BS EN ISO 10504:2015

BSI Standards Publication

Starch derivatives — Determination of the composition of glucose syrups, fructose syrups and hydrogenated glucose syrups — Method using high-performance liquid chromatography (ISO 10504:2013)

National foreword

This British Standard is the UK implementation of EN ISO 10504:2015. It is identical to ISO 10504:2013. It supersedes BS EN ISO 10504:2000 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee AW/100, Agriculture and food.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2015. Published by BSI Standards Limited 2015

ISBN 978 0 580 88370 5

ICS 67.180.20

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2015.

Amendments issued since publication

Date Text affected

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

July 2015

EN ISO 10504

ICS 67.180.20

Supersedes EN ISO 10504:2000

English Version

Starch derivatives - Determination of the composition of glucose syrups, fructose syrups and hydrogenated glucose syrups - Method using high-performance liquid chromatography (ISO 10504:2013)

Produits dérivés de l'amidon - Détermination de la composition des sirops de glucose, des sirops de fructose et des sirops de glucose hydrogénés - Méthode par chromatographie en phase liquide à haute performance (ISO 10504:2013)

Stärkederivate - Bestimmung der Zusammensetzung von Glucosesirup, Fructosesirup und hydriertem Glucosesirup - Hochleistungs-flüssigchromatographisches Verfahren (ISO 10504:2013)

This European Standard was approved by CEN on 19 June 2015.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

European foreword

The text of ISO 10504:2013 has been prepared by Technical Committee ISO/TC 93 "Starch (including derivatives and by-products)" of the International Organization for Standardization (ISO) and has been taken over as EN ISO 10504:2015 by CCMC.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2016, and conflicting national standards shall be withdrawn at the latest by January 2016.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 10504:2000.

According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

Endorsement notice

The text of ISO 10504:2013 has been approved by CEN as EN ISO 10504:2015 without any modification.

Co	Contents			
Fore	eword		iv	
1	Scop	e	1	
2	Norn	native references	1	
3	Princ	ciple	1	
4	Reag	gents	1	
5		aratus		
6	Proce 6.1 6.2 6.3 6.4 6.5	Choice of column System start-up Calibration of column Sample preparation Sample analysis		
7	Calculation		4	
8	Preci 8.1 8.2	ision Repeatability Reproducibility	5	
Ann	ex A (in	formative) Examples of standard solutions	7	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

The committee responsible for this document is ISO/TC 93, *Starch (including derivatives and by-products)*.

This second edition cancels and replaces ISO 10504:1998, of which it constitutes a minor revision.

Starch derivatives — Determination of the composition of glucose syrups, fructose syrups and hydrogenated glucose syrups — Method using high-performance liquid chromatography

1 Scope

This International Standard describes a high-performance liquid chromatographic (HPLC) method for measuring the composition of dextrose solutions, glucose syrups, fructose-containing syrups, hydrogenated glucose syrups, sorbitol, mannitol and maltitol. The constituents are mainly glucose, maltose, maltotriose, fructose, sorbitol, mannitol, maltitol and malto-oligosaccharides.

The use of a column packed with cation-exchange resin is essential.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods

ISO 5381:1983, Starch hydrolysis products — Determination of water content — Modified Karl Fischer method

3 Principle

Saccharide components are separated using high-performance liquid chromatography. Separation is achieved using a cation-exchange column with water as the eluent. The eluted components are detected by means of a differential refractometer, and quantified using an electronic integrator.

4 Reagents

All reagents used shall be of recognized analytical reagent grade.

4.1 Special distilled water.

The water used may be double-distilled of quality grade 1 in accordance with ISO 3696. The most suitable is demineralized water, which prevents contamination of the ion-exchange resin.

The water should be filtered by passage through a 0,22 μ m filter. Also, it should be degassed by treatment under vacuum, or by use of an in-line degassing unit. The water should be maintained under an inert atmosphere, and preferably at 70 °C to inhibit microbial growth.

NOTE Some commercial water-purification devices produce water which is both filtered and degassed.

4.2 Primary standard solutions.

Prepare solutions (see Annex A) containing 10 % (or less) dry matter, according to the sensitivity of the refractometer, with compositions as close as possible to that of the samples to be analysed.

NOTE Suitable reference materials for the constituents listed in <u>Clause 1</u> can be obtained from established chemical companies.

4.3 Ion-exchange resins, for off-line demineralization of samples.

Salts present in the sample will co-elute from the column, and will be detected by the refractometer, causing errors in the determination. These salts shall first be removed by ion-exchange resins. The most convenient way is to have an in-line guard column cartridge system (5.5), but this may also be carried out off-line using the following resins¹):

- a) Cation type:
 - 1) strong cation exchanger, 4 % cross-linked polystyrene divinylbenzene, in the H+ form;
 - 2) 200 mesh to 400 mesh in the dry form;
- b) Anion type:
 - 1) weak anion exchanger, 4 % cross-linked polystyrene divinylbenzene support containing tertiary amine groups, in the free base form;
 - 2) 200 mesh to 400 mesh in the dry form.

5 Apparatus

- **5.1 Liquid chromatograph**; equipped with the following.
- **5.1.1 Pump, pulseless**, that delivers a constant flow, at the rate required.
- **5.1.2 Differential refractometer**, thermostatically controlled.
- **5.1.3 Thermostatically controlled column oven**, capable of maintaining the column at temperatures up to 95 °C, to within \pm 0,5 °C.
- **Sample injector**, comprising a loop injector (manual or part of autosampler) with a capacity of $20 \mu l$ or less.
- **5.3 Integrator**, comprising an electronic integrator with calculating and recording capabilities, compatible with the voltage output of the detector.
- **Separation column**, comprising a pre-packed cation-exchange column in the form best suited for the analysis. The recommended resin is 6 % to 8 % cross-linked sulfonated polystyrene divinylbenzene with a bead diameter of 9 μ m to 25 μ m.

NOTE Acceptable columns are available from several major column suppliers.

- **5.5 Guard columns,** custom-prepared dual-cartridge system, inserted unheated in-line, to demineralize the sample. $^{2)}$
- **5.6 Sample filtration system**, comprising a syringe to which suitable membrane disc filters can be attached. These should be of $0.45 \mu m$ pore size.

Commercially available syrups are usually highly refined, and a 0,45 μ m filter is suitable. However, if blockage of the chromatograph is too frequent, a 0,22 μ m filter should be used.

¹⁾ While resins meeting these specifications are available from more than one supplier, their performance is variable. Experience in several laboratories has shown that the resins AG^{\circledR} 50W-X4 and AG^{\circledR} 3-X4 perform satisfactorily. (AG^{\circledR} 50W-X4 and AG^{\circledR} 3-X4 are trade names of products supplied by Bio-Rad. This information is given for the convenience of the users of this International Standard and does not constitute an endorsement by ISO of these products. Equivalent products may be used if they can be shown to lead to the same results.)

²⁾ There are a few systems available but with varying efficiency. The Bio-Rad guard cartridges 125–0118 have been shown in several laboratories to be the most effective in all respects. (This information is given for the convenience of the users of this International Standard and does not constitute an endorsement by ISO of these products. Equivalent products may be used if they can be shown to lead to the same results.)

6 Procedure

6.1 Choice of column

For general applications, a cation-exchange resin in the calcium form should be used, in particular for fructose syrups and hydrogenated glucose syrups. However, the separation of maltose at a high content from maltotriose is difficult when the maltotriose content is about 6 % or more. In such instances better resolution is achieved with a cation-exchange resin in either the potassium or sodium form.

6.2 System start-up

Install the column in the oven, and connect the guard columns (5.5) (if used) to the inlet. It is not necessary to heat the guard columns. Connect the injector to the inlet of the column (or guard columns, if used), and connect the outlet of the column to the detector inlet. Arrange that the detector effluent goes to waste.

Start the pump at a rate of 0,1 ml/min, and pass the solvent through the column. Set the correct temperature for the column according to the supplier's recommendations. Enter the control parameters into the integrator. When the column temperature is stable, increase the solvent flow rate to 0,5 ml/min and purge the reference cell. Refer to the refractometer instruction manual to set the detector for correct measurement of the signal from the sample cell. Set the required attenuation.

6.3 Calibration of column

6.3.1 In accordance with the method specified in ISO 5381, determine the water content of every separate substance to be used for preparing the mixed primary standard solutions (see Annex A).

For higher polyols (tri-itol and above), no commercial standards are available.

- **6.3.2** Prepare a standard solution of each separate substance (see 4.2) and, using the same conditions as those to be used for the analysis, inject an aliquot portion several times into the column. At least three results, based on integrator response, should show a variation of \pm 0,1 % or less for the major constituent. Calculate an average result for all components.
- NOTE For the single primary substances, an assumption is made that each sugar has the same relative response, and that the normalized area percentage figures reflect the true analysis. To obtain the required level of higher molecular weight species, a dextrin, or a fraction especially prepared from a starch hydrolysate, can be used.
- **6.3.3** Prepare mixtures of the single substances to give compositions as close as possible to those of the samples to be analysed. These should be prepared at the chosen concentration (see 4.2).
- NOTE An example is given in Annex A.
- **6.3.4** Inject the chosen aliquot portion twice into the chromatograph. The quantity injected shall be large enough to give measurable peaks of minor constituents, while the major component is within the detector range for linear response.

BS EN ISO 10504:2015 **ISO 10504:2013(E)**

6.3.5 Check the area of the peaks on the chromatogram. There should be a maximum deviation of $\pm 0.2\%$ for the major peak areas on at least two chromatograms.

The response factor, r_x , for component x, is calculated as follows:

$$r_X = \frac{m_X}{a_X}$$

where

 m_x is the actual percentage of component x present in the standard solution;

 a_x is the area percentage of the normalized chromatogram attributed to component x.

The response factors are usually equivalent to, or close to unity. If a deviation of more than 2 % is observed, then the chromatographic system should be checked, especially the integration parameters.

6.4 Sample preparation

6.4.1 When in-line demineralization is used, dilute the sample to the chosen concentration (see 4.2), and filter through a 0,45 μ m filter.

If such a system is not used, then the sample shall first be treated off-line (see 6.4.2 and 6.4.3).

- **6.4.2** Mix the ion-exchange resins in a proportion such that equal exchange capacity is obtained. Wash the mixed resins well with water (4.1), then remove any excess, ensuring that the resin remains moist. The resin may be stored like this for several months.
- **6.4.3** To 15 ml to 20 ml of the liquid sample containing 25 % to 30 % dry matter, add 1,0 g to 1,5 g of the mixed resin. Stir gently for 15 min, then filter to remove the resin. Dilute to the chosen concentration and filter through a 0,45 μ m filter.

See the note in 5.6.

6.5 Sample analysis

Inject the chosen aliquot portion of the sample into the chromatograph and perform the analysis as described in <u>6.3.4</u>. Duplicate analyses should be performed. Record area percentage figures of the total detector response.

7 Calculation

Calculate the content of component *x*, according to the following equation:

$$c_X = r_X \cdot a_X$$

where

 c_x is the calculated percentage of component x in the test sample;

 r_x is the previously calculated response factor (see <u>6.3.5</u>);

 a_x is the normalized area percentage of the chromatogram for the component x.

Round the result to one decimal place.

When the system is working at its optimum, area percentage values for the composite standard solution correlate so closely with the known composition of the standard, that a response factor of unity can be applied to all components. When this is the situation, then the percentage of the component equals the area percentage of the component.

8 Precision

8.1 Repeatability

The absolute difference between two independent single test results, obtained with the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, will in not more than 5% of cases be greater than the repeatability limit (g/100 g) listed in Table 1 for that type of syrup.

Repeatability limit, rSyrup type Approximate syrup composition **Analyte** g/100 gg/100 g α-D-glucose Dextrose 95 Dextrose 0.90 (Dextrose) Maltose 0,17 Dextrose 45 α-D-glucose Dextrose 1.4 (Dextrose) Maltose 0,70 Maltose 80 Maltose Maltose 0,36 Maltose 48 0,39 Maltose Maltose Fructose 42 Fructose 0.43 Fructose 0,23 Dextrose Fructose Fructose 9 Fructose 0.22 Dextrose 0,55 Sorbitol 98 Sorbitol 0.81 Sorbitol 0,19 Maltitol Maltitol 75 Maltitol Maltotriitol 0.12

Table 1 — Repeatability limits

8.2 Reproducibility

The absolute difference between two single results, obtained with the same method on identical test material in different laboratories with different operators using different equipment, will in not more than 5 % of cases be greater than the reproducibility limit (g/100 g) listed in Table 2 for that type of syrup.

 $Table\ 2-Reproducibility\ limits$

Syrup type	Approximate syrup composition	Analyte	Reproducibility limit, R
	g/100 g		g/100 g
α-D-glucose (Dextrose)	Dextrose 95	Dextrose Maltose	1,70 0,55
(α-D-glucose) Dextrose	Dextrose 45	Dextrose Maltose	4,0 1,20
Maltose	Maltose 80	Maltose	3,50
Maltose	Maltose 48	Maltose	2,10
Fructose	Fructose 42	Fructose Dextrose	1,0 0,98
Fructose	Fructose 9	Fructose Dextrose	0,57 1,40
Sorbitol	Sorbitol 98	Sorbitol	1,70
Maltitol	Maltitol 75	Maltitol Maltotriitol	0,87 0,21

Annex A

(informative)

Examples of standard solutions

Examples are given in <u>Tables A.1</u> and <u>A.2</u>.

Table A.1 — Composition of primary standard solutions

Values as percent

Standard solution	Glucose	Maltose	Maltotriose	Malto-oligo-sac- charide
Glucose	99,0	0,5	0,0	0,5
Maltose	0,2	99,0	0,5	0,3
Maltotriose	0,0	0,0	95,0	5,0
Malto-oligosaccharide	4,0	4,0	4,0	88,0

Values in grams

Reference solution	Dry matter mixed	Glucose	Maltose	Maltotriose	Malto-oligo- saccharide
Glucose	4,500 0	4,455 0	0,022 5	0,000 0	0,022 5
Maltose	2,500 0	0,005 0	2,475 0	0,012 5	0,007 5
Maltotriose	0,300 0	0,000 0	0,000 0	0,285 0	0,015 0
Malto-oligo- saccharide	2,600 0	0,104 0	0,104 0	0,104 0	2,288 0
TOTAL	9,900 0	4,564 0	2,601 5	0,401 5	2,333 0
Composition %	100	46,10	26,28	4,06	23,57

British Standards Institution (BSI)

BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services.

BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited.

About us

We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions.

The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals.

Information on standards

We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre.

Buying standards

You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased.

If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team.

Subscriptions

Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions.

With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date.

You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**.

PLUS is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced.

To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop.

With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com.

BSI Group Headquarters

389 Chiswick High Road London W4 4AL UK

Revisions

Our British Standards and other publications are updated by amendment or revision.

We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre.

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department.

Useful Contacts:

Customer Services

Tel: +44 845 086 9001

Email (orders): orders@bsigroup.com
Email (enquiries): cservices@bsigroup.com

Subscriptions

Tel: +44 845 086 9001

Email: subscriptions@bsigroup.com

Knowledge Centre

Tel: +44 20 8996 7004

Email: knowledgecentre@bsigroup.com

Copyright & Licensing

Tel: +44 20 8996 7070 Email: copyright@bsigroup.com

