BS EN ISO 20884:2011 BS 2000-497:2011

BSI Standards Publication

Petroleum products —
Determination of sulfur
content of automotive fuels —
Wavelength-dispersive X-ray
fluorescence spectrometry
(ISO 20884:2011)

National foreword

This British Standard is the UK implementation of EN ISO 20884:2011. It supersedes BS EN ISO 20884:2004, which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PTI/13, Petroleum Testing and Terminology.

A list of organizations represented on this committee can be obtained on request to its secretary.

Energy Institute, under the brand of IP, publishes and sells all Parts of BS 2000, and all BS EN petroleum test methods that would be Part of BS 2000, both in its annual publication "Standard methods for analysis and testing of petroleum and related products and British Standard 2000 Parts" and individually. Further information is available from: Energy Institute, 61 New Cavendish Street, London W1G 7AR. Tel: 020 7467 7100. Fax: 020 7255 1472.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© BSI 2011

ISBN 978 0 580 68201 8

ICS 75.080; 75.160.30

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2011.

Amendments issued since publication

Date Text affected

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

April 2011

EN ISO 20884

ICS 75.160.30: 75.080

Supersedes EN ISO 20884:2004

English Version

Petroleum products - Determination of sulfur content of automotive fuels - Wavelength-dispersive X-ray fluorescence spectrometry (ISO 20884:2011)

Produits pétroliers - Détermination de la teneur en soufre des carburants pour automobiles - Spectrométrie de fluorescence de rayons X dispersive en longueur d'onde (ISO 20884:2011) Mineralölerzeugnisse - Bestimmung des Schwefelgehaltes in Kraftstoffen für Kraftfahrzeuge - Wellenlängendispersive Röntgenfluoreszenz-Spektrometrie (ISO 20884:2011)

This European Standard was approved by CEN on 14 April 2011.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents Page Forewordiv

Forewo	ord	٧	
1	Scope		
2	Normative references	1	
3	Principle		
4	Reagents		
5	Apparatus	2	
6	Sampling		
7	Calibration solutions	3	
8	Settings	4	
9	Calibration		
10	Procedure		
11	Expression of results	6	
12	Precision		
13	Test report		
Annex	A (informative) Interferences and matrix effects	8	
Riblion	ihliography		

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 20884 was prepared by Technical Committee ISO/TC 28, Petroleum products and lubricants.

This second edition cancels and replaces the first edition (ISO 20884:2004), which has been technically revised.

Petroleum products — Determination of sulfur content of automotive fuels — Wavelength-dispersive X-ray fluorescence spectrometry

WARNING — The use of this International Standard may involve hazardous materials, operations and equipment. This International Standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

1 Scope

This International Standard specifies a wavelength-dispersive X-ray fluorescence (WDXRF) test method for the determination of the sulfur content of liquid, homogeneous automotive fuels from 5 mg/kg to 500 mg/kg, which have a maximum oxygen content of 3,7 % (m/m). This product range covers diesel fuels containing up to about 10 % (V/V) fatty acid methyl esters (FAME) and motor gasolines containing up to about 10 % (V/V) ethanol.

NOTE 1 Sulfur contents higher than 500 mg/kg can be determined after sample dilution. However, the precision was not established for diluted samples.

Products with higher oxygen content show significant matrix effects, e.g. FAME used as biodiesel. Nevertheless, FAME may be analysed when the corresponding procedures are followed (see 4.3 and 7.1).

Other products may be analysed with this test method. However, precision data for products other than those mentioned have not been established for this International Standard.

NOTE 2 For the purposes of this International Standard, the terms "% (m/m)" and "% (V/V)" are used to represent the mass fraction and the volume fraction of a material respectively.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3170, Petroleum liquids — Manual sampling

ISO 3171, Petroleum liquids — Automatic pipeline sampling

3 Principle

The sample under analysis is exposed in a sample cell to the primary radiation of an X-ray tube. The count rates of the S $K-L_{2,3}$ X-ray fluorescence and, where required, the count rate of the background radiation are measured. The sulfur content of the sample is determined from a calibration curve defined for the relevant measuring range.

NOTE The IUPAC X-ray line notation (S K-L_{2,3}) is used in this International Standard; the corresponding Siegbahn X-ray line notation (S-K α) is being phased out.

4 Reagents

4.1 DibutyIsulfide, of nominal sulfur content 21,92 % (m/m), or **dibutyIdisulfide**, of nominal sulfur content 35,95 % (m/m), used as a calibrating substance for sulfur.

Care should be taken due to volatility (see Annex A).

- **4.2 White oil** (paraffinum perliquidum), for use as a blank solution, of high purity grade, with a sulfur content of less than 1 mg/kg. Check the blank solution prior to use with the spectrometer (5.1). A signal for sulfur shall not be detectable.
- **4.3 Methyl oleate**, for use as a blank solution when FAME is analysed, with a sulfur content of less than 1 mg/kg. Check the blank solution prior to use with the spectrometer (5.1). A signal for sulfur shall not be detectable (i.e. the intensity shall be lower that the intensity equivalent to 1 mg/kg). Other oxygen-containing and sulfur-free blank solutions, such as octanol, can also be used.

5 Apparatus

5.1 Wavelength-dispersive X-ray fluorescence spectrometer, with the capability for measuring the count rates of the S K- $L_{2,3}$ X-ray fluorescence radiation and the background radiation. Due to the inherently low background radiation produced by instruments utilizing monochromatic radiation for excitation, it is not mandatory to measure the background radiation when this type of instrument is used. The minimum requirements for the spectrometer are given in Table 1.

Component	Polychromatic excitation	Monochromatic excitation
Anode	Rhodium, scandium or chromium	Rhodium, scandium, chromium or titanium
Voltage ^a	No less than 30 kV	No less than 30 kV
Current ^a	No less than 50 mA	No less than 0,1 mA
Collimator or optic	Coarse collimator	Monochromator
Analysing crystal	Germanium, pentaerythrite or graphite	Germanium, pentaerythrite or graphite
Optical path ^b	Vacuum or helium	Vacuum or helium
Sample cup window ^c	Polyester film, 4 µm maximum	Polyester film, 4 µm maximum
Detector	Proportional counter with pulse-height analyser	Proportional counter with single channel analyser
Wavelengths	S K-L _{2,3} at 0,537 3 nm Background radiation at 0,545 nm	S K-L _{2,3} at 0,537 3 nm

Table 1 — Spectrometer requirements

a Lower-power systems may be used, provided they have been validated to meet the precision requirements specified in Clause 12.

^b In instruments using vacuum, the sample is not exposed directly to the vacuum of the optical path, but is separated by a secondary window.

^c Polyester film is the preferred choice as samples of very high aromatic content may dissolve polycarbonate film. There are possibly trace amounts of silicon, calcium and sulfur in some types of film. However, the effects should be cancelled out when samples and standards are analysed using the same batch of film. It is important that samples, standards and blanks be measured using the same batch of film to avoid bias. Other sample window materials with the same or better absorptivity, purity and stability can also be used.

5.2 Analytical balance, capable of weighing to the nearest 0,1 mg.

6 Sampling

Unless otherwise specified, samples shall be taken by the procedures described in ISO 3170 or ISO 3171.

7 Calibration solutions

7.1 Blank solution

Use white oil (4.2) as a blank solution.

If FAME is under analysis, use a blank solution in accordance with 4.3 to minimize potential matrix effects.

7.2 Stock solution

Weigh a quantity of the required calibrating substance (4.1) to the nearest 0,1 mg, and dilute with blank solution (4.2 or 4.3, as appropriate) at room temperature so that a stock solution with an accurately known sulfur content (to the nearest 1 mg/kg) of approximately 1 000 mg/kg is obtained.

Care should be taken due to volatility of the calibrating substance (see Annex A).

7.3 Calibration solutions

Weigh an appropriate quantity of the stock solution (7.2) to the nearest 0,1 mg into bottles and dilute with blank solution (4.2 or 4.3, as appropriate) so that standard solutions with sulfur contents in accordance with Tables 2 and 3 are obtained by stirring at room temperature. The sulfur contents in the calibration solutions are indicated in milligrams per kilogram, rounded to the nearest 0,1 mg/kg.

Table 2 — Calibration solutions — Low sulfur range

Number	Sulfur content	
	mg/kg	
Blank solution 0	0,0	
2,1	5,0	
2,2	10,0	
2,3	25,0	
2,4	50,0	

Table 3 — Calibration solutions — High sulfur range

Number	Sulfur content	
	mg/kg	
Blank solution 0	0,0	
3,1	50,0	
3,2	100,0	
3,3	200,0	
3,4	350,0	
3,5	500,0	

7.4 Storage and stability of the calibration solutions

Calibration solutions prepared in accordance with Table 2 have a limited stability and shall be used on the day they are prepared.

Calibration solutions prepared in accordance with Table 3 have a stability of no more than one week if stored in a cool location (refrigerator).

8 Settings

8.1 Measuring parameters

For optimum measuring parameters, refer to Table 1.

8.2 Optimization

The spectrometer shall be optimized in accordance with the manufacturer's specifications in order to achieve the optimum signal-to-noise ratio. The calibration solution with 50 mg/kg sulfur is recommended for optimization.

The counting time shall be set so that the total net count from a 50 mg/kg solution is \geqslant 40 000. This counting time shall be used for both calibration (see Clause 9) and measurement (see Clause 10).

8.3 Performance check of the spectrometer

Prior to a measurement series (calibration and/or measurement), but in any case at least once daily, the manufacturer's specifications shall be used to check that the spectrometer is operating correctly, so that an optimum performance and a consistent standard of highest possible quality is ensured.

Performance checks should be carried out on a regular basis, since such checks give valuable information about the status and stability of the spectrometer.

9 Calibration

9.1 General

Ensure that the spectrometer is in an optimized condition after having executed all provisions given in Clause 8 and operating optimally before calibration (see 8.3).

For the range from 5 mg/kg to 60 mg/kg sulfur, and for the range 60 mg/kg to 500 mg/kg sulfur, separate calibrations shall be conducted.

9.2 Calibration solutions

Transfer the calibration solutions (7.3) into suitable sample cups so that the minimum volume is achieved (see paragraph below). Depending on the concentration range, all calibration solutions prepared in accordance with Tables 2 or 3 shall be measured consecutively in ascending order. The count rate, $I_{\rm S}$, of the S K-L_{2,3} X-ray fluorescence radiation at 0,537 3 nm, and the count rate, $I_{\rm B}$, of the background radiation at 0,545 nm, shall be measured consecutively. For instruments utilizing monochromatic excitation, measurement of the background radiation is not required (see 5.1).

Sample quantities that are too small give a low result or relatively more evaporation/concentration effects when measuring volatile samples, while too much sample causes more sagging of the cell window, especially when light aromatic samples are measured. It is necessary to determine the minimum volume by proceeding as follows: start with 1 ml, measure the net count rate, add liquid, measure again the count rate. Repeat until the count rate remains constant for greater volumes of liquid. Plot a curve of net count rate vs volume and choose a volume greater than the point at which the curve becomes flat.

9.3 Calibration curves

The net count rate, R_0 , is calculated according to Equation (1) or (2). To determine the calibration, the net count rate, R_0 , is plotted as a function of the corresponding sulfur content. Use the spectrometer software or a spreadsheet program to perform a regression of the data to fit to Equation (3).

The regression calculation may be carried out either separately or using the spectrometer calculator.

$$R_0 = I_S - I_B$$
 when background is measured, or (1)

$$R_0 = I_S$$
 for monochromatic excitation, when no background is measured (2)

$$R_0(x) = a + bx + cx^2 \tag{3}$$

where

 R_0 is the net count rate for the relevant determination;

 $I_{\rm S}$ is the count rate of the S K-L_{2.3} X-ray fluorescence radiation at 0,537 3 nm;

 I_{R} is the count rate of the background radiation at 0,545 nm;

x is the sulfur content of the relevant calibration solution, expressed in milligrams per kilogram (mg/kg);

a, b, c are the parameters from the regression calculation;

 $R_0(x)$ is the net count rate computed from the regression calculation for the content, x.

NOTE Parameter c may be zero where the calibration curve has been shown to be linear.

9.4 Checking

Check at least two points on each calibration curve regularly, but not less frequently than every six months. It is highly recommended that quality control samples be used, with known sulfur contents for these checks. Check immediately when using a new batch of films. If the check result differs from the curve, execute a new calibration. Control limits are established from the laboratory statistical control charts, but initial values should be set before experience is established. Limits of the repeatability of this International Standard, or 0,7 times the reproducibility, are reasonable starting points. In case of suspected changes in the equipment status (e.g. drift), recalibration is required.

10 Procedure

CAUTION — Some samples such as process rundown streams can contain finely dispersed iron sulfide which can drop onto the cell window, giving erroneously high results. In such cases, it is recommended that the samples be filtered through a 0,2 micron membrane filter prior to analysis.

10.1 Samples with sulfur contents between 5 mg/kg and 60 mg/kg

Fill a sample cup with a sufficient quantity of the sample under analysis so that the minimum volume determined in 9.2 is achieved. Expose the sample to the radiation of the X-ray tube. Measure consecutively the count rate, $I_{\rm S}$, of the S K-L_{2,3} X-ray fluorescence radiation at 0,537 3 nm and the count rate, $I_{\rm B}$, of the background radiation at 0,545 nm. For instruments utilizing monochromatic excitation, measurement of the background radiation is not required (see 5.1).

Calculate the net count rate, R_0 , according to Equation (1) or (2). Read the sulfur content, in milligrams per kilogram, from the calibration curve (see 9.3) for the measuring range of 5 mg/kg to 60 mg/kg sulfur. If the sulfur content is higher than 60 mg/kg, a new sample in a new cup shall be measured using the calibration curve for the measuring range from 60 mg/kg to 500 mg/kg.

10.2 Samples with sulfur contents between 60 mg/kg and 500 mg/kg

Fill a sample cup with a sufficient quantity of the sample under analysis so that the minimum volume determined in 9.2 is achieved. Expose the sample to the radiation of the X-ray tube. Measure consecutively the count rate, $I_{\rm S}$, of the S K-L_{2,3} X-ray fluorescence radiation at 0,537 3 nm and the count rate, $I_{\rm B}$, of the background radiation at 0,545 nm. For instruments utilizing monochromatic excitation, measurement of the background radiation is not required (see 5.1).

Calculate the net count rate, R_0 , according to Equation (1) or (2). Read the sulfur content, in milligrams per kilogram, from the calibration curve (see 9.3) for the measuring range of 60 mg/kg to 500 mg/kg sulfur. If the sulfur content is higher than 500 mg/kg, the sample shall be measured using another suitable method (ISO 14596^[2]).

NOTE Sulfur contents higher than 500 mg/kg can be determined after sample dilution. However, the precision was not established for diluted samples.

11 Expression of results

Report the sulfur content of the sample to the nearest 0,1 mg/kg between 5 mg/kg and 99 mg/kg, and to the nearest 1 mg/kg between 100 mg/kg and 500 mg/kg.

12 Precision

12.1 General

The precision, as determined by statistical examination in accordance with ISO 4259^[1], is given in 12.2 and 12.3. The precision for monochromatic excitation instruments (5.1) is valid only for sulfur contents from 5 mg/kg to 60 mg/kg.

12.2 Repeatability, r

The difference between two test results obtained by the same operator with the same apparatus under constant operating conditions on identical test material would, in the long run, in the normal and correct operation of the test method, exceed the values given in Table 4 in only one case in 20.

12.3 Reproducibility, R

The difference between two single and independent test results obtained by different operators working in different laboratories on identical test material would, in the long run, in the normal and correct operation of the test method, exceed the values given in Table 4 in only one case in 20.

Table 4 — Precision data

Sulfur content	Repeatability, r	Reproducibility, R			
mg/kg	mg/kg	mg/kg			
5 to 60	1,7 + 0,024 8 <i>X</i>	1,9 + 0,120 1 <i>X</i>			
> 60 to 500	4,0	4,6 + 0,075 <i>X</i>			
NOTE X is the average of the results being compared, in milligrams per kilogram.					

13 Test report

The test report shall contain at least the following information:

- a) a reference to this International Standard (i.e. ISO 20884:2011);
- b) the type and complete identification of the product tested;
- c) the result of the test (see Clause 11);
- d) any deviation, by agreement or otherwise, from the procedure specified;
- e) the date of the test.

Annex A

(informative)

Interferences and matrix effects

- **A.1** Samples that contain finely divided free water or dirt can cause erroneous results. For this reason, samples that are not completely bright and clear should be filtered through a folded filter paper [Schleicher & Schuell 595 1/2¹⁾ or a comparable type] to remove the free water and/or dirt.
- **A.2** Oil from fingerprints can affect the reading when low levels of sulfur are analysed. Touching the inside of the sample cell or the portion of the window film of the cell that is exposed to X-rays should be avoided.
- **A.3** The sample cups should be prepared on a clean surface.
- A.4 Sample cup windows should be checked for leaks and to avoid wrinkles in the film.
- **A.5** Sample cups containing volatile products should be covered to minimize evaporation/concentration effects.
- **A.6** Measurement of (many) volatile samples can affect the sensitivity of the instrument in a negative way. Checking according to 8.3 is recommended.
- **A.7** Sample cups already measured should not be measured again, as results that are too high can be expected. Measurement times that are too long can have the same effect.
- **A.8** Products with oxygen content higher than 3.7 % (m/m) show significant matrix effects, e.g. FAME used as biodiesel. Nevertheless, FAME may be analysed when the corresponding procedures are followed (see 4.3 and 7.1).

8

¹⁾ This information is given for the convenience of users of this International Standard and does not constitute an endorsement by ISO of this product.

Bibliography

- [1] ISO 4259, Petroleum products Determination and application of precision data in relation to methods of test
- [2] ISO 14596, Petroleum products Determination of sulfur content Wavelength-dispersive X-ray fluorescence spectrometry

Energy Institute

Buying Parts of BS 2000

Orders for BS 2000 publications should be addressed to either:

Energy Institute - Library and Information Service

61 New Cavendish Street London W1G 7AR

Tel: +44 (0)20 7467 7100 Fax: +44 (0)20 7255 1472 www.energyinst.org.uk

Order standards securely via: www.energyinstpubs.org.uk

or:

British Standards Institution - Customer Services

389 Chiswick High Road London W4 4AL

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001 www.bsi-global.com

www.bsi-giobai.com

Order hard copy standards securely via: www.bsi-global.com/bsonline

Copyright

Copyright exists in all BS 2000 publications. No part of this publication may be reproduced in any form without the prior permission in writing of BSI and the Energy Institute. Enquiries about copyright should be made to the Secretary of PTI/13 at the Energy Institute.

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

