BS EN ISO 11073-10425:2016 ## **BSI Standards Publication** # Health informatics — Personal health device communication Part 10425: Device specialization — Continuous glucose monitor (CGM) (ISO 11073-10425:2016) #### National foreword This British Standard is the UK implementation of EN ISO 11073-10425:2016. The UK participation in its preparation was entrusted to Technical Committee IST/35, Health informatics. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 88580 8 ICS 35.240.80 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2016. Amendments/corrigenda issued since publication Date Text affected ## **EUROPEAN STANDARD** ### EN ISO 11073-10425 ## NORME EUROPÉENNE **EUROPÄISCHE NORM** June 2016 ICS 35.240.80 #### **English Version** ## Health informatics - Personal health device communication - Part 10425: Device specialization -Continuous glucose monitor (CGM) (ISO 11073-10425:2016) Informatique de santé - Communication entre dispositifs de santé personnels - Partie 10425: Spécialisation du dispositif - Glucomètre continu (CGM) (ISO 11073-10425:2016) Medizinische Informatik - Kommunikation von Geräten für die persönliche Gesundheit - Teil 10425: Gerätespezifikation - Kontinuierlicher Glukose-Monitor (ISO 11073-10425:2016) This European Standard was approved by CEN on 21 February 2016. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels #### **European foreword** The text of ISO/IEEE 11073-10425:2016 has been prepared by Technical Committee ISO/TC 215 "Health informatics" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 11073-10425:2016 by Technical Committee CEN/TC 251 "Health informatics" the secretariat of which is held by NEN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by December 2016, and conflicting national standards shall be withdrawn at the latest by December 2016. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### **Endorsement notice** The text of ISO/IEEE 11073-10425:2016 has been approved by CEN as EN ISO 11073-10425:2016 without any modification. #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is called to the possibility that implementation of this standard may require the use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. ISO/IEEE is not responsible for identifying essential patents or patent claims for which a license may be required, for conducting inquiries into the legal validity or scope of patents or patent claims or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance or a Patent Statement and Licensing Declaration Form, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from ISO or the IEEE Standards Association. ISO/IEEE 11073-10425 was prepared by the IEEE 11073 Standards Comittee of the IEEE Engineering in Medicine and Biology Society (as IEEE Std 11073-10425-2014). It was adopted by Technical Committee ISO/TC 215, *Health informatics*, in parallel with its approval by the ISO member bodies, under the "fast-track procedure" defined in the Partner Standards Development Organization cooperation agreement between ISO and IEEE. IEEE is responsible for the maintenance of this document with participation and input from ISO member bodies. **Abstract:** Within the context of the ISO/IEEE 11073 family of standards for device communication, a normative definition of the communication between continuous glucose monitor (CGM) devices and managers (e.g., cell phones, personal computers, personal health appliances, and set top boxes), in a manner that enables plug-and-play interoperability, is established in this standard. It leverages appropriate portions of existing standards including ISO/IEEE 11073 terminology and information models. It specifies the use of specific term codes, formats, and behaviors in telehealth environments restricting optionality in base frameworks in favor of interoperability. This standard defines a common core of communication functionality of CGM devices. In this context, CGM refers to the measurement of the level of glucose in the body on a regular (typically 5 minute) basis through a sensor continuously attached to the person. **Keywords:** continuous glucose monitor, IEEE 11073-10425™, medical device communication, personal health devices Copyright © 2014 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 10 October 2014. Printed in the United States of America. IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated. PDF: ISBN 978-0-7381-9318-2 STD98795 Print: ISBN 978-0-7381-9319-9 STDPD98795 IEEE prohibits discrimination, harassment, and bullying. For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA #### Important Notices and Disclaimers Concerning IEEE Standards Documents IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Standards Documents." ## Notice and
Disclaimer of Liability Concerning the Use of IEEE Standards Documents IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association ("IEEE-SA") Standards Board. IEEE ("the Institute") develops its standards through a consensus development process, approved by the American National Standards Institute ("ANSI"), which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards. IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied "AS IS" and "WITH ALL FAULTS." Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard. IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE. #### **Translations** The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard. #### Official statements A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE. #### Comments on standards Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group. Comments on standards should be submitted to the following address: Secretary, IEEE-SA Standards Board 445 Hoes Lane Piscataway, NJ 08854 USA #### Laws and regulations Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so. #### Copyrights IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents. #### **Photocopies** Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center. #### **Updating of IEEE Standards documents** Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect. Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://ieeexplore.ieee.org/xpl/standards.jsp or contact IEEE at the address listed previously. For more information about the IEEE-SA or IEEE's standards development process, visit the IEEE-SA Website at http://standards.ieee.org. #### Errata Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata periodically. #### **Patents** Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses. Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained
from the IEEE Standards Association. #### **Participants** Chia-Chin Chong At the time this IEEE standard was completed, the Personal Health Devices Working Group had the following membership: #### Daidi Zhong, Chair Michael J. Kirwan, Chair Nathaniel M. Hamming, Vice Chair Charles R. Abbruscato Saeed A. Choudhary Nabil Abujbara Jinhan Chung Malcolm Clarke Maher Abuzaid Manfred Aigner John A. Cogan Jorge Alberola John T. Collins Karsten Alders Cory Condek Todd H. Cooper Murtaza Ali Rolf Ambuehl David Cornejo David Aparisi **Douglas Coup** Nigel Cox Lawrence Arne Hans Crommenacker Diego B. Arquillo Serafin Arroyo Tomio Crosley Muhammad Asim David Culp Merat Bagha Allen Curtis Doug Baird Ndifor Cyril Fru David Baker Eyal Dassau Anindya Bakshi David Davenport Ananth Balasubramanian Russell Davis Sunlee Bang Ed Day M. Jonathan Barkley Sushil K. Deka Gilberto Barrón Pedro de-las-Heras-Quiros David Bean Jim DelloStritto John Bell Matthew d'Entremont Rudy Belliardi Lane Desborough Daniel Bernstein Kent Dicks Hyoungho Do George A. Bertos Chris Biernacki Xiaolian Duan Ola Björsne Brian Dubreuil Thomas Blackadar Jakob Ehrensvard Marc Blanchet Fredrik Einberg Thomas Bluethner Roger M. Ellingson Michihiro Enokida Douglas P. Bogia Xavier Boniface Javier Escayola Calvo Shannon Boucousis Leonardo Estevez Julius Broma Roger Feeley Bosco T. Fernandes Lyle G. Bullock, Jr. Christoph Fischer Bernard Burg Morten Flintrup Chris Burns Anthony Butt Joseph W. Forler Jeremy Byford-Rew Russell Foster Satya Calloji Eric Freudenthal Carole C. Carey Matthias Frohner Santiago Carot-Nemesio Ken Fuchs Randy W. Carroll Jing Gao Simon Carter Marcus Garbe Seungchul Chae John Garguilo Rahul Chauhan Rick Geimer James Cheng Igor Gejdos Ferenc Gerbovics Peggy Chien Channa Gowda Charles M. Gropper Amit Gupta Jeff Guttmacher Rasmus Haahr Christian Habermann Michael Hagerty Jerry Hahn Robert Hall Rickey L. Hampton Sten Hanke Jordan Hartmann Kai Hassing Marc Daniel Haunschild Wolfgang Heck Charles Henderson Jun-Ho Her Takashi Hibino Timothy L. Hirou Allen Hobbs Alex Holland Arto Holopainen Robert Hoy Frank Hsu Anne Huang Sen-Der Huang Zhiqiang Huang Ron Huby Robert D. Hughes David Hughes Jiyoung Huh **Hugh Hunter** Hitoshi Ikeda Yutaka Ikeda Philip O. Isaacson Atsushi Ito Michael Jaffe Praduman Jain Danny Jochelson Chris Johnson Phaneeth Junga Akiyoshi Kabe Steve Kahle Tomio Kamioka Kei Kariya Andy Kaschl Junzo Kashihara Julian Goldman Chris Gough Raul Gonzalez Gomez Nicolae Goga #### BS EN ISO 11073-10425:2016 ISO/IEEE 11073-10425:2016(E) Kohichi Kashiwagi Jim Niswander Sternly K. Simon Ralph Kent Hiroaki Niwamoto Marjorie Skubic Laurie M. Kermes Thomas Norgall Robert Smith Ikuo Keshi Anand Noubade Ivan Soh Junhyung Kim Yoshiteru Nozoe Motoki Sone Min-Joon Kim Abraham Ofek **Emily Sopensky** Minho Kim Brett Olive Rajagopalan Srinivasan Taekon Kim Begonya Otal Andreas Staubert Tetsuya Kimura Charles Palmer Nicholas Steblay Alfred Kloos Bud Panjwani Beth Stephen Jeongmee Koh Carl Pantiskas Lars Steubesand Jean-Marc Koller Harry P. Pappas John (Ivo) Stivoric Mikey Paradis John Koon Raymond A. Strickland Patty Krantz Hanna Park Hermanni Suominen Alexander Kraus Jong-Tae Park Lee Surprenant Ramesh Krishna Myungeun Park Ravi Swami Soojun Park Geoffrey Kruse Ray Sweidan Phillip E. Pash Falko Kuester Jin Tan Rafael Lajara TongBi Pei Haruyuyki Tatsumi Pierre Landau Soren Petersen John W. Thomas Jaechul Lee James Petisce JongMuk Lee Peter Piction Michael Pliskin Kyong Ho Lee Rami Lee Jeff Price Sungkee Lee Harald Prinzhorn Woojae Lee John Quinlan Yonghee Lee Arif Rahman Joe Lenart Tanzilur Rahman Kathryn A. Lesh Steve Ray Qiong Li Phillip Raymond Ying Li Tim Reilly Barry Reinhold Patrick Lichter Brian Reinhold Jisoon Lim Melvin I. Reynolds Joon-Ho Lim John Lin John G. Rhoads Jiajia Liu Jeffrey S. Robbins Wei-Jung Lo Moskowitz Robert Timothy Robertson Charles Lowe David Rosales Don Ludolph Christian Luszick Riccardo Serafin Sid Shaw Frank Shen Liqun Shen Bozhi Shi Min Shih Mazen Shihabi Redmond Shouldice Srikkanth Madhurbootheswaran Romain Marmot Sandra Martinez Bob MacWilliams Miguel Martínez de Espronceda Cámara Peter Mayhew Jim McCain László Meleg Alexander Mense Ethan Metsger Yu Miao Jinsei Miyazaki Erik Moll Darr Moore Piotr Murawski Soundharya Nagasubramanian Jae-Wook Nah Alex Neefus Trong-Nghia Nguyen-Dobinsky Michael E. Nidd Tetsu Nishimura **Brad Tipler** Jonas Tirén James Tomcik Janet Traub Jesús Daniel Trigo Gary Tschautscher Masato Tsuchid Ken Tubman Yoshihiro Uchida Sunil Unadkat Fabio Urbani Philipp Urbauer Laura Vanzago Alpo Värri Ciro de la Vega Dalimar Velez Naveen Verma Rudi Voon Isobel Walker Bill Saltzstein David Wang Benedikt Salzbrunn Jerry P. Wang Giovanna Sannino Yao Wang Yi Wang Jose A. Santos-Cadenas Stefan Sauermann Steve Warren John Sawyer Fujio Watanabe Guillaume Schatz Toru Watsuji Alois Schloegl Mike Weng Paul S. Schluter Kathleen Wible Lars Schmitt Paul Williamson Mark G. Schnell Jan Wittenber Jia-Rong Wu Richard A. Schrenker Antonio Scorpiniti Will Wykeham Kwang Seok Seo Ariton Xhafa > Junjie Yang Ricky Yang Melanie Yeung Done-Sik Yoo Zhiqiang Zhang Jason Zhang Thomas Zhao Miha Zoubek Szymon Zysko #### BS EN ISO 11073-10425:2016 ISO/IEEE 11073-10425:2016(E) The following members of the individual balloting committee voted on this standard. Balloters may have voted for approval, disapproval, or abstention. Thomas Blackadar Werner Hoelzl Lyle G. Bullock, Jr. Noriyuki Ikeuchi Keith Chow Atsushi Ito Sourav Dutta Raj Jain Joseph El Youssef Piotr Karocki Christoph Fischer Robert Kircher Hector Barron Gonzalez JongMuk Lee Randall Groves Jie Li William Lumpkins Kai Hassing Greg Luri Wolfgang Heck Nick S. A. Nikjoo Melvin I. Reynolds Bartien Sayogo Paul Schluter Lars Schmitt Eugene Stoudenmire Walter Struppler Jan Wittenber Oren Yuen Daidi Zhong When the IEEE-SA Standards Board approved this standard on 21 August 2014, it had the following membership: John Kulick, Chair Jon Walter Rosdahl, Vice Chair Richard H. Hulett, Past Chair Konstantinos Karachalios, Secretary Peter Balma Michael Janezic Ron Peterson Farooq Bari Jeffrey Katz Adrian Stephens Ted Burse Joseph L. Koepfinger* Peter Sutherland Clint Chaplain David J. Law Yatin Trivedi Phil Winston Stephen Dukes Hung Ling Jean-Phillippe Faure Oleg Logvinov Don Wright T. W. Olsen Gary Hoffman Yu Yuan Glenn Parsons Also included are the following nonvoting IEEE-SA Standards Board liaisons: Richard DeBlasio, *DOE Representative* Michael Janezic, *NIST Representative* Don Messina IEEE-SA Content Publishing Kathryn Bennett IEEE-SA Technical Community Programs ^{*}Member Emeritus #### Introduction This introduction is not part of IEEE Std 11073-10425-2014, Health informatics—Personal health device communication—Part 10425: Device Specialization—Continuous Glucose Monitor (CGM). ISO/IEEE 11073 standards enable communication between medical devices and external computer systems. This document uses the optimized framework created in ISO/IEEE 11073-20601:2010 and describes a specific, interoperable communication approach for continuous glucose monitors (CGMs). These standards align with and draw on the existing clinically focused standards to provide support for communication of data from clinical or personal health devices (PHDs). ^a Information on references can be found in Clause 2. #### **Contents** | 1. Overview | | |---|----| | 1.1 Scope | | | 1.2 Purpose | | | 1.3 Context | | | | _ | | 2. Normative references. | 2 | | | | | 3. Definitions, acronyms, and abbreviations | 2 | | 3.1 Definitions | | | 3.1 Acronyms and abbreviations | | | , | | | 4. Introduction to IEEE 11073 TM personal health devices | 4 | | 4.1 General | | | 4.2 Introduction to IEEE 11073-20601 modeling constructs | | | 4.3 Compliance with other standards | | | 1 | | | 5. Glucose monitoring concepts and modalities | 5 | | 5.1 General | | | 5.2 Device types | | | 5.3 CGM Agent to manager communication | | | 5.4 Collected data | | | 5.5 Stored data | | | | | | 6. Continuous glucose monitor domain information model | 10 | | 6.1 Overview | 10 | | 6.2 Class extensions | 10 | | 6.3 Object instance diagram | 10 | | 6.4 Types of configuration | | | 6.5 Profiles | | | 6.6 Medical device system object | 12 | | 6.7 Numeric objects | | | 6.8 Real-time sample array objects | | | 6.9 Enumeration objects | | | 6.10 PM-store objects | | | 6.11 Scanner objects | 33 | | 6.12 Class extension objects | | | 6.13 CGM information model extensibility rules | 33 | | · | | | 7. Continuous glucose monitor service model | 34 | | 7.1 General | 34 | | 7.2 Object access services | 34 | | 7.3 Object access event report services | 35 | | | | | 8. Continuous glucose monitor communication model | 36 | | 8.1 Overview | | | 8.2 Communication characteristics | | | 8.3 Association procedure | 37 | | 8.4 Configuring procedure | | | 8.5 Operating procedure | 40 | | 8.6 Time synchronization | 40 | #### BS EN ISO 11073-10425:2016 ISO/IEEE 11073-10425:2016(E) | 9. Test associations | 40 | |--|----| | 9.1 Behavior with standard configuration | 41 | | 9.2 Behavior with extended configurations | 41 | | | | | 10. Conformance | 41 | | 10.1 Applicability | 41 | | 10.2 Conformance specification | 41 | | 10.3 Levels of conformance | 42 | | 10.4 Implementation conformance statements | 42 | | - | | | Annex A (informative) Bibliography | 47 | | | | | Annex B (normative) Any additional ASN.1 definitions | 48 | | · | | | Annex C (normative) Allocation of identifiers | 50 | | | | | Annex D (informative) Message sequence examples | 54 | | · | | | Annex E (informative) Protocol data unit examples | 56 | #### Health informatics—Personal health device communication # Part 10425: Device Specialization—Continuous Glucose Monitor (CGM) IMPORTANT NOTICE: IEEE Standards documents are not intended to ensure safety, security, health, or environmental protection, or ensure against
interference with or from other devices or networks. Implementers of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations. This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Documents." They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html. #### 1. Overview #### 1.1 Scope This standard establishes a normative definition of communication between personal health continuous glucose monitor (CGM) devices (agents) and managers [e.g., cell phones, personal computers (PCs), personal health appliances, set top boxes] in a manner that enables plug-and-play interoperability. It leverages work done in other ISO/IEEE 11073 standards including existing terminology, information profiles, application profile standards, and transport standards. It specifies the use of specific term codes, formats, and behaviors in telehealth environments restricting optionality in base frameworks in favor of interoperability. This standard defines a common core of communication functionality of CGM devices. In this context, CGM refers to the measurement of the level of glucose in the body on a regular (typically 5 minute) basis through a sensor continuously attached to the person. #### 1.2 Purpose This standard addresses a need for an openly defined, independent standard for controlling information exchange to and from personal health devices (PHDs) and compute engines (e.g., cell phones, personal computers, personal health appliances, and set top boxes). Interoperability is the key to growing the potential market for these devices and to enabling people to be better informed participants in the management of their health. #### 1.3 Context See IEEE Std 11073-20601a[™] for an overview of the environment within which this standard is written. ¹ This standard defines the device specialization for the CGM, being a specific agent type, and it provides a description of the device concepts, its capabilities, and its implementation according to this standard. This standard is based on IEEE Std 11073-20601a-2010 and ISO/IEEE 11073-20601:2010, which in turn draw information from both ISO/IEEE 11073-10201:2004 [B7] and ISO/IEEE 11073-20101:2004 [B8]. The medical device encoding rules (MDERs) used within this standard are fully described in ISO/IEEE 11073-20601:2010. This standard reproduces relevant portions of the nomenclature found in ISO/IEEE 11073-10101:2004 [B6] and adds new nomenclature codes for the purposes of this standard. Among this standard, ISO/IEEE 11073-20601:2010, and IEEE Std 11073-20601[™]-2014, all required nomenclature codes for implementation are documented. NOTE 1—IEEE Std 11073-20601-2014 is a revision of ISO/IEEE 11073-20601:2010. It contains new material and corrections and does not copy the content of ISO/IEEE 11073-20601:2010. Throughout this standard, a reference to IEEE Std 11073-20601-2014 refers to the document that is obtained after applying this new material and corrections to ISO/IEEE 11073-20601:2010.³ NOTE 2—In this standard, ISO/IEEE 11073-104zz is used to refer to the collection of device specialization standards that utilize IEEE Std 11073-20601:2014, where zz can be any number from 01 to 99, inclusive. #### 2. Normative references The following referenced documents are indispensable for the application of this document (i.e., they must be understood and used, so each referenced document is cited in text and its relationship to this document is explained). For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments or corrigenda) applies. ISO/IEEE 11073-20601:2010, Health informatics—Personal health device communication—Part 20601: Application profile—Optimized Exchange Protocol.⁴ IEEE Std 11073-20601a-2010, Health informatics—Personal health device communication—Part 20601: Application profile—Optimized Exchange Protocol—Amendment 1. 5, 6 #### 3. Definitions, acronyms, and abbreviations #### 3.1 Definitions For the purposes of this document, the following terms and definitions apply. The *IEEE Standards Dictionary Online* should be consulted for terms not defined in this clause. ⁷ ¹ Information on references can be found in Clause 2. ² The numbers in brackets correspond to those of the bibliography in Annex A. ³ Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard. ⁴ ISO/IEEE publications are available from the ISO Central Secretariat (http://www.iso.org/). ISO/IEEE publications are also available in the United States from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/). ⁵ IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/). ⁶ The IEEE standards or products referred to in this clause are trademarks of The Institute of Electrical and Electronics Engineers, Inc. agent: A node that collects and transmits personal health data to an associated manager. blood glucose: Glucose concentration in the blood. class: In object-oriented modeling, it describes the attributes, methods, and events that objects instantiated from the class utilize. compute engine: See: manager. **continuous glucose monitor (CGM):** A medical device to provide a series of estimates of blood glucose concentration; typically from body fluid. **device:** A term used to refer to a physical apparatus implementing either an agent or a manager role. glucose: Commonly referred to as "sugar," it is the major source of energy used by the body cells. handle: An unsigned 16-bit number that is locally unique and identifies one of the object instances within an agent. interstitial fluid (ISF): The thin layer of fluid that surrounds the body's cells. **manager:** A node receiving data from one or more agent systems. Some examples of managers include a cellular phone, health appliance, set top box, or a computer system. **object:** In object-oriented modeling, a particular instantiation of a class. The instantiation realizes attributes, methods, and events from the class. obj-handle: See: handle. personal health device (PHD): A device used in personal health applications. personal telehealth device: See: personal health device. #### 3.1 Acronyms and abbreviations APDU application protocol data unit ASN.1 Abstract Syntax Notation One AST alternative site testing BGM blood glucose meter CGM continuous glucose monitor DIM domain information model EUI-64 extended unique identifier (64 bits) HCP health care professional ICS implementation conformance statements ISF interstitial fluid MDC medical device communication ⁷IEEE Standards Dictionary Online subscription is available at: http://www.ieee.org/portal/innovate/products/standard/standards_dictionary.html. #### BS EN ISO 11073-10425:2016 ISO/IEEE 11073-10425:2016(E) MDER medical device encoding rules MDS medical device system MOC managed object class OID object identifier PDU protocol data unit PHD personal health device VMO virtual medical object VMS virtual medical system #### 4. Introduction to IEEE 11073™ personal health devices #### 4.1 General This standard and the remainder of the series of ISO/IEEE 11073 personal health device (PHD) standards fit in the larger context of the ISO/IEEE 11073 series of standards. The full suite of standards enables agents to interconnect and interoperate with managers and with computerized health-care information systems. See IEEE Std 11073-20601-2014 for a description of the guiding principles for this series of ISO/IEEE 11073 PHD standards. IEEE Std 11073-20601-2014 supports the modeling and implementation of an extensive set of PHDs. This standard defines aspects of the CGM device. It describes all aspects necessary to implement the application layer services and data exchange protocol between an ISO/IEEE 11073 PHD CGM agent and a manager. This standard defines a subset of the objects and functionality contained in IEEE Std 11073-20601-2014, and it extends and adds definitions where appropriate. All new definitions are given in Annex B in Abstract Syntax Notation One (ASN.1 [B9]). Nomenclature codes referenced in this standard that are not defined in IEEE Std 11073-20601-2014 are normatively defined in Annex C. #### 4.2 Introduction to IEEE 11073-20601 modeling constructs #### 4.2.1 General The ISO/IEEE 11073 series of standards, and in particular IEEE Std 11073-20601-2014, is based on an object-oriented systems management paradigm. The overall system model is divided into three principal components: the domain information model (DIM), the service model, and the communication model. See IEEE Std 11073-20601-2014 for a detailed description of the modeling constructs. #### 4.2.2 Domain information model The DIM is a hierarchical model that describes an agent as a set of objects. These objects and their attributes represent the elements that control behavior and report on the status of the agent and the data that an agent can communicate to a manager. Communication between the agent and the manager is defined by the application protocol in IEEE Std 11073-20601-2014. #### 4.2.3 Service model The service model defines the conceptual mechanisms for the data exchange services. Such services are mapped to messages that are exchanged between the agent and the manager. Protocol messages within the ISO/IEEE 11073 series of standards are defined in ASN.1. The messages defined in IEEE Std 11073-20601-2014 can coexist with
messages defined in other standard application profiles defined in the ISO/IEEE 11073 series of standards. #### 4.2.4 Communication model In general, the communication model supports the topology of one or more agents communicating over logical point-to-point connections to a single manager. For each logical point-to-point connection, the dynamic system behavior is defined by a connection state machine as specified in IEEE Std 11073-20601-2014. #### 4.2.5 Implementing the models An agent implementing this standard shall implement all mandatory elements of the information, service, and communication models as well as all conditional elements where the condition is met. The agent should implement the recommended elements, and it may implement any combination of the optional elements. A manager implementing this standard shall utilize at least one of the mandatory, conditional, recommended, or optional elements. In this context, "utilize" means to use the element as part of the primary function of the manager device. For example, a manager whose primary function is to display data would need to display a piece of data in the element in order to utilize it. #### 4.3 Compliance with other standards Devices that comply with this standard may also be required to comply with other domain- and device-specific standards that supersede the requirements of this standard with respect to issues including safety, reliability, and risk management. A user of this standard is expected to be familiar with all other such standards that apply and to comply with any higher specifications thus imposed. Typically, medical devices will comply with the IEC 60601-1:2005 [B1] base standards with respect to electrical and mechanical safety and any device-specific standard as might be defined in the IEC 60601-2 [B2] series of standards. Software aspects may apply through standards such as IEC 62304:2006/EN 62304:2006 [B3]. Devices that comply with this standard implement higher layers of network software and utilize lower layers as appropriate to the application. The requirements on performance of such applications and conformance are defined elsewhere and are outside the scope of this standard. Moreover, the use of any medical equipment is subject to risk assessment and risk management appropriate to the application. Some relevant examples are ISO 14971:2007 [B5] and IEC 80001-1:2010 [B4]. The requirements of such risk assessment and risk management and conformance are outside the scope of this standard. #### 5. Glucose monitoring concepts and modalities #### 5.1 General This clause presents the general concepts of CGMs. In the context of PHDs in this family of standards, a CGM is a device that estimates the concentration of glucose in the blood typically measured from interstitial fluid (ISF). The glucose concentration is available on a continual basis at a periodic interval from a sensor. A CGM improves therapy control as opposed to the single, episodic measurements of a blood glucose meter (BGM). Frequent measurements provided by a CGM give a patient greater insight as to the fluctuations in blood glucose levels throughout the day, and in turn, can reduce the risk of developing diabetic complications. Glucose, or the concentration of blood sugar in the blood, is the primary source of energy for the body's cells. The glucose level is tightly regulated in the human body and is normally maintained between approximately 70 mg/dL and 150 mg/dL (4 mmol/L and 8 mmol/L). The total amount of glucose in the circulating blood is, therefore, approximately 3.5 g to 7.5 g (assuming an ordinary adult blood volume of 5 L). In a healthy adult male of 75 kg with a blood volume of 5 L, a blood glucose level of 100 mg/dL (5.5 mmol/L) corresponds to a total of approximately 5 g (1/5 oz and equivalent to a commercial sugar packet) of glucose in the blood and approximately 45 g (1.5 oz) in the total body fluid (which includes blood and ISF). Glucose levels rise after meals and are usually lowest in the morning, before the first meal of the day. The failure to maintain blood glucose in the normal range leads to conditions of persistently high (hyperglycemia) or low (hypoglycemia) blood sugar. Diabetes mellitus, which is characterized by persistent hyperglycemia from several causes, is the most prominent disease related to the failure to regulate blood sugar. If left untreated or improperly managed, diabetes can lead to complications including cardiovascular disease, kidney failure, and eye disease. Concentration of blood glucose uses either mmol/L or mg/dL as units. Countries that use the metric system generally use mmol/L. However, the United States as well as other countries use mg/dL. To convert blood glucose measurements between the two units, utilize the following conversions: - Divide the mg/dL by 18.02 to get mmol/L (or multiply by 0.0555) - Multiply the mmol/L by 18.02 to get mg/dL (or divide by 0.0555) The glucose concentration measured by various techniques can be classified into different types defined by three elements: sample type, sample source, and concentration reference method. Table 1 shows all the glucose concentration types defined in this standard. | Sample type | Sample source | Reference method | |--------------------|---------------|------------------| | | Comillows | Whole blood | | Blood | Capillary | Plasma | | | Venous | Whole blood | | | venous | Plasma | | | Arterial | Whole blood | | | Arteriai | Plasma | | | Undetermined | Whole blood | | | Undetermined | Plasma | | Interstitial fluid | Subcutaneous | N/A | | interstitiai fluid | tissue | IN/A | | Control solution | N/A | N/A | Table 1—Glucose concentration types NOTE—The blood glucose concentration may be indirectly derived from an ISF sample, which is a common technique used in continuous glucose monitoring. A control solution is normally used for glucose meter quality control. ISF is the common source of the measurement made by a CGM, though new technologies on the horizon may employ other sources. BGMs may utilize other sample sources for their measurements, with the common source being capillary whole blood. #### 5.2 Device types Continuous glucose monitor devices are generally designed to be portable and permanently connected to the body. The structural shape of CGMs may vary, but a CGM device typically includes the following components: the glucose sensor, a transmitter, and a receiver. These components may be enclosed in physical different devices. With current technology at the time of writing, the sensor consists of a small metallic filament that is inserted into subcutaneous layer of fat tissue under the skin, where it measures an approximation of the blood glucose level from the ISF. Preferred sites for sensor insertion are the abdomen, lumbar region, and the upper arms. Typically, there is a mechanical means (e.g., an adhesive patch) used to keep the sensor in place. The sensor needs to be replaced periodically. A transmitter connected to the sensor is used to wirelessly transmit the measurements to the receiver. This receiver is often a physically separate device that can display trend graphs and other statistics or notifications along with the current glucose measurement, as depicted in Figure 1(a). Insulin pumps, and other personal electronic devices, can also serve as the receiver of the CGM measurements, as depicted in Figure 1(b). Continuous glucose monitors provide blood glucose approximation typically from ISF. To ensure an accurate approximation, a CGM is periodically calibrated against a blood-based glucose measurement. While manual entry of the blood glucose measurement into the CGM receiver is possible, more sophisticated CGMs provide wireless communication between either the transmitter or receiver and a BGM. For clarity, the terms transmitter and receiver were used, however note that both these devices may actually be transceivers. #### 5.3 CGM Agent to manager communication As described in 5.2, a CGM may consist of two physical parts, e.g., the sensor/transmitter and the receiver. This device specialization provides a standard of interoperability between only one of those physical parts and the computing device acting as the CGM manager. For example, this standard could be between the CGM receiver and manager, or between the CGM sensor/transmitter and manager when the system does not include a specific CGM receiver. These scenarios are depicted in Figure 1. Other scenarios not discussed may exist. The CGM agent may periodically send the measurement results to the manager upon availability or the exchange may take place after a CGM session (hours or days). Furthermore, the manager may request stored results of a dedicated time period. This functionality, in addition to the store and forward scenario, requires time stamps for each measurement result. It is the responsibility of the agent to resolve the time stamp of any measurements reported from CGM components. The manager as referenced here could be a PC, mobile phone, or other computing device. Figure 1—Agent to manager communication—CGM receiver to manager scenario is depicted in (a) and CGM sensor/transmitter to manager is depicted in (b) (there may be other scenarios not depicted in Figure 1) #### 5.4 Collected data #### 5.4.1 General The CGM is a portable device and therefore may not be connected to a manager while collecting data. The two main use cases for a CGM agent to connect to a manager and send its data are the following: - The CGM user visits a health care professional (HCP) to examine the adequacy of the insulin therapy. The HCP normally compares the historic data from the CGM with the corresponding data from an insulin pump device to derive necessary adjustments to the insulin therapy. As the interval between such visits may constitute several months, CGMs are typically capable of storing data for such time periods. - The CGM user connects the CGM agent to a manager as needed to
examine the adequacy of the insulin therapy and to apply adjustments. This tends to happen on a more frequent basis (e.g., once per week). In addition to the preceding two use cases, a CGM agent may also be continuously connected to a manager to report collected data (e.g., artificial pancreas). #### 5.4.2 Glucose Glucose is a measurement of glucose concentration in the blood. Typically for CGM, this measurement is made from other body fluids then blood, and thus calibration is required to calculate the blood glucose levels. #### 5.4.3 Sensor calibration A glucose measurement is typically needed to calibrate the CGM. This measurement could originate from a BGM, but would need to be stored in the memory of the continuous glucose meter, so as to have a log of the calibrations performed. Traditionally, the calibration glucose measurement is entered manually by the user, but may also be collected directly from a BGM. #### 5.4.4 Sensor run-time CGM sensors deteriorate over time due to their method of collecting measurements, e.g., sensor embedded in the subcutaneous tissue receives build-up. Thus, CGM sensors need to be replaced periodically and each manufacturer specifies the life of the sensor. The sensor run-time indicates the suggested period of time the sensor should be used. #### 5.4.5 Glucose sampling interval The glucose sampling interval indicates the frequency of glucose measurements. #### 5.4.6 Glucose trend Glucose trend is the rate of change in glucose measurements at a time instant. #### 5.4.7 Patient low/high thresholds The patient low/high thresholds are settings used to indicate a range of patient acceptable glucose concentrations. If glucose concentrations fall outside this range, a typical reaction is to notify the patient (e.g., as a CGM status message or other indicator) and record the event. #### 5.4.8 Device hypo/hyper thresholds The device hypo/hyper thresholds are settings to indicate the critical glucose concentration range. If a glucose concentration crosses either of these thresholds, the CGM typically notifies the patient (e.g., as a CGM status message or other indicator) and records the event. #### 5.4.9 Glucose rate-of-change thresholds The glucose rate-of-change thresholds are settings to indicate the maximum increase and decrease rate of glucose variation. If a glucose rate of change crosses either of these thresholds, the CGM typically notifies the patient (e.g., as a CGM status message or other indicator) and records the event. #### 5.4.10 PHD DM status The PHD DM status allows generic notification handling for PHDs. It indicates by time stamps the raise of info, warning, error, service and undetermined messages. #### 5.4.11 CGM status CGM status object represents the specific notifications given by the CGM device including, but not limited to, warnings, errors, and handling events. #### 5.5 Stored data As stated in 5.4.1, a CGM may be used over several months of operation without being connected to a manager to send its data. Once a CGM is connected to a manager, the manager is able to select which of the agent's stored measurements or observations to retrieve. Depending on the agent's capabilities to organize its data into clusters of chronologically contiguous data, the manager may also select the time ranges of the stored data to retrieve. The agent then transmits the manager's selection in one or several blocks of messages for processing by a manager or other processing apparatus. The manager may also be able to choose a set of data clusters for deletion. #### 6. Continuous glucose monitor domain information model #### 6.1 Overview This clause describes the domain information model (DIM) of the CGM. #### 6.2 Class extensions In this standard, no class extensions are defined with respect to IEEE Std 11073-20601-2014. #### 6.3 Object instance diagram The object instance diagram of the CGM DIM, which is defined for the purposes of this standard, is shown in Figure 2. See 6.6 through 6.12 for descriptions of the different CGM objects [e.g., the CGM medical device system (MDS) object, the glucose numeric object, and the CGM status enumeration object]. See 6.13 for rules for extending the CGM DIM beyond elements as described in this standard. Each clause that describes an object of the CGM contains the following information: - The nomenclature code used to identify the class of the object. One example where this code is used is the configuration event, where the object class is reported for each object. This allows the manager to determine whether the class of the object being specified is a numeric, real-time sample array, enumeration, scanner, or PM-store class. - The attributes of the object. Each object has attributes that represent and convey information on the physical device and its data sources. Each object has a Handle attribute that identifies the object instance within an agent. Attribute values are accessed and modified using methods such as GET and SET. Attribute types are defined using an ASN.1. The ASN.1 definitions for new attribute types specific to this standard are in Annex B, and the ASN.1 definitions for existing attribute types referenced in this standard are in IEEE Std 11073-2060-2014. - The methods available on the object. - The potential events generated by the object. The data are sent to the manager using events. - The available services such as getting or setting attributes. The attributes for each class are defined in tables that specify the name of the attribute, its value, and its qualifier. The qualifiers mean: M—Attribute is Mandatory, C—Attribute is Conditional and depends on the condition stated in the Remark or Value column (if IEEE Std 11073-20601-2014 is referenced, then it contains the conditions), R—Attribute is Recommended, NR—Attribute is Not Recommended, and O—Attribute is Optional. Mandatory attributes shall be implemented by an agent. Conditional attributes shall be implemented if the condition applies and may be implemented otherwise. Recommended attributes should be implemented by the agent. Not recommended attributes should not be implemented by the agent. Optional attributes may be implemented on an agent. For attributes with qualifiers set to R or NR, underlying requirements stated in the Remark and Value column in IEEE Std 11073-20601-2014 shall be followed. The attributes can be either static, dynamic, or observational as specified in IEEE Std 11073-20601-2014. Figure 2—Continuous glucose monitor domain information model #### 6.4 Types of configuration #### 6.4.1 General As specified in IEEE Std 11073-20601-2014, there are two styles of configuration available. Subclauses 6.4.2 and 6.4.3 briefly introduce standard and extended configurations. #### 6.4.2 Standard configuration Standard configurations are defined in the ISO/IEEE 11073-104zz specializations (such as this standard) and are assigned a well-known identifier (Dev-Configuration-Id). The usage of a standard configuration is negotiated at association time between the agent and the manager. If the manager acknowledges that it understands and wants to operate using the configuration, then the agent can begin sending measurements immediately. If the manager does not understand the configuration, the agent provides the configuration prior to transmitting measurement information. #### 6.4.3 Extended configuration In extended configurations, the agent's configuration is not predefined in a standard. The agent determines which objects, attributes, and values will be used in a configuration and assigns a configuration identifier. When the agent associates with a manager, it negotiates an acceptable configuration. Typically, the manager does not recognize the agent's configuration on the first connection, so the manager responds that the agent needs to send the configuration information as a configuration event report. If, however, the manager already understands the configuration, either because it was preloaded in some way or the agent had previously associated with the manager, then the manager responds that the configuration is known and no further configuration information needs to be sent. #### 6.5 Profiles #### 6.5.1 General A profile further constrains the objects, services, and communication model of a specialization. By profiling the device specialization, the standard provides more guidance on the specific mandatory objects that shall be implemented, the objects that are optional, and the objects that are not required. This standard does not define profiles for the CGM device. #### 6.6 Medical device system object #### 6.6.1 MDS object attributes Table 2 summarizes the attributes of the CGM MDS object. The nomenclature code to identify the MDS object class is MDC_MOC_VMS_MDS_SIMP. Table 2—MDS object attributes | Attribute name | Value | Qual. | |--------------------------|---|-------| | Handle | 0 | M | | System-Type | Attribute not present. See IEEE Std 11073-20601-2014. | NR | | System-Type-Spec-List | {MDC_DEV_SPEC_PROFILE_CGM, 1} | M | | System-Model | {"Manufacturer","Model"} | M | | System-Id | Extended unique identifier (64 bits) (EUI-64) | M | | Dev-Configuration-Id | Standard config: 0x09C4 | M | | | Extended configs: 0x4000–0x7FFF | | | Attribute-Value-Map | See IEEE Std 11073-20601-2014. | C | | Production-Specification | See IEEE Std 11073-20601-2014. | C | | Mds-Time-Info | See IEEE Std 11073-20601-2014. | C | | Date-and-Time | See IEEE Std 11073-20601-2014. | C | | Base-Offset-Time | See IEEE Std 11073-20601-2014. | R | | Relative-Time | See IEEE Std 11073-20601-2014. | С | | HiRes-Relative-Time | See IEEE Std 11073-20601-2014. | С | | Date-and-Time-Adjustment | See IEEE Std 11073-20601-2014. | R | | Power-Status | onBattery or onMains | R | | Battery-Level | See IEEE Std 11073-20601-2014. | R | | Remaining-Battery-Time | See IEEE Std 11073-20601-2014. | R | | Reg-Cert-Data-List | See IEEE Std
11073-20601-2014. | О | | Confirm-Timeout | See IEEE Std 11073-20601-2014. | О | NOTE—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. In the response to a Get MDS object command, only implemented attributes and their corresponding values are returned. See IEEE Std 11073-20601-2014 for descriptive explanations of the individual attributes as well as for information on attribute ID and attribute type. The Dev-Configuration-Id attribute holds a locally unique 16-bit identifier that identifies the device configuration instance. For a CGM agent with extended configuration, this identifier is chosen in the range of extended-config-start to extended-config-end (see IEEE Std 11073-20601-2014) as shown in Table 2. The agent sends the Dev-Configuration-Id during the Associating state (see 8.3) to identify its configuration for the duration of the association. If the manager already holds the configuration information relating to the Dev-Configuration-Id, it recognizes the Dev-Configuration-Id. Then the Configuring state (8.4) is skipped, and the agent and manager enter the Operating state. If the manager does not recognize the Dev-Configuration-Id, the agent and manager enter the Configuring state. If an agent implements multiple IEEE 11073-104zz specializations, System-Type-Spec-List is a list of type/version pairs, each referencing the respective device specialization and version of that specialization. As defined in ISO/IEEE 11073-20601a-2010, the production-specification attribute includes component serial numbers, revisions, and so on in manufacture specific format. For CGM MDS object, the production-specification attribute shall include the required information for all physical components, e.g., sensor, transmitter, receiver, etc., as applicable. When any one of these components are changed or replaced, the MDS production-specification attribute shall be updated accordingly. #### 6.6.2 MDS object methods Table 3 defines the methods (actions) of the CGM agent's MDS object. These methods are invoked using the Action service. In Table 3, the *Subservice type name* column defines the name of the method; the *Mode* column defines whether the method is invoked as an unconfirmed action (i.e., roiv-cmip-action from IEEE Std 11073-20601-2014) or a confirmed action (i.e., roiv-cmip-confirmed-action); the *Subservice type* (action-type) column defines the nomenclature code to use in the action-type field of an action request and response (see IEEE Std 11073-20601-2014); the *Parameters* (action-info-args) column defines the associated ASN.1 data structure (see IEEE Std 11073-20601-2014 for ASN.1 definitions) to use in the action message for the action-info-args field of the request; and the *Results* (action-info-args) column defines the structure to use in the action-info-args of the response. Table 3—MDS object methods | Service | Subservice
type name | Mode | Subservice type
(action-type) | Parameters (action-info-args) | Results (action-info-args) | |---------|--------------------------|-----------|----------------------------------|-------------------------------|----------------------------| | ACTION | Set-Time | Confirmed | MDC_ACT_SET_TIME | SetTimeInvoke | _ | | ACTION | Set-Base-
Offset-Time | Confirmed | MDC_ACT_SET_BO_TIME | SetBOTimeInvoke | _ | Set-Time This method allows the manager to set a real-time clock in the agent with the absolute time. The agent indicates whether the Set-Time command is valid using the mds-time-capab-set-clock bit in the Mds-Time-Info attribute (see IEEE Std 11073-20601-2014). If the agent supports the Absolute-Time-Stamp attribute, this method shall be implemented. Set-Base-Offset-Time This method allows the manager to set a real-time clock in the agent with the base time and offset. The agent indicates whether the Set-Base-Offset-Time command is valid using the mds-time-capab-set-clock bit in the Mds-Time-Info attribute (see IEEE Std 11073-20601-2014). If the agent supports the Base-Offset-Time-Stamp attribute, this method shall be implemented. #### 6.6.3 MDS object events Table 4 defines the events that can be sent by the CGM MDS object. Table 4—Continuous glucose monitor MDS object events | Service | Subservice type name | Mode | Subservice type
(event-type) | Parameters
(event- info) | Results
(event-reply-
info) | |---------|----------------------|-----------|---------------------------------|-----------------------------|-----------------------------------| | EVENT | MDS- | Confirmed | MDC_NOTI_CONFIG | ConfigReport | ConfigReport | | REPORT | Configuration-Event | | | | Rsp | | | MDS-Dynamic- | Confirmed | MDC_NOTI_SCAN_ | ScanReportInfoFixed | | | | Data-Update-Fixed | | REPORT_FIXED | | | | | MDS-Dynamic- | Confirmed | MDC_NOTI_SCAN_ | ScanReportInfoVar | _ | | | Data-Update-Var | | REPORT_VAR | | | | | MDS-Dynamic- | Confirmed | MDC_NOTI_SCAN_ | ScanReportInfoMP | _ | | | Data-Update-MP- | | REPORT_MP_FIXED | Fixed | | | | Fixed | | | | | | | MDS-Dynamic- | Confirmed | MDC_NOTI_SCAN_ | ScanReportInfoMP | _ | | | Data-Update-MP- | | REPORT_MP_VAR | Var | | | | Var | | | | | #### — MDS-Configuration-Event: This event is sent by the agent during the configuring procedure if the manager does not already know the agent's configuration from past associations or because the manager has not been implemented to recognize the configuration according to the CGM device specialization. The event provides static information about the supported measurement capabilities of the agent. #### — MDS-Dynamic-Data-Update-Var: This event provides dynamic measurement data from the agent for the numeric and enumeration objects. These data are reported using a generic attribute list variable format. The event is sent as an unsolicited message by the agent (i.e., an agent-initiated measurement data transmission). See 8.5.3 for more information on unsolicited event reporting. #### — MDS-Dynamic-Data-Update-Fixed: This event provides dynamic measurement data from the agent for the numeric and enumeration objects. These data are reported in the fixed format defined by the Attribute-Value-Map attribute of the object(s). The event is sent as an unsolicited message by the agent (i.e., an agent-initiated measurement data transmission). See 8.5.3 for more information on unsolicited event reporting. #### — MDS-Dynamic-Data-Update-MP-Var: This is the same as MDS-Dynamic-Data-Update-Var but allows inclusion of data from multiple people. #### — MDS-Dynamic-Data-Update-MP-Fixed: This is the same as MDS-Dynamic-Data-Update-Fixed but allows inclusion of data from multiple people. NOTE—IEEE Std 11073-20601-2014 requires that managers support all of the MDS object events previously listed. #### 6.6.4 Other MDS services #### 6.6.4.1 GET service A CGM agent shall support the GET service, which is provided by the MDS object to retrieve the values of all implemented MDS object attributes. The GET service can be invoked as soon as the CGM agent receives the Association Response and moves to the Associated state, including the Operating and Configuring substates. The manager may request the MDS object attributes of the agent, in which case, the manager shall send the "Remote Operation Invoke | Get" message (see roiv-cmip-get in IEEE Std 11073-20601-2014) with the reserved MDS handle value of 0. The agent shall report its MDS object attributes to the manager using the "Remote Operation Response | Get" message (see rors-cmip-get in IEEE Std 11073-20601-2014). See Table 5 for a summary of the GET service including some message fields. Table 5— Continuous glucose monitor MDS object GET service | Service | Subservice
type name | Mode | Subservice type | Parameters | Results | |---------|-------------------------|----------------------------------|-----------------|--|--| | GET | <na></na> | <implied confirmed=""></implied> | <na></na> | GetArgumentSimple
= (obj-handle = 0),
attribute-id-list
<optional></optional> | GetResultSimple
= (obj-handle =
0), attribute-list | See 8.5.2 for details on the procedure for getting the MDS object attributes. #### 6.6.4.2 SET service The CGM specialization does not require an implementation to support the MDS object SET service. #### 6.7 Numeric objects #### 6.7.1 General The CGM DIM (see Figure 2) contains numeric objects that represent aspects of glucose concentration, sensor calibration, sensor run-time, measurement interval, trending, patient thresholds, hypo/hyper thresholds, and glucose rate-of-change thresholds. These are described in 6.7.2 through 6.7.9. Table 6 shows attributes that are common to all the numeric objects. Table 6—Common numeric object attributes | Attribute Name | Value | Qual. | |-----------------------------------|--------------------------------------|-------| | Handle | See IEEE Std 11073-20601-2014. | M | | Туре | Defined in the following subclauses. | M | | Supplemental-Types | See IEEE Std 11073-20601-2014. | 0 | | Metric-Spec-Small | Defined in the following subclauses. | M | | Metric-Structure-Small | See IEEE Std 11073-20601-2014. | 0 | | Measurement-Status | See IEEE Std 11073-20601-2014. | С | | Metric-Id | See IEEE Std 11073-20601-2014. | 0 | | Metric-Id-List | See IEEE Std 11073-20601-2014. | С | | Metric-Id-Partition | See IEEE Std 11073-20601-2014. | 0 | | Unit-Code | Defined in the following subclauses. | M | | Attribute-Value-Map | See IEEE Std 11073-20601-2014. | С | | Source-Handle-Reference | See IEEE Std 11073-20601-2014. | 0 | | Label-String | See IEEE Std 11073-20601-2014. | 0 | | Unit-LabelString | See IEEE Std 11073-20601-2014. | 0 | | Absolute-Time-Stamp | See IEEE Std 11073-20601-2014. | С | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | С | | Relative-Time-Stamp | See IEEE Std 11073-20601-2014. | С | |
HiRes-Time-Stamp | See IEEE Std 11073-20601-2014. | С | | Measure-Active-Period | See IEEE Std 11073-20601-2014. | 0 | | Simple-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | С | | Compound-Simple-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | С | | Basic-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | С | | Compound-Basic-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | С | | Nu-Observed-Value | See IEEE Std 11073-20601-2014. | С | | Compound-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | С | | Accuracy | See IEEE Std 11073-20601-2014. | 0 | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. Each object represents a specific aspect of glucose measurement, patient settings, or sensor operations. The object is denoted by the Type attribute. The description of each numeric object defines the data or events it produces, the possible states, and where appropriate, its behavior. The respective tables define the numeric values generated by the agent in response to a change in state. Sometimes, the interpretation of one attribute value in an object depends on other attribute values in the same object. For example, Unit-Code and Unit-LabelString provide context for the observed values. Whenever a contextual attribute changes, the agent shall report these changes to the manager using an MDS object event (see 6.6.3) prior to reporting any of the dependent values. The numeric object does not support any methods, events, or other services. The CGM specialization recommends the Base-Time-Offset for all numeric objects. Base-Time-Offset attribute allows for convenient time adjustments based on changing time zones. #### 6.7.2 Glucose Glucose is a measurement of glucose concentration in the blood. Typically for CGM, this measurement is made from other body fluids than blood, and thus calibration is required to calculate the blood glucose levels. Table 7 summarizes the attributes of the glucose numeric object. The glucose numeric object shall be supported by a CGM agent. The glucose numeric object does not support any methods, events, or other services. The observed value reported in this object is a glucose measurement. Only non-negative numbers shall be used. For a CGM agent with standard configuration, the AttrValMap structure (see IEEE Std 11073-20601-2014) of the Attribute-Value-Map attribute shall contain the attribute ID and attribute length information of the Basic-Nu-Observed-Value and Base-Offset-Time-Stamp attribute in the same order as indicated in Table 7. A glucose measurement that is above the capabilities of the device sensor shall be indicated with an observed value of +INFINITY, and a glucose measurement that is below the capabilities of the device sensor shall be indicated with an observed value of –INFINITY. The glucose numeric type attribute defines the type of fluid the CGM will sample. If the fluid type is unknown, then undetermined whole blood, MDC_CONC_GLU_UDTRM_WHOLEBLOOD, or undetermined plasma, MDC_CONC_GLU_UDTRM_PLASMA, should be chosen, as appropriate. The glucose numeric is further defined by the supplemental-type attribute, which indicates from which body site the CGM will be sampling. If the sample location is unknown, MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED shall be chosen, and if the sample location is not available in the codes provided MDC_CTXT_GLU_SAMPLELOCATION_OTHER shall be chosen. The measurement-status attribute is used to qualify the measurement or provide additional operational conditions and is recommended. A measurement-status of *calibration-ongoing* shall indicate that the CGM is in the process of calibration when the measurement was taken. A measurement-status of *invalid* shall indicate that the CGM is uncalibrated when the measurement was taken. A measurement-status of *questionable* shall indicate that the measurement is not reliable. A measurement-status of *validated-data* shall indicate that the CGM was calibrated when the measurement was taken and the measurement is reliable. Table 7—Glucose numeric object attributes | Attribute name | Extended configuration | | Standard configuration (Dev-Configuration-Id = 0x09C4 | 4) | |--|--|-------|--|-------| | | Value | Qual. | Value | Qual. | | Handle | See IEEE Std 11073-20601-2014. | M | 1 | M | | Туре | {MDC_PART_SCADA, MDC_CONC_GLU_ISF or MDC_CONC_GLU_CAPILLARY_WHOLEBLOOD or MDC_CONC_GLU_CAPILLARY_PLASMA or MDC_CONC_GLU_VENOUS_WHOLEBLOOD or MDC_CONC_GLU_VENOUS_PLASMA or MDC_CONC_GLU_ARTERIAL_WHOLEBLOOD or MDC_CONC_GLU_ARTERIAL_PLASMA or MDC_CONC_GLU_ARTERIAL_PLASMA or MDC_CONC_GLU_CONTROL or MDC_CONC_GLU_UNDETERMINED_WHOLEBLOOD or MDC_CONC_GLU_UNDETERMINED_PLASMA} | M | {MDC_PART_SCADA,
MDC_CONC_GLU_ISF} | М | | Supplemental-
Types | [MDC_PART_PHD_DM, MDC_CTXT_GLU_SAMPLELOCATION_ FINGER or MDC_CTXT_GLU_SAMPLELOCATION_AST or MDC_CTXT_GLU_SAMPLELOCATION_ EARLOBE or MDC_CTXT_GLU_SAMPLELOCATION_CTRLSOL UTION or MDC_CTXT_GLU_SAMPLELOCATION_ SUBCUTANEOUS or MDC_CTXT_GLU_SAMPLELOCATION_ UNDETERMINED or MDC_CTXT_GLU_SAMPLELOCATION_ OTHER See IEEE Std 11073-20601-2014 and following text. | 0 | {MDC_PART_PHD_DM,
MDC_CTXT_GLU_SAMPLELOCATION_
SUBCUTANEOUS} | М | | Metric-Spec-
Small | mss-avail-intermittent mss-avail-stored-data mss-accagent-initiated mss-cat-calculation | M | mss-avail-intermittent mss-avail- stored-
data mss-acc-agent-initiated mss-cat-
calculation | М | | Measurement-
Status | See IEEE Std 11073-20601-2014 and the following text. | R | See IEEE Std 11073-20601-2014. | M | | Unit-Code | MDC_DIM_ MILLI_G_PER_DL or
MDC_DIM_MILLI_MOLE_PER_L | M | MDC_DIM_ MILLI_G_PER_DL | M | | Attribute-Value-
Map | See IEEE Std 11073-20601-2014. | С | MDC_ATTR_NU_VAL_OBS_BASIC, then MDC_ATTR_TIME_STAMP_BO. | M | | Base-Offset-
Time | See IEEE Std 11073-20601-2014. | R | If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2014 apply. | M | | Basic-Nu-
Observed-Value | See IEEE Std 11073-20601-2014. | R | If fixed format is used and the standard configuration is not adjusted, this attribute is mandatory; otherwise, the conditions from IEEE Std 11073-20601-2014 apply. | M | | Measurement-
Confidence-95 | See following text. | О | See following text. | NR | | Threshold-
Notification-
Text-String | See following text. | 0 | See following text. | NR | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. #### 6.7.2.1 Measurement-confidence-95 attribute The measurement-confidence-95 attribute specifies the upper and lower bounds for a range within which the manufacture is 95% confident that the actual measurement value resides. The lower and upper bounds have the same units as the measurement. The lower bound shall be less than or equal to the upper bound. The measurement-confidence-95 attribute is not to be included in the standard configuration and is optional for extended configurations. Table 8 defines the measurement-confidence-95 attribute. Table 8—Glucose measurement-confidence-95 attribute | Attribute name | Attribute ID | Attribute type | Remark | Qualifiers | |----------------|---------------------|----------------|--------------------------------------|---------------| | Measurement- | MDC_ATTR_MSMT_CONFI | MeasurementCo | This attribute defines the lower and | Optional | | Confidence-95 | DENCE_95 | nfidence95 | upper bounds for a range within | Observational | | | | | which the manufacture is 95% | | | | | | confident that the actual value | | | | | | resides. The unit for the lower | | | | | | bound and upper bound is the same | | | | | | as the measurement. | | NOTE 1—See Annex B for ASN.1 structure definition. #### 6.7.2.2 Glucose threshold and status attributes One attribute extending the glucose numeric object is provided to report the agent's glucose threshold details, and a second reports whether the measurement has reached or crossed beyond the threshold boundaries. The Measurement-Status attribute has been extended (compatible with ISO/IEEE 11073-10201:2004 [B8]) from the definition in IEEE Std 11073-20601-2014 in order to report the threshold status. Note that the patient low/high thresholds and device hypo/hyper thresholds objects, 6.7.7 and 6.7.8, respectively, store the glucose numeric threshold values. See Table 9 for addition details. Table 9—Glucose threshold and status attributes | Attribute name | Attribute ID | Attribute type | Remark | Qualifiers | |----------------|----------------------|----------------|---------------------------------------|---------------| | Threshold- | MDC_ATTR_THRES_NOTIF | OCTET | Text related to the current threshold | Optional | | Notification- | _TEXT_STRING | STRING | notification. | Observational | | Text-String | | | | | | Measurement- | MDC_ATTR_MSMT_STAT | MeasurementSt | Dynamically reflects whether | Conditional | | Status | | atus | observed value is at or outside | Observational | | | | | threshold boundaries. If | | | | | | thresholding is to be used, this | | | | | | attribute is mandatory. Use bit | | | | | | msmt-state-in-alarm(14) to indicate | | | | | | that the measurement is outside | | | | | | threshold boundaries. Use msmt- | | | | | |
state-al-inhibited(15) to indicate | | | | | | that the threshold indication is | | | | | | disabled and should not cause a | | | | | | displayed annunciation. These are | | | | | | bits extended from the | | | | | | IEEE 11073-20601 definitions of | | | | | | MeasurementStatus. All other bits | | | | | | of MeasurementStatus as defined in | | | | | | IEEE Std 11703-20601 remain | | | | | | unchanged. | | NOTE—See Annex B for ASN.1 bit mapping definition. #### 6.7.3 Sensor calibration As previously described, a glucose measurement is typically needed to calibrate the CGM. This measurement could originate from a BGM, but would need to be stored in the memory of the continuous glucose meter, so as to have a log of the calibrations performed. Table 10 summarizes the attributes of the sensor calibration numeric object. Table 10 —Sensor calibration numeric object attributes | | Extended configuration | | | |-------------------------|---|---|--| | Attribute name | Value | | | | Type | {MDC_PART_PHD_DM, MDC_CGM_SENSOR_CALIBRATION} | M | | | Supplemental-Types | {MDC_PART_PHD_DM,
MDC_CTXT_GLU_SAMPLELOCATION_FINGER or
MDC_CTXT_GLU_SAMPLELOCATION_AST or
MDC_CTXT_GLU_SAMPLELOCATION_EARLOBE or
MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS or
MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED or
MDC_CTXT_GLU_SAMPLELOCATION_OTHER }
See IEEE Std 11073-20601-2014. | 0 | | | Metric-Spec-Small | mss-avail-stored-data mss-upd-aperiodic mss-acc-agent-initiated mss-cat-manual mss-cat-setting The mss-cat-manual shall only be set if, and only if, the reading is manually entered. | M | | | Measurement-Status | See IEEE Std 11073-20601-2014 and following text. | R | | | Unit-Code | MDC_DIM_ MILLI_G_PER_DL or MDC_DIM_MILLI_MOLE_PER_L. | M | | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | | Basic-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | R | | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. The sensor calibration numeric object does not support any methods, events, or other services. The measurement-status attribute is recommended. This attribute is used to qualify the calibration or provide additional calibration conditions. A measurement-status of *invalid* indicates that the CGM is uncalibrated. A measurement-status of *validated-data* indicates that the CGM was calibrated. The sensor calibration numeric is further defined by the supplemental-type attribute, which indicates the body site used for the glucose calibration measurement. If the sample location is unknown, MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED shall be chosen, and if the sample location is not available in the codes provided MDC_CTXT_GLU_SAMPLELOCATION_OTHER shall be chosen. #### 6.7.4 Sensor run-time CGM sensors deteriorate over time due to their method of collecting measurements, e.g., sensor embedded in the subcutaneous tissue receives build-up. Thus, CGM sensors need to be replaced periodically and each manufacture specifies the life of their sensor. The sensor run-time numeric object indicates the suggested period of time CGM sensor should be used. Table 11 summarizes the attributes of the sensor run-time numeric object. Table 11 —Sensor run-time numeric object attributes | Attribute name | Extended configuration | | |-------------------------|--|-------| | Attribute fiame | Value | Qual. | | Туре | {MDC_PART_PHD_DM,
MDC_CGM_SENSOR_RUN_TIME} | M | | Metric-Spec-Small | mss-upd-aperiodic mss-msmt-aperiodic mss-
acc-agent-initiated mss-cat-calculation mss-
avail-stored-data mss-cat-setting
See IEEE Std 11073-20601-2014. | М | | Unit-Code | MDC_DIM_HR | M | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | Basic-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | R | NOTE 2—See 6.3 for a description of the qualifiers. The sensor run-time numeric object does not support any methods, events, or other services. Using the time stamp attribute as the start time and the observed value attribute as the duration with units of hour, one can calculate date and time when the CGM sensor should be replaced. Typically, this object is only created during sensor insertion; however, if the CGM is able to determine the quality of the sensor, this object may be used to reflect a dynamic sensor run-time. ## 6.7.5 Glucose sampling interval The glucose sampling interval numeric indicates the frequency of CGM glucose measurements. Table 12 summarizes the attributes of the glucose sampling interval numeric object. Table 12—Glucose sampling interval numeric object attributes | Attribute name | Value | Qual. | |-------------------------|---|-------| | Туре | {MDC_PART_PHD_DM,
MDC_CGM_SENSOR_SAMPLE_
INTERVAL} | M | | Metric-Spec-Small | mss-upd-aperiodic mss-acc-agent-initiated mss-avail-stored-data mss-cat-manual mss-cat-setting See IEEE Std 11073-20601-2014. | М | | Unit-Code | MDC_DIM_MIN | M | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | Basic-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | R | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. The glucose sampling interval numeric object does not support any methods, events, or other services. The glucose sampling interval numeric type is MDC_CGM_SENSOR_SAMPLE_INTERVAL and the unit-code attribute for the glucose sampling interval numeric is minutes. #### 6.7.6 Glucose trend Therapy used to provide glycemic control may take into consideration the change in blood glucose over time, or its slope. The glucose trend numeric provides this metric and its attributes are summarized in Table 13. Table 13 — Glucose trend numeric object attributes | Attribute name | Value | Qual. | | |------------------------------|------------------------------------|-------|--| | Type | {MDC_PART_PHD_DM | M | | | 1)10 | MDC_CONC_GLU_TREND} | | | | Metric-Spec-Small | See IEEE Std 11073-20601-2014. | M | | | Unit-Code | MDC_DIM_ MILLI_G_PER_DL_PER_MIN or | M | | | | MDC_DIM_MILLI_MOLE_PER_L_PER_MIN | | | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | | Basic-Nu-Observed-Value | See IEEE Std 11073-20601-2014. | R | | | Threshold-Notification-Text- | See following text. | 0 | | | String | See following text. | U | | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. The glucose trend numeric object does not support any methods, events, or other services. The glucose trend numeric type is MDC_CONC_GLU_TREND and the units-code attribute shall be MDC_DIM_MILLI_G_PER_DL_PER_MIN or MDC_DIM_MILLI_MOLE_PER_L_PER_MIN, as appropriate. The observed value shall be the change in glucose concentration measurements per minute. #### 6.7.6.1 Glucose trend threshold and status attributes One attribute extending the glucose trend numeric object is provided to report the agent's glucose rate-of-change threshold details, and a second reports whether the measurement has reached or crossed beyond the threshold boundaries. The Measurement-Status attribute has been extended (compatible with ISO/IEEE 11073-10201:2004 [B8]) from the definition in IEEE Std 11073-20601-2014 in order to report the threshold status. Note that the glucose rate-of-change thresholds (see 6.7.9) store the glucose trend numeric threshold values. See Table 14 for addition details. Table 14 — Glucose trend threshold and status attributes | Attribute name | Attribute ID | Attribute type | Remark | Qualifiers | |--|-----------------------------------|--------------------|--|------------------------------| | Threshold-
Notification-
Text-String | MDC_ATTR_THRES_NOTIF _TEXT_STRING | OCTET
STRING | Text related to the current threshold notification. | Optional
Observational | | Measurement-
Status | MDC_ATTR_MSMT_STAT | MeasurementSt atus | Dynamically reflects whether observed value is at or outside threshold boundaries. If thresholding is to be used, this attribute is mandatory. Use bit msmt-state-in-alarm(14) to indicate that the measurement is outside threshold boundaries. Use msmt-state-al-inhibited(15) to indicate that the threshold indication is disabled and should not cause a displayed annunciation. These are bits extended from the IEEE 11073-20601 definitions of MeasurementStatus. All other bits of MeasurementStatus as defined in IEEE Std 11703-20601 remain unchanged. | Conditional
Observational | NOTE 1—See Annex B for ASN.1 bit mapping definition. ## 6.7.7 Patient low/high threshold The patient low/high threshold numeric is a setting used to indicate a range of patient acceptable glucose concentrations. If glucose
concentrations fall outside this range, a typical reaction is to notify the patient and log the event. Table 15 summarizes the attributes of the patient low/high threshold numeric object. Table 15 — Patient low/high threshold numeric object attributes | Attribute name | Value | Qual. | |--------------------------------------|---|-------| | Туре | {MDC_PART_PHD_DM,
MDC_CONC_GLU_PATIENT_THRESHOLDS_LOW_
HIGH} | M | | Metric-Spec-Small | See IEEE Std 11073-20601-2014. | M | | Metric-Structure-
Small | {ms-struct-compound-fix, 2}
See IEEE Std 11073-20601-2014. | M | | Metric-Id-List | MDC_CONC_GLU_PATIENT_THRESHOLD_LOW then MDC_CONC_GLU_PATIENT_THRESHOLD_HIGH | M | | Unit-Code | MDC_DIM_ MILLI_G_PER_DL or MDC_DIM_MILLI_MOLE_PER_L | M | | Base-Offset-Time-
Stamp | See IEEE Std 11073-20601-2014. | R | | Compound-Basic-
Nu-Observed-Value | See IEEE Std 11073-20601-2014. | R | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. The patient low/high thresholds numeric object does not support any methods, events, or other services. The patient low/high thresholds numeric type is MDC_CONC_GLU_PATIENT_THRESHOLDS_LOW_HIGH and the units-code attribute shall be MDC_DIM_MILLI_G_PER_DL or MDC_DIM_MILLI_MOLE_PER_L, as appropriate. The patient low/high thresholds compound observed value attribute shall include first the patient low threshold, MDC_CONC_GLU_PATIENT_THESHOLD_LOW, followed by the patient high threshold, MDC_CONC_GLU_PATIENT_THESHOLD_HIGH. ## 6.7.8 Device hypo/hyper thresholds The device hypo/hyper thresholds numeric is a setting to indicate the critical glucose concentration range. Table 16 summarizes the attributes of the device hypo/hyper thresholds numeric object. Table 16 — Device hypo/hyper thresholds numeric object attributes | Attribute name | Value | Qual. | |--------------------------------------|---|-------| | Туре | {MDC_PART_PHD_DM,
MDC_CONC_GLU_THRESHOLDS_HYPO_
HYPER} | M | | Metric-Spec-Small | See IEEE Std 11073-20601-2014. | M | | Metric-Structure-Small | {ms-struct-compound-fix, 2}
See IEEE Std 11073-20601-2014. | M | | Metric-Id-List | MDC_CONC_GLU_THRESHOLD_HYPO then MDC_CONC_GLU_THRESHOLD_HYPER | M | | Unit-Code | MDC_DIM_ MILLI_G_PER_DL or MDC_DIM_MILLI_MOLE_PER_L | M | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | Compound-Basic-Nu-
Observed-Value | See IEEE Std 11073-20601-2014. | R | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. The device hypo/hyper thresholds numeric object does not support any methods, events, or other services. The device hypo/hyper threshold numeric type is MDC_CONC_GLU_PATIENT_THRESHOLDS_HYPO_HYPER and the units-code attribute shall be MDC_DIM_MILLI_G_PER_DL or MDC_DIM_MILLI_MOLE_PER_L, as appropriate. The device hypo/hyper thresholds compound observed value attribute shall include first the device hypo threshold, MDC_CONC_GLU_PATIENT_THESHOLD_HYPO, followed by the device hyper threshold, MDC_CONC_GLU_PATIENT_THESHOLD_HYPER. ## 6.7.9 Glucose rate-of-change thresholds The glucose rate-of-change thresholds numeric is a setting to indicate the maximum rate of glucose variation. Table 17 summarizes the attributes of the glucose rate-of-change thresholds numeric object. Table 17 —Glucose rate-of-change thresholds numeric object attributes | Attribute name | Value | Qual. | |--------------------------------------|---|-------| | Туре | {MDC_PART_PHD_DM,
MDC_CONC_GLU_RATE_THRESHOLDS } | M | | Metric-Spec-Small | See IEEE Std 11073-20601-2014. | M | | Metric-Structure-Small | {ms-struct-compound-fix, 2}
See IEEE Std 11073-20601-2014. | M | | Metric-Id-List | MDC_CONC_GLU_RATE_THRESHOLD_
INCREASE then
MDC_CONC_GLU_RATE_THRESHOLD_
DECREASE | M | | Unit-Code | MDC_DIM_ MILLI_G_PER_DL_PER_MIN or MDC_DIM_MILLI_MOLE_PER_L_PER_MIN | M | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | Compound-Basic-Nu-
Observed-Value | See IEEE Std 11073-20601-2014. | R | NOTE 2—See 6.3 for a description of the qualifiers. The glucose rate-of-change thresholds numeric object does not support any methods, events, or other services. The glucose rate-of-change thresholds numeric type is MDC_CONC_GLU_RATE_THRESHOLDS and the units-code attribute shall be MDC_DIM_MILLI_G_PER_DL_PER_MIN or MDC_DIM_MILLI_MOLE_PER_L_PER_MIN, as appropriate. The glucose rate-of-change thresholds compound observed value attribute shall include first the glucose rate increase threshold, MDC_CONC_GLU_RATE_THRESHOLD_INCREASE, followed by the glucose rate decrease threshold, MDC_CONC_GLU_RATE_THRESHOLD_DECREASE. ## 6.8 Real-time sample array objects Real-time sample array objects are not required by this standard. ## 6.9 Enumeration objects #### 6.9.1 General The CGM DIM (see Figure 2) contains enumeration objects that represent the general device status and CGM specific status. The nomenclature code to identify the enumeration class is MDC_MOC_VMO_METRIC_ENUM. Subclauses 6.9.2 and 6.9.3 define the precise definitions for both general and specific CGM status enumeration objects. Table 18 shows the common attributes for all the enumeration objects. Enumeration objects do not support any methods, events, or other services. Table 18—Common enumeration object attributes | Attribute name | Value | Qual. | |--|--------------------------------------|-------| | Handle | See IEEE Std 11073-20601-2014. | M | | Type | Defined in the following subclauses. | M | | Supplemental-Types | See IEEE Std 11073-20601-2014. | 0 | | Metric-Spec-Small | Defined in the following subclauses. | M | | Metric-Structure-
Small | See IEEE Std 11073-20601-2014. | О | | Measurement-Status | See IEEE Std 11073-20601-2014. | С | | Metric-Id | See IEEE Std 11073-20601-2014. | 0 | | Metric-Id-List | See IEEE Std 11073-20601-2014. | С | | Metric-Id-Partition | See IEEE Std 11073-20601-2014. | 0 | | Unit-Code | See IEEE Std 11073-20601-2014. | 0 | | Attribute-Value-Map | See IEEE Std 11073-20601-2014. | С | | Source-Handle-
Reference | See IEEE Std 11073-20601-2014. | О | | Label-String | See IEEE Std 11073-20601-2014. | 0 | | Unit-LabelString | See IEEE Std 11073-20601-2014. | 0 | | Absolute-Time-Stamp | See IEEE Std 11073-20601-2014. | С | | Base-Offset-Time-
Stamp | See IEEE Std 11073-20601-2014. | С | | Relative-Time-Stamp | See IEEE Std 11073-20601-2014. | С | | HiRes-Time-Stamp | See IEEE Std 11073-20601-2014. | С | | Measure-Active-
Period | See IEEE Std 11073-20601-2014. | О | | Enum-Observed-
Value-Simple-OID | See IEEE Std 11073-20601-2014. | С | | Enum-Observed-
Value-Simple-Bit-Str | See IEEE Std 11073-20601-2014. | С | | Enum-Observed-
Value-Basic-Bit-Str | See IEEE Std 11073-20601-2014. | С | | Enum-Observed-
Value-Simple-Str | See IEEE Std 11073-20601-2014. | С | | Enum-Observed-
Value | See IEEE Std 11073-20601-2014. | С | | Enum-Observed-
Value-Partition | See IEEE Std 11073-20601-2014. | 0 | NOTE 2—See 6.3 for a description of the qualifiers. ## 6.9.2 PHD DM status The PHD DM status object allows generic device events to be recorded in order to track important events for the user and troubleshooting information for manufacturers. In the case where the CGM is more than one physical device, e.g., sensor, transmitter, or receiver, and these PHD DM status events are recorded in the CGM agent for each physical device, then there shall be only one instance of the PHD DM status object for each physical device, and the *Supplemental-Types* attribute shall be used to clarify which physical device. There shall not be two PHD DM status objects with the same supplemental-type. Table 19 defines the attributes for the object that represents the PHD DM status. The PHD DM status enumeration object may be supported by a CGM agent. Table 19—PHD DM status enumeration object attributes | Attribute name | Extended configuration | Qual. | |------------------------------------|---|-------| | Type | { MDC_PART_PHD_DM, | M | | | MDC_PHD_DM_DEV_STAT } | | | Supplemental-Types | { MDC_PART_PHD_DM, | R | | | MDC_CGM_DEV_TYPE_SENSOR or | | | | MDC_CGM_DEV_TYPE_TRANSMITTER or | | | | MDC_CGM_DEV_TYPE_RECEIVER or | | | | MDC_CGM_DEV_TYPE_OTHER } | | | | See IEEE Std 11073-20601-2014. | | | Metric-Spec-Small | mss-avail-intermittent mss-avail-stored-data mss- | M | | | upd-aperiodic mss-acc-agent-initiated mss-acc- | | | | manager-initiated | | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | Enum-Observed-Value-Simple-Bit-Str | Please see following text. | M | NOTE 2—See 6.3 for a description of the qualifiers. The observed value reported in this object is the general device status. Since these are essentially event flags, the Unit-Code attribute is not appropriate for this object. Similarly, the Source-Handle-Reference is inappropriate, as this object monitors the status of the equipment. The explicit expression of the existence of annunciations is realized by the setting of the appropriate bit in the Enum-Observed-Value-Simple-Bit-Str attribute, as defined in Table 20. If a manager supports this object, it shall be able to interpret the entire set of presented conditions. An agent is not required to implement all the features specified in Table 20. Anytime the status changes for any monitored condition, the agent shall report the status of all the monitored conditions. The detection of the condition change may take time. In case there is a delay in detecting the start or stop of a condition, then the event shall be reported with a time stamp
that is the time of the occurrence of the respective event rather than the time that the event is reported. If an acceptable, existing bit is not available, device-status-undetermined shall be. A manager shall interpret these bits only within the context of this attribute and only within this device specialization, as other specializations may use corresponding terms for different purposes. Table 20—Mapping of PHD DM status to object Bit-Str attribute | Bit | PHD DM status condition | PHDDMStat mnemonic | |-----|---|--| | 0 | Agent reports that an undetermined or not supported | device-status-undetermined | | | condition occurred. | | | 1 | Agent reports that a reset has occurred. | device-status-reset | | 5 | Agent reports that a general fault occurred. | device-status-error | | 6 | Agent reports that a mechanical fault occurred. | device-status-error-mechanical | | 7 | Agent reports that an electronic fault occurred. | device-status-error-electronic | | 8 | Agent reports that a software error occurred. | device-status-error-software | | 9 | Agent reports that a battery fault occurred. | device-status-error-battery | | 15 | Agent reports that a general service is required. | device-status-service | | 16 | Agent reports that a time synchronization is | device-status-service-time-sync-required | | | required. | | Table 20—Mapping of PHD DM status to object Bit-Str attribute (continued) | Bit | PHD DM status condition | PHDDMStat mnemonic | |-----|---|--| | 17 | Agent reports that a calibration is required. | device-status-service-calibration-required | | 18 | Agent reports that a component replenishment is | device-status-service-replenishment- | | | required. | required | | 25 | Agent reports that battery power is low. | device-status-battery-low | | 26 | Agent reports that battery is depleted. | device-status-battery-depleted | | 27 | Agent reports that battery has been replaced. | device-status-battery-replaced | | 28 | Agent reports that battery is interrupted. | device-status-battery-interrupted | NOTE 1—The bits in Table 20 are defined as: 0 = False and 1 = True. NOTE 2—The specific bit mappings of PHDDMStat are defined in Annex B. NOTE 3—All bits not defined in Table 20 or Annex B are reserved for future use. #### 6.9.3 CGM status The CGM status enumeration object allows specific running status, calibration states, notifications, errors, etc., for the CGM system. This enumeration object differs from the PHD DM status in 6.9.2 as it provides additional status codes specific to the CGM system. An enumeration object fulfills this need. If this object is to be implemented, then the object type and bit assignments shall be implemented as described. Table 21 summarizes the attributes of the CGM status enumeration object. Table 21 —Continuous glucose monitor status attributes | Attribute name | Extended configuration | | |------------------------------------|---|-------| | Attribute name | Value | Qual. | | Type | {MDC_PART_PHD_DM, MDC_CGM_DEV_STAT} | M | | Metric-Spec-Small | mss-avail-intermittent mss-avail-stored-data mss-upd-
aperiodic mss-msmt-aperiodic mss-acc-agent-initiated | M | | Base-Offset-Time-Stamp | See IEEE Std 11073-20601-2014. | R | | Enum-Observed-Value-Simple-Bit-Str | See following text. | R | NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. The CGM status enumeration object does not support any methods, events, or other services. An agent explicitly expresses the existence of the CGM status by setting the appropriate bits in the Enum-Observed-Value-Simple-Bit-Str attribute, as defined in Table 22. It is recommended to use the Enum-Observed-Value-Simple-Bit-Str attribute as the currently available status options are greater than what the Enum-Observed-Value-Basic-Bit-Str attribute allows. Note that a manager shall interpret these bits only within the context of this attribute and only within this device specialization as other specializations may use corresponding terms for different purposes. Table 22 — Mapping of device, sensor, and signal status to object Bit-Str attribute | Bit | Device or sensor condition | CGMStat mnemonic | |-----|--|----------------------------------| | 0 | Session stopped | sensor-session-stopped | | 2 | Sensor type incorrect for device | sensor-type-incorrect | | 3 | Sensor malfunction | sensor-malfunction | | 4 | Device Specific Alert | device-specific-alert | | 7 | Calibration not allowed | sensor-calibration-not-allowed | | 8 | Calibration recommended | sensor-calibration-recommended | | 9 | Calibration required | sensor-calibration-required | | 10 | Sensor temperature too high for valid test/result at | sensor-temp-too-high | | | time of measurement | | | 11 | Sensor temperature too low for valid test/result at | sensor-temp-too-low | | | time of measurement | | | 12 | Sensor result lower than the Patient Low level | sensor-result-below-patient-low | | 13 | Sensor result higher than the Patient High level | sensor-result-above-patient-high | | 14 | Sensor result lower than the Hypo level | sensor-low-hypo | | 15 | Sensor result higher than the Hyper level | sensor-high-hyper | | 16 | Sensor Rate of Decrease exceeded | sensor-rate-decrease-exceeded | | 17 | Sensor Rate of Increase exceeded | sensor-rate-increase-exceeded | | 18 | Sensor result lower than the device can process | sensor-result-too-low | | 19 | Sensor result higher than the device can process | sensor-result-too-high | | 20 | Sensor communication is out of range | sensor-com-out-of-range | NOTE 1— The bits in Table 22 are defined as: 0 = False and 1 = True. NOTE 2— The specific bit mappings of CGMStat are defined in Annex B. NOTE 3—All bits not defined in Table 22 or Annex B are reserved for future use. # 6.10 PM-store objects #### 6.10.1 General In the context of PHDs, CGMs are portable or mobile devices and are typically physically attached to the user. Thus, CGM agents may be used to collect measurements or observations at a time when out of the network and agent/manager associations cannot be established. It is also common that a given set of measurements made by CGM agents may need to be uploaded to more than one manager, for example, in the home and at a medical facility. To support dual usage, an agent may provide two or more configurations. One configuration may use a temporary measurement storage model that uploads the most recent data immediately on association (agent initiated) with little user intervention, such as might be used by a typical home user that uploads measurements frequently to a personal computer or a mobile device such as a cell phone. Another configuration may use a long-term measurement storage model that uploads data at the request of the manager, such as might be used by the patient's physician or other HCPs. The long-term storage model is realized using PM-stores. Any configuration that does not include a PM-store object utilizes agent-initiated event reports to transmit the observations. The use of temporarily stored data as defined in IEEE Std 11073-20601-2014 is most useful for small numbers of measurements and is subject to automatic deletion during upload. Alternatively, in the case where a large number of measurements may be stored or if automatic deletion is to be avoided, a PM-store configuration should be used. Any configuration with a PM-store for persistent storage shall enable access to the PM-store transmissions. As a result, this standard describes a mechanism using PM-store to hold measurements for longer durations. The data held in PM-store objects are deleted by user actions via the manager or user interface on the device, and the capacity is limited only by the amount of memory. #### 6.10.2 Persistent store model The PM-store model defined by this standard utilizes one or more PM-segments for the data of each object to be persistently stored (see Figure 3 for example). A segment holding glucose measurements shall be present if a PM-store is implemented. The other segments are optional and hold observations from the supporting objects that are implemented. Each entry shall include one of the time formats in the segm-entry-header so a manager can correlate entries across the different segments. If a particular object is not supported, the corresponding segment is not required to exist. Each segment has a cardinality of zero-to-many or one-to-many, as PM-segments are required to contain data from a contiguous period of time (see IEEE Std 11073-20601-2014). Therefore changing time and/or date on the agent typically results in the creation of new segment instances for the supported measurement or observation objects. Furthermore, a CGM agent may subdivide data from one contiguous period of time into several segments for further clustering of data (e.g., one segment per day or for an uninterrupted time span of the CGM being in operating mode). If a particular segment resulting from such time/date changes or clustering does not contain any entries, it is not required to exist. Note that the PM-store object is not part of standard configurations defined in this standard. Following the guides provided in this standard should enable an implementer to store and retrieve the data within this model, but the specifics for determining the specific nature of the data layout and the subsequent visualization, mining, or other managing of the retrieved data is outside the scope of this standard. Figure 3—Continuous glucose monitor persistent store model example # 6.10.3 PM-store object attributes Table 23 defines the
attributes of the PM-store object that shall be implemented by the agent. The nomenclature code to identify the PM-store objects is MDC_MOC_VMO_PMSTORE. Table 23 —PM-store object attributes | Attribute name | Extended configuration | | | | |------------------------|--------------------------------|-------|--|--| | Attribute name | Value | Qual. | | | | Handle | See IEEE Std 11073-20601-2014. | M | | | | PM-Store-Capab | See IEEE Std 11073-20601-2014. | M | | | | Store-Sample-Algorithm | See IEEE Std 11073-20601-2014. | M | | | | Store-Capacity-Count | See IEEE Std 11073-20601-2014. | M | | | | Store-Usage-Count | See IEEE Std 11073-20601-2014. | M | | | | Operational-State | See IEEE Std 11073-20601-2014. | M | | | | PM-Store-Label | See IEEE Std 11073-20601-2014. | 0 | | | | Sample-Period | See IEEE Std 11073-20601-2014. | NR | | | | Number-Of-Segments | See IEEE Std 11073-20601-2014. | M | | | | Clear-Timeout | See IEEE Std 11073-20601-2014. | M | | | The PM-Store-Capab attribute shall set the following bits as indicated: #### — pmsc-var-no-of-segm: If the agent creates new segments either due to storing data of multiple sessions or due to time changes as described in the "Comparable time" clause of IEEE Std 11073-20601-2014, then pmsc-var-no-of-segm shall be set. #### — pmsc-epi-seg-entries: The pmsc-epi-seg-entries bit shall be set. #### — pmsc-peri-seg-entries: The pmsc-peri-seg-entries bit shall not be set. The remaining bits of the PM-Store-Capab attribute are agent specific and shall be set appropriately. NOTE 1—See IEEE Std 11073-20601-2014 for information on whether an attribute is static or dynamic. NOTE 2—See 6.3 for a description of the qualifiers. ## 6.10.4 PM-store object methods Table 24 defines the methods of the PM-store objects. Table 24—PM-store object methods | Service | Subservice
type name | Mode | Subservice type
(action-type) | Parameters (action-info-args) | Results (action-info-args) | |---------|----------------------------|-----------|----------------------------------|-------------------------------|----------------------------| | | Clear-
Segments | Confirmed | MDC_ACT_SEG_
CLR | SegmSelection | | | ACTION | Get-Segment-
Info | Confirmed | MDC_ACT_SEG_
GET_INFO | SegmSelection | SegmentInfoList | | | Trig-Segment-
Data-Xfer | Confirmed | MDC_ACT_SEG_
TRIG_XFER | TrigSegmDataXferReq | TrigSegmDataXfer
Rsp | #### Clear-Segments This method allows the manager to delete all data entries stored in a PM-segment object. The agent shall support the Clear-Segments method by setting the pmsc-clear-segm-by-all-sup bit for the PM-Store-Capab attribute. Deletion of PM-segments is not guaranteed by this method. See IEEE Std 11073-20601-2014 for information on how the agent shall reply in case it decides to protect certain segments from deletion. #### Get-Segment-Info This method allows the manager to retrieve the PM-segment attributes. Trig-Segment-Data-Xfer This method allows the manager to initiate the transfer of the data entries stored in the PM-segment object. Refer to IEEE Std 11073-20601-2014 for details. ## 6.10.5 PM-store object events Table 25 defines the events sent by the PM-store objects. Table 25—PM-store object events | Service | Subservice
type name | Mode | Subservice type
(event-type) | Parameters
(event-info) | Results (event-reply-info) | | |---------|-------------------------|-----------|---------------------------------|----------------------------|----------------------------|--| | EVENT | Segment- | Confirmed | MDC_NOTI_SEGMENT | SegmentDataEvent | SegmentDataResult | | | REPORT | Data-Event | Commined | _DATA | SegmentDataEvent | SegmentDataResuit | | Segment-Data-Event This event allows the agent to send the data entries stored in the PM-segment object. This event is triggered by the manager using the Trig-Segment-Data-Xfer action. Refer to IEEE Std 11073-20601-2014 for details. ## 6.10.6 PM-store object services #### 6.10.6.1 GET service The GET service shall be provided by an agent implementing PM-store objects. This service shall be available only while the agent is in the Operating state. Refer to IEEE Std 11073-20601-2014 for details. ## 6.10.6.2 SET service There are currently no SET services defined for PM-store objects in this standard. #### 6.10.7 PM-segment objects Table 26 defines the attributes of the periodic session PM-segment object contained in the periodic PM-store object managing the stored measurements or observations. The nomenclature code to identify the PM-segment class is MDC_MOC_PM_SEGMENT. Table 26 — Common PM-segment object attributes | Attribute name | Extended configuration | | | | |--------------------------|---------------------------------|-------|--|--| | Attribute name | Value | Qual. | | | | Instance-Number | See IEEE Std 11073-20601-2014. | M | | | | PM-Segment-Entry-Map | See IEEE Std 11073-20601-2014. | M | | | | PM-Seg-Person-Id | See IEEE Std 11073-20601-2014. | C | | | | Operational-State | See IEEE Std 11073-20601-2014. | M | | | | Sample-Period | See IEEE Std 11073-20601-2014. | C | | | | Segment-Label | See IEEE Std 11073-20601-2014. | O | | | | Segment-Start-Abs-Time | See IEEE Std 11073-20601-2014. | C | | | | Segment-End-Abs-Time | See IEEE Std 11073-20601-2014. | C | | | | Date-and-Time-Adjustment | See IEEE Std 11073-20601-2014. | C | | | | Segment-Start-BO-Time | See IEEE Std 11073-20601-2014. | C | | | | Segment-End-BO-Time | See IEEE Std 11073-20601-2014. | C | | | | Segment-Usage-Count | See IEEE Std 11073-20601-2014. | M | | | | Segment-Statistics | See IEEE Std 11073-20601-2014. | O | | | | Fixed-Segment-Data | Segment data transferred as an | M | | | | | array of entries in a format as | | | | | | specified in the PM-Segment- | | | | | | Entry-Map attribute. | | | | | Confirm-Timeout | See IEEE Std 11073-20601-2014. | O | | | | Transfer-Timeout | See IEEE Std 11073-20601-2014. | M | | | NOTE 2—See 6.3 for a description of the qualifiers. The Fixed-Segment-Data attribute serves as the container of the stored measurements or observations. When the Fixed-Segment-Data attribute is transmitted, all entries in the event report are formatted according to the PM-Segment-Entry-Map. Each entry contains an optional header and one or more elements. Each element holds data from one or more metric measurements. ## 6.11 Scanner objects Scanner objects are not required by this standard. ## 6.12 Class extension objects In this standard, no class extension objects are defined with respect to IEEE Std 11073-20601-2014. ## 6.13 CGM information model extensibility rules The CGM DIM of this standard may be extended by including elements defined in IEEE Std 11073-20601-2014 as well as vendor-specific metrics and attributes as required. Any object or attribute extensions implemented should follow the guidelines of this standard as closely as possible. A CGM agent having a configuration with extensions beyond the standard configuration, as specified in this standard, shall use a configuration ID in the range of IDs reserved for extended configurations (see IEEE Std 11073-20601-2014). # 7. Continuous glucose monitor service model #### 7.1 General The service model defines the conceptual mechanisms for data exchange services. These services are mapped to messages that are exchanged between the agent and the manager. Protocol messages within the ISO/IEEE 11073 series of standards are defined in ASN.1. See IEEE Std 11073-20601-2014 for a detailed description of the PHD service model. Subclauses 7.2 and 7.3 define the specifics of object access and event reporting services for a CGM agent according to this standard. ## 7.2 Object access services The object access services of IEEE Std 11073-20601-2014 are used to access the objects defined in the DIM of the glucose device. The following generic object access services are supported by a CGM agent according to this standard: - GET service: used by the manager to retrieve the values of the agent MDS and PM-store object attributes. The list of CGM MDS object attributes is given in 6.6.4.1, and the list of CGM PM Store attributes is given in 6.10.3. - SET service: used by the manager to set the values of the agent object attributes. No settable attributes are defined for a CGM agent according to this standard. - Event report service: used by the agent to send configuration reports and measurement data to the manager. The list of event reports for the CGM device specialization is given in 6.6.3. - Action service: used by the manager to invoke actions (or methods) supported by the agent. An example is Set-Time action, which is used to set a real-time clock with the absolute time at the agent. Table 27 summarizes the object access services described in this standard. Table 27—Continuous glucose monitor object access services | Service | Subservice
type name | Mode | Subservice
type | Parameters | Result | Remarks | |---------|-------------------------|--|--------------------|----------------------------|------------------|--------------------------| | | <na></na> | <implied< td=""><td><na></na></td><td>GetArgumentSi</td><td>GetResultSim</td><td>Allows the manager to</td></implied<> | <na></na> | GetArgumentSi | GetResultSim | Allows the manager to | | | | Confirmed> | | mple | ple | retrieve the value of | | | | | | = (obj-handle = | = (obj-handle | attributes of the MDS | | | | | | 0), attribute-id- | = 0), attribute- | object in the agent. | | | | | | list <optional></optional> | list | | | GET | <na></na> | <implied< td=""><td><na></na></td><td>GetArgumentSi</td><td>GetResultSim</td><td>Allows the manager to</td></implied<> | <na></na> | GetArgumentSi | GetResultSim | Allows the manager to | | GEI | | Confirmed> | | mple | ple | retrieve the values of | | | | | | = (obj-handle = | = (obj-handle | attributes of a PM-store | | | | | | handle
of PM- | = handle of | object in the agent. | | | | | | store object), | PM-store | _ | | | | | | attribute-id-list | object), | | | | | | | <optional></optional> | attribute-list | | Table 27—Continuous glucose monitor object access services (continued) | Service | Subservice type name | Mode | Subservice
type | Parameters | Result | Remarks | |---------|--|-----------|---|---------------------------|-------------------------|---| | | MDS-
Configuratio
n-Event | Confirmed | MDC_NOTI
_CONFIG | ConfigReport | ConfigReport
Rsp | Configuration Report to inform manager of the configuration of the agent. | | | MDS-
Dynamic-
Data-
Update-Var | Confirmed | MDC_NOTI
_SCAN_RE
PORT_VAR | ScanReportInfo
Var | _ | Data Report to provide
dynamic data to manager
for some or all of the
agent's objects in
variable format. | | EVENT | MDS-
Dynamic-
Data-
Update-
Fixed | Confirmed | MDC_NOTI
_SCAN_RE
PORT_FIXE
D | ScanReportInfo
Fixed | _ | Data Report to provide
dynamic data to manager
for some or all of the
agent's objects in fixed
format. | | REPORT | MDS-
Dynamic-
Data-
Update-MP-
Var | Confirmed | MDC_NOTI
_SCAN_RE
PORT_MP_
VAR | ScanReportInfo
MPVar | _ | This is the same as MDS-Dynamic-Data-Update-Var but allows inclusion of data from multiple people. | | | MDS-
Dynamic-
Data-
Update-MP-
Fixed | Confirmed | MDC_NOTI
_SCAN_RE
PORT_MP_
FIXED | ScanReportInfo
MPFixed | _ | This is the same as MDS-Dynamic-Data-Update-Fixed but allows inclusion of data from multiple people. | | | Segment-
Data-Event | Confirmed | MDC_NOTI
_SEGMENT
_DATA | SegmentDataE vent | SegmentData
Result | PM-store object event to
provide data stored in the
Fixed-Segment-Data of a
PM-segment from the
agent to the manager. | | | Set-Time | Confirmed | MDC_ACT_
SET_TIME | SetTimeInvoke | _ | Manager method to invoke the agent to set time in absolute time format to requested value. | | | Set-Base-
Offset-Time | Confirmed | MDC_ACT_
SET_BO_TI
ME | SetBOTime
Invoke | _ | Manager method to invoke the agent to set time in base offset time format to requested value. | | ACTION | Clear-
Segments | Confirmed | MDC_ACT_
SEG_CLR | SegmSelection | _ | Allows the manager to delete data stored in selected PM-segments in the agent. | | | Get-
Segment-
Info | Confirmed | MDC_ACT_
SEG_GET_I
NFO | SegmSelection | SegmentInfoLi
st | Allows the manager to retrieve the value of PM-segment attributes of one or more PM-segments in the agent. | | | Trig-
Segment-
Data-Xfer | Confirmed | MDC_ACT_
SEG_TRIG_
XFER | TrigSegmData
XferReq | TrigSegmData
XferRsp | Allows the manager to start the transfer of the Fixed-Segment-Data attribute of a PM-segment in the agent. | # 7.3 Object access event report services The event report service (see Table 27) is used by the agent to report its information (e.g., measurements). Event reports in this standard are a property of the MDS (see Table 4) and the PM-store object (see Table 25). The event reports used in this standard are defined in IEEE Std 11073-20601-2014. The following conditions apply for a CGM agent according to this standard: - MDS event reports shall be used in confirmed mode. - Agent initiated mode shall be supported for measurement data transmission. - Persistently stored metric mode may be supported for measurement data transmission. - Manager initiated mode may be support for measurement data transmission. A CGM agent, which is designed to operate in an environment where data may be collected from multiple people, may use one of the multiple-person event report styles to transmit all the data from each person in a single event. If this functionality is not required, the agent may use the single-person event report styles, which have reduced overhead. A manager shall support both single-person and multiple-person event reports. A CGM agent may support either one or both single-person and multiple-person event reports. The formats for single- and multiple-person reports are described in IEEE Std 11073-20601-2014. # 8. Continuous glucose monitor communication model #### 8.1 Overview This clause describes the general communication model and procedures of the CGM agent as defined in IEEE Std 11073-20601-2014. Therefore, the respective parts of IEEE Std 11073-20601-2014 are not reproduced; rather, the specific choices and restrictions with respect to optional elements (e.g., objects, attributes, and actions) and specific extensions (e.g., nomenclature terms) are specified. For an illustrative overview of the various message transactions during a typical measurement session, see the sequence diagram for the example use case in Annex D. #### 8.2 Communication characteristics In this subclause, limits on the size of an application protocol data unit (APDU) transmitted or to be received by a CGM agent are defined. Small limits allow for simple implementations in terms of low cost and complexity. A CGM agent implementing only this device specialization shall not transmit any APDU larger than N_{tx} and shall be capable of receiving any APDU up to a size of N_{rx} . For this standard, N_{tx} shall be 5120 octets for implementations supporting persistent metric storage. In the absence of the persistent metric storage capability, N_{tx} shall be 896 octets. For this standard, N_{rx} shall be 224 octets. For a CGM agent implementing functions from other device specializations, an upper bound estimation of the APDU sizes brings the following: An agent shall not transmit any APDU larger than the sum of N_{tx} of all the device specializations implemented and shall be capable of receiving any APDU up to the sum of N_{rx} of all the device specializations implemented. If these numbers are higher than the maximum size determined in IEEE Std 11073-20601-2014, the latter shall be applied. In case the APDU size limit does not allow for the inclusion of a certain amount of multiple pending measurements at the agent, they shall be sent using multiple event reports. See 8.5.3 for the maximum number of measurements allowed for inclusion in a single event report. ## 8.3 Association procedure #### 8.3.1 General Unless otherwise stated, the association procedure for a CGM agent and manager according to this standard shall be pursued as specified in IEEE Std 11073-20601-2014. #### 8.3.2 Agent procedure—association request In the association request sent by the agent to the manager: - The version of the association procedure used by the agent shall be set to assoc-version1 (i.e., assoc-version = 0x80000000). - The DataProtoList structure element of the data protocol identifier shall be set to data-proto-id-20601 (i.e., data-proto-id = 0x5079). - The *data-proto-info* field shall contain a PhdAssociationInformation structure that shall contain the following parameter values: - 1) The agent shall support protocol-version2. Support for any other version may be indicated by setting additional bits. When protocols higher than protocol-version2 are used, the agent shall continue to use only features as specified in this standard. When protocols lower than protocol-version2 are used, the agent shall use only features in that protocol. - 2) At least the MDERs shall be supported (i.e., encoding-rules = 0x8000). - 3) The version of the nomenclature used shall be set to nom-version1 (i.e., nomenclature-version = 0x80000000). - 4) The field *functional-units* may have the test association bits set but shall not have any other bits set. - 5) The field system-type shall be set to sys-type-agent (i.e., system-type = 0x00800000). - 6) The system-id field shall be set to the value of the System-Id attribute of the MDS object of the agent. The manager may use this field to determine the identity of the CGM with which it is associating and, optionally, to implement a simple access restriction policy. - 7) The *dev-config-id* field shall be set to the value of the Dev-Configuration-Id attribute of the MDS object of the agent. - 8) If the agent supports only the CGM specialization, then the field indicating the data request modes (*data-req-mode-capab*) supported by the CGM agent shall be set to *data-req-supp-init-agent*. - 9) If the agent supports only the CGM specialization, then *data-req-init-manager-count* shall be set to zero, and *data-req-init-agent-count* shall be set to 1. ## 8.3.3 Manager procedure—association response In the association response message sent by the manager: — The *result* field shall be set to an appropriate response from those defined in IEEE Std 11073-20601-2014. For example, if all other conditions of the association protocol are satisfied, *accepted* is returned when the manager recognizes the *dev-config-id* of the agent and *accepted-unknown-config* otherwise. - In the DataProtoList structure element, the data protocol identifier shall be set to data-proto-id-20601 (i.e., *data-proto-id* = 0x5079). - The *data-proto-info* field shall be filled in with a PhdAssociationInformation structure that shall contain the following parameter values: - 1) The manager following this specialization shall support protocol-version2. The manager may support additional protocol versions and select them if the agent offers them. - 2) The manager shall respond with a single selected encoding rule that is supported by both agent and manager. The manager shall support at least the MDERs. - 3) The version of the nomenclature used shall be set to nom-version1 (i.e., nomenclature-version = 0x80000000). - 4) The field *functional-units* shall have all bits reset except for those relating to a test association. - 5) The field
system-type shall be set to sys-type-manager (i.e., *system-type* = 0x80000000) - 6) The system-id field shall contain the unique system ID of the manager, which shall be a valid EUI-64 type identifier. - 7) The field *dev-config-id* shall be manager-config-response (0). - 8) The field data-req-mode-capab shall be 0. - 9) If the agent supports only the CGM specialization, *data-req-initagent-count* shall be 1 and *data-req-init-manager-count* shall be 0. ## 8.4 Configuring procedure #### 8.4.1 General The agent enters the Configuring state if it receives an association response of accepted-unknown-config. In this case, the configuration procedure as specified in IEEE Std 11073-20601-2014 shall be followed. Subclause 8.4.2 specifies the configuration notification and response messages for a CGM agent with standard configuration ID 2500 (0x09C4). Normally, a manager would already know the standard configuration. However, for the purposes of this example, it does not. ## 8.4.2 CGM—standard configuration (0x09C4) #### 8.4.2.1 Agent procedure The agent performs the configuration procedure using a "Remote Operation Invoke | Confirmed Event Report" message with an MDC_NOTI_CONFIG event to send its configuration to the manager (see IEEE Std 11073-20601-2014). The ConfigReport structure is used for the *event-info* field (see Table 4). For a CGM agent with standard configuration ID 2500 (0x09C4), the format and contents of the configuration notification message are as follows: | 0xE7 | 0×00 | APDU CHOICE Type (PrstApdu) | |------|---------------|--| | 0x00 | 0x50 | CHOICE.length = 80 | | 0x00 | 0x4E | OCTET STRING.length = 78 | | 0x00 | 0x02 | invoke-id = 2 (start of DataApdu. MDER encoded.) | | 0x01 | 0x01 | CHOICE(Remote Operation Invoke Confirmed Event Report) | | 0x00 | 0x48 | CHOICE.length = 72 | | 0x00 | 0x00 | obj-handle = 0 (MDS object) | | | | | | | 0xFF | 0xFF | 0xFF | event-time (set to 0xFFFFFFFF if RelativeTime is not supported) | |------|---------------|---------------|------|---| | 0x0D | | | | event-type = MDC_NOTI_CONFIG | | 0x00 | - | | | event-info.length = 62 (start of ConfigReport) | | 0x09 | 0xC4 | | | config-report-id (Dev-Configuration-Id value) | | 0x00 | 0×01 | | | config-obj-list.count = 1 Measurement object will be "announced" | | 0x00 | 0x38 | | | config-obj-list.length = 56 | | 0x00 | 0x06 | | | obj-class = MDC_MOC_VMO_METRIC_NU | | 0x00 | 0x01 | | | obj-handle = 1 (\rightarrow 1 st Measurement is glucose) | | 0x00 | 0x05 | | | attributes.count = 5 | | 0x00 | 0x30 | | | attributes.length = 48 | | 0x09 | 0x2F | | | attribute-id = MDC_ATTR_ID_TYPE | | 0x00 | 0×04 | | | attribute-value.length = 4 | | 0x00 | 0×02 | 0x71 | 0xD4 | MDC_PART_SCADA MDC_CONC_GLU_ISF | | 0x0A | 0x61 | | | attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES | | 0x00 | 0x08 | | | attribute-value.length = 8 | | 0x00 | 0×01 | | | SupplementalTypeList.count = 1 | | 0x00 | 0×04 | | | SupplementalTypeList.length = 4 | | 0x00 | 0x80 | 0x72 | 0x39 | MDC_PART_PHD_DM | | | | | | MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS | | 0x0A | 0x46 | | | attribute-id = MDC_ATTR_METRIC_SPEC_SMALL | | 0x00 | 0x02 | | | attribute-value.length = 2 | | 0xC0 | 0x42 | | | mss-avail-intermittent, mss-avail-stored-data, mss-acc-agent-initiated, | | | | | | mss-cat-calculation | | 0x09 | 0x96 | | | attribute-id = MDC_ATTR_UNIT_CODE | | 0x00 | 0x02 | | | attribute-value.length = 2 | | 80x0 | 0x52 | | | MDC_DIM_ MILLI_G_PER_DL | | 0x0A | 0x55 | | | attribute-id = MDC_ATTR_ATTRIBUTE_VALUE_MAP | | 0x00 | 0x0C | | | attribute-value.length = 12 | | 0x00 | 0x02 | | | AttrValMap.count = 2 | | 0x00 | 0x08 | | | AttrValMap.length = 8 | | 0x0A | 0x4C | 0x00 | 0x02 | MDC_ATTR_NU_VAL_OBS_BASIC value length = 2 | | 0x0A | 0x82 | 0×00 | 0x08 | MDC_ATTR_TIME_STAMP_BO value length = 8 | | | | | | | ## 8.4.2.2 Manager procedure The manager shall respond to a configuration notification message using a "Remote Operation Response | Confirmed Event Report" data message with an MDC_NOTI_CONFIG event using the ConfigReportRsp structure for the *event-info* field (see Table 4). As a response to the standard configuration notification message in 8.4.2.1, the format and contents of the manager's configuration notification response message are as follows: | 0xE7 | 0x00 | | | APDU CHOICE Type (PrstApdu) | |------|------|------|------|--| | 0x00 | 0x16 | | | CHOICE.length = 22 | | 0x00 | 0x14 | | | OCTET STRING.length = 20 | | 0x00 | 0x02 | | | invoke-id (differentiates this message from any other outstanding) | | 0x02 | 0x01 | | | CHOICE (Remote Operation Response Confirmed Event Report) | | 0x00 | 0x0E | | | CHOICE.length = 14 | | 0x00 | 0x00 | | | obj-handle = 0 (MDS object) | | 0x00 | 0x00 | 0x00 | 0x00 | currentTime = 0 | | 0x0D | 0x1C | | | event-type = MDC_NOTI_CONFIG | | 0x00 | 0x04 | | | event-reply-info.length = 4 | | 0x09 | 0xC4 | | | ConfigReportRsp.config-report-id = 2500 | | 0x00 | 0x00 | | | ConfigReportRsp.config-result = accepted-config | | | | | | | ## 8.5 Operating procedure #### 8.5.1 General Measurement data and status information are communicated from the CGM agent during the Operating state. If not stated otherwise, the operating procedure for a glucose meter agent of this standard shall be as specified in IEEE Std 11073-20601-2014. #### 8.5.2 GET CGM MDS attributes See Table 5 for a summary of the GET service. If the manager leaves the *attribute-id-list* field in the roiv-cmip-get service message empty, the CGM agent shall respond with a rors-cmip-get service message in which the attribute-list contains a list of all implemented attributes of the MDS object. If the manager requests specific MDS object attributes, indicated by the elements in *attribute-id-list*, and the agent supports this capability, the CGM agent shall respond with a rors-cmip-get service message in which the attribute-list contains a list of the requested attributes of the MDS object that are implemented. It is not required for a CGM agent to support this capability. If this capability is not implemented, the CGM agent shall respond as specified in the MDS object attributes clause in IEEE Std 11073-20601-2014. #### 8.5.3 Measurement data transmission See Table 4 and Table 25 for a summary of the event report services available for measurement data transfer. To limit the amount of data being transported within an APDU, the CGM agent shall not include more than 25 temporarily stored measurements in a single event report. If more than 25 pending measurements are available for transmission, they shall be sent using multiple event reports. If multiple glucose measurements are available, up to 25 measurements should be transmitted within a single event report. Alternatively, they may be transmitted using a single event report for each glucose measurement. However, the former strategy is recommended to reduce overall message size and power consumption. #### 8.6 Time synchronization Time synchronization may be employed between a CGM and a manager to coordinate the clocks used when reporting physiological events. Note that the mechanism for synchronizing an agent to a manager is outside the scope of this standard. If time synchronization is used, then this shall be reported in the Mds-Time-Info attribute of the MDS object. #### 9. Test associations The Test Association provides a manufacturer the mechanism to test or demonstrate features of a product in a comprehensive manner. This clause defines the behavior of the standard CGM agent during a test association. Support for test association is optional. ## 9.1 Behavior with standard configuration An agent or manager entering a test association using the configuration ID for the standard CGM device of this standard shall enter the Operating state in test mode. When in test mode, where possible, this should be indicated visually to any user. Normal functionality shall be suspended, and any test data generated shall not be processed by the device as physiological data. After the agent enters the operating state, it shall send a single simulated glucose measurement of 999 mg/dL (a value never seen in normal usage and outside normal range) within 30 s of entering the Operating state. If the measurement-status attribute of the numeric object is implemented, then the test-data bit shall be set. The test association is terminated in a manner consistent with the agent's normal behavior for terminating an association. ## 9.2 Behavior with extended configurations This specification does not define a test association that uses an extended configuration. #### 10. Conformance ## 10.1 Applicability This standard shall be used in conjunction with IEEE Std 11073-20601-2014. An implementation or a system can conform to the following elements of this standard: - DIM class hierarchy and object definitions (object attributes, notifications, methods, and data type definitions) - Nomenclature code values - Protocol and service models - Communication service model (association and configuration) ## 10.2 Conformance specification This standard offers levels of conformance with respect to strict adherence to the standard device and the use of extensions for the following: - Information model of a specific device - Use of attributes, value ranges, and access methods A vendor shall specify the level of conformance for an implementation based on this standard and provide details of the way in which the definitions of this standard and any extensions are applied. Specifications shall be provided in the form of a set of implementation conformance statements (ICS) as detailed in 10.4. This standard is used in conjunction with IEEE Std 11073-20601-2014. It is recommended that the ICS for this standard be created first so that the
ICS created for IEEE Std 11073-20601-2014 may refer to the ICS for this standard where applicable. #### 10.3 Levels of conformance #### 10.3.1 General This standard defines the following levels of conformance. #### 10.3.2 Conformance level 1: Base conformance The application uses elements of the information, service, and communication models (object hierarchy, actions, event reports, and data type definitions) and the nomenclature scheme defined in IEEE Std 11073-20601-2014 and ISO/IEEE 11073-104zz standards. All mandatory features defined in the object definition tables and in the ICS tables are implemented. Furthermore, any conditional, recommended, or optional features that are implemented shall follow the requirements in IEEE Std 11073-20601-2014 and ISO/IEEE 11073-104zz documents. # 10.3.3 Conformance level 2: Extended nomenclature (ASN.1 and/or ISO/IEEE 11073-10101:2004 [B6]) Conformance level 2 meets conformance level 1 but also uses or adds extensions in at least one of the information, service, communication, or nomenclature models. Extensions to nomenclature codes shall conform to the ISO/IEEE 11073-10101:2004 [B6] framework and lie within the private nomenclature extension range (0xF000-0xFFFF). Extensions to the information or service models shall be fully defined using ASN.1 where appropriate and have their behavior fully described following the framework of the IEEE Std 11073-20601-2014 and/or ISO/IEEE 11073-20101:2004 [B8]. All extensions shall be specified and include reference to the definition for the extension, or where no publicly available reference is available, the definition of the extension should be appended to the conformance statement. ## 10.4 Implementation conformance statements #### 10.4.1 General format The ICSs are provided as an overall conformance statement document that comprises a set of tables in the form given by the templates in the following subclauses. Each ICS table has the following columns: | Index | Feature | Reference | Req/Status | Support | Comment | |-------|---------|-----------|------------|---------|---------| The table column headings have the following meaning: - Index: an identifier (e.g., a tag) of a specific feature. - Feature: briefly describes the characteristic for which a conformance statement is being made. - Reference: to the clause/paragraph within this document or to an external source for the definition of the feature (may be empty). - Req/Status: specifies the conformance requirement (e.g., mandatory or recommended)—in some cases, this standard does not specify conformance requirements but requests the status of a particular feature be provided. - Support: specifies the presence or absence of a feature and any description of the characteristics of the feature in the implementation. This column is to be filled out by the implementer. - Comment: contains any additional information on the feature. This column is to be filled out by the implementer. Subclauses 10.4.2 to 10.4.6 specify the format of the specific ICS tables. ## 10.4.2 General implementation conformance statement The general ICS specifies the versions/revisions that are supported by the implementation and high-level system behavior. Table 28 shows the general ICSs. Table 28 —IEEE 11073-10425 general ICS table | Index ^a | Feature | Reference | Req/Status | Support | Comment | |--------------------|-----------------|------------|-------------------------|-------------------|---------| | GEN | Implementation | _ | Identification of the | | | | 11073- | Description | | device/ application. | | | | 10425-1 | | | Description of | | | | | | | functionality. | | | | GEN | Standards | (Standard | (Set of existing | (Set of supported | | | 11073- | followed and | documents) | revisions) | revision) | | | 10425-2 | their revisions | | | | | | GEN | Nomenclature | (Standard | (Set of existing | (Set of supported | | | 11073- | document used | documents) | revisions) | revisions) | | | 10425-3 | and revision | | | | | | GEN | Conformance | See 10.3.3 | Base conformance | Yes/No | | | 11073- | Adherence— | | declaration that device | (No is not | | | 10425-4 | Level 1 | | meets the following | expected as No | | | | | | IEEE 11073-10425 | implies that the | | | | | | conformance | implementation is | | | | | | requirements: | non-conformant) | | | | | | a) All mandatory | | | | | | | requirements shall be | | | | | | | implemented. | | | | | | | b) If implemented, | | | | | | | conditional, | | | | | | | recommended, and | | | | | | | optional requirements | | | | | | | shall conform to | | | | | | | standard. | | | Table 28—IEEE 11073-10425 general ICS table (continued) | Index ^a | Feature | Reference | Req/Status | Support | Comment | |--------------------|----------------|------------|----------------------------|---------------------|---------| | GEN | Conformance | See 6.3 | In addition to GEN | Yes/No | | | 11073- | Adherence— | | 11073-10425-4, if the | | | | 10425-5 | Level 2 | | device implements | | | | | | | extensions and/or | | | | | | | additions, they shall | | | | | | | conform to nomenclature | | | | | | | codes from ASN.1 | | | | | | | and/or ISO/IEEE 11073- | | | | | | | 10101 framework. These | | | | | | | extensions should also be | | | | | | | defined in ICS tables | | | | | | | pointing toward their | | | | | | | reference. | | | | GEN | Object | See 6.3 | Provide Object | | | | 11073- | Containment | 300 0.5 | Containment Diagram | | | | 10425-6 | Tree | | showing relations | | | | 10.25 0 | 1100 | | between object instances | | | | | | | used by the application. | | | | | | | A conforming | | | | | | | implementation uses | | | | | | | only object relations as | | | | | | | defined in the DIM. | | | | GEN | Nomenclature | (Standard | (Set of existing | (Set of supported | | | 11073- | document used | documents) | revisions) | revision) | | | 10425-7 | and revision | documents) | 10 visions) | Tevision) | | | GEN | Data Structure | | | Description of | | | 11073- | Encoding | | | encoding | | | 10425-8 | Lincouning | | | method(s) for | | | 10423 0 | | | | ASN.1 data | | | | | | | structures | | | GEN | Use of Private | _ | Does the implementation | Yes/No | | | 11073- | Objects | | use objects that are not | (If yes, explain in | | | 10425-9 | Objects | | defined in the DIM? | Table 29) | | | GEN | Use of Private | | Does the implementation | Yes/No | | | 11073- | Nomenclature | | use private extensions to | 105/110 | | | 10425-10 | Extensions | | the nomenclature (i.e., | (If yes: explain in | | | 13.20 10 | LACIISIOIIS | | 0xF000-0xFFFF codes | Table 32) | | | | | | from ISO/IEEE 11073- | 14010 32) | | | | | | 10101:2004 [B6])? | | | | | | | Private Nomenclature | | | | | | | extensions are <i>only</i> | | | | | | | allowed if the standard | | | | | | | nomenclature does not | | | | | | | include the specific | | | | | | | terms required by the | | | | | | | application. | | | | GEN | 11073-20601 | | Provide the conformance | | | | 11073- | Conformance | | report required by | | | | 1073- | Comormance | | IEEE Std 11073-20601- | | | | 10423-11 | | | 2014. | | | | | | | 2014. | | | ^a The prefix GEN11073-10425- is used for the index in the general ICS table. #### 10.4.3 DIM MOC implementation conformance statement The DIM MOC ICS defines which objects are implemented. Information on each object shall be provided as a separate row in the template of Table 29. Table 29 — Template for DIM MOC ICS table | Index | Feature | Reference | Req/Status | Support | Comment | |-------|-------------|------------------------|-------------|-----------------------------|---------| | MOC-n | Object | Reference to the | Implemented | Specify restrictions, e.g., | | | | description | clause in the standard | | max. number of | | | | | or other location | | supported instances. | | | | | where the object is | | | | | | | defined. | | | | The n in the Index column should be the object handle for implementations that have predefined objects. Otherwise the Index column shall simply be a unique number (1..m). All private objects should be specified and include either a reference to the definition for the object, or where no publicly available reference is available, the definition of the object should be appended to the conformance statement. The Support column should indicate any restrictions for the object implementation. An object containment diagram (class instance diagram) should be provided as part of the DIM MOC ICS. #### 10.4.4 MOC attribute ICS The MOC attribute ICS defines which attributes, including any inherited attributes, are used/supported in each object of an implementation. Information on each attribute of an object shall be provided as a separate row in the template of Table 30. A separate MOC attribute ICS shall be provided for each object. Table 30—Template for MOC attribute ICS table | Index | Feature | Reference | Req/Status | Support | Comment | |----------|------------------|------------------|-----------------------|-----------------------|---------| | ATTR-n-x | Attribute Name. | Fill in the | M = Mandatory / | Implemented? | | | | Extended | reference to | C = Conditional / | Yes/No | | | | attributes shall | the ASN.1 | R = Recommended / | Static/Dynamic | | | | include the | structure if the | O = Optional | Specify restrictions | | | | Attribute ID | attribute is not | (as per definition in | (e.g., value ranges). | | | | also. | defined in this | Attribute Definition | Describe how | | | | | standard. | tables) | attribute is accessed | | | | | | | (e.g., Get, Set, sent | | | | | | | in config event | | | | | | | report, sent in a | | | | | | | data event report). | | | | | | | Describe any | | | | | | | specific | | | | | | | restrictions. | | All private attributes should be specified and include reference to the definition for the attribute. Where no publicly available reference is available, the definition of the attribute should be appended to the
conformance statement. The Support column shall specify whether the attribute is implemented; for extension attributes, whether the attribute value is static or dynamic; any value ranges; restrictions on attribute access or availability; and any other information. The n in the Index column refers to the ID of the managed object for which the table is supplied (i.e., the index of the managed object as specified in the MOC ICS). There is one separate table for each supported managed object. The x in the Index column is a unique serial number (1..m). #### 10.4.5 MOC notification implementation conformance statement The MOC notification ICS specifies all implemented notifications (typically in form of the event report service) that are emitted by the agent. Table 31 provides a template for use. One table has to be provided for each object that supports special object notifications. Index **Feature** Reference Req/Status Support Comment NOTI-n-x Notification Name Reference to the The Support column and Notification ID clause in the shall specify how the standard or other notification is sent and location where the any restrictions. event is defined. Table 31 —Template for MOC notification ICS table The *n* in the Index column refers to the ID of the managed object for which the table is supplied (i.e., the index of the managed object as specified in the POC ICS). There is one separate table for each managed object that supports specific object notifications (i.e., events). The x in the Index column is a unique serial number (1..m). All private notifications should be specified and include reference to the definition for the notification. Where no publicly available reference is available, the definition of the notification should be appended to the conformance statement. #### 10.4.6 MOC nomenclature conformance statement The MOC nomenclature ICS specifies all nonstandard nomenclature codes that are utilized by the agent. Table 32 provides a template for use. One row of the table is to be used for each nomenclature element. Index **Feature** Reference Req/Status Support Comment Nomenclature Reference to the Describe how the Name and clause in the nomenclature is Nomenclature standard or other used. NOME-n value location where the Describe any nomenclature is specific restrictions. defined or used. Table 32—Template for MOC nomenclature ICS table The n in the Index column is a unique serial number (1..m). #### Annex A (informative) # **Bibliography** Bibliographical references are resources that provide additional or helpful material but do not need to be understood or used to implement this standard. Reference to these resources is made for informational use only. - [B1] IEC 60601-1:2005, Ed. 3, Medical electrical equipment—Part 1: General requirements for basic safety and essential performance.⁸ - [B2] IEC 60601-2, Medical electrical equipment—Part 2: Particular requirements for the basic safety and essential performance for specific device. (See the entire series of standards, Part 2-1 through Part 2-51.) - [B3] IEC 62304:2006/EN 62304:2006, Medical device software—Software life-cycle processes. 9 - [B4] IEC 80001-1:2010, Application of risk management for IT-networks incorporating medical devices—Part 1: Roles, responsibilities, and activities. - [B5] ISO 14971:2007, Medical devices—Application of risk management to medical devices. 10 - [B6] ISO/IEEE 11073-10101:2004, Health informatics—Point-of-care medical device communication—Part 10101: Nomenclature. 11 - [B7] ISO/IEEE 11073-10201:2004, Health informatics—Point-of-care medical device communication—Part 10201: Domain information model. - [B8] ISO/IEEE 11073-20101:2004, Health informatics—Point-of-care medical device communication—Part 20101: Application profile—Base standard. - [B9] ITU-T Rec. X.680-2002, Information technology—Abstract Syntax Notation One (ASN.1): Specification of basic notation. 12 ⁸ IEC publications are available from the International Electrotechnical Commission (http://www.iec.ch/). IEC publications are also available in the United States from the American National Standards Institute (http://www.ansi.org/). ⁹ EN publications are available from the European Committee for Standardization (CEN) (http://www.cen.eu/). ¹⁰ ISO publications are available from the ISO Central Secretariat (http://www.iso.org/). ISO publications are also available in the United States from the American National Standards Institute (http://www.ansi.org/). ¹¹ ISO/IEEE publications are available from the ISO Central Secretariat, 1, ch. de la Voie-Creuse, Case Postale 56, CH-1211, Geneva 20, Switzerland (http://www.iso.ch/). ISO/IEEE publications are also available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org/). ¹² ITU publications are available from the International Telecommunication Union (http://www.itu.int/). This specification may be found specifically at http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf. #### Annex B (normative) # Any additional ASN.1 definitions ## B.1 PHD DM status, CGM status, and measurement status bit mappings The extension to the enumeration class for PHD DM status requires the following ASN.1 structure definition: ``` PHDDMStat ::= BITS-32 { device-status-undetermined (0), device-status-reset (1), -- reserved for future extension (2), -- reserved for future extension (3), -- reserved for future extension (4), device-status-error (5), device-status-error-mechanical (6), device-status-error-electronic (7), device-status-error-software (8), device-status-error-battery (9), -- reserved for future extension (10), -- reserved for future extension (11), -- reserved for future extension (12), -- reserved for future extension (13), -- reserved for future extension (14), device-status-service (15), device-status-service-time-sync-required (16) device-status-service-calibration-required (17), device-status-service-replenishment-required (18), -- reserved for future extension (19), -- reserved for future extension (20), -- reserved for future extension (21), -- reserved for future extension (22), -- reserved for future extension (23), -- reserved for future extension (24), device-status-battery-low (25), device-status-battery-depleted (26), device-status-battery-replaced (27), device-status-battery-interrupted (28) -- reserved for future extension (29), -- reserved for future extension (30), -- reserved for future extension (31), } The CGM status enumeration object requires the following ASN.1 structure definition [B9]: CGMStat ::= BITS-32 { sensor-session-stopped(0), sensor-type-incorrect(2), sensor-malfunction(3), ``` ``` device-specific-alert(4), sensor-calibration-not-allowed(7), sensor-calibration-recommended(8), sensor-calibration-required(9), sensor-temp-too-high(10), sensor-temp-too-low(11), sensor-result-below-patient-low(12), sensor-result-above-patient-high(13), sensor-low-hypo(14), sensor-high-hyper(15), sensor-rate-decrease-exceeded(16), sensor-rate-increase-exceeded(17), sensor-result-too-low(18), sensor-result-too-high(19), sensor-com-out-of-range(20) } The extension to the Metric Measurement-Status attribute requires the following ASN.1 structure definition: MeasurementStatus ::= BITS-16 { ``` ``` MeasurementStatus ::= BITS-16 { invalid(0), questionable(1), not-available(2), calibration-ongoing(3), test-data(4), demo-data(5), validated-data(8), early-indication(9), msmt-ongoing(10), msmt-state-in-alarm(14), msmt-state-al-inhibited(15) } ``` ## **B.2 Numeric extension for measurement confidence** The measurement confidence extensions to the glucose object require the following ASN.1 structure definition: ## **Annex C** (normative) # Allocation of identifiers # C.1 General This annex contains the nomenclature codes used in this document and not found in IEEE Std 11073-20601-2014. For those not contained in this annex, the normative definition is found in IEEE Std 11073-20601-2014. ## C.2 Definitions of terms and codes The format used here follows that of ISO/IEEE 11073-10101:2004 [B6]. | /************************************* | ****** | ****** | ***** | |--|-------------------|---------------|------------------| | * From Communication Infrastructure (MDC_PART_INFRA) ************************************ | ****** | ****** | ******/ | | #define MDC_DEV_SPEC_PROFILE_CGM profile for continuous glucose monitor */ | 4122 | /* Devic | e specialization | | /************************************* | ****** | ****** | ***** | | * From Medical supervisory control and data acquisition (MDC_PA | .RT_SCAD | OA)
****** | *******/ | | #define MDC_CONC_GLU_CAPILLARY_WHOLEBLOOD | 29112 | /* Glucose | concentration | | from capillary whole blood */ #define MDC_CONC_GLU_CAPILLARY_PLASMA from capillary plasma */ | 29116 | /* Glucose | concentration | | #define MDC_CONC_GLU_VENOUS_WHOLEBLOOD | 29120 | /* Glucose | concentration | | from venous whole blood */ #define MDC_CONC_GLU_VENOUS_PLASMA from venous plasma */ | 29124 | /* Glucose | concentration | | #define MDC_CONC_GLU_ARTERIAL_WHOLEBLOOD | 29128 | /* Glucose | concentration | | from arterial whole blood */ #define MDC_CONC_GLU_ARTERIAL_PLASMA from arterial plasma */ | 29132 | /* Glucose | concentration | | #define MDC_CONC_GLU_CONTROL | 29136 | /* Glucose | concentration | | from control solution */ #define MDC_CONC_GLU_ISF from interstitial fluid*/ | 29140 | /* Glucose | concentration | | #define MDC_CONC_GLU_UNDETERMINED_WHOLEBLOOD | 29292 | /* Glucose | concentration | | from undetermined whole blood */ #define MDC_CONC_GLU_UNDETERMINED_PLASMA from undetermined plasma */ | 29296 | /* Glucose | concentration | | /************************************* | ****** | ****** | ***** | | * From Personal Health Device Disease Management (MDC_PART ************************************ | _PHD_DM
****** | Л)
****** | ******/ | | #define
MDC_PHD_DM_DEV_STAT
Mgmt. Device Status */ | 20000 | | PHD Disease | | #define MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED context indicating sample location is undetermined */ | 29237 | /* Glucose | measurement | | #define MDC_CTXT_GLU_SAMPLELOCATION_OTHER context indicating sample location is other (does not match an available option | 29238
n) */ | /* Glucose measurement | |---|----------------|---| | #define MDC_CTXT_GLU_SAMPLELOCATION_FINGER context indicating sample location is finger*/ | 29240 | /* Glucose measurement | | #define MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS context indicating sample location is subcutaneous*/ | 29241 | /* Glucose measurement | | #define MDC_CTXT_GLU_SAMPLELOCATION_AST context indicating sample location is an alternative site */ | 29244 | /* Glucose measurement | | #define MDC_CTXT_GLU_SAMPLELOCATION_EARLOBE context indicating sample location is earlobe*/ | 29248 | /* Glucose measurement | | #define MDC_CTXT_GLU_SAMPLELOCATION_CTRLSOLUTION context indicating sample location is from control solution */ | 29252 | /* Glucose measurement | | #define MDC_CONC_GLU_TREND concentration */ | 29400 | /* Trending glucose | | #define MDC_CONC_GLU_PATIENT_THRESHOLDS_LOW_HIGH thresholds for glucose concentration */ | 29404 | /* Patient low and high | | #define MDC_CONC_GLU_PATIENT_THRESHOLD_LOW value for glucose concentration */ | 29405 | /* Patient low threshold | | #define MDC_CONC_GLU_PATIENT_THRESHOLD_HIGH value for glucose concentration */ | 29406 | /* Patient high threshold | | #define MDC_CONC_GLU_THRESHOLDS_HYPO_HYPER thresholds for glucose concentration */ | 29408 | /* Hypo and hyper | | #define MDC_CONC_GLU_THRESHOLD_HYPO glucose concentration */ | 29409 | /* Hypo threshold value for | | #define MDC_CONC_GLU_THRESHOLD_HYPER glucose concentration */ | 29410 | /* Hyper threshold value for | | #define MDC_CONC_GLU_RATE_THRESHOLDS for glucose concentration */ | 29412 | /* Rate of change thresholds | | #define MDC_CONC_GLU_RATE_THRESHOLD_INCREASE for rate of change of glucose concentration */ | 29413 | /* Increase threshold value | | #define MDC_CONC_GLU_RATE_THRESHOLD_DECREASE for rate of change of glucose concentration */ | 29414 | /* Decrease threshold value | | #define MDC_CGM_SENSOR_CALIBRATION monitor sensor calibration */ | 29428 | /* Continuous glucose | | #define MDC_CGM_SENSOR_RUN_TIME monitor sensor run time */ | 29432 | /* Continuous glucose | | #define MDC_CGM_SENSOR_SAMPLE_INTERVAL monitor sensor sample interval */ | 29436 | /* Continuous glucose | | #define MDC_CGM_DEV_STAT monitor device status */ | 29452 | /* Continuous glucose | | #define MDC_CGM_DEV_TYPE_SENSOR monitor device type sensor */ | 29460 | /* Continuous glucose | | #define MDC_CGM_DEV_TYPE_TRANSMITTER monitor device type_transmitter */ | 29461 | /* Continuous glucose | | #define MDC_CGM_DEV_TYPE_RECEIVER monitor device type receiver */ | 29462 | /* Continuous glucose | | #define MDC_CGM_DEV_TYPE_OTHER monitor device type other (does not match an available option) */ | 29463 | /* Continuous glucose | | /****************** | ***** | ****** | | * From Object Infrastructure (MDC_PART_OBJ) ************************************ | ***** | ******* | | #define MDC_ATTR_THRES_NOTIF_TEXT_STRING threshold notification text string */ | 2696 | /* Numeric object attribute | | #define MDC_ATTR_MSMT_CONFIDENCE_95 measurement confidence */ | 2700 | /* Numeric object attribute | | | | all | **/************************* | * From Dimensions (MDC_PART_DIM) ************************************ | ****** | ******* | |---|--------|------------------------------| | #define MDC_DIM_ MILLI_G_PER_DL */ | 2130 | /* General dimension mg/dL | | #define MDC_DIM_MILLI_MOLE_PER_L mmol/L */ | 4722 | /* General dimension | | #define MDC_DIM_HR | 2240 | /* General dimension hour */ | | #define MDC_DIM_MIN */ | 2208 | /* General dimension minute | | #define MDC_DIM_ MILLI_G_PER_DL_PER_MIN per minute */ | 4724 | /* General dimension mg/dL | | #define MDC_DIM_MILLI_MOLE_PER_L_PER_MIN mmol/L per minute */ | 4728 | /* General dimension | # C.3 Systematic derivations of terms and codes Systematic derivations of terms and codes are outlined in Table C.1. Table C.1—Systematic derivations of terms and codes | Systematic name | Common
term | Acronym | Description/definition | Reference ID | Code | |--|--|---------|--|--|-------| | Disease Management Device Status Personal Health Device | PHD DM status | | Object containing the general device status for PHD disease management. | MDC_PHD_DM_DEV_STAT | 20000 | | Glucose
Concentration
Trend | Glucose trend | | Object containing the glucose concentration trend. | MDC_CONC_GLU_TREND | 29400 | | Glucose
Concentration
Thresholds
Patient Low High | Patient's low
and high
glucose
thresholds | | Object containing the patient low and high thresholds for glucose concentration. | MDC_CONC_GLU_PATIENT_
THRESHOLDS_LOW_HIGH | 29404 | | Glucose
Concentration
Threshold Patient
Low | Patient's low
glucose
threshold | | Patient low threshold value for glucose concentration. | MDC_CONC_GLU_PATIENT_
THRESHOLD_LOW | 29405 | | Glucose
Concentration
Threshold Patient
High | Patient's high
glucose
threshold | | Patient high threshold value for glucose concentration. | MDC_CONC_GLU_PATIENT_
THRESHOLD_HIGH | 29406 | | Glucose
Concentration
Thresholds Hypo
Hyper | Hypo and hyper
thresholds for
glucose
concentration | | Object containing the hypoglycemic and hyperglycemic thresholds for glucose concentration. | MDC_CONC_GLU_
THRESHOLDS_HYPO_HYPER | 29408 | | Glucose
Concentration
Threshold Hypo | Device hypo
threshold for
glucose
concentration | | Hypoglycemic threshold value for glucose concentration. | MDC_CONC_GLU_
THRESHOLD_HYPO | 29409 | | Glucose
Concentration
Threshold Hyper | Device hyper
threshold for
glucose
concentration | | Hyperglycemic threshold value for glucose concentration. | MDC_CONC_GLU_
THRESHOLD_HYPER | 29410 | | Glucose
Concentration
Rate Thresholds | Glucose rate-of-
change
thresholds | | Object containing the rate-
of-change thresholds for
glucose concentration. | MDC_CONC_GLU_RATE_
THRESHOLDS | 29412 | Table C.1—Systematic derivations of terms and codes (continued) | Systematic name | Common
term | Acronym | Description/definition | Reference ID | Code | |--------------------|-------------------|---------|-------------------------------|---------------------------|-------| | Glucose | Glucose | | Increase threshold value | MDC CONC GLU RATE | 29413 | | Concentration | increase rate-of- | | for rate of change of | THRESHOLD INCREASE | | | Rate Threshold | change | | glucose concentration. | | | | Increase | thresholds | | 8 | | | | Glucose | Glucose | | Decrease threshold value | MDC_CONC_GLU_RATE_ | 29414 | | Concentration | decrease rate- | | for rate of change of | THRESHOLD DECREASE | | | Rate Threshold | of-change | | glucose concentration. | _ | | | decrease | thresholds | | | | | | CGM Sensor | CGM sensor | | Object containing the | MDC CGM SENSOR | 29428 | | Calibration | calibration | | CGM sensor calibration. | CALIBRATION | | | CGM Sensor | CGM sensor | | Object containing the | MDC_CGM_SENSOR_RUN_ | 29432 | | Run Time | run time | | CGM sensor run time. | TIME | | | CGM Sensor | CGM sensor | | Object containing the | MDC CGM SENSOR SAMPLE | 29436 | | Sampling | sampling | | CGM sensor sampling | INTERVAL | | | Interval | interval | | interval. | | | | CGM Device | CGM device | | Object containing the | MDC CGM DEV STAT | 29452 | | Status | status | | CGM device status. | | | | CGM Device | CGM sensor | | CGM device type sensor. | MDC CGM DEV TYPE | 29460 | | Type Sensor | | | o com action approximation | SENSOR | | | CGM Device | CGM | | CGM device type | MDC_CGM_DEV_TYPE_ | 29461 | | Type Transmitter | transmitter | | transmitter. | TRANSMITTER | 27.01 | | CGM Device | CGM receiver | | CGM device type receiver. | MDC_CGM_DEV_TYPE_ | 29462 | | Type Receiver | | | Conf device type receives. | RECEIVER | 27.02 | | CGM Device | CGM device | | CGM device type other. | MDC_CGM_DEV_TYPE_OTHER | 29463 | | Type Other | type other | | This option is used when | WEE-COMEDE VETTILE-OTTIEN | 27103 | | Type outer | type outer | | the device type does not | | | | | | | match an available option. | | | | Attribute | Threshold | | Numeric object attribute | MDC_ATTR_THRES_NOTIF_ | 2696 | | Threshold | notification text | | for a descriptive text string | TEXT STRING | 2070 | | Notification | string | | that accompanies a | TENT_STANTO | | | 1 (our cui ou | Sumg | | threshold notification. | | | | Attribute | Measurement | | Numeric object attribute | MDC_ATTR_MSMT_ | 2700 | | Measurement | confidence 95% | | for lower and upper | CONFIDENCE 95 | 2,00 | | Confidence | bounds | | bounds that define a range | | | | | | | within which the | | | | | | | manufacture is 95% | | | | | | | confidence the actual | | | | | | | measurement value | | | | | | | resides. | | | #### Annex D (informative) # Message sequence examples Figure D.1 shows a sequence diagram of the messaging procedure corresponding to the following use case. The user of a CGM agent device intends to connect it to a manager device for the first time. The CGM is capable of performing glucose measurements. - a) When the user connects the CGM, the manager does not recognize the agent's configuration and sends a
response to the agent's association request with the result *accepted-unknown-config*.. - b) As a consequence of this, the agent negotiates its configuration information to the manager. After getting confirmation from the manager accepting the agent's configuration, the agent device is ready to send measurements. Both devices enter the Operating state. - c) Subsequently, the manager may request the MDS object attributes of the agent by sending a data message with the "Remote Operation Invoke | Get" command. Note that the manager may request the MDS object attributes as soon as the agent enters the Associated state, including the Configuring and Operating substates. As a response, the agent reports its MDS object attributes to the manager using a Data message with the "Remote Operation Response | Get" command. - d) As a next step, the user of the agent device takes several measurements over some period of time. The measurement data are transmitted to the manager using an unconfirmed event reports. - e) The user ends the measurement session (e.g., by pushing a proper button on the device, or just by not using the device for a duration longer than a certain time period). As a consequence, the agent disassociates from the manager by sending an association release request. The manager responds with an association release response. - f) When the agent requests to associate to the manager for the next measurement session (e.g., the next day), the result in the manager's response is *accepted*, as it already knows the agent's configuration from the previous measurement session. Both devices transition directly to the Operating state. - g) Finally, the last two steps shown are similar as in item d) and item e). The user takes several unconfirmed measurements followed by releasing the association. Figure D.1—Sequence diagram for continuous glucose monitor example use case #### Annex E (informative) ## Protocol data unit examples #### E.1 General This annex shows binary examples of messages exchanged between a CGM agent and a manager. Three different scenarios containing the association and configuration information exchanges are presented in E.2 and E.2.4. The first scenario illustrates the case when the agent intends to operate using an extended configuration. The manager does not have the configuration declared by the agent from a prior association. The second illustrates the agent presenting the same extended configuration to the manager, and the manager does have the configuration from the previously transferred configuration exchange. Finally, the agent presents a standard configuration to the manager, and the manager has the configuration because the manager has been preprogrammed with this configuration. ## E.2 Association information exchange #### E.2.1 General When the transport connection is established between the manager and the agent, they both enter the Unassociated state. When the agent sends an association request, both manager and agent enter the Associating state. ## E.2.2 Extended configuration #### E.2.2.1 General In this exchange, the agent sends an association request intending to use an extended configuration during measurement transfer. However, the manager does not have this configuration. #### E.2.2.2 Association request The CGM agent sends the following message to the manager. The agent intends to associate using an extended configuration. | 0xE2 | 0x00 | | | APDU CHOICE Type (AarqApdu) | |------|------|---------------|------|--| | 0x00 | 0x32 | | | CHOICE.length = 50 | | 0x80 | 0x00 | 0×00 | 0x00 | assoc-version | | 0x00 | 0x01 | 0×00 | 0x2A | data-proto-list.count = $1 \mid length = 42$ | | 0x50 | 0x79 | | | data-proto-id = data-proto-id-20601 | | 0x00 | 0x26 | | | data-proto-info length = 38 | | 0x80 | 0x00 | 0×00 | 0x00 | protocolVersion | | 0x80 | 0x00 | | | encoding rules = MDER | | 0x80 | 0x00 | 0×00 | 0x00 | nomenclatureVersion | | 0x00 | 0x00 | 0x00 | 0x00 | functionalUnits – no Test Association capabilities | | $0 \times 00 0 \times 08$ system-id length = 8 and value (manufacturer- and device- specific | | |--|-----| | | ic) | | 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 | | | 0x40 0x00 dev-config-id – extended configuration | | | 0x00 0x01 data-req-mode-flags | | | $0 \times 01 0 \times 00$ data-req-init-agent-count = 1 data-req-init-manager-count = 0 | | | $0 \times 00 0 \times 00 0 \times 00 \text{optionList.count} = 0 \mid \text{optionList.length} = 0$ | | # E.2.2.3 Association response A manager responds to the agent that it can associate but does not have the CGM extended configuration (i.e., there is the need for the agent to send its configuration). | 0xE3 | 0x00 | | | APDU CHOICE Type (AareApdu) | |------|---------------|---------------|---------------|---| | 0x00 | 0x2C | | | CHOICE.length = 44 | | 0x00 | 0x03 | | | result = accepted-unknown-config | | 0x50 | 0x79 | | | data-proto-id = 20601 | | 0x00 | 0x26 | | | data-proto-info length = 38 | | 0x80 | 0x00 | 0×00 | 0×00 | protocolVersion | | 0x80 | 0x00 | | | encoding rules = MDER | | 0x80 | 0x00 | 0×00 | 0×00 | nomenclatureVersion | | 0x00 | 0x00 | 0×00 | 0×00 | functionalUnits - normal Association | | 0x80 | 0x00 | 0×00 | 0×00 | systemType = sys-type-manager | | 0x00 | 0x08 | | | system-id length = 8 and value (manufacturer- and device- specific) | | 0x88 | 0x77 | 0x66 | 0x55 | 0x44 0x33 0x22 0x11 | | 0x00 | 0x00 | | | Manager's response to config-id is always 0 | | 0x00 | 0x00 | 0×00 | 0×00 | Manager's response to data-req-mode-cap is always 0 | | 0x00 | 0×00 | 0×00 | 0×00 | $optionList.count = 0 \mid optionList.length = 0$ | # E.2.3 Previously known extended configuration #### E.2.3.1 General This exchange illustrates a transaction that takes place after a session beginning with an exchange like E.2.2 has occurred. # E.2.3.2 Association request The CGM agent sends the following message to the manager. The agent intends to associate using an extended configuration. | 0xE2 | 0x00 | | | APDU CHOICE Type (AarqApdu) | |---------------|---------------|---------------|------|--| | 0x00 | 0x32 | | | CHOICE.length = 50 | | 0×80 | 0x00 | 0×00 | 0x00 | assoc-version | | 0x00 | 0×01 | 0×00 | 0x2A | data-proto-list.count = $1 \mid length = 42$ | | 0x50 | 0x79 | | | data-proto-id = data-proto-id-20601 | | 0x00 | 0x26 | | | data-proto-info length = 38 | | 0×80 | 0x00 | 0×00 | 0x00 | protocolVersion | | 0×80 | 0x00 | | | encoding rules = MDER | | 0×80 | 0x00 | 0×00 | 0x00 | nomenclatureVersion | | 0x00 | 0x00 | 0x00 | 0x00 | functionalUnits – no Test Association capabilities | | 0x00 | 0x80 | 0x00 | 0x00 | systemType = sys-type-agent | |------|---------------|------|------|---| | 0x00 | 0x08 | | | system-id length = 8 and value (manufacturer- and device- specific) | | 0x11 | 0x22 | 0x33 | 0x44 | 0x55 0x66 0x77 0x88 | | 0x40 | 0x00 | | | dev-config-id – extended configuration | | 0x00 | 0×01 | | | data-req-mode-flags | | 0x01 | 0x00 | | | data-req-init-agent-count = 1 data-req-init-manager-count = 0 | | 0x00 | 0x00 | 0x00 | 0x00 | optionList.count = $0 \mid optionList.length = 0$ | # E.2.3.3 Association response A manager responds to the agent that it can associate with, recognizes, and accepts and has the CGM's extended configuration (i.e., there is no need for the agent to send its configuration). | 0xE3 | 0x00 | | | APDU CHOICE Type (AareApdu) | |---------------|---------------|---------------|---------------|---| | 0x00 | 0x2C | | | CHOICE.length = 44 | | 0x00 | 0x00 | | | result = accepted | | 0x50 | 0x79 | | | data-proto-id = 20601 | | 0x00 | 0x26 | | | data-proto-info length = 38 | | 0x80 | 0×00 | 0×00 | 0×00 | protocolVersion | | 0x80 | 0×00 | | | encoding rules = MDER | | 0x80 | 0×00 | 0×00 | 0×00 | nomenclatureVersion | | 0x00 | 0×00 | 0×00 | 0×00 | functionalUnits - normal Association | | 0x80 | 0×00 | 0×00 | 0×00 | systemType = sys-type-manager | | 0x00 | 0x08 | | | system-id length = 8 and value (manufacturer- and device- specific) | | 0x88 | 0x77 | 0x66 | 0x55 | 0x44 0x33 0x22 0x11 | | 0x00 | 0x00 | | | Manager's response to config-id is always 0 | | 0×00 | 0×00 | 0×00 | 0×00 | Manager's response to data-req-mode-cap is always 0 | | 0x00 | 0×00 | 0×00 | 0×00 | optionList.count = $0 \mid optionList.length = 0$ | ### E.2.4 Standard configuration #### E.2.4.1 General This transaction would occur if an agent presents an association request incorporating the dev-config-id corresponding to a standard configuration. The manager has the configuration because it has been programmed with this configuration according to the information presented in this standard. ### E.2.4.2 Association request The CGM agent sends the following message to the manager. The agent intends to associate using a standard configuration. The agent is willing to enter into a test association as defined in Clause 9. | 0xE2 | 0x00 | | | APDU CHOICE Type (AarqApdu) | |------|------|------|------|---| | 0x00 | 0x32 | | | CHOICE.length = 50 | | 0x80 | 0x00 | 0x00 | 0x00 | assoc-version | | 0x00 | 0x01 | 0x00 | 0x2A | data-proto-list.count = 1 length = 42 | | 0x50 | 0x79 | | | data-proto-id = 20601 | | 0x00 | 0x26 | | |
data-proto-info length = 38 | | 0x80 | 0x00 | 0x00 | 0x00 | protocolVersion | | 0x80 | 0x00 | | | encoding rules = MDER | | 0x80 | 0x00 | 0x00 | 0x00 | Nomenclature version | | 0x80 | 0x00 | 0x00 | 0×00 | Functional units = can enter a test association | |---------------|---------------|---------------|---------------|---| | 0x00 | 0×80 | 0×00 | 0×00 | systemType = sys-type-agent | | 0x00 | 80x0 | | | system-id length = 8 and value (manufacturer- and device- specific) | | 0x11 | 0x22 | 0x33 | 0x44 | 0x55 0x66 0x77 0x88 | | 0x09 | 0xC4 | | | dev-config-id: 2500 | | 0x00 | 0×01 | | | data-req-mode-flags | | 0×01 | 0x00 | | | data-req-init-agent-count = 1 data-req-init-manager-count=0 | | 0x00 | 0×00 | 0×00 | 0×00 | optionList.count = $0 \mid optionList.length = 0$ | ## E.2.4.3 Association response A manager responds to the agent that it can associate with, recognizes, and accepts and has the CGM standard configuration (i.e., there is no need for the agent to send its configuration). The manager does not start a test association. | 0xE3 | 0x00 | | | APDU CHOICE Type (AareApdu) | |---------------|---------------|---------------|---------------|---| | 0×00 | 0x2C | | | CHOICE.length = 44 | | 0x00 | 0x00 | | | result = accepted | | 0x50 | 0x79 | | | data-proto-id = 20601 | | 0x00 | 0x26 | | | data-proto-info length = 38 | | 0x80 | 0×00 | 0×00 | 0×00 | protocolVersion | | 0x80 | 0×00 | | | encoding rules = MDER | | 0x80 | 0×00 | 0×00 | 0×00 | nomenclatureVersion | | 0x00 | 0×00 | 0×00 | 0×00 | functionalUnits - normal Association | | 0x80 | 0×00 | 0×00 | 0×00 | systemType = sys-type-manager | | 0x00 | 0x08 | | | system-id length = 8 and value (manufacturer- and device- specific) | | 0x88 | 0x77 | 0x66 | 0x55 | 0x44 0x33 0x22 0x11 | | 0×00 | 0x00 | | | Manager's response to config-id is always 0 | | 0x00 | 0x00 | 0x00 | 0x00 | Manager's response to data-req-mode-cap is always 0 | | 0×00 | 0x00 | 0x00 | 0x00 | optionList.count = $0 \mid optionList.length = 0$ | # E.3 Configuration information exchange ### E.3.1 General If the association is not rejected or aborted, the agent and manager transition from the Associating state into one of two states. If the manager's AssociateResult code is accepted, the agent and manager enter the operating state. If the manager's AssociateResult code is accepted-unknown-config, the agent and manager enter the Configuring state. # E.3.2 Extended configuration #### E.3.2.1 General This exchange takes place when the manager returns the AssociateResult code of accepted-unknown-config. The agent presents a description of its configuration corresponding to the dev-config-id it presented in the association request. # E.3.2.2 Remote operation invoke event report configuration The CGM agent sends the description of its extended configuration. It does this by sending a confirmed event report of type MDC_NOTI_CONFIG. | APDU CHOICE Type (PrstApdu) | | | | | | |--|---------------|----------------|--------|--------|---| | 0x00 0x93A OCTET STRING.length = 154 0x01 0x01 CHOICE.Remote Operation Invoke Confirmed Event Report) 0x00 0x96 CHOICE.length = 150 0x00 0x97 0xFF 0xFF 0xFF 0xFF 0x00 0x0FF 0xFF 0x00 0x86 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | | | | | | | 0x43 0x21 invoke-id = 0x4321 (start of DataApdu, MDER encoded) 0x01 0x96 CHOICE(Remote Operation Invoke Confirmed Event Report) 0x00 0x96 CHOICE(Length = 150 0x00 0x70 obj-handle = 0 (MDS object) 0x70 0x1C event-time = 0xFFFFFFFF 0x00 0x8E event-time = 0xFFFFFFFF 0x40 0x00 config-report-id = Extended 0x00 0x03 config-obj-list.count = 3 Measurement objects will be "announced" config-obj-list.count = 1 Measurement is glucose) 0x00 0x01 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x01 obj-landle = 1 (→ 1" Measurement is glucose) 0x00 0x01 obj-landle = 1 (→ 1" Measurement is glucose) 0x00 0x01 obj-landle = 1 (→ 1" Measurement is glucose) 0x00 0x02 attribute-scount = 5 0x00 0x04 attribute-id = MDC_ATTR_ID_TYPE 0x00 0x04 attribute-value.length = 48 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 | | | | | | | 0x01 0x01 CHOICE(Remote Operation Invoke Confirmed Event Report) 0x00 0x00 0x00 obj-handle = 0 (MDS object) 0xFF 0xFF 0xFF 0xFF 0xFF 0x00 0x10 event-time = 0xFFFFFFFF 0x00 0x02 event-time = 0xFFFFFFFF 0x00 0x01 config-report-id = Extended 0x00 0x03 config-obj-list.count = 3 Measurement objects will be "announced" config-obj-list.length = 138 0x00 0x01 obj-class = MDC_MOC_WMO_METRIC_NU 0x00 0x03 attribute.slength = 48 0x00 0x03 attribute.slength = 48 0x00 0x04 attribute-id = MDC_ATTR_ID_TYPE 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x01 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x02 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 supplementalTypeList.count = 1 0x00 0x02 0x01 SupplementalTypeList.length = 4 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x02 0x01 SupplementalTypeList.count = 1 0x00 0x02 0x01 SupplementalTypeList.count = 1 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 | | | | | <u> </u> | | 0x00 0x96 CHOICE.length = 150 0x00 0x97 0xFF 0xFF 0xFF 0xFF event-time = 0xFFFFFFFFF 0x00 0x1C event-time = 0xFFFFFFFFFF 0x00 0x82 event-time = 0xFFFFFFFFFF 0x00 0x84 event-info.length = 142 (start of ConfigReport) 0x00 0x00 0x01 config-obj-list.count = 3 Measurement objects will be "announced" config-obj-list.length = 138 0x00 0x06 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x01 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x01 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x03 attribute-class = MDC_MOC_VMO_METRIC_NU 0x00 0x04 attribute-id = MDC_ATTR_ID_TYPE 0x00 0x04 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x04 SupplementalTypeList.count = 1< | | | | | | | 0x00 0xFF <t< td=""><td>0×01</td><td>0x01</td><td></td><td></td><td></td></t<> | 0×01 | 0x01 | | | | | 0xFF 0xFF 0xFF 0xFF event-time = 0xFFFFFFF 0x00 0x8c event-time = 0xFFFFFFFF 0x00 0x00 0x00 config-obj-list.count = 3 Measurement objects will be "announced" config-obj-list.length = 138 0x00 0x06 0x06 obj-class = MDC_MOC_VMO_METRIC_NU obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x05 attributes.count = 5 attributes.count = 5 0x00 0x00 0x04 ctributes.length = 48 attributes.count = 5 0x00 0x02 0x71 0xD4 dxtribute-id = MDC_ATTR_ID_TYPE attribute-value.length = 4 0x00 0x02 0x01 0x08 0x01 0x00 0x01 0x00 0x01 0x00 0x01 0 | 0x00 | 0x96 | | | CHOICE.length = 150 | | 0x0D 0x1C event-type = MDC_NOTI_CONFIG 0x00 0x8E event-info.length = 142 (start of ConfigReport) 0x40 0x00 0x03 config-report-id = Extended config-report-ibit.count = 3 Measurement objects will be "announced" 0x00 0x8A config-obj-list.count = 3 Measurement objects will be "announced" obj-lass = MDC_MOC_VMO_METRIC_NU 0x00 0x00 0x01 obj-handle = 1 (→ 1" Measurement is glucose) attribute.seount = 5 0x00 0x00 0x3D attribute-slength = 48 attribute-length = 48 0x00 0x04 attribute-value.length = 4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x01 attribute-value.length = 4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x01 attribute-value.length = 8 SupplementalTypeList.count = 1 0x00 0x02 0x04 attribute-value.length = 8 SupplementalTypeList.count = 1 0x00 0x04 0x02 0x04 0x01 0x02 0x02 0x02 0x02 0x02 0x02 0x02 | 0x00 | 0x00 | | | | | 0x00 0x8E event-info.length = 142 (start of ConfigReport) 0x40 0x00 config-report-id = Extended 0x00 0x08A config-obj-list.count = 3 Measurement objects will be "announced" 0x00 0x06 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x01 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x05 attribute-count = 5 0x00 0x05 attribute-count = 5 0x00 0x05 attribute-count = 5 0x00 0x02 0x2F attribute-id = MDC_ATTR_ID_TYPE 0x00 0x04 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x04 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x04 supplementalTypeList.count = 1 0x00 0x04 MDC_PART_PHD_DM 0x00 0x04 attribute-id = MDC_ATTR_METRIC_SPEC | 0xFF | 0xFF | 0xFF | 0xFF | event-time = $0xFFFFFFFF$ | | 0x40 0x00 config-report-id = Extended 0x00 0x8a
config-obj-list.count = 3 Measurement objects will be "announced" 0x00 0x06 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x05 attributes.count = 5 0x00 0x02 0x05 attributes.count = 5 0x00 0x2F attributes.length = 48 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x08 attribute-value.length = 4 0xDC_ONC_GLU_ISF 0x00 0x08 attribute-value.length = 8 0x00 0x08 attribute-value.length = 8 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 SupplementalTypeList.length = 1 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-value.length = 1 | 0x0D | 0x1C | | | event-type = MDC_NOTI_CONFIG | | 0x00 0x03 config-obj-list.count = 3 Measurement objects will be "announced" config-obj-list.length = 138 0x00 0x06 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x01 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x05 attributes.count = 5 0x00 0x30 attributes.length = 48 0x00 0x04 attribute-value.length = 4 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x06 attribute-value.length = 4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x01 supplementalTypeList.count = 1 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_UE_INTR_CODE 0x00 0x02 | 0×00 | 0x8E | | | event-info.length = 142 (start of ConfigReport) | | 0x00 0x8A config-obj-list.length = 138 0x00 0x06 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x05 obj-handle = 1 (→) 1st Measurement is glucose) 0x00 0x05 attributes.count = 5 0x00 0x30 attributes.count = 5 0x00 0x30 attributes.count = 5 0x00 0x02 0x71 0xD4 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x08 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 SupplementalTypeList.count = 1 0xDeplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 Attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_UNIT | 0x40 | 0x00 | | | config-report-id = Extended | | 0x00 0x8A config-obj-list.length = 138 0x00 0x06 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x05 obj-handle = 1 (→) 1st Measurement is glucose) 0x00 0x05 attributes.count = 5 0x00 0x30 attributes.count = 5 0x00 0x30 attributes.count = 5 0x00 0x02 0x71 0xD4 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x08 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 SupplementalTypeList.count = 1 0xDeplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 Attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_UNIT | 0x00 | 0×03 | | | config-obj-list.count = 3 Measurement objects will be "announced" | | 0x00 0x06 obj-class = MDC_MOC_VMO_METRIC_NU 0x00 0x01 obj-handle = 1 (→) 1st Measurement is glucose) 0x00 0x05 attributes.count = 5 0x09 0x2F attributes.length = 48 0x09 0x04 attribute-value.length = 4 0x00 0x04 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x01 attribute-value.length = 8 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL <t< td=""><td>0x00</td><td>A8x0</td><td></td><td></td><td></td></t<> | 0x00 | A8x0 | | | | | 0x00 0x01 obj-handle = 1 (→ 1 st Measurement is glucose) 0x00 0x05 attributes.count = 5 0x00 0x2F attributes.length = 48 0x00 0x04 attribute-id = MDC_ATTR_ID_TYPE 0x00 0x02 0x71 0xD4 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x01 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 MDC_PART_PHD_DM 0x04 MDC_PART_PHD_DM 0x05 Attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_NETRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_NETRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_NETRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_TUNIT_CODE | 0×00 | 0x06 | | | | | 0x00 0x05 attributes.count = 5 0x00 0x30 attributes.length = 48 0x09 0x2F attribute-id = MDC_ATTR_ID_TYPE 0x00 0x02 0x71 0xD4 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x08 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 MDC_PART_PHD_DM MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS Attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-value.length = 2 0x00 0x92 attribute-value.length = 2 0x00 0x92 attribute-value.length = 2 <tr< td=""><td>0×00</td><td>0×01</td><td></td><td></td><td></td></tr<> | 0×00 | 0×01 | | | | | 0x00 0x30 attributes.length = 48 0x09 0x2F attribute-id = MDC_ATTR_ID_TYPE 0x00 0x04 attribute-value.length = 4 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x08 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x08 attribute-value.length = 8 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x04 MDC_PART_PHD_DM 0x00 0x40 MDC_PART_PHD_DM 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_UNIT_CODE 0x00 0x02 attribute-id = MDC_ATTR_UNIT_CODE 0x00 0x02 attribute-id = MDC_ATTR_ATTRIBUTE_VALUE_MAP 0x00 0x02 attr | 0x00 | 0×05 | | | | | 0x09 0x2F attribute-id = MDC_ATTR_ID_TYPE 0x00 0x04 attribute-value.length = 4 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x08 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-value.length = 2 0x00 0x92 attribute-value.length = 2 0x00 0x02 attribute-id = MDC_ATTR_UNIT_CODE 0x01 0x02 attribute-id = MDC_ATTR_ATTRIBUTE_VALUE_MAP 0x00 0x02 attribute-id = MDC_ATTR_ATTRIBUTE_VALUE_MAP 0x00 0x02 AttrValMap.count = 2 0x00 0x02 AttrValMap.length = 8 0x00 0x02 MDC_ATTR_TIME_STAMP_BO value length = 8 0x00 0x04 MDC_ATTR_TIME_STAMP_BO value | | | | | | | 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x0A 0x61 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x08 attribute-value.length = 8 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM | 0x09 | 0x2F | | | · · · · · · · · · · · · · · · · · · · | | 0x00 0x02 0x71 0xD4 MDC_PART_SCADA MDC_CONC_GLU_ISF 0x00 0x08 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM | 0x00 | 0×0.4 | | | | | 0x0A 0x61 attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM | | | 0x71 | 0×D4 | <u> </u> | | 0x00 0x01 SupplementalTypeList.count = 1 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM | | | 0117 _ | 0112 1 | | | 0x00 0x04 SupplementalTypeList.count = 1 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM | | | | | | | 0x00 0x04 SupplementalTypeList.length = 4 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM | | | | | <u> </u> | | 0x00 0x80 0x72 0x39 MDC_PART_PHD_DM | | | | | ** | | 0x0A 0x46 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x02 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL 0x00 0x42 mss-avail-intermittent, mss-avail-stored-data, mss-acc-agent-initiated, mss-cat-calculation 0x09 0x96 attribute-id = MDC_ATTR_UNIT_CODE 0x00 0x02 attribute-value.length = 2 0x08 0x55 attribute-id = MDC_ATTR_ATTRIBUTE_VALUE_MAP 0x00 0x00 attribute-value.length = 12 0x00 0x02 AttrValMap.count = 2 0x00 0x08 AttrValMap.length = 8 0x00 0x02 MDC_ATTR_NU_VAL_OBS_BASIC value length = 2 0x00 0x02 MDC_ATTR_TIME_STAMP_BO value length = 8 0x00 0x02 MDC_ATTR_TIME_STAMP_BO value length = 8 0x00 0x02 Oy0 0x00 Ox02 Oy0 | | | 072 | U~30 | ** | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | UXUU | UXOU | UAIZ | 0233 | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $0 \times 0 $ | 0×46 | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | mss-cat-calculation | | | | | <u> </u> | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | UXCU | UA4Z | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | n~na | n~96 | | | | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | | | | | | | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | | | | | | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | | | | | e e e e e e e e e e e e e e e e e e e | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | 000 | 002 | · · | | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | | | | | | | 0×00 0×02 obj-handle = 2 $(\rightarrow 2^{nd}$ Measurement is sensor calibration) 0×00 0×04 attributes.count = 4 0×00 0×24 attributes.length = 36 0×09 $0 \times 2F$ attribute-id = MDC_ATTR_ID_TYPE 0×00 $0
\times 04$ attribute-value.length = 4 0×00 0×80 0×72 $0 \times F0$ 0×00 0×80 0×72 $0 \times F0$ | | | 0x00 | 0X08 | | | 0x00 0x04 attributes.count = 4 0x00 0x24 attributes.length = 36 0x09 0x2F attribute-id = MDC_ATTR_ID_TYPE 0x00 0x04 attribute-value.length = 4 0x00 0x80 0x72 0xF0 MDC_PART_PHD_DM MDC_CGM_SENSOR_CALIBRATION | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | 0x09 0x2F attribute-id = MDC_ATTR_ID_TYPE 0x00 0x04 attribute-value.length = 4 0x00 0x80 0x72 0xF0 MDC_PART_PHD_DM MDC_CGM_SENSOR_CALIBRATION | | | | | | | 0x00 0x04 attribute-value.length = 4 0x00 0x80 0x72 0xF0 MDC_PART_PHD_DM MDC_CGM_SENSOR_CALIBRATION | | | | | · · · · · · · · · · · · · · · · · · · | | 0x00 0x80 0x72 0xF0 MDC_PART_PHD_DM MDC_CGM_SENSOR_CALIBRATION | | | | | | | | | | | | | | 0x0A 0x46 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL | | | 0x72 | 0xF0 | | | | 0x0A | 0x46 | | | attribute-id = MDC_ATTR_METRIC_SPEC_SMALL | | 0x00 | 0×02 | | | attribute-value.length = 2 | |------|---------------|------|---------------|--| | 0x60 | 0x4C | | | mss-avail-stored-data, mss-upd-aperiodic, mss-acc-agent-initiated, | | | | | | mss_cat_manual, mss_cat_setting | | 0x09 | 0x96 | | | attribute-id = MDC_ATTR_UNIT_CODE | | 0x00 | 0×02 | | | attribute-value.length = 2 | | 0x08 | 0x52 | | | MDC_DIM_MILLI_G_PER_DL | | 0x0A | 0x55 | | | attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP | | 0x00 | 0x0C | | | attribute-value.length = 12 | | 0x00 | 0×02 | | | AttrValMap.count = 2 | | 0x00 | 0x08 | | | AttrValMap.length = 8 | | 0x0A | 0x4C | 0x00 | 0×02 | MDC_ATTR_NU_VAL_OBS_BASIC value length = 2 | | 0x0A | 0x82 | 0x00 | 0x08 | MDC_ATTR_TIME_STAMP_BO value length = 8 | | 0x00 | 0×05 | | | obj-class = MDC_MOC_VMO_METRIC_ENUM | | 0x00 | 0×03 | | | obj-handle = 3 (\rightarrow 3 rd Measurement is CGM status) | | 0x00 | 0x03 | | | attributes.count = 3 | | 0x00 | 0x1E | | | attributes.length = 30 | | 0x09 | 0x2F | | | attribute-id = MDC_ATTR_ID_TYPE | | 0x00 | 0×04 | | | attribute-value.length = 4 | | 0x00 | 0x80 | 0x72 | 0xE4 | MDC_PART_PHD_DM MDC_CGM_DEV_STAT | | 0x0A | 0x46 | | | attribute-id = MDC_ATTR_METRIC_SPEC_SMALL | | 0x00 | 0×02 | | | attribute-value.length = 2 | | 0xF0 | 0x40 | | | $mss-avail\text{-}intermittent,\ mss-avail\text{-}stored\text{-}data,\ mss\text{-}upd\text{-}aperiodic,\ mss-avail\text{-}}$ | | | | | | msmt-aperiodic, mss-acc-agent-initiated | | 0x0A | 0x55 | | | attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP | | 0x00 | 0x0C | | | attribute-value.length = 12 | | 0x00 | 0x02 | | | AttrValMap.count = 2 | | 0x00 | 0x08 | | | AttrValMap.length = 8 | | 0x0A | 0x82 | 0x00 | 0x08 | MDC_ATTR_TIME_STAMP_BO value length = 8 | | 0x0A | 0x66 | 0x00 | 0x04 | MDC_ATTR_ENUM_OBS_VAL_BASIC_BIT_STR value length = 4 | | | | | | | # E.3.2.3 Remote operation response event report configuration The manager responds that it can utilize the agent's configuration. The manager does this by sending the confirmed event report response with a config-result of accepted-config. | 0xE7 | 0x00 | | APDU CHOICE Type (PrstApdu) | |------|---------------|-----|---| | 0x00 | 0x16 | | CHOICE.length = 22 | | 0x00 | 0x14 | | OCTET STRING.length = 20 | | 0x43 | 0x21 | | invoke-id = 0x4321 (mirrored from invocation) | | 0x02 | 0x01 | | CHOICE (Remote Operation Response Confirmed Event Report) | | 0x00 | 0x0E | | CHOICE.length = 14 | | 0x00 | 0x00 | | obj-handle = 0 (MDS object) | | 0x00 | 0x00 0x00 0 | 00x | currentTime = 0 | | 0x0D | 0x1C | | event-type = MDC_NOTI_CONFIG | | 0x00 | 0×04 | | event-reply-info.length = 4 | | 0x40 | 0x00 | | ConfigReportRsp.config-report-id = 0x4000 | | 0x00 | 0x00 | | ConfigReportRsp.config-result = accepted-config | ### E.3.3 Known configuration #### E.3.3.1 General This exchange takes place when the manager returns the AssociateResult code of accepted because the manager had previously received and processed the configuration corresponding to the dev-config-id sent by the agent. In this case, there is no exchange of configuration information, and the manager and agent have moved into the Operating state. #### E.3.3.2 Remote operation invoke event report configuration Since the manager was already aware of the agent's configuration, the Configuring state is skipped, and no event report invocation is generated by the agent. #### E.3.3.3 Remote operation response event report configuration The Configuring state has been skipped. No event report invocation is generated by the agent, so the manager does not generate any response. #### E.3.4 Standard configuration #### E.3.4.1 General This exchange takes place when the manager returns the AssociateResult code of accepted because the manager had previously been programmed with the documented standard configuration corresponding to the dev-config-id sent by the agent. In this case, there is no exchange of configuration information, and the manager and agent have moved into the Operating state. #### E.3.4.2 Remote operation invoke event report configuration Since the manager had been programmed with the agent's configuration, the Configuring state is skipped, and no event report invocation is generated by the agent. #### E.3.4.3 Remote operation response event report configuration The Configuring state has been skipped. No event report invocation is generated by the agent, so the manager does not generate any response. #### E.4 GET MDS attributes service #### E.4.1.1 General The GET MDS attributes is invoked at any time, when an agent is in Associated state. # E.4.1.2 Get all medical device system attributes request The manager queries the agent for its MDS Object attributes. | 0xE7 | 0×00 | APDU CHOICE Type (PrstApdu) | |------|---------------|--| | 0x00 | 0x0E | CHOICE.length = 14 | | 0x00 | 0x0C | OCTET STRING.length = 12 | | 0x34 | 0x56 | invoke-id = 0x3456 (start of DataApdu. MDER encoded) | | 0x01 | 0×03 | CHOICE (Remote Operation Invoke Get) | | 0x00 | 0x06 | CHOICE.length = 6 | | 0x00 | 0×00 | handle = 0 (MDS object) | | 0x00 | 0×00 | attribute-id-list.count = 0 (all attributes) | | 0x00 | 0×00 | attribute-id-list.length = 0 | # E.4.1.3 Get response with all MDS attributes The CGM agent responds to the manager with its attributes. Furthermore, some optional fields are communicated as well. | 0xE7 | 0x00 | | | APDU CHOICE Type (PrstApdu) | |---------------|----------------|------|------|--| | 0x00 | 0х6А | | | CHOICE.length = 106 | | 0x00 | 0x68 | | | OCTET STRING.length = 104 | | 0x34 | 0x56 | | | invoke-id = $0x3456$ (mirrored from request) | | 0x02 | 0x03 | | | CHOICE (Remote Operation Response Get) | | 0x00 | 0x62 | | | CHOICE.length = 98 | | 0x00 | 0×00 | | | handle = 0 (MDS object) | | 0×00 | 0x06 | | | attribute-list.count = 6 | | 0x00 | 0x5C | | | attribute-list.length = 92 | | 0x0A | 0x5A | | | attribute id = MDC_ATTR_SYS_TYPE_SPEC_LIST | | 0x00 | 0x08 | | | attribute-value.length = 8 | | 0x00 | 0×01 | | | system-type-spec-list.count = 1 | | 0x00 | 0×04 | | | system-type-spec-list.length = 4 | | 0x10 | 0x1A | | | type = MDC_DEV_SPEC_PROFILE_CGM | | 0x00 | 0×01 | | | version = version 1 of the specialization | | 0x09 | 0x28 | | | attribute id = MDC_ATTR_ID_MODEL | | 0x00 | 0x16 | | | attribute-value.length = 22 | | 0x00 | 0x0A | 0x54 | 0x68 | string length = 10 "TheCompany" | | 0x65 | 0x43 | 0x6F | 0x6D | | | 0x70 | 0x61 | 0x6E | 0x79 | | | 0×00 | 0x08 | 0x54 | 0x68 | string length = $8 \mid \text{``TheCGMX} \setminus 0\text{''}$ | | 0x65 | 0x43 | 0x47 | 0x4D | 0x58 0x00 | | 0x09 | 0x84 | | | attribute-id = MDC_ATTR_SYS_ID | | 0x00 | 0x0A | | | attribute-value.length = 10 | | 0x00 | 0x08 | 0x88 | 0x77 | octet string length = 8 EUI-64 | | 0x66 | 0x55 | 0x44 | 0x33 | 0x22 0x11 | | 0x0A | 0x44 | | | attribute-id = MDC_ATTR_DEV_CONFIG_ID | | 0x00 | 0x02 | | | attribute-value.length = 2 | | 0x40 | 0x00 | | | dev-config-id = $0x4000$ (extended-config-start) | | 0x09 | 0x2D | | | attribute id = MDC_ATTR_ID_PROD_SPECN | | 0×00 | 0x12 | | | attribute-value.length = 18 | | 0×00 | 0×01 | | | ProductionSpec.count = 1 | | 0×00 | $0 \times 0 E$ | | | ProductionSpec.length = 14 | | 0x00 | 0×01 | | | ProdSpecEntry.spec-type = 1 (serial-number) | | | | | | | | 0x00 | 0x00 | | | ProdSpecEntry.component-id = 0 | |------|------|------|------|--| | 0x00 | 0x08 | 0x44 | 0x45 | string length = 8 prodSpecEntry.prod-spec = "DE124567" | | 0x31 | 0x32 | 0x34 | 0x35 | | | 0x36 | 0x37 | | | | | 0x0A | 0x81 | | | attribute id = MDC_ATTR_TIME_BO | | 0x00 | 0x08 | | | attribute-value.length = 8 | | 0x51 | 0x3F | 0x46 | 0x38 | Base-Offset-Time-Stamp = 2013-03-12T15:14:00.00 | | 0x00 | 0x00 | 0x00 | 0x00 | | | | | | | | # E.5 Data reporting #### E.5.1 Unconfirmed measurement data transmission The agent sends a spontaneous event report to the manager with measurement observations. | 0xE7 | 0x00 | | | APDU CHOICE Type (PrstApdu) | |------|------|---------------|------|--| | 0x00 | 0x28 | | | CHOICE.length = 40 | | 0x00 | 0x26 | | | OCTET STRING.length = 38 | | 0x12 | 0x36 | | | invoke-id = 0x1236 | | 0x01 | 0x01 | | | CHOICE(Remote Operation Invoke Confirmed Event Report) | | 0x00 | 0x20 | | | CHOICE.length = 32 | | 0x00 | 0x00 | | | obj-handle = 0 (MDS object) | | 0xFF | 0xFF | 0xFF | 0xFF | event-time = 0xFFFFFFFF | | 0x0D | 0x1D | | | event-type = MDC_NOTI_SCAN_REPORT_FIXED | | 0x00 | 0x16 | | |
event-info.length = 22 | | 0xF0 | 0x00 | | | ScanReportInfoFixed.data-req-id = 0xF000 (agent-initiated) | | 0x00 | 0x00 | | | ScanReportInfoFixed.scan-report-no = 0 | | 0x00 | 0x01 | | | ScanReportInfoFixed.obs-scan-fixed.count = 1 | | 0x00 | 0x0E | | | ScanReportInfoFixed.obs-scan-fixed.length = 14 | | 0x00 | 0x01 | | | ScanReportInfoFixed.obs-scan-fixed.value[0].obj-handle = 1 | | 0x00 | 0x0A | | | ScanReportInfoFixed.obs-scan-fixed.value[0].obs-val-data.length = 10 | | 0x4D | 0x66 | | | Basic-Nu-Observed-Value = 6.7 mmol/L | | 0x52 | 0x9C | 0xA3 | 0xB8 | Base-Offset-Time-Stamp = 2013-03-12T15:14:00.00 | | 0x00 | 0x00 | 0×00 | 0x00 | | | | | | | 2013 03 12113.1 1.00.00 | # **E.6 Disassociation** # E.6.1 Association release request The CGM agent sends the following message to the manager. | 0xE4 | 0×00 | APDU CHOICE Type (RlrqApdu) | |------|---------------|-----------------------------| | 0x00 | 0×02 | CHOICE.length = 2 | | 0x00 | 0x00 | reason = normal | # E.6.2 Association release response A manager responds to the agent that it can release association. | 0xE5 0x00 | APDU CHOICE Type (RlreApdu) | |-----------|-----------------------------| | 0x00 0x02 | CHOICE.length = 2 | | 0x00 0x00 | reason = normal | BS EN ISO 11073-10425:2016 ISO/IEEE 11073-10425:2016(E) # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. ## **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. # Copyright in BSI publications All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent. #### Storing and using standards Standards purchased in soft copy format: - A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only. - The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time. - A single paper copy may be printed for personal or internal company use only. Standards purchased in hard copy format: - A British Standard purchased in hard copy format is for personal or internal company use only. - It may not be further reproduced in any format to create an additional copy. This includes scanning of the document. If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions'). ## **Reproducing extracts** For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to biggroup com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com. #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. # **Useful Contacts** **Customer Services** Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com Subscriptions Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com Knowledge Centre **Tel:** +44 20 8996 7004 $\textbf{Email:} \ knowledge centre @bsigroup.com$ Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com ### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK