Steel and iron — Determination of phosphorus content — Phosphovanadomolybdate spectrophotometric method

The European Standard EN ISO 10714:2002 has the status of a British Standard

ICS 77.040.30

National foreword

This British Standard is the official English language version of EN ISO 10714:2002. It is identical with ISO 10714:1992.

The UK participation in its preparation was entrusted to Technical Committee ISE/18, Sampling and analysis of iron and steel, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this committee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of British Standards Online.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

This British Standard, having been prepared under the direction of the Engineering Sector Policy and Strategy Committee, was published under the authority of the Standards Policy and Strategy Committee on 2 August 2002

Summary of pages

This document comprises a front cover, an inside front cover, the EN ISO title page, the EN ISO foreword page, the ISO title page, page ii, pages 1 to 8, the Annex ZA page and a back cover.

The BSI copyright date displayed in this document indicates when the document was last issued.

Amendments issued since publication

Amd. No. Date Comments

 \odot BSI 2 August 2002

ISBN 0 580 40173 1

EUROPEAN STANDARD NORME EUROPÉENNE

EN ISO 10714

EUROPÄISCHE NORM

July 2002

ICS 77.040.30

English version

Steel and iron - Determination of phophorus content - Phosphovanadomolybdate spectrophotometric method (ISO 10714:1992)

Aciers et fontes - Dosage du phosphore - Méthode par spectrophotométrie au phosphovanadomolybdate (ISO 10714:1992) Bestimmung des Phosphorgehaltes - Fotometrische Bestimmung - Vanadatomolybdatophosphat-Verfahren (ISO 10714:1992)

This European Standard was approved by CEN on 29 May 2002.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Foreword

The text of the International Standard from Technical Committee ISO/TC 17 "Steel" of the International Organization for Standardization (ISO) has been taken over as a European Standard by Technical Committee ECISS/TC 20 "Methods of chemical analysis of ferrous products", the secretariat of which is held by SIS.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2003, and conflicting national standards shall be withdrawn at the latest by January 2003.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

Endorsement notice

The text of the International Standard ISO 10714:1992 has been approved by CEN as a European Standard without any modifications.

NOTE Normative references to International Standards are listed in annex ZA (normative).

INTERNATIONAL STANDARD

ISO 10714

> First edition 1992-05-15

Steel and iron — Determination of phosphorus content — Phosphovanadomolybdate spectrophotometric method

Aciers et fontes — Dosage du phosphore — Méthode par spectrophotométrie au phosphovanadomolybdate

EN ISO 10714:2002

Steel and iron — Determination of phosphorus content — Phosphovanadomolybdate spectrophotometric method

1 Scope

This International Standard specifies a spectrophotometric method for the determination of phosphorus in steel and iron with the following limitations.

The method is applicable to phosphorus contents between 0,001 0 % (m/m) and 1,0 % (m/m).

Arsenic, hafnium, niobium, tantalum, titanium, and tungsten interfere in determining phosphorus, but the interferences can be partially overcome by formation of complexes and use of small quantities of test portion. Depending on the concentration of the interfering elements, the application ranges and test portions given in table 1 apply.

The lower end of the application range can only be reached in test samples with low contents of the interfering elements.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All stan-

dards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 377-2:1989, Selection and preparation of samples and test pieces of wrought steels — Part 2: Samples for the determination of the chemical composition.

ISO 385-1:1984, Laboratory glassware — Burettes — Part 1: General requirements.

ISO 648:1977, Laboratory glassware — One-mark pipettes.

ISO 1042:1983, Laboratory glassware — One-mark volumetric flasks.

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods.

ISO 5725:1986, Precision of test methods — Determination of repeatability and reproducibility for a standard test method by inter-laboratory tests.

Table 1

Maximum content of the interfering elements, $\%$ (m/m)					Test portion	Application range, Awp	
As	Hf	Nb	Та	Ti	W	g	% (m/m)
0,05 0,2 0,5 0,2	0,1 0,5 1,5 0,5	1 5 10 5	0,1 0,5 1,0 0,5	2 10 25 10	2 8 25 8	1,0 0,25 0,10 0,25	0,001 to 0,010 0,005 to 0,040 0,010 to 0,100 0,100 to 1,00

3 Principle

Dissolution of a test portion in an oxidizing acid mixture.

Fuming with perchloric acid and removal of chromium as volatile chromyl chloride.

Complexing of silicon and the refractory elements with hydrofluoric acid and complexing of the excess of hydrofluoric acid with orthoboric acid.

Conversion of phosphorus to phosphovanadomolybdate in perchloric and nitric acid solution.

Extraction of phosphovanadomolybdate by 4-methyl-2-pentanone with citric acid present to complex arsenic.

Spectrophotometric measurement at a wavelength of 355 nm.

4 Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and only grade 2 water as specified in ISO 3696.

Verify by blank tests (7.2) that the relevant reagents are free from phosphorus or of very low phosphorus content. Whenever necessary, the results shall be corrected accordingly. Grades giving high blank values (above 10 μg) are unsuitable and shall be discarded.

- **4.1** Hydrochloric acid, ρ about 1,19 g/ml.
- **4.2** Nitric acid, ρ about 1,40 g/ml.
- **4.3** Nitric acid, ρ about 1,40 g/ml, diluted 1 + 4.
- **4.4** Perchloric acid, ρ about 1,54 g/ml.
- **4.5 Hydrofluoric acid**, 40 % (m/m), ρ about 1,14 g/ml.
- 4.6 Citric acid, solution.

Dissolve 500 g of citric acid monohydrate ($H_8C_6O_7.H_2O$) in water, dilute to 1 000 ml and mix.

4.7 4-Methyl-2-pentanone (isobutyl methyl ketone).

The same batch of 4-methyl-2-pentanone shall be used for analysing a series of samples.

4.8 Hexa-ammonium heptamolybdate, solution.

Dissolve 150 g of hexa-ammonium heptamolybdate tetrahydrate [(NH_4) $_6MO_7O_{24}.4H_2O$] in water, dilute to 1 000 ml and mix.

This solution shall be freshly prepared each day.

High and unstable blank values might be attributable to this reagent in particular. In such a case, change to another batch.

4.9 Ammonium metavanadate, solution.

Dissolve 2,5 g of ammonium metavanadate (NH_4VO_3) in water, dilute to 1 000 ml and mix.

4.10 Sodium nitrite, solution.

Dissolve 50 g of sodium nitrite $(NaNO_2)$ in water, dilute to 1 000 ml and mix

4.11 Tetrafluoroboric acid. solution.

Dissolve 75 g of orthoboric acid (H_3BO_3) in 600 ml of water in a plastic beaker. Add 50 ml of hydrofluoric acid (4.5), dilute to 1 000 ml with water and mix. The solution can be gently heated if the boric acid tends to precipitate.

Keep the solution in a plastic bottle.

4.12 Phosphorus, standard solutions.

4.12.1 Stock solution, corresponding to 1 g of P per litre.

Weigh, to the nearest 0,000 1 g, 4,393 6 g of potassium dihydrogen orthophosphate (KH_2PO_4) previously dried to constant mass at 110 °C and cooled in a desiccator.

Transfer to a 1 000 ml one-mark volumetric flask, dissolve in water, dilute to the mark and mix.

1 ml of this stock solution contains 1 mg of P.

4.12.2 Standard solution, corresponding to 10 mg of P per litre.

Transfer 10,0 ml of the stock solution (4.12.1) to a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix.

Prepare this standard solution just before use.

1 ml of this standard solution contains 10 μg of P.

5 Apparatus

All volumetric glassware shall be class A, in accordance with ISO 385-1, ISO 648 or ISO 1042 as appropriate.

Ordinary laboratory apparatus, and

5.1 Spectrophotometer, equipped to measure absorbance at a wavelength of 355 nm.

Using the slitwidth recommended by the manufac-

turer and 4-methyl-2-pentanone (4.7) as the compensating solution, measure the absorbance of the colour-developed and extracted blank solution (see 7.3.2) at a wavelength of about 340 nm. Then gradually increase the wavelength until maximum absorbance is obtained (this is generally at a wavelength of 355 nm, see note 1). Use this wavelength for the determination.

NOTE 1 355 nm is not the wavelength of the maximum absorption spectrum from the complex. It is not possible to use the maximum point since the 4-methyl-2-pentanone starts to absorb the light at a lower wavelength, where a maximum absorbance value is obtained. 355 nm is selected to give the highest absorption without giving negative absorption values for low concentration due to the light absorption of the solvent.

5.2 Polytetrafluoroethylene (PTFE) beakers, or perfluoroalkoxy (PFA) beakers (see note 2), with graphite bases.

Clean the beakers thoroughly before the analysis by filling with hydrochloric acid, ρ about 1,19 g/ml, diluted 1 + 1, and boiling for about 2 min. Then rinse well with water.

NOTE 2 PFA beakers are recommended in this International Standard. They are specially constructed for fuming of acids up to 280 $^{\circ}\text{C}$.

5.3 Heating source, with controllable surface temperature.

6 Sampling

Carry out sampling in accordance with ISO 377-2 or appropriate national standards for steel and iron.

7 Procedure

7.1 Test portion

Weigh, to the nearest 0,1 mg, a test portion of the sample according to table 2.

7.2 Blank test

In parallel with the determination and following the same procedure, carry out a blank test using the same quantities of all the reagents.

7.3 Determination

7.3.1 Preparation of the test solution

7.3.1.1 For phosphorus contents up to 0,1 % (m/m)

Place the test portion (7.1) in a beaker (5.2). Add 5 ml of nitric acid (4.2) and 5 ml of hydrochloric acid (4.1). For samples containing high amounts of niobium and/or tantalum, also add 7 ml of hydrofluoric acid (4.5). Cover the beaker with a PTFE watch-glass and heat gently on a heating source (5.3) until the reaction ceases.

Table 2

Expected phosphorus content	Maxi	Test portion					
% (m/m)	As	Hf	Nb	Та	Ti	w	g
0,001 to 0,005	0,05	0,1	1	0,1	2	2	1,0
0,005 to 0,010	0,05	0,1 0,5	1 5	0,1 0,5	2 10	2 8	1,0 0,25
0,010 to 0,040	0,2 0,5	0,5 1,5	5 10	0,5 1,0	10 25	8 25	0,25 0,10
0,010 to 0,100	0,5	1,5	10	1,0	25	25	0,10
0,100 to 1,00	0,2	0,5	5	0,5	10	8	0,25

Remove the watch-glass and add 10 ml of perchloric acid (4.4). Replace the watch-glass, leaving a small opening to let the fumes out, and evaporate to dense white fumes. Maintain fuming until no droplets can be seen on the watch-glass. For samples containing more than 0.1% (m/m) chromium, remove the chromium as follows.

While partly covering the beaker solution with the watch-glass, with the chromium fully oxidized, add hydrochloric acid (4.1) drop by drop to the fuming solution, until coloured fumes are no longer liberated. Then continue the fuming to oxidize the remaining chromium.

Repeat the treatment until no yellow fumes appear when hydrochloric acid (4.1) is introduced.

After fuming, add 25 ml of nitric acid (4.3) and 6 ml of hydrofluoric acid (4.5) and boil the solution for 8 min to 10 min to dissolve all the precipitate. If any precipitate remains after boiling, add another 2 ml of hydrofluoric acid (4.5) and boil again. If the precipitate still does not dissolve, or if any precipitate occurs at a later stage, repeat the determination using a smaller mass of test portion.

Add 10 ml of sodium nitrite solution (4.10) to reduce any dichromate which has not been removed as chromyl chloride and continue to boil the solution for 10 min to expel the nitrous fumes. Wash the beaker walls several times with water during the boiling.

Allow the solution to cool slightly and add 40 ml of tetrafluoroboric acid solution (4.11). Cool the solution between 20 °C and 30 °C within 10 min and proceed immediately with the colour development (see 7.3.2), avoiding any delay which might allow the oxides to re-precipitate.

7.3.1.2 For phosphorus contents greater than 0,1 % (m/m)

Carry out the procedure specified in the first paragraph of 7.3.1.1.

Dilute to about 100 ml with water. Cool and filter if necessary to remove graphite.

Transfer the test solution quantitatively to a 200 ml plastic volumetric flask, dilute to the mark with water and mix.

Using a pipette, take a suitable volume (V) of the solution containing not more than 0,1 mg of phosphorus and transfer it to a beaker (5.2).

Proceed as specified in 7.3.1.1, from the second paragraph beginning at "add 10 ml of the perchloric acid (4.4)...".

7.3.2 Colour development and extraction

Add 10,0 ml of ammonium metavanadate solution (4.9) and 15,0 ml of hexa-ammonium heptamolybdate solution (4.8) and then allow to stand at a temperature between 18 °C and 25 °C for a minimum of 7 min. but no longer than 15 min.

Transfer the solution to a 250 ml separating funnel. Add 10 ml of citric acid solution (4.6), mix and immediately add 40,0 ml of 4-methyl-2-pentanone (4.7), and shake the funnel for 30 s.

Allow the two layers to separate and discard the lower (aqueous) phase.

Dry the inside of the stem of the separating funnel with a small piece of filter paper. Filter the 4-methyl-2-pentanone layer through a dry rapid filter paper into a small dry beaker. Proceed immediately with spectrophotometric measurement (7.3.3).

7.3.3 Spectrophotometric measurement

Carry out the spectrophotometric measurement of the test solution (see 7.3.2) at a constant temperature (\pm 1 °C) between 18 °C and 25 °C at a wavelength of 355 nm with a cell of 1 cm optical path length, after adjusting the spectrophotometer (5.1) to zero absorbance in relation to 4-methyl-2-pentanone (4.7).

7.4 Establishing the calibration graph

7.4.1 Preparation of calibration solutions

Introduce into a series of five beakers (5.2) the volumes of the phosphorus standard solution (4.12.2) indicated in table 3

Table 3

Volume of phosphorus standard solution (4.12.2)	Corresponding mass of phosphorus in measuring solution					
ml	μ g					
01)	0					
2,5	25					
5,0	50					
7,5	75					
10,0	100					
1) Zero member.						

Treat the solutions according to 7.3.1 and 7.3.2.

7.4.2 Spectrophotometric measurement

Carry out spectrophotometric measurements of each solution at a wavelength of 355 nm, after adjusting the spectrophotometer (5.1) to zero absorbance in relation to 4-methyl-2-pentanone (4.7).

7.4.3 Plotting the calibration graph

Subtract the absorbance of the zero member from the absorbance of each solution containing phosphorus and prepare the calibration graph by plotting the net absorbance values against the mass of phosphorus, expressed in micrograms, in the measured solutions.

8 Expression of results

8.1 Method of calculation

Convert the absorbance measured in 7.3.3 into the corresponding mass, expressed in micrograms, of phosphorus in the extracted test solution by using the calibration graph (see 7.4.3).

The phosphorus content, $w_{\rm P}$, expressed as a percentage by mass, is given by the equation

$$w_{P} = (m_{P,1} - m_{P,0}) \times \frac{1}{10^{6}} \times D \times \frac{100}{m}$$
$$= (m_{P,1} - m_{P,0}) \times \frac{D}{10^{4}m}$$

where

 $m_{P,0}$ is the mass, expressed in micrograms, of phosphorus in the blank test;

 $m_{\rm P,1}$ is the mass, expressed in micrograms, of phosphorus in the test solution;

D is the dilution factor [for phosphorus contents up to 0,1 % (m/m) D=1 and for

phosphorus contents greater than 0,1 % (m/m) D = 200/V];

V is the volume, expressed in millilitres, of a suitable aliquot of the test solution containing not more than 0,1 mg of phosphorus (see 7.3.1.2);

m is the mass, in grams, of the test portion (7.1).

8.2 Precision

A planned trial of this method was carried out by 20 laboratories, at eight levels of phosphorus, each laboratory making three determinations (see notes 3 and 4) of phosphorus content at each level.

The test samples used are listed in table A.1.

The results obtained were treated statistically in accordance with ISO 5725.

The data obtained showed a logarithmic relationship between phosphorus content and repeatability (r) and reproducibility $(R \text{ and } R_{\text{w}})$ of the test results (see note 5) as summarized in table 4. The graphical representation of the data is shown in figure B.1.

NOTES

- 3 Two of the three determinations were carried out under repeatability conditions as defined in ISO 5725, i.e. one operator, same apparatus, identical operating conditions, same calibration, and a minimum period of time.
- 4 The third determination was carried out on a different time (on a different day) by the same operator as in note 3 using the same apparatus with a new calibration.
- 5 From the results obtained on day 1, the repeatability (r) and reproducibility (R) were calculated using the procedure specified in ISO 5725. From the first result obtained on day 1 and the result obtained on day 2, the within-laboratory reproducibility (R_w) was calculated.

Table 4

Phosphorus content	Repeatability	Reproducibility		
% (m/m)	,	R	$R_{\rm w}$	
0,001	0,000 16	0,000 40	0,000 35	
0,002	0.000 30	0,000 73	0,000 62	
0.005	0.000 67	0.001 61	0,001 30	
0,01	0.001 22	0,002 93	0,002 28	
0,02	0.002 23	0,005 32	0,003 99	
0,05	0.004 98	0.011 7	0,008 38	
0,1	0.009 12	0,021 2	0,014 7	
0,2	0.016 7	0.038 6	0,025 8	
0,5	0,037 2	0.084 8	0,054 1	
1,0	0,068 2	0,154	0,094 8	
1,0	0,000 2	0,134	2,30 . 0	

EN ISO 10714:2002

9 Test report

The test report shall include the following information:

- a) all information necessary for the identification of the sample, the laboratory and the date of analysis;
- b) the method used by reference to this International Standard;
- the results, and the form in which they are expressed;
- d) any unusual features noted during the determination;
- e) any operation not specified in this International Standard, or any optional operation which may have influenced the results.

Annex A

(informative)

Additional information on the international co-operative tests

Table 4 was derived from the results of international analytical trials carried out in 1989 on two pure iron samples, four steel samples and two cast iron samples in 12 countries involving 20 laboratories.

The results of the trials were reported in document ISO/TC 17/SC 1 N 835, March 1990. The graphical representation of the precision data is given in annex B.

The test samples used are listed in table A.1.

Table A.1

	Phosph	orus content %	% (m/m)	Precision			
Sample	Certified	Fo	und	Repeatability	Reproducibility		
	Certified	$\overline{w}_{p,1}$	$\overline{w}_{P,2}$	r	R	$R_{\rm w}$	
AMKO iron (Pure iron)	< 0.000 2 1)	0,000 27	0,000 25	0,000 25	0,000 53	0,000 31	
JSS 003-1 (Pure iron)	0,001 1	0,001 10	0,001 12	0,000 34	0,000 48	0,000 51	
Sandvik 1 (Alloy 800)	0,0091)	0,005 34	0,005 19	0,000 44	0,001 38	0,001 35	
JK 8F (Austenitic stainless)	0,017 6	0,016 3	0,016 2	0,001 52	0,002 98	0,002 73	
Sandvik 2 (Austenitic stainless)	0,0221)	0,018 6	0,018 8	0,001 56	0,005 78	0,002 33	
BCS 485 (Tool steel)	0,046	0,045 7	0,045 4	0,004 80	0,015 0	0,007 70	
ECRM 484-1 (Cast iron)	0,121	0,114 0	0,115 2	0,009 95	0,032 9	0,024 8	
ECRM 486-1 (Cast iron)	1,00	0,971	0,979	0,090 7	0,117	0,094 1	
	,,						

 $\overline{w}_{\rm P,1}$: general mean within a day $\overline{w}_{\rm P,2}$: general mean within days

¹⁾ Non-certified value

Annex B (informative)

Graphical representation of precision data

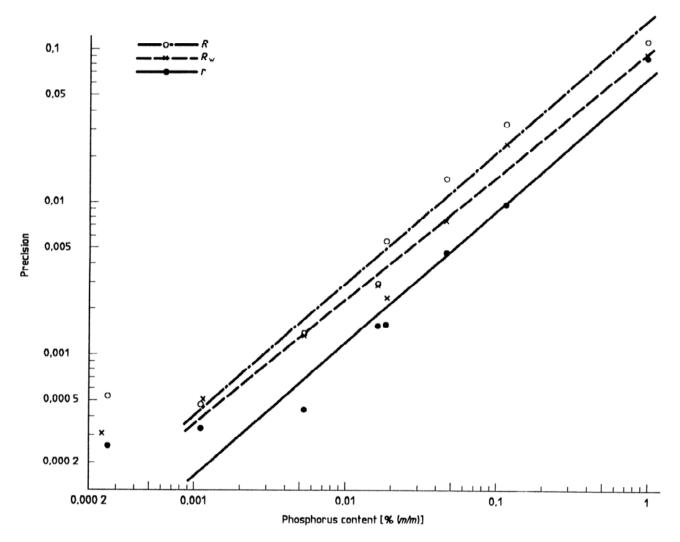


Figure B.1 — Logarithmic relationship between phosphorus content $(w_{\rm P})$ and repeatability (r) or reproducibility $(R \text{ and } R_{\rm w})$

$$\begin{split} & \text{Ig } r = \text{0,874 0 Ig } \overline{w}_{\text{P,1}} - \text{1,166} \\ & \text{Ig } R = \text{0,860 3 Ig } \overline{w}_{\text{P,1}} - \text{0,812 4} \end{split}$$

 $\lg\ R_{\rm W} = 0{,}809\ 9\ \lg\ \overline{w}_{\rm P,2} - 1{,}023$

Annex ZA (normative)

Normative references to international publications with their relevant European publications

This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

NOTE Where an International Publication has been modified by common modifications, indicated by (mod.), the relevant EN/HD applies.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
ISO 1042	1998	Laboratory glassware - One-mark volumetric flasks	EN ISO 1042	1999
ISO 3696	1987	Water for analytical laboratory use - Specification and test methods	EN ISO 3696	1995

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.

Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline.

Further information about BSI is available on the BSI website at http://www.bsi-global.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means—electronic, photocopying, recording or otherwise—without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553.

Email: copyright@bsi-global.com.

BSI 389 Chiswick High Road London

W4 4AL