BS EN ISO 16967:2015 # **BSI Standards Publication** Solid biofuels — Determination of major elements — Al, Ca, Fe, Mg, P, K, Si, Na and Ti (ISO 16967:2015) #### National foreword This British Standard is the UK implementation of EN ISO 16967:2015. It supersedes BS EN 15290:2011 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee PTI/17, Solid biofuels. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 81464 8 ICS 75.160.10 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 May 2015. Amendments issued since publication Date Text affected # **EUROPEAN STANDARD** # NORME EUROPÉENNE # **EUROPÄISCHE NORM** April 2015 **EN ISO 16967** ICS 75.160.10 Supersedes EN 15290:2011 #### **English Version** Solid biofuels - Determination of major elements - Al, Ca, Fe, Mg, P, K, Si, Na and Ti (ISO 16967:2015) Biocombustibles solides - Détermination des éléments majeurs - Al, Ca, Fe, Mg, P, K, Si, Na et Ti (ISO 16967:2015) Biogene Festbrennstoffe - Bestimmung von Hauptelementen - Al, Ca, Fe, Mg, P, K, Si, Na und Ti (ISO 16967:2015) This European Standard was approved by CEN on 28 February 2015. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Świtzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels #### **Foreword** This document (EN ISO 16967:2015) has been prepared by Technical Committee ISO/TC 238 "Solid biofuels" in collaboration with Technical Committee CEN/TC 335 "Solid biofuels" the secretariat of which is held by SIS. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2015, and conflicting national standards shall be withdrawn at the latest by October 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes EN 15290:2011. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### **Endorsement notice** The text of ISO 16967:2015 has been approved by CEN as EN ISO 16967:2015 without any modification. | COI | ntents | Page | |-------|-----------------------------------------------------------------------------------------------------------------------|------| | Fore | eword | iv | | Intro | oduction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | | | 4 | Symbols and abbreviated terms 4.1 Symbols 4.2 Abbreviated terms | 2 | | 5 | Principle | 3 | | 6 | Reagents | 3 | | 7 | Apparatus | 3 | | 8 | Preparation of the test sample | 4 | | 9 | Procedure 9.1 Digestion 9.2 Detection methods 9.3 Calibration of the apparatus 9.4 Analysis of digests 9.5 Blank test | | | 10 | Calculations | | | 11 | Performance characteristics | 7 | | 12 | Test report | 7 | | Ann | ex A (informative) List of conversion factors | 9 | | | ex B (informative) Performance data | | | Bibl | iography | 13 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 238, *Solid biofuels*. # Introduction The elements described as major elements of solid biofuels are in fact major elements of the fuel ashes more than of the fuels. The determination of these elements can be used to assess ash behaviour in a thermal conversion process or to assess utilization of ashes. Moreover, fuel contamination or process additives are indicated by high values of certain elements. Contamination of fuel with sand or soil is indicated by high values of several elements. In this International Standard, wet chemical methods are described. # Solid biofuels — Determination of major elements — Al, Ca, Fe, Mg, P, K, Si, Na and Ti ### 1 Scope This International Standard describes methods for the determination of major elements of solid biofuels respectively of their ashes, which are Al, Ca, Fe, Mg, P, K, Si, Na, Ti. The determination of other elements such as barium (Ba) and manganese (Mn) is also possible with the methods described in this International Standard. This International Standard includes two parts: Part A describes the direct determination on the fuel, this method is also applicable for sulfur and minor elements, Part B gives a method of determination on a prepared $550\,^{\circ}\text{C}$ ash. # 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 7980, Water quality — Determination of calcium and magnesium — Atomic absorption spectrometric method ISO 9964-1, Water quality — Determination of sodium and potassium — Part 1: Determination of sodium by atomic absorption spectrometry ISO~9964-2, Water~quality -- Determination~of~sodium~and~potassium~-- Part~2:~Determination~of~potassium~by~atomic~absorption~spectrometry ISO 9964-3, Water quality — Determination of sodium and potassium — Part 3: Determination of sodium and potassium by flame emission spectrometry ISO 11885, Water quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES) EN 14780¹⁾, Solid Biofuels — Sample preparation ISO 16559, Solid biofuels – Terminology, definitions and descriptions ISO 16993, Solid biofuels — Conversion of analytical results from one basis to another ISO 17294-2, Water quality — Application of inductively coupled plasma mass spectrometry (ICP-MS) — Part 2: Determination of 62 elements ISO 18122²), Solid biofuels — Determination of ash content ISO $18134-3^2$), Solid biofuels — Determination of moisture content — Oven dry method — Part 3: Moisture in general analysis sample #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 16559 and the following apply. ¹⁾ To be replaced by ISO 14780. ²⁾ To be published. # BS EN ISO 16967:2015 **ISO 16967:2015(E)** #### 3.1 #### reference material #### RM material or substance one or more of whose property values are sufficiently homogeneous and well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials #### 3.2 #### certified reference material #### **CRM** reference material, accompanied by a certificate, one or more of whose property values are certified by a procedure which establishes traceability to an accurate realisation of the unit in which the property values are expressed, and for which each certified value is accompanied by an uncertainty at a stated level of confidence #### 3.3 #### NIST standard reference material #### SRM CRM issued by NIST that also meets additional NIST-specific certification criteria and is issued with a certificate or certificate of analysis that reports the results of its characterisations and provides information regarding the appropriate use(s) of the material ### 4 Symbols and abbreviated terms ### 4.1 Symbols Al Aluminium Ca Calcium Fe Iron Mg Magnesium P Phosphorus K Potassium Si Silicon Na Sodium Ti Titanium #### 4.2 Abbreviated terms CRM Certified Reference Material ICP-OES Inductively Coupled Plasma – Optical Emission Spectrometry ICP-MS Inductively Coupled Plasma – Mass Spectrometry FAAS Flame Atomic Absorption Spectrometry FES Flame Emission Spectrometry SRM Standard Reference Material NBS National Bureau of Standards NIST The **National Institute of Standards and Technology (NIST)**, known between 1901 and 1988 as the **National Bureau of Standards (NBS)**, is a measurement standards laboratory, also known as a National Metrological Institute (NMI), which is a non-regulatory agency of the United States Department of Commerce. #### 5 Principle The sample is digested in a closed vessel by the help of reagents, temperature, and pressure. The digestion is either carried out directly on the fuel (part A) or on a 550 °C prepared ash (part B). The detection of the elements can be done by ICP-OES, ICP-MS, FAAS, or FES. # 6 Reagents All reagents should be of analytical grade or better. If minor elements are also to be determined, the best qualities should be used. - **6.1 Water**, containing negligible amounts of major elements, i.e. amounts that do not contribute significantly to the determinations. Deionised water will normally fulfil this requirement. - **6.2** Nitric acid (HNO₃), \geq 65 % (w/w), ρ = 1,41 g/ml. - **6.3 Hydrogen peroxide (H₂O₂)**, 30 % (w/w), ρ = 1,11 g/ml. - **6.4 Hydrofluoric acid (HF)**, 40 % (w/w), $\rho = 1.13$ g/ml. **CAUTION** — Hydrofluoric acid might lead to health hazards. - **6.5 Boric acid (H₃BO₃)**, 4% (w/w). - 6.6 Use of certified reference materials (CRM or SRM). Use certified reference materials, issued by an internationally recognized authority, to check if the accuracy of the calibration meets the required performance characteristics. Examples of certified reference materials are: NBS 1570 spinach leaves, NBS1571 orchard leaves, NBS 1573 tomato leaves, and NBS 1575 pine needles. When, due to matrix effects or concentration range limitations, no good recoveries for the certified reference materials can be obtained, calibration with at least two CRM or SRM materials can solve these problems. In that case, CRM or SRM materials other than used for the calibration shall be used for verification purposes. NOTE A CRM or SRM is prepared and used for three main purposes: (1) to help develop accurate methods of analysis; (2) to calibrate measurement systems used to facilitate exchange of goods, institute quality control, determine performance characteristics, or measure a property at the state-of-the-art limit; and (3) to ensure the long-term adequacy and integrity of measurement quality assurance programs. ### 7 Apparatus - 7.1 Heating oven or heating block suitable for the decomposition system in use, resistance heated oven or heating block that can be used at a temperature of at least 220 $^{\circ}$ C with an accuracy of ±10 $^{\circ}$ C. - **7.2 Microwave oven**, intended for laboratory use and equipped with temperature control. - **7.3 Sample digestion vessels**, intended for the heating system used, normally made of a fluoro plastic. - 7.4 Balance. - **7.4.1 Part A**, balance with a resolution of at least 1 mg. - **7.4.2 Part B**, balance with a resolution of at least 0,1 mg. - 7.5 Plastic volumetric flasks. ## 8 Preparation of the test sample The test sample is the general analysis test sample with a nominal top size of 1 mm or less, prepared in accordance with EN 14780^{3}). The moisture content of the test sample shall be determined as described in ISO 18134-3. #### 9 Procedure ### 9.1 Digestion #### 9.1.1 Part A: Direct determination on the fuel The decomposition shall be carried out in closed vessels. It can be done in a heating oven, a heating block or in a microwave oven. — Mix 500 mg of ground and homogenized sample, weighed to the nearest 1 mg, with 3,0 ml H₂O₂ (30 %), 8,0 ml HNO₃ (65 %), and 1,0 ml HF (40 %) in a closed digestion vessel. A reaction time of minimum 5 min shall be kept before closing the vessel. Closing the digestion vessel too early can result in a fast pressure build up, sometimes exceeding the maximum pressure limit of the vessel. If the sample is expected to have an ash content above 10 %, 2,0 ml HF (40 %) should be used. The heating of the vessel shall not be too fast. Heat the sample according to the following heating programmes for digestion: Resistance heating⁴): Step 1: Ramp to 220 °C over 1 h Step 2: Hold for 1 h at 220 °C Microwave heating⁵): Step 1: Ramp to 190 °C over 15 min Step 2: Hold for 20 min at 190 °C If the maximum pressure limit of the vessel is exceeded during the digestion and by that an opening of the relief valve has occurred, the digestion should be discarded due to possible loss of Si (in form of gaseous SiF₄). NOTE Some available digestion bomb systems use fluoropolymer vessels, which cannot withstand temperatures above $170\,^{\circ}$ C. In such cases, this lower temperature can be used, provided that the sample is held longer at this temperature and that comparable results can be obtained, e.g. by the use of equivalent biomass reference materials. ³⁾ To be replaced by ISO 14780. ⁴⁾ The stated temperature refers to heating device (e.g. oven). ⁵⁾ The stated temperature refers to digest solution. — After cooling to room temperature, HF is neutralised by adding 10 ml H3BO3 (4 %). If 2,0 ml HF (40 %) was used for the digestion, 20 ml H₃BO₃ (4 %) should be used for the neutralization. — Reheat the sample according to the following heating programmes for neutralization: Resistance heating⁴): Step 1: Heat rapidly to 180 °C Step 2: Hold for 15 min at 180 °C Microwave heating⁵): Step 1: Heat rapidly to 150 °C Step 2: Hold for 15 min at 150 °C — After cooling, transfer the digest to a volumetric flask. Rinse the digestion vessel carefully and transfer the rinse solution to the volumetric flask. Add deionised water to the digest to an appropriate volume, depending on the detection method to be used. #### 9.1.2 Part B: Determination on a prepared 550°C ash — Heat the sample according to the procedure described in ISO 18122 to obtain ash. Make sure that the ashing procedure is performed exactly according to this procedure as deviations in ashing temperature, time, and air refreshing rate will influence the results. In deviation of ISO 18122, only crucibles made of platinum or graphite can be used for the preparation of the ash, but larger types of crucibles can be used. The use of the stated additives in ISO 18122 to ensure complete combustion is not allowed in the preparation. Also a continuous ashing by refilling of the sample on the previous ash in the crucible is not allowed. To prepare a sufficient amount of ash for the digestion of larger amounts of sample, compared to the procedure given in ISO 18122, often will be necessary. The ash percentage on dry basis obtained for the prepared ash, thus, shall be calculated and compared to obtained results for the ash content on dry basis determined exactly according to ISO 18122. If the ash content for the prepared ash is also known, the results for major elements determined for the prepared ash can be calculated to fuel basis. — Homogenize the prepared ash in an agate mortar and reignite the homogenized ash at $550\,^{\circ}\text{C}$ for $30\,\text{min}$. NOTE 1 The weighing of the test portion of the ash for the digestion has to be carried out immediately after the preparation. For the digestion of the ash similar working steps, as for the digestion of the fuel, are evident: - Mix 50 mg of ground and homogenized ash, weighed to the nearest 0,1 mg, with 2,0 ml H₂O₂ (30 %), 3,0 ml HNO₃ (65 %), and 2,0 ml HF (40 %) in a closed decomposition vessel. A reaction time of minimum 5 min shall be kept before closing the vessel. - Digest the sample following one of the heating programmes described in <u>9.1.1</u> for digestion. - If the maximum pressure limit of the vessel is exceeded during the digestion and by that an opening of the relief valve has occurred, the digestion should be discarded due to possible loss of Si (in form of gaseous SiF4). - After cooling to room temperature, the HF is neutralized by adding 20 ml H_3BO_3 (4 %) and 10 ml deionised water. NOTE 2 The water is necessary to keep K in solution for bio-ashes with high KCl content. — Reheat the sample according to the heating programmes for neutralization described in 9.1.1. # BS EN ISO 16967:2015 **ISO 16967:2015(E)** After cooling, transfer the digest to a volumetric flask. Rinse the digestion vessel carefully and transfer the rinse solution to the volumetric flask. Add deionised water to the digest to an appropriate volume, depending on the detection method to be used. #### 9.2 Detection methods For the detection of the concentrations of Al, Ca, Fe, Mg, P, K, Si, Na, Ti in the digests, the following methods can be used: - ICP-OES according to the principles of ISO 11885; - ICP-MS according to the principles of ISO 17294-2; - AAS according to the principles of ISO 7980, ISO 9964-1, and ISO 9964-2; - FES according to the principles of ISO 9964-3. #### 9.3 Calibration of the apparatus When the analytical system is evaluated for the first time for this application, establish a calibration function for the measurement in accordance with the manufacturers' instructions. Adjust the established calibration function during the analysis, if necessary. Check the performance of the instrument using the accepted standard procedures like replicate analysis, use of SRM and/or CRM, control samples and control charts. The calibration and quality control scheme shall be organized and maintained in such a way that the required uncertainty of measurement can be obtained. The results of the validation study of BioNorm2 (Annex B) demonstrates what is achievable with commercial instruments that are used by experienced laboratories. #### 9.4 Analysis of digests Analyse test portions of the digests in accordance with the manufacturer's instructions. #### 9.5 Blank test Carry out a blank test, using the same procedure and methods as described in 9.1.1, 9.1.2, 9.2, 9.3, and 9.4 but omitting the test portion. This assesses both the contents of the elements in the reagents and any contamination from equipment and the laboratory atmosphere. This contribution shall not be quantitatively significant. NOTE A content of the elements in the digests of the blank experiment at 20 % or less of the content of the elements in the digests can be considered as not quantitatively significant. #### 10 Calculations The content of an element in the sample on dry basis, w_i , expressed in mg/kg, is calculated from the mean of duplicate determinations using the Formula (1): $$w_{i} = \frac{\left(c_{i} - c_{i,0}\right) \times V}{m} \times \frac{100}{\left(100 - M_{ad}\right)} \tag{1}$$ where w_i is the concentration of the element in the sample, on a dry basis, in mg/kg; c_i is the concentration of the element, in the diluted sample digest, in mg/l; $c_{i,0}$ is the concentration of the element, in the solution of the blank experiment, in mg/l; *V* is the volume of the diluted sample digest solution, in ml; *m* is the mass of the test portion used, in g; $M_{\rm ad}$ is the moisture content in the analysis test sample in % m/m. The results can be calculated to other bases, e.g. to as received basis according to ISO 16993. If the determination has been carried out on a prepared ash (Part B), the results can be calculated to the fuel basis using Formula (2): $$w_{i,\text{fuel}} = w_{i,\text{ash}} \times \frac{A_{d}}{100}$$ (2) where $A_{\rm d}$ is the obtained ash content, concerning the prepared ash used for the digestion, in % m/m, dry basis; $w_{i, \text{fuel}}$ is the concentration of the element in the fuel sample, on a dry basis, in mg/kg; $w_{i, ash}$ is the concentration of the element in the prepared ashed sample, on a dry basis, in mg/kg. #### 11 Performance characteristics The achievable performance of the method is given in Annex B, showing the results obtained by a European inter comparison study carried out for a sample of wood chips and a sample of an exhausted olive residue. These two samples represent the extremity of the method. The wood chip sample represents samples with low contents of most of the elements and the olive residue samples with high amounts of most of the elements. # 12 Test report The test report shall contain at least the following information: - a) identification of the laboratory performing the test and the date of the test; - b) identification of product (sample) tested; - c) a reference to this International Standard, ISO 16967; - d) applied digestion procedure and test method used for determination; # BS EN ISO 16967:2015 **ISO 16967:2015(E)** - e) results of the test including the basis in which they are expressed, as indicated in <u>Clause 10</u>; - f) any unusual features noted during the test procedure; - g) any operation not included in this International Standard, or regarded as optional. # **Annex A** (informative) # **List of conversion factors** The following list gives conversion factors for the calculation on the composition on an oxide basis in the case of determination on a prepared 550 $^{\circ}\text{C}$ ash. | $Al \rightarrow Al_2O_3$ | 1,89 | |--------------------------|------| | Ca → CaO | 1,40 | | $Fe \rightarrow Fe_2O_3$ | 1,43 | | $Mg \rightarrow MgO$ | 1,66 | | $P \rightarrow P_2O_5$ | 2,29 | | $K \rightarrow K_2O$ | 1,20 | | $Si \rightarrow SiO_2$ | 2,14 | | $Na \rightarrow Na_2O$ | 1,35 | | $Ti \rightarrow TiO_2$ | 1,67 | # Annex B (informative) # Performance data The round robin was carried out by laboratories in Austria, Belgium, Denmark, Finland, Germany, Ireland, Italy, The Netherlands, Spain, Sweden, and the United Kingdom. The variety of instruments and other analytical conditions were used in accordance with the quality parameters specified in the method. The tests were carried out using two samples, wood chips, and exhausted olive residues produced in the EU-project BioNorm according to prEN 14780:2006. The sample "wood chips" was made of German coniferous wood chips; the chips were dried and milled to 1 mm by means of cutting mill. The sample "exhausted olive residues" was obtained from olive oil industry in Spain from a typical outdoor storage facility. In the original sample, stones and other natural impurities were present. These impurities and stones were removed manually and the sample was prepared from the residues in two steps using a coarse cutting mill equipped with a 10 mm sieve and a laboratory cutting mill equipped with WC cutting tools and a 1 mm sieve. All data are reported on dry basis. The performance data according to ISO 5725-2 are presented in Tables B.1 to B.9. NOTE 1 See <u>Table B.1</u> for definition of the symbols used in the <u>Tables B.1</u> to <u>B.9</u>. NOTE 2 Guidelines can be found in ISO 16993:2015, Annex C on how to use these validation parameters. Table B.1 — Performance data for Aluminium (Al) | Sample | n | 1 | 0 | X | SR | CVR | Sr | CVr | | |--------------------------|-----------|------------------------------------------------------------|------------|-----------|------------|----------|----------|--------|--| | Sumple | " | - | % | mg/kg | mg/kg | % | mg/kg | % | | | wood chips | 12 | 57 | 5 | 47 | 8 | 18 | 2 | 4,1 | | | exhausted olive residues | 11 | 55 | 0 | 2360 | 170 | 7,2 | 110 | 4,7 | | | Definition symbols | | | | | | | | | | | N | is the n | is the number of laboratories after outlier elimination | | | | | | | | | L | is the n | is the number of outlier free individual analytical values | | | | | | | | | 0 | is the p | ercentag | e of outl | ying valu | es from r | eplicate | determin | nation | | | X | is the o | verall me | ean | | | | | | | | $s_{ m R}$ | is the re | eproduci | bility sta | andard de | eviation | | | | | | CVR | is the co | is the coefficient of the variation of the reproducibility | | | | | | | | | S_{Γ} | is the re | is the repeatability standard deviation | | | | | | | | | CV _r | is the co | oefficien | t of the v | ariation | of the rep | eatabili | ty | | | Table B.2 — Performance data for Calcium (Ca) | Sample | n | 1 | О | X | s _R | CV_R | Sr | CVr | |--------------------------|----|----|-----|--------|----------------|--------|-------|-----| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 11 | 54 | 1,8 | 1 500 | 100 | 6,6 | 24 | 1,6 | | exhausted olive residues | 13 | 65 | 0 | 14 200 | 1 040 | 7,3 | 607 | 4,3 | Table B.3 — Performance data for Iron (Fe) | Sample | n | 1 | 0 | X | s _R | CV_R | s _r | cv_r | |--------------------------|----|----|-----|-------|----------------|--------|----------------|--------| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 15 | 69 | 5,5 | 54 | 6 | 11,7 | 4 | 6,6 | | exhausted olive residues | 15 | 73 | 1,4 | 1 600 | 165 | 10,3 | 81 | 5,1 | #### Table B.4 — Performance data for Magnesium (Mg) | Sample | n | 1 | 0 | X | $s_{ m R}$ | CV_R | s _r | cv _r | |--------------------------|----|----|---|-------|------------|--------|----------------|-----------------| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 12 | 60 | 0 | 194 | 14 | 7,2 | 3 | 1,7 | | exhausted olive residues | 13 | 65 | 0 | 3 140 | 243 | 7,7 | 149 | 4,7 | # Table B.5 — Performance data for Phosphorus (P) | Sample | n | 1 | 0 | X | s _R | CV_R | $s_{\rm r}$ | CVr | |--------------------------|----|----|-----|-------|----------------|--------|-------------|-----| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 11 | 53 | 3,6 | 74 | 5 | 6,7 | 2 | 3,4 | | exhausted olive residues | 13 | 65 | 0 | 1 490 | 127 | 8,5 | 58 | 3,9 | #### Table B.6 — Performance data for Potassium (K) | Sample | n | 1 | 0 | X | $s_{ m R}$ | CVR | $s_{\rm r}$ | cv _r | |--------------------------|----|----|-----|--------|------------|------|-------------|-----------------| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 13 | 63 | 3,1 | 691 | 77 | 11,1 | 12 | 1,8 | | exhausted olive residues | 11 | 52 | 5,5 | 24 500 | 1 560 | 6,4 | 468 | 1,9 | ### Table B.7 — Performance data for Silicon (Si) | Sample | n | L | О | X | s _R | CVR | $s_{\rm r}$ | CVr | |--------------------------|----|----|-----|--------|----------------|------|-------------|------| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 8 | 39 | 2,5 | 320 | 106 | 33 | 36 | 11,2 | | exhausted olive residues | 10 | 49 | 4,0 | 10 040 | 1 230 | 12,2 | 769 | 7,7 | #### Table B.8 — Performance data for Sodium (Na) | Sample | n | 1 | o | X | $s_{ m R}$ | $CV_{\mathbf{R}}$ | $s_{\rm r}$ | cv_r | |--------------------------|----|----|---|-------|------------|-------------------|-------------|--------| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 9 | 44 | 0 | 13 | 6 | 48 | 2 | 14 | | exhausted olive residues | 10 | 49 | 0 | 171 | 40 | 23 | 9 | 5,4 | #### Table B.9 — Performance data for Titanium (Ti) | Sample | n | 1 | 0 | X | $s_{ m R}$ | CVR | s _r | cv _r | |--------------------------|----|----|-----|-------|------------|-----|----------------|-----------------| | | | | % | mg/kg | mg/kg | % | mg/kg | % | | wood chips | 9 | 43 | 4,4 | 5,5 | 0,40 | 7,4 | 0,32 | 5,9 | | exhausted olive residues | 11 | 54 | 1,8 | 136 | 11 | 7,9 | 6 | 4,4 | Table B.10 — Lists of techniques for the round robin | Used method | No. of laboratories
(18 participating
laboratories) | |--|---| | No information | 3 | | Microwave digestion ICP-OES and ICP-MS | 13 | | Microwave digestion and AAS | 1 | | Fusion bead and X-ray fluorescence spectometry | 1 | # **Bibliography** - [1] ISO 5725-2:2004, Accuracy (trueness and precision) of measurement methods and results Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method - [2] ISO 16996⁶, Solid biofuels Determination of elemental composition by X-ray fluorescence - [3] ISO/TS 21748:2004, Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation - [4] NIST Technical note 1297:1994 *Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results.* - [5] NIST definitions: http://ts.nist.gov/MeasurementServices/ReferenceMaterials/DEFINITIONS. cfm. ⁶⁾ Under development. # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com