Incorporating corrigendum no. 1 # Acoustics—Laboratory measurement of the flanking transmission of airborne and impact sound between adjoining rooms— Part 2: Application to light elements when the junction has a small influence The European Standard EN ISO 10848-2:2006 has the status of a British Standard ICS 91.120.20 #### National foreword This British Standard was published by BSI. It is the UK implementation of EN ISO 10848-2:2006, incorporating corrigendum February 2007. It is identical with ISO 10848-2:2006, incorporating corrigendum February 2007. It supersedes BS EN 20140-9:1994 and BS EN ISO 140-12:2000 which are withdrawn. The UK participation in its preparation was entrusted by Technical Committee EH/1, Acoustics, to Subcommittee EH/1/6, Building acoustics. A list of organizations represented on this subcommittee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard cannot confer immunity from legal obligations. #### Amendments issued since publication This British Standard was published under the authority of the Standards Policy and Strategy Committee on 28 April 2006 © BSI 2007 | Amd. No. | Date | Comments | | | | |----------------------------|-------------|--|--|--|--| | 17081
Corrigendum No. 1 | 31 May 2007 | Changes to EN ISO title page and foreword.
Changes to ISO foreword. | ISBN 0 580 48232 4 ### EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM **EN ISO 10848-2** April 2006 ICS 91.120.20 Supersedes EN 20140-9:1993 and EN ISO 140-12:2000 Incorporating corrigendum February 2007 #### **English Version** Acoustics - Laboratory measurement of the flanking transmission of airborne and impact sound between adjoining rooms - Part 2: Application to light elements when the junction has a small influence (ISO 10848-2:2006) Acoustique - Mesurage en laboratoire des transmissions latérales du bruit aérien et des bruits de choc entre pièces adjacentes - Partie 2: Application aux éléments légers lorsque la jonction a une faible influence (ISO 10848-2:2006) Akustik - Messung der Flankenübertragung von Luftschall und Trittschall zwischen benachbarten Räumen in Prüfständen - Teil 2: Anwendung auf leichte Bauteile, wenn die Verbindung geringen Einfluss hat (ISO 10848-2:2006) This European Standard was approved by CEN on 16 March 2006. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: rue de Stassart, 36 B-1050 Brussels #### **Foreword** This document (EN ISO 10848-2:2006) has been prepared by Technical Committee CEN/TC 126 "Acoustic properties of building elements and of buildings", the secretariat of which is held by AFNOR, in collaboration with Technical Committee ISO/TC 43 "Acoustics". This document supersedes: EN 20140-9:1993 and EN ISO 140-12:2000. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2006, and conflicting national standards shall be withdrawn at the latest by October 2006. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. # INTERNATIONAL STANDARD ISO 10848-2 First edition 2006-04-01 Acoustics — Laboratory measurement of the flanking transmission of airborne and impact sound between adjoining rooms — Part 2: Application to light elements when the junction has a small influence Acoustique — Mesurage en laboratoire des transmissions latérales du bruit aérien et des bruits de choc entre des pièces adjacentes — Partie 2: Application aux éléments légers lorsque la jonction a une faible influence | Con | ontents | | | |------------------------|--|-------------|--| | Forew | vord | iv | | | 1 | Scope | 1 | | | 2 | Normative references | 1 | | | 3 | Terms and definitions | 2 | | | 4 | Measuring equipment | 3 | | | 5
5.1
5.2
5.3 | Test arrangementRequirements for the laboratoryInstallation of the test elementVerification procedure for a light flanking element that is structurally independent of a separating elementShielding technique used in the case of airborne excitation | 3
4
7 | | | 6 | Test procedures | 8 | | | 7 | Precision | 8 | | | 8 | Expression of results | 8 | | | 9 | Test report | 9 | | | Anne | ${f x}$ A (informative) Measurement of $D_{{f n},{f f},{f l}}$ with intensity technique | 10 | | | Biblio | ography | | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 10848-2 was prepared by the European Committee for Standardization (CEN) Technical Committee CEN/TC 126, *Acoustic properties of building elements and of buildings*, in collaboration with Technical Committee ISO/TC 43, *Acoustics*, Subcommittee SC 2, *Building acoustics*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement). This first edition cancels and replaces ISO 140-9:1985 and ISO 140-12:2000. ISO 10848 consists of the following parts, under the general title *Acoustics* — *Laboratory measurement of the flanking transmission of airborne and impact sound between adjoining rooms*: - Part 1: Frame document - Part 2: Application to light elements when the junction has a small influence - Part 3: Application to light elements when the junction has a substantial influence The following part is under preparation: — Part 4: Application to all other cases # Acoustics — Laboratory measurement of the flanking transmission of airborne and impact sound between adjoining rooms — #### Part 2: ## Application to light elements when the junction has a small influence #### 1 Scope ISO 10848 specifies measurement methods to be performed in a laboratory test facility in order to characterize the flanking transmission of one or several building components. The measured quantities may be used to compare different products, or to express a requirement, or as input data for prediction methods, such as EN 12354-1 and EN 12354-2. This part of ISO 10848 is specifically referred to in ISO 10848-1:2006, 4.4, as being a supporting part of the frame document. This part of ISO 10848 applies to light elements such as suspended ceilings, access floors, light uninterrupted façades or floating floors. The transmission from one room to another can be simultaneous through the test element and via the plenum, if any. With measurements according to this part of ISO 10848, the total sound transmission is measured, and it is not possible to separate the two kinds of transmission. The measured quantities $D_{\rm n\,f}$ and $L_{\rm n\,f}$ depend on the actual dimensions of the test specimen. A light element is defined in ISO 10848-1:2006, Clause 3. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 140-2, Acoustics — Measurement of sound insulation in buildings and of building elements — Part 2: Determination, verification and application of precision data ISO 140-3:1995, Acoustics — Measurement of sound insulation in buildings and of building elements — Part 3: Laboratory measurements of airborne sound insulation of building elements ISO 140-6:1998, Acoustics — Measurement of sound insulation in buildings and of building elements — Part 6: Laboratory measurements of impact sound insulation of floors ISO 354, Acoustics — Measurement of sound absorption in a reverberation room ISO 717-1, Acoustics — Rating of sound insulation in buildings and of building elements — Part 1: Airborne sound insulation ISO 717-2, Acoustics — Rating of sound insulation in buildings and of building elements — Part 2: Impact sound insulation ISO 10848-1:2006, Acoustics — Laboratory measurement of the flanking transmission of airborne and impact sound between adjoining rooms — Part 1: Frame document #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### normalized flanking level difference D_{n} difference in the space and time average sound pressure level produced in two rooms by one or more sound sources in one of them, when the transmission only occurs through a specified flanking path NOTE $D_{\rm n,f}$ is normalized to an equivalent sound absorption area (A_0) in the receiving room and is expressed in decibels: $$D_{\rm n,f} = L_1 - L_2 - 10 \text{ lg} \frac{A}{A_0} \text{ dB}$$ (1) where L_1 is the average sound pressure level in the source room, in decibels; L₂ is the average sound pressure level in the receiving room, in decibels; A is the equivalent sound absorption area in the receiving room, in square metres; A_0 is the reference equivalent sound absorption area, in square metres; $A_0 = 10 \text{ m}^2$. [ISO 10848-1:2006] #### 3.2 #### normalized flanking impact sound pressure level $L_{\mathsf{n},\mathsf{f}}$ space and time average sound pressure level in the receiving room produced by a standard tapping machine operating at different positions on a tested floor in the source room, when the transmission only occurs through a specified flanking path NOTE $L_{\rm n,f}$ is normalized to an equivalent sound absorption area (A_0) in the receiving room and is expressed, in decibels: $$L_{\text{n,f}} = L_2 + 10 \text{ lg} \frac{A}{A_0} \text{ dB}$$ (2) where L_2 is the average sound pressure level in the receiving room, in decibels; A is the equivalent sound absorption area in the receiving room, in square metres; A_0 is the reference equivalent sound absorption area, in square metres; $A_0 = 10 \text{ m}^2$. [ISO 10848-1:2006] #### 3.3 #### plenum space whole of the void below an access floor or above a suspended ceiling in both rooms in the test facility #### 4 Measuring equipment The equipment shall fulfil the requirements given in ISO 10848-1:2006, Clause 5. #### 5 Test arrangement #### 5.1 Requirements for the laboratory #### 5.1.1 General The general requirements for test specimens and test rooms given in ISO 10848-1:2006, Clause 6 shall be fulfilled. Further requirements for this part of ISO 10848 are stated in the following subclauses. Facilities for different kinds of test specimens are shown in Figures 1 to 4. #### 5.1.2 Construction of the test facility The rooms shall be on the same level, except for the façade testing where the rooms may be placed one on top of the other. For access floors and suspended ceilings, the ground plan of the test facility shall be rectangular. When the rooms are side by side, a vibration break shall be provided between the two rooms in order to ensure that structure-borne transmissions through the test facility are negligible (see Figure 1). When a plenum is used, the reverberation time of each room might be affected by sound transmission back from the other test room. In such cases, a suitable impervious plenum barrier shall be installed between the edge of the dividing wall and the bottom wall of the plenum during the reverberation time measurements. #### 5.1.3 Dimensions of the test facility The width of the test facility shall be 4,5 m \pm 0,5 m and the internal height of the source and receiving rooms shall be at least 2,3 m. The volume V of each room shall be at least 50 m³. It is recommended that the dividing wall be positioned such that the volumes of source and receiving room differ by at least 10 % when the test element is in position. The minimum depth in both rooms shall be 3,5 m. #### 5.1.4 Dividing wall The dividing wall divides the test facility into source and receiving room. The dividing wall shall be mounted in such a way that it is not loading the element. The gap between the dividing wall and the element shall be sealed with a flexible material. The thickness of the wall shall be less than 200 mm or tapered to 200 mm (see for example Figure 1). The tapering between the widest part of the wall and the element shall be achieved by means of an angle not exceeding 45°. The construction of the dividing wall shall be such that $D_{\rm n,f,max}$ is 10 dB higher than the $D_{\rm n,f}$ of any element which is likely to be tested. In cases where there is a plenum, for checking the airborne sound insulation of the facility, a suitable plenum barrier of construction similar to the dividing wall may be installed between the edge of the dividing wall and the wall of the test facility, without the element. In cases where there is no plenum, a suitable construction, for example a lining of the internal face of the test element, could be necessary to determine $D_{\mathsf{n},\mathsf{f},\mathsf{max}}$. #### 5.1.5 Plenum height For access floors, the height as measured from the surface of the access floor to the surface of the floor of the test facility shall be either 0,3 m or, if this is not possible, then the nearest possible value shall be used. Other heights may be tested if they are intended to be used in practice. For suspended ceilings, the height as measured from the lower surface of the ceiling to the lower surface of the test facility ceiling shall be between 0,7 m and 0,8 m. Other heights may be tested if they are intended to be used in practice. #### 5.1.6 Plenum lining One sidewall of the plenum and both endwalls of the plenum shall be lined with suitable sound-absorbing material. This material shall have such properties that when tested as a plane absorber in accordance with ISO 354, it has sound absorption coefficients not less than those shown in Table 1. Table 1 | Octave-band centre frequency, Hz | 125 | 250 | 500 | 1 000 | 2 000 | 4 000 | |------------------------------------------------|------|------|------|-------|-------|-------| | Sound absorption coefficient, $\alpha_{\rm s}$ | 0,65 | 0,80 | 0,80 | 0,80 | 0,80 | 0,80 | For the other sidewalls and the floor, the sound absorption coefficient shall be less than 0,10 at all frequencies given in the table. The thickness of the lining shall not exceed 150 mm. In cases where there is no plenum, attention shall be given to avoiding an important outside airborne transmission path between the two parts of the test element – through the hall where the test facility is installed. NOTE Typically, the ratio of the volume of the hall (in cubic metres) to its reverberation time (in seconds) should be larger than 500 m³/s. #### 5.2 Installation of the test element #### 5.2.1 Installation of access floors The area of a floor shall be equal to the area given by the length and width of the test facility. The floor components shall be representative of those used in practice in actual field installations. The floor shall be installed in accordance with the recommended practice of the manufacturer or with the recommended practice of an installation standard. For an example, see Figure 1. #### 5.2.2 Installation of suspended ceilings The detail of the joint between the ceiling and the top of the dividing wall is of critical importance and care shall be taken to simulate actual field conditions. The area of a continuous ceiling shall be equal to the area given by the length and width of the test facility. For a ceiling with a break at the dividing wall, it may be necessary to add additional capping to the top of the dividing wall to complete the junction. The area of a discontinuous ceiling shall then be equal to the area given by the length and width of the test facility less the area of the capping on the top of the dividing wall. The ceiling components shall be representative of those used in practice in actual field installations. The ceiling shall be installed in accordance with the recommended practice of the manufacturer or with the recommended practice of an installation standard. In cases where normal installation practices would result in the use of custom-fitted ceiling tile of width or length less than 100 mm adjacent to one of the end walls of the facility parallel to the dividing wall, a filler material with a higher transmission loss may be substituted for the custom fitted pieces of ceiling tile. For an example, see Figure 2. #### Key - 1 flexible material - 2 access floor - 3 access floor height = 0,3 m if possible - 4 vibration break - 5 dividing wall - 6 absorbing material - a $V \geqslant 50 \text{ m}^3$. Figure 1 — Requirements for the dimensions of the laboratory and for the mounting of the access floor and the dividing wall #### Key - 1 suspended ceiling - 2 flexible material - 3 absorbing material - a $V \geqslant 50 \text{ m}^3$. Figure 2 — Requirement for the dimensions of the laboratory and for the mounting of the suspended ceiling and the dividing wall #### 5.2.3 Installation of a façade A façade is installed with a flexible joint between the test specimen and the dividing wall or slab of the test facility. Examples of horizontal and vertical transmission are shown in Figures 3 and 4, respectively. #### 5.2.4 Installation of a partition wall A partition wall may be installed like a façade. #### Key - 1 test specimen - 2 flexible material Figure 3 — Example of installation of a façade — Horizontal transmission (plan view) #### Key - 1 test specimen - 2 flexible material Figure 4 — Example of installation of a façade — Vertical transmission (elevation) ## 5.3 Verification procedure for a light flanking element that is structurally independent of a separating element ISO 10848-1:2006, 8.3 specifies a verification procedure for checking that a light flanking element is structurally independent of the separating element of the test facility. If the check cannot be carried out successfully, use a softer material between the tested element and the separating element. #### 5.4 Shielding technique used in the case of airborne excitation If shielding has to be done, for example, for determination of $D_{\rm n,f,max}$ as specified in 5.1.4, follow the guidelines for finding the necessary sound reduction index improvement ΔR in ISO 10848-1:2006, Clause 9. #### 6 Test procedures Measurements of $D_{n,f}$ and $L_{n,f}$ are performed as specified in ISO 10848-1:2006, 7.1 with airborne excitation or with a standardised tapping machine. The frequency range is given in ISO 10848-1:2006, 7.5. #### 7 Precision It is required that the measurement procedure give satisfactory repeatability. This is determined in accordance with the method shown in ISO 140-2 and shall be verified from time to time, particularly when a change is made in the procedure or instrumentation. It is recommended that different organisations should periodically perform comparison measurements on the same test specimen to check repeatability and reproducibility of their test procedures. #### 8 Expression of results For the statement of the normalized flanking level difference and/or the normalized flanking impact sound pressure level, the results shall be given at all frequencies of measurement to one decimal place in tabular form and in the form of a curve. Graphs in the test report shall show the value in decibels plotted against frequency on a logarithmic scale, using the following dimensions: - 5 mm for one-third octave; - 20 mm for 10 dB. The use of a form in accordance with Annex G of ISO 140-3:1995 or Annex E of ISO 140-6:1998 is recommended. Being a short version of the test report, all information of importance regarding the test object, the test procedure and the test results shall be stated. If results are needed in octave-bands, these values shall be calculated from the three one-third-octave-band values in each octave-band using one of the following equations: $$D_{\text{n,f,oct}} = -10 \text{ lg} \left(\frac{1}{3} \sum_{n=1}^{3} 10^{-D_{\text{n,f,1/3oct.}n}/10} \right) \text{ dB}$$ (3) $$L_{\text{n,f,oct}} = 10 \text{ lg} \left(\sum_{n=1}^{3} 10^{L_{\text{n,f,1/3oct.}n}/10} \right) \text{dB}$$ (4) If the test procedure is repeated either in the same or in the opposite measurement direction, the arithmetic mean of all measurement results at each frequency band shall be calculated. For impact measurements, the larger room is always the receiving room. For the evaluation of single number ratings from the curves $D_{n,f}(f)$ and/or $L_{n,f}(f)$, see ISO 717-1 and ISO 717-2, respectively. The quantities obtained are the weighted normalized flanking level difference $D_{n,f,w}(C; C_{tr})$ and the weighted normalized flanking impact sound pressure level $L_{n,f,w}(C_{tr})$. #### 9 Test report The test report shall give the following information: - a) a reference to this part of ISO 10848, i.e. "ISO 10848-2"; - b) the name of the organisation that has performed the measurements; - c) an identification of the test site; - d) the date of the test; - e) the name of the client; - f) the manufacturer's name and product identification; - g) a description of the test specimen with a sectional drawing and mounting conditions, including size, thickness, mass per unit area, materials, curing time and conditions of components (if available), and description of floor covering, if any; statement indicating who mounted the test object (test institute or manufacturer); - h) the volumes of both reverberant rooms; - i) the plenum height if the test specimen is an access floor or a suspended ceiling; - j) the specification and thickness of materials used in the plenum, if any; - k) the type of flexible material at the junction between test specimen and dividing construction; - I) the air temperature and humidity in the measuring rooms; - m) the normalized flanking level difference and/or normalized flanking impact sound pressure level of the test specimen as a function of frequency; - n) an indication of results which are to be taken as limits of measurement; - They shall be given as $D_{n,f} \geqslant ...$ dB or $L_{n,f} \leqslant ...$ dB. This shall be applied if the sound pressure level in any band is not measurable on account of background noise (acoustic or electrical) and also if the measured value has been affected by sound transmission through the construction of the test facility. - o) a brief description of details of the test procedure and equipment. #### Annex A (informative) #### Measurement of $D_{n,f,l}$ with intensity technique If sound transmission through the constructions of the test facility has a substantial influence on the test result with the normal procedure of this standard, and if this sound transmission is difficult to control, the measurement of the radiated sound from the test specimen with the intensity technique should be considered. A suitable procedure for the intensity measurement in the receiving room is given in ISO 15186-1 [1]. The intensity normalized flanking level difference $D_{\mathsf{n,f,l}}$ is determined from: $$D_{\mathsf{n},\mathsf{f},\mathsf{l}} = \left[L_{\mathsf{p}1} - 6 \right] - \left[\overline{L}_{\mathsf{l}_{\mathsf{n}},\mathsf{f}} + 10 \operatorname{lg} \left(\frac{S_{\mathsf{m},\mathsf{f}}}{A_{\mathsf{0}}} \right) \right] d\mathsf{B} \tag{A.1}$$ where L_{p1} is the average sound pressure level in the source room; $\overline{L}_{I_n,f}$ is the average normal sound intensity level over the measurement surface enclosing the flanking element in the receiving room; $S_{m,f}$ is the total area of the measurement surface enclosing the flanking element in the receiving room; A_0 is the reference equivalent sound absorption area, in square metres; $A_0 = 10 \text{ m}^2$. The requirements for the loudspeaker, noise, source positions and sound pressure measurements in the source room are the same as in ISO 10848-1. Specifications for the intensity measurements are given in ISO 15186-1 (instrumentation, qualification of measurement surface, measurement of average sound intensity level etc.). #### **Bibliography** - [1] ISO 15186-1, Acoustics Measurement of sound insulation in buildings and of building elements using sound intensity Part 1: Laboratory measurements - [2] EN 12354-1, Building acoustics Estimation of acoustic performance of buildings from the performance of elements Part 1: Airborne sound insulation between rooms - [3] EN 12354-2, Building acoustics Estimation of acoustic performance of buildings from the performance of elements Part 2: Impact sound insulation between rooms #### **BSI** — British Standards Institution BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com. In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com. Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001. Email: membership@bsi-global.com. Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline. Further information about BSI is available on the BSI website at http://www.bsi-global.com. #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com. BSI 389 Chiswick High Road London W4 4AL