONTROL-SCHEME astmScheme ACCESS-CONTROL-SCHEME::= { ASTMScheme IDENTIFIED BY id-astmScheme } ASTMScheme::= SEQUENCE OF ASTMEntry ASTMEntry::= SEQUENCE role [0] OBJECT IDENTIFIER, individual [1] group GeneralName, - from X9.55 group [2] GeneralName, organizationalUnit [3] GeneralName } Constraints::= SEQUENCE OF Constraint CONSTRAINT::= TYPE-IDENTIFIER Constraint::= INSTANCE OF CONSTRAINT caseID CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-caseID } encounterID CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-encounterID } claimEventID CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-claimEventID } planRegistration CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-planRegistration } encounterRegistration CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-encounterRegistration } admission CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-admission } diagnosis CONSTRAINT::= { Code IDENTIFIED BY id-code } disease CONSTRAINT::= { Code IDENTIFIED BY id-disease } disorder CONSTRAINT::= { Code IDENTIFIED BY id-disorder } department CONSTRAINT::= { GeneralName IDENTIFIED BY id-department } testID CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-testID } resultID CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-resultID } procedureID CONSTRAINT::= { OCTET STRING IDENTIFIED BY id-procedureID } specimenType CONSTRAINT::= { Code IDENTIFIED BY id-specimenType } shift CONSTRAINT::= { INTEGER IDENTIFIED BY id-shift } workgroup CONSTRAINT::= { GeneralName IDENTIFIED BY id-workgroup } training CONSTRAINT::= { BOOLEAN IDENTIFIED BY id-disorder } therapeuticAgent CONSTRAINT::= { Code IDENTIFIED BY id-therapeuticAgent } diagnosticAgent CONSTRAINT::= { Code IDENTIFIED BY id-diagnosticAgent } disidentified CONSTRAINT::= { BOOLEAN IDENTIFIED BY id-disidentified } Code::= SEQUENCE . codeSet codeValue PrintableString, IA5String } ``` Access is allowed to the target if the requester matches an entry in the Who list (by name, role, group, or organizational unit) and if the requester's attribute certificate matches all of the constraints contained in the target's ACI attribute. These constraints would be contained in the constraints attribute in the requester's certificate. This attribute has syntax **Constraints**. ## A.4 Privilege management infrastructure services expressed in XML ## A.4.1 XACML-based role assignment The Organization for the Advancement of Structured Information Standards (OASIS) standards group developed the eXtensible Access Control Markup Language (XACML) as a language to express and evaluate access decisions. The XACML Technical Specification includes a profile for RBAC using XACML that complies with the ANSI RBAC standard. For the convenience of the reader, terms found in the NIST core RBAC document^[14] are compared to the terms in the XACML profile and the terms in this guide in <u>Table A.1</u>. | Core element | XACML profile | ASTM PMI | |--------------|---|-------------| | Users | XACML Subjects | Claimants | | Roles | XACML Subject Attributes | Roles | | Objects | XACML Resources | Objects | | Operations | XACML Actions | Operations | | Permissions | XACML Role <policyset> and Permission <policyset></policyset></policyset> | Permissions | Table A.1 — RBAC core functionality mapping The XACML RBAC profile also supports hierarchical RBAC, allowing inheritance between roles. Additional XACML policies are provided to support system and review functions described in the ANSI RBAC standard. Specifically, the Role PolicySet (RPS) associates holders of a given role attribute with a Permission PolicySet. The Permission PolicySet (PPS) describes the permissions associated with a specific role. The RPS and PPS replace the role assignment and role specification ACs in the X.509-based role model. The XACML role-based PMI features a rich and extensible policy language integrated throughout the design. The concept of structural versus functional roles is supported using a two-tiered system comprised of a role attributes. That is, users can have roles assigned to them in the request context. An entity separate from the policy decision point can use an XACML role assignment policy or PolicySet to enable attributes within the user session. #### A.4.2 Further PMI services In A.5, further PMI services expressed in XML are introduced by examples. ## A.5 Examples for privilege management and access control scenarios and services ## A.5.1 Organization-based privilege assignment In the case of organization-based privilege assignment, the structural role defined according to ISO 21298 reflecting the relationship between an individual and an organizational entity establishes certain privileges. The privilege is based on the membership to an organization. This is valid for any entity type, i.e. persons but also systems, components, and devices. The assigned privileges can apply within the organization, but also in external organizations (for example, membership to authorities). ## A.5.2 Workflow-based privilege assignment Privileges can be launched in accordance to a workflow for enabling the realization of a process. The assignment can be established for the entire workflow, for certain activities, or even for certain transactions. This approach follows the assignment according to the functional role of an entity according to ISO 21298, reflecting the relationship between an individual entity and an act. ## A.5.3 Policy-based privilege management Privileges can be assigned according to constraints in time, environmental conditions, functions, and operations, expressed in legislation, regulation, specification, and so on. ## A.5.4 Role and permission assignment Constraints defining privileges and duties are normally specified in policies. In the case of simple policies and interrelations, privileges and duties can be transferred into roles as done in simple RBAC implementations, e.g. provided within the HL7 RBAC standard.[15] Such simplified approach is connected with the problem of the growing numbers of defined roles according to new policy definitions. Furthermore, essential aspects such as context and other variables (see ISO 22600-2) cannot be considered properly. For more details, see ISO 21298. ## A.5.5 Authorization specification The attribute authority (AA) and certification authority (CA) are logically (and, in many cases, physically) completely independent. The creation and maintenance of "identity" can (and often should) be separated from the PMI. Thus the entire PKI, including CAs, can be existing and operational prior to the establishment of the PMI. The CA, although it is the source of authority for identity within its domain, is not automatically the source of authority for privilege. The CA, therefore, will not necessarily itself be an AA and, by logical implication, will not necessarily be responsible for the decision as to what other entities will be able to function as AAs (e.g. by including such a designation in their identity certificates). The source of authority (SoA) is the entity that is trusted by a privilege verifier as the entity with ultimate responsibility for assignment of a set a privileges. A resource can limit the SoA authority by trusting certain SoAs for specific functions (e.g. one for read privileges and a different one for write privileges). An SoA is itself an AA as it issues certificates to other entities in which privileges are assigned to those entities. An SoA is analogous to a 'root CA' or 'trust anchor' in the PKI, in that a privilege verifier trusts certificates signed by the SoA. In some environments, there is a need for CAs to have tight control over the entities that can act as SoAs. This framework provides a mechanism for supporting that requirement. In
other environments, that control is not needed and mechanisms for determining the entities that can act as SoAs in such environments can be outside the scope of this part of ISO 22600. This framework is flexible and can satisfy the requirements of many types of environments. When attribute certificates point to public key certificates for their issuers and holders, the PKI is used to authenticate holders (privilege asserters) and verify the digital signatures of the issuers. ## A.5.6 Certificate-based privilege management The following strategies for managing privileges based on certificates are described. ## A.5.6.1 Privilege in attribute certificates Entities can acquire privilege in two ways. — An AA can unilaterally assign privilege to an entity through the creation of an attribute certificate (perhaps totally on its own initiative, or at the request of some third party). This certificate can be stored in a publicly accessible repository and can subsequently be processed by one or more privilege verifiers to make an authorization decision. All of this can occur without the entity's knowledge or explicit action. Alternatively, an entity can request a privilege of some AA. Once created, this certificate can be returned (only) to the requesting entity, which explicitly supplies it when requesting access to some protected resource. Note that in both procedures the AA shall perform its due diligence to ensure that the entity should really be assigned this privilege. This can involve some out-of-band mechanisms, analogous to the certification of an identity/key-pair binding by a CA. The attribute-certificate-based PMI is suitable in environments where any one of the following is true. - A different entity is responsible for assigning particular privilege to a holder than for issuing public key certificates to the same subject. - There are a number of privilege attributes to be assigned to a holder, from a variety of authorities. - The lifetime of a privilege differs from that of the holder's public key certificate validity (generally the lifetime of privileges is much shorter). - The privilege is valid only during certain intervals of time which are asynchronous with that user's public key validity or validity of other privileges. ### A.5.6.2 Privilege in public key certificates In some environments, privileges are associated with the subject through the practices of a CA. Such privilege can be put directly into public key certificates (thereby re-using much of an already-established infrastructure), rather than issuing attribute certificates. In such cases, the privilege is included in the **subjectDirectoryAttributes** extension of the public key certificate. This mechanism is suitable in environments where one or more of the following are true. - The same physical entity is acting both as a CA and an AA. - The lifetime of the privilege is aligned with that of the public key included in the certificate. - Delegation of privilege is not permitted. - Delegation is permitted, but for any one delegation, all privileges in the certificate (in the subjectDirectoryAttributes extension) have the same delegation parameters and all extensions relevant to delegation apply equally to all privileges in the certificate. ## A.5.7 Privilege management infrastructure The object can be a resource being protected, for example in an access control application. The resource being protected is referred to as the object. This type of object has methods which can be invoked (for example, the object can be a firewall which has an "Allow Entry" object method, or the object can be a file in a file system which has Read, Write, and Execute object methods). Another type of object in this model can be an object that was signed in a non-repudiation application. The privilege asserter is the entity that holds a particular privilege and asserts its privileges for a particular context of use. The privilege verifier is the entity that makes the determination as to whether or not asserted privileges are sufficient for the given context of use. The pass/fail determination made by the privilege verifier is dependent upon four things: - privilege of the privilege asserter; - privilege policy in place; - current environment variables, if relevant; sensitivity of the object method, if relevant. The privilege of a privilege holder reflects the degree of trust placed in that holder, by the certificate issuer, that the privilege holder will adhere to those aspects of policy which are not enforced by technical means. This privilege is encapsulated in the privilege holder's attribute certificate(s) (or **subjectDirectoryAttributes** extension of its public key certificate), which can be presented to the privilege verifier in the invocation request, or can be distributed by some other means, such as via the Directory. Codifying privilege is done through the use of the **Attribute** construct, containing an **AttributeType** and a **SET OF AttributeValue**. Some attribute types used to specify privilege can have very simple syntax, such as a single **INTEGER** or an **OCTET STRING**. Others can have more complex syntaxes. An example is provided in <u>Annex D</u>. The privilege policy specifies the degree of privilege which is considered sufficient for a given object method's sensitivity or context of use. The privilege policy shall be protected for integrity and authenticity. A number of possibilities exist for conveying policy. At one extreme is the idea that policy is not really conveyed at all, but is simply defined and only ever kept locally in the privilege verifier's environment. At the other extreme is the idea that some policies are "universal" and should be conveyed to, and known by, every entity in the system. Between these extremes are many shades of variation. Schema components for storing privilege policy information in the Directory are defined in this part of ISO 22600. Privilege policy specifies the threshold for acceptance for a given set of privileges. That is, it defines precisely when a privilege verifier should conclude that a presented set of privileges is "sufficient" in order that it can grant access (to the requested object, resource, application, etc.) to the privilege asserter. Syntax for the definition of privilege policy is not standardized in this part of ISO 22600. <u>Annex D</u> contains a couple of examples of syntaxes that could be used for this purpose. However, these are examples only. Any syntax can be used for this purpose, including clear text. Regardless of the syntax used to define the privilege policy, each instance of privilege policy shall be uniquely identified. Object identifiers are used for this purpose. PrivilegePolicy :: = OBJECT IDENTIFIER The environment variables, if relevant, capture those aspects of policy required for the pass/fail determination (e.g. time of day or current account balance) which are available through some local means to the privilege verifier. Representation of environment variables is entirely a local matter. The object method sensitivity, if relevant, can reflect attributes of the document or request to be processed, such as the monetary value of a funds transfer that it purports to authorize, or the confidentiality of a document's content. The object method's sensitivity can be explicitly encoded in an associated security label or in an attribute certificate held by the object method, or it can be implicitly encapsulated in the structure and contents of the associated data object. It can be encoded in one of a number of different ways. For instance, it can be encoded outside the scope of PMI in the X.411 label associated with a document, in the fields of an EDIFACT interchange, or hard-coded in the privilege verifier's application. Alternatively, it can be done within the PMI, in an attribute certificate associated with the object method. For some contexts of use, no object method sensitivity is used. There is not necessarily any binding relationship between a privilege verifier and any particular AA. Just as privilege holders can have attribute certificates issued to them by many different AAs, privilege verifiers can accept certificates issued by numerous AAs, which need not be hierarchically related to one another, to grant access to a particular resource. The attribute certificate framework can be used to manage privileges of various types and for a number of purposes. The terms used in this part of ISO 22600, such as privilege asserter, privilege verifier, etc., are independent of the particular application or use. #### A.5.8 Permission constraints Permission constraints are recorded as part of the role-engineering process. For example, a constrained permission occurs when only one role is allowed to perform a particular task at any given time. A constraint occurs for a permission when its definition is tied to cardinality. In this case, the constraint on the permission would be the cardinality specification. Examples of permission constraints include - head nurse on a hospital floor (cardinality of 1), - chief of staff (cardinality of 1), - lab technician vs. lab technician supervisor (separation of duties), - provider's access to a remote hospital which is not his/her primary workplace (location), and - shift-dependent access (time-dependency). The discussion above relies on the fact that the functional role name is arbitrary and only has meaning as a collection of ANSI INCITS compliant permissions. Furthermore, the defined roles are necessarily specific to the organization defining them and hence do not by themselves provide any interoperability with business partners, other than through business partner agreement. To achieve true interoperability, organizations will require standardization of the healthcare permissions and a means to advertise and assert standard privileges. ## A.5.9 Separating security from business logic In designing a privilege management
infrastructure framework, care shall be taken to distinguish between the enforcement of security policy and business logic. The use of the security framework to enforce business logic tends to compromise system security, lead to poor design, and does not support clear security roles. It is therefore advantageous to separate and isolate security and business application code whenever possible. This separation is essential for security engineers to obtain a clear definition of security boundaries, ensure security code is not affected by changes to business logic, and to support certification. Separating security from business logic can be difficult. In general, access to a resource within business logic deals with interaction upon a set of resources the user has authority to access. Alternatively, security logic can be identified using the criteria below. #### Considerations for use: - involves a change of security state (e.g. confidential to non-confidential); - involves confidentiality, integrity, or availability of data; - involves the concepts of least privilege, need-to-know, or separation of duties; - involves regulatory requirements. #### A.5.10 Policy enforcement point guidelines The design of a privilege management infrastructure can influence placement of the policy enforcement point. In a distributed privilege management infrastructure, a PEP can be placed at the application level or at the enterprise level. The following factors are important in deciding the proper placement: - availability of the PEP; - reduction of the number of PEPs; - ability to centrally manage; - PEP lifecycle maintenance; ## BS EN ISO 22600-3:2014 ISO 22600-3:2014(E) - physical security of the PEP; - PEP should be on the network; - PEP should be located as close to the application as possible. Co-location of the PEP with applications will decrease latency. In these cases, a local policy store should be available to allow the policy engine to work during extranet outages. ## A.6 LDAP-enabled directory service versus policy engines #### A.6.1 General The choice of claimant mechanism can have an effect on performance and complexity of the PMI framework. LDAP-based mechanisms are typically fast but provide simple data, for example, whether the claimant is a member of a specific role. Alternatively, policy engines can factor in several independent elements into the authorization decision process. Considerations are listed in the following. #### A.6.2 LDAP Use of an LDAP-enabled directory service is suggested when speed is required and the decision can be based on possession of a certain role, especially for structural roles. #### Considerations for use: - data retrieved consists of single strings; - there is a sensitivity to processing overhead; - there is a need for documented interface; - there is no need for evaluating policies. ## A.6.3 Policy engine a) Policy engines offer flexibility but reduced speed compared to LDAP lookup when implemented in general purpose software engines. Special purpose hardware-based policy engines, on the other hand, offer advantages over LDAP when evaluating complex rules, constraints, and combining rules from multiple policy points. Note that caching of decisions (within their validity period) from a policy engine keyed by a hash of the request attributes can improve performance significantly in an environment in which many accesses are being made in a given period of time and many of these involve the same request attributes. #### Considerations for use: - data retrieved consists of complex or multiple elements; - requirement for the evaluation of multiple elements; - need to support complex policy languages (for example, XACML); - ability to tolerate slower response time. - b) Use of an LDAP-enabled directory service is suggested when speed is required and the decision can be based on possession of a certain role, especially structural roles. Note that caching of decisions (within their validity period) from a policy engine keyed by a hash of the request attributes can improve performance significantly in an environment in which many accesses are being made in a given period of time and many of these involve the same request attributes. c) Policy engines are appropriate when evaluating participation in a workflow, especially in functional roles (see <u>A.11.1</u>). The privilege management infrastructure framework can also use a combination of LDAP and policy engine. [16] ## A.6.4 Policy decision point (PDP) Policy decision points (PDPs) can be implemented in many ways depending on the model appropriate to the infrastructure (see SAML 2.0 profile of XACML). The PDP is responsible for deciding if an access control request should be allowed or denied. The decision is based on policies available to the PDP from one or more policy stores. Additional ACI can be used by the PDP in making the access control decision. The decision is returned to the requester directly to the PEP or through an intermediary such as a context handler. #### Considerations for use: - Place PDP such that it can be centrally managed. - Use XACML to convey access control requests and decisions. - Consider the security of the PDP and inter-process communications. - Consider if the PDP is located on the application (local decisions) or network (global decisions) or both. - Consider mechanisms to provide assurance of the decision provided to the PEP. - Place PDP on hardware-assisted accelerator to improve performance. Many design options are possible that increase security and flexibility of the PDP support infrastructure. [17] ## A.7 Identity management systems Several functional areas within the PMI require a secure identity management subsystem (IdM). IdM is responsible for securely providing identity information and identity management functions. Identity management functions include - administration functions (user provisioning, password management), - identity data control functions (metadata, identity content), - access (authenticate requests, confidentiality), - lifecycle management (configuration, patches, disaster recovery), and - backup, audit, logging, and reporting functions. IdM shall provide a secure access mechanism for the request and delivery of identity information, typically using mutual authentication. Access to the IdM can be viewed as a service accessible throughout an enterprise. Organizationally, the IdM subsystem can be deployed in various ways: - authoritative source integral to PMI security framework; - an administrative function available to the PMI as needed: - integral to a special-purpose IdM product solution. Having an IdM as a service provides several advantages over a local special-purpose IdM. By their nature, IdM services provide a network interface using standard protocols that provide flexibility in changes to enterprise architecture. An IdM service can be centrally managed, allowing consistent enforcement of security and business policies. ### A.8 Audit The major purpose of the audit subsystem is to provide accountability of actions taken by agents on the network. Audit is not instrumental in the use of privileges to allow or disallow access to protected resources. However, the audit subsystem should interface with the PMI so that its correct operation can be verified. For a discussion of the use of audit in healthcare applications, see RFC 3881. Audit supports the SOA architecture and provides assurance for authentication and authorization services. Accountability is the concept that individual persons or entities can be held responsible for specified actions, such as obtaining informed consent or breaching confidentiality. [18] Accountability is achieved through the implementation of a pervasive technical audit service. Audit provides a record of potential insecurities irrefutably traceable back to the originator of the action. Security audit provides not only accountability, but a means to assess damage done to a system by malicious action or accident. Security audit generated by the actions of other security services provides a check on their proper operation. In a distributed system, centralized audit collection and processing also provides a method to obtain near-real-time misuse detection and alerts. To be effective, security audit shall be on. A security audit trail provides a journal of security-related events collected for potential use in intrusion detection or security audits or both. Audit is a pervasive function of the healthcare system providing essential accountability features. Audit also provides assurance of the correct operation of the system's security features by monitoring user and system access to data and resources. Audit is generated as a by-product of the security controls in place: authentication, access, and authorization (privileging) and upon occurrence of specific security-relevant events (for example, modifying a file). Audit acts as a deterrent to (unauthorized) user activities, and as such, users should know that their actions are being monitored (usually part of a log-on banner). Audit also provides a means to assess the degree of harm caused should a break-in occur. In a distributed architecture involving diverse commercial off-the-shelf (COTS) products, each product produces audit trails in a proprietary format. Even the events recorded can be different from product to product (for example, use of "grant" option makes sense in a database but not in an operating system). System audit trails can be character based or binary. COTS audit trails often require specialized audit tools for review and processing. Audit trails can be stored in the file system or in database tables and so forth. Audit-analysing systems shall be able to harmonize and account for these differences. In distributed systems, audit is produced at multiple locations on multiple components, making review and analysis difficult. Accordingly, in such a system, it is very desirable to
consolidate and forward low-level audit from various audit-producing sources to a central audit server. There the audit can be reformatted to a single-composite format and automatically processed by a tool. Several such COTS tools are available, providing for a distributed audit capability for collecting, forwarding, processing, and reporting audit events originating from diverse sources. Since the amount of audit produced can be considerable, a single centralized audit server is a practical way to manage workflow without affecting the response time of operational systems. Audit processing can be both real time and batch. An automated audit tool provides the means of identifying events at different levels of security, performing automatic profiling, reporting, and alerting, and a facility to store, sort, and search for potential insecurities. Automated tools manage audit collection across host- and network-based audit systems. The placement of the audit tool, agents, and components (including real-time network monitoring and intrusion detection) is considered to maximize the effectiveness of the audit system. The Department of Health and Human Services' (DHHS) final rule for security and electronic signature standards identifies audit requirements, including alarms and event reporting. See 45 CFR Parts 160, 162, and 164. Products built or procured for VHA use shall incorporate audit controls or else shall be integrated within the existing audit framework. Pre-configured reports are prepared based upon selected criteria to document security-critical events and to provide reports, graphs, and statistical summaries of system security activity. A system for maintaining audit records can be a file or database. To maintain records for all users, the system should have the capability to select "all users" as a configurable portion of the event. Audit records are reviewed by examination of the audit trail. Consolidation of audit records when more than one source is involved at a central "audit server" facilitates review by providing an automated means to examine the (typically) large amount of audit generated from these events. Continuous monitoring of audit records should be a part of the operation phase of the system development life cycle. [19] The security architecture should support the establishment of auditing capabilities on an application, facility, or national basis. To meet the requirement for a persistent retention capability, the audit function will include long-term archival and storage facilities. This requirement specifies the minimum length of time (five years) for which the archive shall be retained. Organizations should establish policies and procedures for log management consistent with accepted standards.[20] Patient consent can act as the trigger of this audit record. Collection of disclosures made under this requirement requires that the audit configuration for this event be "mandatory." The security architecture supports the centralized collection, processing, and reporting of disclosures of patient information. Storage of events recording certain disclosure under the provisions of jurisdictional privacy legislation can require a longer period of storage than simple security audit. Intrusion detection systems should be an integral part of the distributed architecture. Commercially available intrusion detection systems provide alarm capabilities to permit rapid notification of specified intrusions. Intrusions can be categorized into two main classes: misuse and anomaly intrusions. Misuse intrusions are well-defined attacks on known weak points of a system. They can be detected by watching for certain actions being performed on certain objects. Anomaly intrusions are based on observations of deviations from normal system usage patterns. They are detected by building up a profile of the system being monitored and detecting significant deviations from this profile. Adherence to industry standards facilitates a robust audit subsystem. Industry standard profiling groups, such as Integrating the Healthcare Enterprise (IHE), publish profiles that describe how to use established standards to share healthcare information better in the clinical setting. IHE has published several integration profiles addressing security and privacy considerations, including the Audit Trail and Node Authentication (ATNA), Basic Patient Privacy Consents (BPPC), Document Digital Signature (DSG), Enterprise User Authentication (EUA), and Cross-enterprise User Assertion (XUA). These integration profiles describe security measures that, together with the security policy and procedures, provide patient information confidentiality, data integrity, and user accountability.[21] The IHE ATNA profile provides for a secure audit trail and is consistent with DICOM Supplement 95: Audit Trail Messages.[22] ## A.9 Additional PMI services #### A.9.1 Audit allocation Audit is allocated to end systems: workstations, information servers, gateways and relay systems including security servers (domain controllers, proxy servers, etc.). Host-based audit monitors activities involving data. Network-based audit, such as at a gateway, records information on packets received. Audit is also allocated to security management activities for configuring, processing, and reporting audit information and can provide basic data for processing by an intrusion detection system. #### A.9.2 Intrusion detection Intrusions can be categorized into two main classes: misuse and anomaly intrusions. Misuse intrusions are well-defined attacks on known weak points of a system. They can be detected by watching for certain actions being performed on certain objects. Anomaly intrusions are based on observations of deviations from normal system usage patterns. They are detected by building up a profile of the system being monitored and detecting significant deviations from this profile. An Intrusion Detection System (IDS) can also perform its own system monitoring. It can keep aggregate statistics that give a system usage profile. These statistics can be derived from a variety of sources such as CPU usage, disk I/O, memory usage, activities by users, number of attempted logins, etc. These ## BS EN ISO 22600-3:2014 ISO 22600-3:2014(E) statistics shall be continually updated to reflect the current system state. They are correlated with an internal model that will allow the IDS to determine if a series of actions constitutes a potential intrusion. This model can describe a set of intrusion scenarios or possibly encode the profile of a clean system. A host-based intrusion detection system is software that monitors a system or application's log files. It responds with an alarm or a countermeasure when a user attempts to gain access to unauthorized data, files, or services. A network-based intrusion detection system monitors network traffic and responds with an alarm when it identifies a traffic pattern that it deems to be either a scanning attempt or a denial of service or other attack. Network-based intrusion detection systems need to be placed at security control points such as security gateways. Host-based intrusion detection systems require intrusion detection software installed on the protected host. The architecture allocates intrusion detection to relay systems and end-systems. #### A.9.3 Claimant mechanisms Possible approaches to management of user privileges in a service-oriented PMI architecture include - storage of privileges in a digitally signed credential, - centralized storage of privileges (for example, in an LDAP-enabled service), and - assertions by an AA. Storage of privileges in a digitally signed certificate can be based on a public key certificate, an attribute certificate, or an XACML attribute. The advantages to each approach are summarized in ISO/IEC 9594-8:2008. Public key certificates can store privileges as noncritical extensions as described in ASTM E2212. The use of an identity certificate in this way tightly binds authentication to authorization and arguably provides resilience to network failure. However, there are several disadvantages in this approach. Invalidating or changing any privilege owned by the certificate holder would require revoking and reissuing the certificate. Revocation of the certificate typically involves listing the certificate identification number on a certificate revocation list (CRL). As a result, the identity holder is unable to use their card (or other token) until it is reissued. Since identity certificates are typically in the possession of the holder, the reissuing process is unwieldy. Note that use of the identity certificate to store privileges does not provide resilience to network failure, since the CRL shall be consulted to validate the certificate. Accordingly, identity certificates are more appropriate for the slowly changing "structural" roles rather than the highly dynamic "functional" roles. One alternative is the use of a separate digitally signed certificate, called an attribute certificate, designed to hold user privileges. Additional infrastructure is required to issue and manage this second type of digitally signed certificate. However, there are several advantages in this approach. The attribute certificate is issued and signed by an attribute authority separate from the certificate authority that manages identity certificates. However, authorization and authentication are still tightly bound by placing the user's identity certificate serial number in the holder field of the attribute certificate. Revocation of the attribute can be accomplished using an attribute certificate revocation list (ACRL). However, there is no reason why a user should take physical possession of an attribute certificate. Thus, the attribute certificates themselves can be stored in an LDAP-enabled service. Revocation of the certificate, therefore, involves replacement of the earlier attribute certificate with the current
attribute certificate. There is no penalty in frequent changes of privileges held by the attribute certificate seen in the previous mechanism. There is an additional benefit to the additional infrastructure required to support attribute certificates as pointed out in Reference [23]. Certificate authorities issuing identity certificates are typically managed by a trusted entity outside the enterprise. Adding infrastructure within the enterprise to support attribute certificates helps keep sensitive privilege information from outsiders. Attribute certificates are typically only needed by the verifier, so there is no need to expose the privileges held by a user to entities outside the enterprise. ## A.9.4 LDAP lookup (role lookup) Role lookup can be supported by keeping role information in an LDAP structure. LDAP provides fast search and read functionality required in quickly collecting role information required in determining privileges associated with a user. The use of LDAP for role lookup is typically supported by web application servers. Alternatively, LDAP can be called from applications running independently of application servers. The preferred approach is to deploy a PDP that performs the role lookup in responding to an access control request. In any case, LDAP role lookup is beneficial because it provides a mechanism that separates the role information from the application code requesting the information. Role information can be provided from an assertion (for example, a SAML assertion) reducing the need for LDAP lookup. ## A.9.5 Certificates #### A.9.5.1 Overview As discussed above, certificates provide assurance by binding an identity to a certificate through the use of a cryptographic key. Certificates can be used by services to establish trust relationships throughout the PMI. Trusted certificates can be used to provide assurance over assertions made by trusted services of identity or privilege to a relying party. Identity certificates can provide role information. However, this information should be static in nature (that is, structural roles) because changing role information in an identity certificate necessitates cancellation and re-issuance of the certificate. Attribute certificates offer a better way to pass non-static privilege and role (that is, functional role) information. Certificates also provide means for confidentiality and non-repudiation. #### A.9.5.2 Attribute certificates A user's attribute certificate can contain a reference to another attribute certificate which contains additional privileges. This provides an efficient mechanism for implementing privileged roles. Many environments which have authorization requirements require the use of role-based privileges (typically in conjunction with identity-based privileges) for some aspect of their operation. Thus, a claimant can present something to the verifier demonstrating only that the claimant has a particular role (for example, "licensed healthcare provider" or "file clerk"). The verifier can know a priori, or might have to discover by some other means, the privileges associated with the asserted role in order to make a pass/fail authorization decision. Considerations for use: - lack of reliable communication system; - desire not to confirm information with issuing authority; - slow changing or relatively static roles; - appropriateness of use to support functional role. The following are all possible. - Any number of roles can be defined by any AA. - The role itself and the members of a role can be defined and administered separately by separate AAs. - The privileges assigned to a given role can be placed into one or more attribute certificates. - A member of a role can be assigned only a subset of the privileges associated with a role, if desired. - Role membership can be delegated. Roles and membership can be assigned any suitable lifetime. An entity is assigned an attribute certificate containing an attribute asserting that the entity occupies a certain role. That certificate can have an extension pointing to another attribute certificate which defines the role (that is, this role certificate specifies the role of the certificate holder and contains a list of privileges assigned to that role). The issuer of the attribute certificate can be independent of the issuer of the role certificate and these can be administered (for example, expired, revoked, and so on) entirely separately. Not all forms of **GeneralName** are appropriate for use as role names. The most useful choices are object identifiers and distinguished names. #### A.9.6 Medical credentials One common type of privilege is the user credential. These credentials are issued by a trusted authority and include an identification string. Examples include licensing of medical professionals by state boards and assignment of Drug Enforcement Agency (DEA) numbers. A credential includes a type, an issuer name, and an identifier. Geographically structured issuer names can be useful to indicate state and other locality information. Credentials are typically matched by type (for example, "physician") or type and issuer (for example, "physician licensed in Virginia"). If the credential issuer name is absent, then the issuer name from the enclosing attribute or public key certificate is used. If the certificate issuer name is absent, the credential issuer name shall be present. [Note that a certificate can explicitly reflect more than one credential, from more than one issuer, to minimize the number of attribute certificate authorities (AAs) in a system.] #### Considerations for use: - Consider use of ASTM E2212 descriptions of the use of noncritical X.509 fields to describe a user's medical credentials in an identity certificate. - Consider use of medical credentials (current/noncurrent, location of applicability) as an additional constraint on granting authorizations to clinicians to healthcare information. - Alternatively, clinician medical credentials could be considered for inclusion as part of the security provisioning of user attributes in a privilege management infrastructure. #### A.9.7 SAML assertions SAML assertions can be used to transmit security information from an asserting party to a relying party. The assertion can be made on behalf of a subject during authentication or in response to a request from another SAML entity. Assertions can be constructed from privilege or role information stored in either a central store or from signed certificate information. #### Considerations for use: - flexibility in federated environment; - acquire additional information on claimant; - consideration on network availability and reliability; - existence of SAML service; - support for intra-enterprise assertions; - compatibility with SOAP and WS security; - whether one needs simultaneous support for variety of authentication mechanisms (for example, PKI credentials, Kerberos tokens, biometrics, and so forth). ## A.9.8 Target sensitivity mechanisms Management of target attributes (for example, access control lists and sensitivity labels) has traditionally been done on a per-system basis, and there has been little standardization of the representation of this information. This guide does not dictate how such information is represented, but it does give suggestions based on several document syntaxes (ASN.1 or XML). ## A.9.9 Signed data encapsulation Attributes and other sensitivity information can be bound to the digest of the target using the **SignedData** construct of ASTM E2084. In particular, the use of detached signatures (with the object conveyed separately from the signature structure) would be appropriate. Sensitivity information would be carried as signed attributes, with the originator of the information being the signer. The types of authorization information that can be attached to a target include - a) access control information (ACI), as described in ISO/IEC 10181-3, - b) co-signature requirements, as described in A.9.19, and - c) descriptive information about the document (for example, document type), described in A.11.3. #### A.9.10 Use of XML Extensible Markup Language (XML) provides a software- and hardware-independent tool for transmitting information. It is expected that many documents will be expressed using XML. The structure for such a document is defined in a document-type definition (DTD) or an XML schema. Privileges can be defined as XML elements in which the name of the element represents the privilege identifier. Alternatively, an XML element can be associated with one or more XML attributes that represent the privilege identifier(s). Privileges can be grouped into useful sets using XML. For example, a set of privileges encoded into XML can be associated with a uniform resource identifier (URI) such as: "urn:application_name:attribute:privilege_set_name" Alternatively, privilege sets can be associated within a schema definition addressed by a unique namespace such as: xmlns: privilege_set_name="http://www.astm.org/:privilege_sets/privilege_set_name/" XML privilege sets can be used by the verifier to associate the claimant to its scope of authority. Claimants can be associated with standard groups or roles before evaluation by the verifier. Alternatively, the verifier can associate the claimant to one or more privilege sets through a database or an LDAP-enabled directory service. The verifier can also look up the requester group or role association in an external XML document using XPath. A verifier using a privilege policy can act directly on the XML elements (for example, by comparing attributes in an authorization certificate to elements in the document). One example of an XML-based policy that can be used to verify privileges is the eXtensible Access Control Markup Language (XACML). The following sections discuss the comparison rules in detail. Generally, single-valued attributes will be compared to a single (complete) element, while multi-valued
attributes will be compared to a collection of elements in a model group. #### A.9.11 Access control framework This subclause defines an access control information (ACI) attribute which can be used to indicate to a recipient (or trusted third party) which entities can read the target's contents. Access is allowed to the target if the requester matches an entry in the *who* list (by name, role, group, or organizational unit) and if the requester's attribute certificate matches all of the constraints contained in the target's ACI attribute. The constraints associated with the requester's attribute certificate would be contained in the **Constraints** attribute in the requester's certificate. ## A.9.12 Policy specification mechanisms Although this guide does not dictate how privilege policies are represented within an end system, XACML provides a standard approach to authorization policies. Several scenarios are evident. Two entities might need to determine whether their authorization policies are compatible, especially in a web services environment. If their policies are compatible, the entities need to determine specific policy variable values that are acceptable to both. In this case, an XACMLAuthzAssertion, defined in the "XACML Profile for Web Services (WS-XACML)", can be used. Such an assertion can be included in a WS-policy instance or provided as independent metadata. An XACMLAuthzAssertion can also be used in a web services environment by a service provider to publish an authorization policy for retrieval by potential clients. Publishing authorization policies is not appropriate for all environments, but publishing certain aspects of an authorization policy can be useful even where publication of an entire policy would be a security problem. Managing security policy can include some or all of the following steps: writing, reviewing, testing, approving, issuing, combining, analysing, modifying, withdrawing, retrieving, and enforcing policy. The complete *policy* applicable to a particular *decision request* can be composed of a number of individual *rules* or *policies*. For instance, in a personal privacy application, the subject of care of the personal information can define certain aspects of disclosure *policy*, whereas the enterprise that is the custodian of the information can define certain other aspects. In order to render an *authorization decision*, it shall be possible to combine the two separate *policies* to form the single *policy* applicable to the request. XACML defines three top-level policy elements: <Rule>, <Policy>, and <PolicySet>. The <Rule> element contains a Boolean expression that can be evaluated in isolation, but that is not intended to be accessed in isolation by a *PDP*. So, it is not intended to form the basis of an *authorization decision* by itself. It is intended to exist in isolation only within an XACML *PAP*, where it can form the basic unit of management, and be re-used in multiple *policies*. The <Policy> element contains a set of <Rule> elements and a specified procedure for combining the results of their evaluation. It is the basic unit of *policy* used by the *PDP*, and so it is intended to form the basis of an *authorization decision*. The <PolicySet> element contains a set of <Policy> or other <PolicySet> elements and a specified procedure for combining the results of their evaluation. It is the standard means for combining separate *policies* into a single combined *policy*. XACML defines a number of combining algorithms that can be identified by a RuleCombiningAlgId or PolicyCombiningAlgId attribute of the <Policy> or <PolicySet> elements, respectively. The *rule-combining algorithm* defines a procedure for arriving at an *authorization decision* given the individual results of evaluation of a set of *rules*. Standards combining algorithms are defined for - deny-overrides (Ordered and Unordered), - permit-overrides (Ordered and Unordered), - first-applicable, and - only-one-applicable. A *rule* can be evaluated on the basis of its contents. The main components of a *rule* are - a target, - an effect, and - a condition. The *target* defines the set of - resources, - subjects, - actions, and - environment The <Condition> element can further refine the applicability established by the *target*. If the *rule* is intended to apply to all entities of a particular data type, then the corresponding entity is omitted from the *target*. An XACML *PDP* verifies that the matches defined by the *target* are satisfied by the *subjects*, *resource*, *action*, and *environment attributes* in the request *context*. *Target* definitions are discrete, in order that applicable *rules* can be efficiently identified by the *PDP*. The <Target> element can be absent from a <Rule>. In this case, the *target* of the <Rule> is the same as that of the parent <Policy> element. The question arises: how should a name that identifies a set of *subjects* or *resources* be interpreted by the *PDP*, whether it appears in a *policy* or a request *context*? Are they intended to represent just the node explicitly identified by the name, or are they intended to represent the entire sub-tree subordinate to that node? The *effect* of the *rule* indicates the rule-writer's intended consequence of a "True" evaluation for the *rule*. Two values are allowed: "Permit" and "Deny". **Condition** represents a Boolean expression that refines the applicability of the **rule** beyond the **predicates** implied by its **target**. Therefore, it can be absent. ## A.9.13 Transferring XACML policies Policies might need to be transferred from one entity to another in a PMI. Some of the situations in which this is required are: - A PDP evaluates a policy that references other policies by name. The other policies shall be fetched from a policy administration point (PAP) when required for evaluation. - A PDP might need to obtain its "root" policy from the enterprise policy administration point as part of configuration. - A resource might be transferred between security domains, and the source domain can transfer a policy for protection of the resource that the destination domain is responsible for enforcing. - Multiple sites might need to use common policies, even though their PDPs are local for performance reasons. These policies need to be transferred from the central PAP to each site's PDP. While XACML defines a policy language, it is designed to be one component in an overall authorization system. It relies on other components to provide mechanisms for verifying that policy instances were issued by a trusted PAP, for protecting the integrity and confidentiality of instances of policies, and for protocols used to query for and respond with policy instances. XACML has been integrated with the OASIS Security Assertion Markup Language (SAML) Version 2.0 as one way of providing these necessary functions. SAML can be used with XACML to protect ACI attributes as well as policies. Figure A.2 illustrates the integration of SAML and XACML. As shown in Figure A.2, when the enforcement point requires an authorization decision, a request is made of the PDP 1. The PDP evaluates the request against its available policies and attributes and produces an authorization decision 2 that is returned to the PEP. The PEP can obtain attributes from online AAs 3 or from attribute repositories 4 into which AAs have previously stored attributes 5. The PDP can obtain attributes from online AAs 6 or from attribute repositories 7. Figure A.2 — Using SAML 2.0 to transport XACML[12] The authorization decision of the PDP is based on policies returned from the PAP 8 or retrieved from the online policy repository 9. The policy repository serves as a cache of policies previously stored by a PAP 10. The XACMLPolicyQuery is a SAML query defined in this profile that can be used to request policies from a PAP, either by name or by applicability to a certain request. A corresponding XACMLPolicyStatement is returned in a SAML response. The XACMLPolicyStatement can be digitally signed and can be associated with issuer and validity period information, among other things. Several policies are defined. They can be used individually or in combination. ## A.9.14 Mapping between ANS.1 types and XML elements Mapping between standard ASN.1 types and XML elements is done as follows (where possible, this maps to ongoing work on XML schemas). a) An ASN.1 Boolean maps to an XML element content or attribute with the following (case-insensitive) values: For TRUE: true, yes, or 1. For FALSE: false, no, or 0. Only equality matching is allowed. - b) An ASN.1 Integer maps to an XML element content or attribute consisting of solely numeric characters, with an optional sign character (+ or -) in front. - c) An ASN.1 Real maps to an XML element or attribute which uses the ASN.1 value notation for a real number. - d) ASN.1 Bit Strings and Octet Strings map to any XML element content (#PCDATA). As the XML schema work evolves, this should map to an XML binary object; such objects can be encoded in base64 for transport, with the encoding indicated either in the schema or as an attribute of the element. - e) ASN.1 Enumerated maps to XML attributes of type NMTOKENS (a list of strings), where each string is the identifier of one of the enumerated values. - NOTE XML schemas will likely allow such information to be carried as elements, as well as attributes. - f) ASN.1 Character Strings map to XML element content (#PCDATA). - g) ASN.1 Object Identifiers do not have an equivalent in XML. - NOTE XML uses URIs for some of the same things. A URI namespace or protocol of type OID could be defined to convey object identifiers in XML. - h) ASN.1 Times (UTC and generalized time) map to XML elements with ISO 8601 syntax. - i) An ASN.1 Sequence maps to a content model group with the comma connector, e.g.: ``` <!ELEMENT x (foo,bar)> ``` j) An ASN.1 Choice maps to a content model group with |
connector, e.g.: ``` <!ELEMENT x (foo|bar)> ``` - k) An ASN.1 Set does not map to any XML construct, although it does map to the SGML content group with & connector. - l) An ASN.1 "sequence of" maps to a repeating component using the XML regular expression syntax (* for zero or more occurrences, + for one or more), e.g.: ``` <!ELEMENT y (foo*)> ``` - m) An ASN.1 "set of" does not map to any XML construct. - n) ASN.1 optional fields map to optional XML components using the ? notation, e.g.: ``` <!ELEMENT z (foo?)> ``` AAs should ensure that policies are internally consistent, e.g. the same attribute type should not appear in two logically contradictory clauses. Policies should be signed by an AA; they can be conveyed in a claimant's authorization certificate, or as separate objects. #### A.9.15 Patient consent Patient consent is a specific policy. It shall be expressed according to the established policy model and expressed using policy representation languages (for example, XACML). #### A.9.16 Credential matching The credential attributes have been defined in Clause 11 as well as in 5.6 and 5.8 of ISO 22600-2. They are issued by a trusted authority and includes an identification string. Examples include licensing of medical professionals by state boards and assignment of DEA numbers. A credential includes a type, an issuer name, and an identifier. To match a credential policy, the claimant's certificates shall, in combination, contain a matching credential for each entry in the credential list. To match an entry, the credential shall have the same credential type, and, if the entry has an issuer name, the credential (or enclosing certificate) shall have the same issuer name. ## A.9.17 Security label matching Security label matching compares the initiator's clearance to the target's security label. All of the following shall be true for authorization to be granted. - The security policy identifiers shall be identical. - The classification level of the initiator shall be greater than or equal to that of the target (that is, there shall be at least one value in the classification list of the clearance greater than or equal to the classification of the target). - For each security category in the target label, there shall be a security category of the same type in the initiator's clearance and the initiator's classification level shall dominate that of the target. ## A.9.18 General assertion matching A privilege policy consists of one of the following: - ppPredicate: an assertion about a specific attribute; - and relation: a list of constituent policies, all of which shall be true for this policy to be true; - *or* relation: a list of simpler policies, at least one of which shall be true for this policy to be true; - *not* function: a single policy, which shall be false for this policy to be true; - *orderedPPE:* a list of simpler policies, which are verified in the order specified. #### Predicates can be: - *single value assertion:* A single attribute value in a target document (or context variable) is compared to an attribute value in the assertion. - *set value assertion:* The entire set of attribute values in a target document (or context variable) is compared to the set of values in the assertion. - *present:* The attribute shall be present in the document. - *approximateMatch:* The asserted value(s) match the value(s) in the document, using some locally defined matching algorithms (for example, phonetic matches or approximate arithmetic matches). - extensibleMatch: The asserted value(s) match the value(s) in the document using a matching rule defined using the X.500 MATCHING-RULE macro. Single value assertions allow authorization based on a simple value comparison. For example, **lessOrEqual** might restrict the signer to some monetary limit. The semantics of each choice are: - equality: The value in the document shall be equal to that in the assertion. This assertion can be used with any attribute type; complex attributes are compared using the DER encodings of their values. - *substrings:* The value of the document attribute shall contain the asserted substrings in the specified order; the initial substring of the value shall match the initial component of the assertion (if present), any components (if present) shall appear in the value in the specified order, and the final substring of the value shall match the final component of the assertion (if present). The substrings shall not overlap in the document attribute. This assertion can be used with any ASN.1 string type (for example, IA5 string, UTF8 string, and so forth). - *greaterOrEqual:* The value in the document shall be greater than or equal to that in the assertion. This assertion can be used with integers, enumerateds, and octet strings. - *lessOrEqual:* The value in the document shall be less than or equal to that in the assertion. This assertion can be used with integers, enumerateds, and octet strings. - *subordinate:* The asserted value matches the leading components of the value in the document attribute; it is only valid for object identifiers and names (a sequence of relative distinguished names). Set valued assertions involve all values of an attribute that are found in a target. For example, the standard military compartment mechanism would dictate that the set of compartments attached to a document shall be a **subsetOf** those in the signer's certificate. Similarly, a need-to-know mechanism would use a **nonNullIntersection** assertion. These attributes will be of type SEQUENCE OF or SET OF. The semantics are - *subsetOf:* All attribute values in the document shall appear in the assertion. - *supersetOf:* All attribute values in the assertion shall appear in the document. - *nonNullIntersection:* At least one attribute value in the document shall appear in the assertion. A predicate can contain the specific attribute values to be compared against the target, or it can reference an attribute in the claimant's attribute certificate, which holds the value to be compared against the target. In the second case, the **PrivilegeIDPair** contains two attribute types; the first refers to the target, and the second refers to the claimant. Multiple-target attribute syntaxes are supported. Currently, these include ASN.1 and XML. Since claimant privileges are carried as ASN.1 attributes, an attribute type is required in a privilege ID; an XML link is optional (to indicate the corresponding content in the target XML document). The link is structured as defined in the XLink, XPointer, and XPath recommendations, with the additional constraint that it shall reference one or more entire, contiguous XML elements (or their attributes). ## A.9.19 Signature Requirements A signer has an attribute certificate indicating which signature purposes he can exercise. When signing a document, the signature purpose is included as a signed attribute (see ASTM PS100). The policy is represented using the **Signature Requirements** following and the syntax defined, e.g. in ASTM E1762 and ASTM E2084. The verifier will - a) check the attribute certificate of each signer to ensure the signature purpose is allowed and - b) ensure that all necessary signatures are present, as required by the privilege policy. Multiple signatures can be conveyed as multiple **SignerInfo** structures in a **SignedData** instance. Countersignatures can be attached using the (unsigned) **countersignature** attribute. Signature requirements are conveyed as a privilege policy associated with a particular target and operation. Each co-signer entry contains either the identity of a co-signer (a role or an individual name or certificate identifier) or a list of required signature purposes or both. If a role is present, there shall be a signature on the document using that role (as a signature attribute), and the signer shall be allowed to act in the role (as indicated in the **role** attribute in the signer's authorization certificate). If a signer's name is present, there shall be a signature on the document that can be verified using one of that user's certificates. If a particular certificate is identified (by name and key ID or by issuer name and serial number), there shall be a signature on the document that can be verified using the specified certificate. If a list of signature purposes is specified, there shall be a signature on the document using one of the purposes (in the **signaturePurpose** signature attribute). If both a signer ID and signature purpose(s) are present, the specified signer shall use one of the listed purposes. Each co-signer can optionally be assigned a weight to allow a varying number of signers. The quorum specifies the total weight required for the co-signer list to be ratified. In the common case in which all weights are one, the quorum is simply the number of co-signers needed. By assigning weights, however, one could construct a scheme in which, for example, the signature of the president, any two vice presidents, or any four directors is required for authorization. A quorum of zero indicates all list members shall sign the document. A particular placement of the co-signature (joint signature on the document or countersignature)[24] can be required. ## A.10 Integration with PKI The PMI relies or could be designed to rely on a public key infrastructure (PKI) for identity certificates. These certificates are used to authenticate the certificate holder of an attribute certificate to the verifier (using digital signatures). Each attribute certificate references either the name or (more frequently) an identity certificate of its certificate holder. This decoupling of the PKI and PMI provides several advantages already described. Attribute certificates are issued by attribute authorities (AAs). These AAs can be arranged in a hierarchy, similar to a CA hierarchy. While identity certificates are requested by the subscriber, issuance of attribute certificates can be
unsolicited. This would be the case in which the subscriber does not control his privileges. Revocation of attribute certificates is done in the same way as identity certificates (that is, using revocation lists). Alternatively, online protocols like online certificate status protocol (OCSP) can be used. However, there is typically no need for the user to possess their AC physically. Therefore, attribute certificates can be stored in a directory service and simply updated whenever the contents of the attribute certificate are outdated. In this model, certificate revocation is not needed, since access to the attribute certificates storage function provides the most current attribute certificates for the user. Two types of delegation can be used in a PMI. - AAs delegate their own authority to subordinate AAs and end users. Thus, authority increases as one ascends the AA hierarchy. Delegation checks are done on the AA certificates. - Users request that their authorizations be delegated, and the AA issues the certificate after performing delegation checks on the delegator's certificate. The delegation hierarchy can be reconstructed using the **delegatorAttributeIdentifier** extension in the attribute certificates. Integration of the PMI with an existing PKI is discussed further in ISO 9594-8 or ITU-T X.509. ## A.11 Examples for privilege management and access control solution applications #### A.11.1 General This subclause presents some example applications using the mechanisms defined in $\underline{A.2}$ to $\underline{A.10}$. These are not presented in great detail. Specific applications will be the topics of future International Standards or proprietary Technical Specifications. These examples are meant to illustrate the use of privilege management mechanisms to support the types of applications discussed in ASTM E1762, ASTM E1986, and ASTM E2084, as well as current work in the area of certificate policies and extensions. ## A.11.2 Credentials application In this application, a physician is prescribing controlled substances. The prescription is electronically signed and sent to the pharmacy using secure/multipurpose internet mail extensions (S/MIME). The pharmacist shall ensure, since the prescription is for a controlled substance, that the physician has a valid DEA number. This would be provided with a credential in either the physician's identification (ID) certificate or attribute certificate. The credential type would be "DEA number" and the issuer would be the DEA. Similar mechanisms can be used to prove that an individual is a physician (credential type of "medical license"). This can be restricted to a particular state by examining the credential issuer. Note that, by using distinguished names, conventions for issuers can be established at the state level, federal (agency) level, and using Federal Information Processing Standards (FIPS) PUB 66 at the county level. #### A.11.3 Access control This application allows a verifier to control access to a target (in this case, some portion of the patient's medical record) based on the target's attributes. In this example, the claimant's role and constraints are found in his attribute certificate. The following constraints are used: - plan registration; - department. The attribute certificate for the claimant contains one or more roles, as well as a list of plan registrations and departments with which the claimant is associated. Separate role certificates (with attributes specific to the role) are not used in this application. The target's access control information is represented using the ACI attribute defined in ASTM E2084 (and duplicated in <u>A.2.2</u>). For access to be allowed to the target for this claimant - at least one of the claimant's roles shall appear in the target's access control list, - at least one of the claimant's plan registrations shall appear in the target's constraints, and - at least one of the claimant's departments shall appear in the target's constraints. ## A.11.4 Signature requirements This application builds on the signature purpose mechanism defined in ASTM E1762 and ASTM E2084. For a document to be accepted as part of the medical record, it shall have one or more signatures, as specified in the privilege policy. For example, the policy might require a signature by the author or by a transcriptionist and a reviewer. Each signer has an attribute certificate indicating which signature purposes he can exercise. When signing a document, the signature purpose is included as a signed attribute (see ASTM E2084). The policy is represented using the **Signature Requirements** defined in A.9.19. The verifier will - check the attribute certificate of each signer to ensure the signature purpose is allowed and - ensure that all necessary signatures are present, as required by the privilege policy. #### A.11.5 Document authorization This application builds on the mechanisms and attributes defined in ANSI X9.45 and ASTM E2084. Claimant privileges are conveyed in authorization certificates. Claimants can also exercise multiple roles (although only one at a time) through the use of role certificates. The claimant's authorization certificate will contain an **allowableRoles** attribute indicating the roles the user can exercise. Target attributes can be extracted from the document (for example, as XML elements), held in a local database, or can be embedded in a **SignedData** structure (detached signature). This structure is linked to the target object by the object's digest. The privilege policy consists of signature requirements and a general assertion policy as defined in Section Access Control. ## BS EN ISO 22600-3:2014 ISO 22600-3:2014(E) The verifier will use the authorization certificate of the claimant, along with associated role certificates, and the target attributes, as input to the general assertion policy in Section Access Control. If this policy is satisfied, signature requirements are checked. The current signature structure (containing one or more signatures on the document, as well as possibly countersignatures) is matched against the signature requirements policy. If these are also satisfied, the document is considered authorized. Specific attributes to be included in the authorization certificate include: | - | res | trictions on documents that can be signed, | | |---|---|--|--| | - | allowable roles, | | | | - | allo | allowable signature purposes, | | | - | attributes associated with the document (mostly from ASTM E2084) include: | | | | | _ | document type; | | | | _ | location; | | | | _ | patient ID; | | | | _ | event ID; | | | | _ | amendment information (pointer to document being amended); | | | | _ | data type and format information; | | | | _ | originating organization; | | | | _ | event time; | | | | _ | document creation, modification, and access times; | | | | _ | monetary value; | | | | _ | document identifier; | | | | _ | category list; | | | | _ | originator and author information (which can also be derived from the signatures on the document), and | | | signed attributes that can be attached to the document include: | | ned attributes that can be attached to the document include: | | | | _ | signing time; | | | | _ | signature purpose; | | | | _ | role being exercised; | | | | _ | signing certificate and policy ID; | | | | _ | signature reason (textual description); | | | | _ | annotations; | | | | _ | device identifier of signing cryptographic module. | | A countersignature is conveyed as an unsigned attribute that signs the signature value in the **SignerInfo** structure that contains it. #### A.11.6 ANSI RBAC model The ANSI RBAC standard defines permissions as actions on protected objects; however, it does not define specific actions or objects. Objects can exist at different logical levels. For example, concrete objects can be defined as individual data elements, tables, or aggregations of data elements and tables. More abstract objects include work profiles, tasks, scenarios, or steps. Figure 9 in ISO 22600-2 presents an adapted role-based access control schema from the ANSI RBAC standard. In the figure, the function session roles gives the roles activated by the session and the function session users gives the user that is associated with a session. The permissions available to the user are the permissions assigned to the roles that are currently active across all the user's sessions. Each model component is defined by the following subcomponents: - a set of basic element sets; - a set of RBAC relations involving those element sets (containing subsets of Cartesian products denoting valid assignments); - a set of mapping functions that yield instances of members from one element set for a given instance from another element set. ## A.12 Policy bridging Separate security domains can exchange privilege information be agreement of the parties. This interaction between security domains shall be coordinated on both a technical and documentary level. Exchanges of privilege information shall be examined to ensure the meaning of privileges is consistent between security domains. This can be accomplished by creating a standard set of privileges. The standard set of privileges can include a mutually defined mapping of equivalent privileges between the domains. The equivalence of the exchanged privileges shall be reviewed on a technical basis to ensure the intended security implications are achieved. Privilege information exchanged between security domains can involve separate administrative entities, e.g. distinct business partners or companies. An agreement as to the privileges exchanges and their use shall be documented, typically in a "business partner agreement." The use of a
business partner agreement is required to demarcate the legal, ethical, and practical responsibilities between subscribers to a PMI and that can extend between other cooperating PMI implementations. An equivalent procedure is performed in a PKI through the use of a certificate practices statement and certificate policies. An alternative procedure uses "policy assertions" in WS-Policy. ## **Annex B** (informative) ## Attribute certificate extensions NOTE (Non-mandatory Information) A number of extensions have been defined for attribute certificates. This annex describes the more important ones. Complete details can be found in ISO/IEC 9594-8 or ITU-T.X.509. ## **B.1** Basic privilege management extensions The *time specification* extension restricts the specific periods of time in which an attribute certificate can be used. The *targeting information* extension lists the specific servers or services with which an attribute certificate can be used. The *user notice* extension contains a textual notice which can be displayed to the attribute certificate holder or relying party. The *acceptable privilege policies* extension restricts which privilege policies an attribute certificate can be used with. ## **B.2** Privilege revocation extensions The *CRL distribution point's* extension identifies which CRL distribution point(s) will hold revocation information for an attribute certificate. The *no revocation information* extension indicates that status information is not provided for an attribute certificate. This extension is typically used in attribute certificates with very short validity periods. ## **B.3** Source of authority extensions The *SOA identifier* extension indicates that the certificate subject acts as a source of authority. This information can also be provided by other means. The *attribute descriptor* extension is one mechanism by which a source of authority can publish privilege attribute definitions and domination rules. #### **B.4** Role extensions The *role specification certificate identifier* extension references a certificate which specifies privileges for a role. The role itself can be identified in the *role* attribute in a user's attribute certificate. ## **B.5** Delegation extensions The *basic attribute constraints* extension indicates whether the privileges in an attribute certificate can be delegated. If delegation is permitted, a path length constraint can also be specified. The *delegated name constraints* extension indicates a namespace within which all holder names in a delegation path shall be located. The *acceptable certificate policies* extension indicates acceptable policies for the public key certificates associated with the attribute certificates in a delegation path. The *authority attribute identifier* extension is a reference to the attribute certificate of the issuing AA. This can be used to verify that the AA had sufficient privileges to issue the attribute certificate containing this extension. ## **B.6 IETF extensions** The *audit identifier* extension specifies an identity which can be used when auditing transactions using an attribute certificate. This can be used where privacy legislation requires that the actual identity of the holder not be divulged. The *authority information access* extension indicates where revocation information can be found for an attribute certificate. Currently, the only revocation mechanism supported in this extension is OCSP. The *AA controls* extension indicates which attributes are permitted and prohibited in an attribute certificate issued by an AA. This extension appears in the AA's public key certificate. This extension can also contain a path length constraint. # Annex C (informative) ## **Terminology comparison** ${\bf Table~C.1-Terminology~comparison}$ | ISO | Non-ISO | |--|--------------------------------| | Example: ISO/IEC 10181-3 | Example: OASIS XACML | | Access Control Enforcement Function (AEF) | Policy Enforcement Point (PEP) | | Access Control Decision Function (ADF) | Policy Decision Point (PDP) | | Access Control Decision Information (ADI) | Request Context | | Initiators | Access Requestor | | Target | Resource | | ADI Element (format not specified) | Attribute (XML Format) | | Initiator ADI (format not specified) | Subject (XML Format) | | Attribute Certificate | (not specified) | | Rule Element (format not specified) | Condition | | Claimant (not in ISO/IEC 10181-3) | Access Requestor | | Context ACI | Environment | | Access Control Policy (format not specified) | Policy (XML Format) | | Target | Target | | (not in ISO/IEC 10181-3) | Role Policy Set | | (not in ISO/IEC 10181-3) | Permission Policy Set | | Role Specification (not in ISO/IEC 10181-3) | | | Role Assignment (not in ISO/IEC 10181-3) | | ## Annex D (informative) ## Examples for policy management and policy representation ## D.1 SAML assertion example This part of ISO 22600 does not dictate how privilege policies are represented within an end system. The following provides an example of management and representation of policies using SAML assertions: ``` <S12:Envelope> <S12:Header> <wsse:Security> <saml:Assertion</pre> Issuer=www.opensaml.org MajorVersion="1" MinorVersion="1" </saml:Assertion> <wsse:SecurityTokenReference wsu:Id="STR1"> <wsse:KeyIdentifier wsu:Id="..."</pre> ValueType=http://docs.oasis-open/wss/oasis-wss-saml- token-profile-1.0#SAMLAssertionID> -a75adf55-01d7-40cc-929f-dbd8372ebdfc </wsse:SecurityTokenReference> </wsse:Security> </S12:Header> <S12:Body> </S12:Body> </S12:Envelope> ``` ## D.2 Non-XML Policy Representation Examples ``` The following is an example of authorization expressed in Predicate Logic: ``` ``` \begin{split} & \operatorname{canActivate}(\operatorname{cli},\operatorname{Clinician}(\operatorname{org},\operatorname{area})) \\ & \operatorname{ra.is-certified-NHS-clinician-cert}(\operatorname{di},\operatorname{org},\operatorname{area},\operatorname{start},\operatorname{end}), \\ & \operatorname{is-registration-authority}(\operatorname{ra},\operatorname{org}), \\ & \operatorname{no-main-role-activate}(\operatorname{cli}), \\ & \operatorname{Current-time}() \ 2 \ [\operatorname{start},\operatorname{end}] \\ & \operatorname{The following is an example of policy representation using First Order Logic:} \\ & \forall u : user, \ r_i \ r_j : \operatorname{roles}, \ i \neq j; \\ & u \in \operatorname{role_memberships}(r_i) \land u \in \operatorname{role_memberships}(r_j) \\ & \to r_i \notin \operatorname{mutually_exclusive_authorisation}(r_i) \end{split} ``` ## D.3 XACML example In the following example, showing policy representation using XACML, the <Apply> element performs the mathematical function "urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration" to calculate the date of the patient's sixteenth birthday. It also illustrates the use of *predicate* expressions, with the functionId "urn:oasis:names:tc:xacml:1.0:function:and". This example has one function embedded in the <Condition> element and another one referenced in a <VariableDefinition> element. ``` <?xml version="1.0" encoding="UTF-8"?> <Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" xmlns:xacml-context="urn:oasis:names :tc:xacml:2.0:context:schema:os" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:oshttp://docs.oasis-open. org/xacml/access_control-xacml-2.0-policy-schema-os.xsd" xmlns:xf="http://www.w3.org/TR/2002/WD-xquery-operators-20020816/#" xmlns:md="http://www.med.example.com/schemas/record.xsd" PolicyId="urn:oasis:names:tc:xacml:2.0:example:policyid:2" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides"> <PolicyDefaults> <XPathVersion>http://www.w3.org/TR/1999/Rec-xpath-19991116</XPathVersion> </PolicyDefaults> <Target/> <VariableDefinition VariableId="17590035"> <Apply FunctionId="urn:oasis:names:tc:xacml:2.0:function:date-less-or-equal"> <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-one-and-only"> <EnvironmentAttributeDesignator</pre> AttributeId= "urn:oasis:names:tc:xacml:1.0:environment:current-date" DataType="http://www.w3.org/2001/XMLSchema#date"/> </Apply> <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-add-yearMonthDuration"> <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:date-one-and-only"> <AttributeSelector RequestContextPath="//md:record/md:patient/md:patientDoB/text()"</pre> DataType="http://www.w3.org/2001/XMLSchema#date"/> </Apply> <AttributeValue DataType="http://www.w3.org/TR/2002/WD-xquery-operators-</pre> 20020816#yearMonthDuration"> <xf:dt-yearMonthDuration> P16Y </xf:dt-yearMonthDuration> </AttributeValue> </Apply> </Apply> </VariableDefinition> <Rule RuleId="urn:oasis:names:tc:xacml:2.0:example:ruleid:2" Effect="Permit"> <Description> A person may read any medical record in the http://www.med.example.com/records.xsd names- pace for which he or she is the designated parent or guardian, and for which the patient is under 16 years of age </Description> <Target> <Resources> <Resource> <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> http://www.med.example.com/schemas/record.xsd </AttributeValue> <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:resource:target-</pre> namespace" DataType="http://www.w3.org/2001/XMLSchema#string"/> </ResourceMatch> <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:xpath-node-match"> <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> /md:record </AttributeValue> <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:resource:xpath" DataType="http://www.w3.org/2001/XMLSchema#string"/> </ResourceMatch> </Resource> ``` ``` </Resources> <Actions> <Action> <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string"> </AttributeValue> <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"</pre> DataType="http://www.w3.org/2001/XMLSchema#string"/> </ActionMatch> </Action> </Actions> </Target> <Condition> <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and"> <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only"> <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:pa</pre> rent-guardian-id" DataType="http://www.w3.org/2001/XMLSchema#string"/> <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only"> <AttributeSelector RequestContextPath="//xacml-context:Resource/xacml-</pre> context:ResourceContent/md:record/md:parentGuardian/md:parentGuardianId/text()" DataType="http://www.w3.org/2001/XMLSchema#string"/> </Apply> </Apply> <VariableReference VariableId="17590035"/> </Apply> </Condition> </Rule> </Policy> ``` ## **Bibliography** - [1] HITSP Access Control Transaction Package V.1.1.1 (September 27, 2007) - [2] BLOBEL B., NORDBERG R., DAVIS J.M., PHAROW P. Modelling privilege management and access control. *Int. J. Med. Inform.* 2006, **75** (8) pp. 597–623 - [3] ISO/TS 13606-4, Health informatics Electronic health record communication Part 4: Security - [4] BLOBEL B. Architectural approach to eHealth for enabling paradigm changes in health. *Methods Inf. Med.* 2010, **49** (2) pp. 123–134 - [5] ARLOW J., & NEUSTADT I. *UML2 and the Unified Process*. Addison-Wesley, Upper Saddle River, Second Edition, 2005 - [6] BLOBEL B., & ROGER-FRANCE F. A Systematic Approach for Analysis and Design of Secure Health Information Systems. *Int. J. Med. Inform.* 2001, **62** (3) pp. 51–78 - [7] BLOBEL B. Analysis, Design and Implementation of Secure and Interoperable Distributed Health Information Systems. Series "Studies in Health Technology and Informatics". IOS Press, Amsterdam, Vol. 89, 2002 - [8] BLOBEL B. Concept Representation in Health Informatics for Enabling Intelligent Architectures. In: Hasman A, Haux R, van der Lei J, De Clercq E, Roger-France F (Edrs.): Ubiquity: Technology for Better Health in Aging Societies, pp. 285-291. Series Studies in Health Technology and Informatics, Vol. 124. IOS Press, Amsterdam 2006 - [9] BEALE T Health Information Standards Manifesto, Rev. 2.0. Mooloolah: Deep Thought Informatics Pty Ltd.; 2001 - [10] BODENREIDER O. The Unified Medical Language System. Tutorial Handouts. MIE, Geneva, 2005 - [11] OBJECT MANAGEMENT GROUP. http://www.omg.org - [12] OASIS. http://www.oasis-open.org - [13] CHADWICK D.W. et al. Role-Based Access Control with X.509 Attribute Certificates. *IEEE Internet Comput.* 2003, pp. 62–69 - [14] FERRAIOLO D.F., SANDHU R., GAVRILA S., KUHN D.R., CHANDRAMOULI R. Proposed NIST Standard for Role-Based Access Control. *ACM Trans. Inf. Syst. Secur.* 2001 August, **4** (3) pp. 224–274 [FRANCE] - [15] Health Level 7, Inc.: Role Based Access Control (RBAC), 2007. http://www.hl7.org - [16] KIRSCHNER B.A., HACKER T.J., ADAMSON W.A., ATHEY B.D. 2004) Walden: A Scalable Solution for Grid Account Management. Fifth IEEE/ACM International Workshop on Grid Computing (GRID '04), pp. 102-109 - [17] STOWE G. 2004) A Secure Network Node Approach to the Policy Decision Point in Distributed Access Control. Thesis, Tech Report TP2004-502, Dartmouth College Department of Computer Science - [18] NATIONAL RESEARCH COUNCIL. *Computers at Risk: Safe Computing in the Information Age.* National Academic Press, Washington, DC, 1991 - [19] BOWEN P., HASH J., WILSON M. 2006) Information Security Handbook: A Guide for Managers. NIST Special Publication 800-100, NIST Computer Security Division, Gaithersburg, MD, Oct. 2006 - [20] Kent K., & Souppaya M. 2006) Guide to Computer Security Log Management. NIST Special Publication 800-92, NIST Computer Security Division, Gaithersburg, MD, Sept. 2006 - [21] Integrating the Healthcare Enterprise, Inc.: IHE IT Infrastructure Technical Framework, Vol. 1 (ITI TF-1) Integration Profiles, Rev. 3.0. ACC/HIMSS/RSNA, 2006, p. 55 - [22] DICOM: Digital Imaging and Communications in Medicine (DICOM) Supplement 95: Audit Trail Messages, Trial Standard, 2004 - [23] WELCH V. et al. 2004) X.509 Proxy Certificates for Dynamic Delegation. 3rd Annual PKI R&D Workshop - [24] FISCHER A. 1990) Electronic Document Authorization. Proceedings of the 13th National Computer Security Conference - [25] ASTM E2595-07, Standard guide for privilege management infrastructure - [26] ASTM E1714-00, Standard guide for properties of a Universal Healthcare Identifier (UHID) - [27] ASTM E1762-95 (2003), Standard Guide for Electronic Authentication of Health Care Information - [28] ASTM E1986-98, Standard Guide for Information Access Privileges to Health Information - [29] ASTM E1985-98, Standard Guide for User Authentication and Authorization - [30] ASTM E2085-00a, Standard Guide on Security Framework for Healthcare Information - [31] ASTM E2212-02a, Standard Practice for Healthcare Certificate Policy - [32] ANSI INCITS 359-2004 19: Role Based Access Control, Feb 2004 - [34] SECURITY SERVICES SPECIFICATION OMG 2001 - [35] EXTENSIBLE ACCESS CONTROL MARKUP LANGUAGE OASIS (XACML) v2.0, February 2005 - [36] OASIS XACML Profile for Role Based Access Control (RBAC): Committee Draft 01 (normative; 13 February 2004) - [37] SECURITY ASSERTION MARKUP LANGUAGE OASIS (SAML) v2.0, March 2005 - [38] OASIS Security Provisioning Markup Language (SPML) V1.0, (OASIS 200306), October 2003 - [39] OASIS Universal Description, Discovery and Integration v3.0.2 (UDDI), February 2005 - [40] ITU-T X.411, Information technology Message Handling Systems (MHS): Message Transfer System: Abstract Service Definition and Procedures - [41] ISO 21298:—, Health informatics Functional and structural roles²⁾ ²⁾ To be published. # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. ## Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### Knowledge Centre Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com ####
Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com