BS EN ISO 10370:2014 BS 2000-398:2014 ## **BSI Standards Publication** Petroleum products — Determination of carbon residue — Micro method (ISO 10370:2014) #### National foreword This British Standard is the UK implementation of EN ISO 10370:2014. It supersedes BS EN ISO 10370:1996 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee PTI/13, Petroleum Testing and Terminology. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2014. Published by BSI Standards Limited 2014 ISBN 978 0 580 73726 8 ICS 75.080 ## Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 December 2014. #### **BS 2000 Series** Energy Institute, under the brand of IP, publishes and sells all Parts of BS 2000, and all BS EN and BS ISO petroleum test methods that would be part of BS 2000, both in its annual publication "IP Standard Test Methods for analysis and testing of petroleum and related products, and British Standard 2000 Parts" and individually. ## Amendments/corrigenda issued since publication Date Text affected ## EUROPEAN STANDARD NORME EUROPÉENNE **EUROPÄISCHE NORM** **EN ISO 10370** November 2014 ICS 75.080 Supersedes EN ISO 10370:1995 #### **English Version** # Petroleum products - Determination of carbon residue - Micro method (ISO 10370:2014) Produits pétroliers - Détermination du résidu de carbone - Méthode micro (ISO 10370:2014) Mineralölerzeugnisse - Bestimmung des Koksrückstandes - Mikroverfahren (ISO 10370:2014) This European Standard was approved by CEN on 9 August 2014. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels ## **Foreword** This document (EN ISO 10370:2014) has been prepared by Technical Committee ISO/TC 28 "Petroleum products and lubricants" in collaboration with CEN/TC 19 "Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin" the secretariat of which is held by NEN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2015, and conflicting national standards shall be withdrawn at the latest by May 2015. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes EN ISO 10370:1995. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### **Endorsement notice** The text of ISO 10370:2014 has been approved by CEN as EN ISO 10370:2014 without any modification. | Contents | | Page | |----------|---|---------------| | Fore | word | iv | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Principle | 2 | | 5 | Reagents and materials | 2 | | 6 | Apparatus | 2 | | 7 | Sample preparation 7.1 General instructions 7.2 Regular procedure 7.3 Modified procedure | 4
5 | | 8 | Sample transfer | 5 | | 9 | Test procedure | 6 | | 10 | Calculation | 6 | | 11 | Expression of results | 7 | | 12 | Precision 12.1 General 12.2 Repeatability, r 12.3 Reproducibility, R | 7
<i>7</i> | | 13 | Test report | 8 | | Ann | ex A (informative) Relationship of carbon residue (micro method) to carbon residue (Conradson method) | 9 | | Bibli | iogranhy | 10 | ## Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword — Supplementary information. The committee responsible for this document is ISO/TC 28, *Petroleum products and lubricants*. This second edition cancels and replaces the first edition (ISO 10370:1993). Apart from updates regarding reference fuels and chemicals, the results of an interlaboratory study carried out by the Energy Institute in the UK on the 10 % volume distillation residue procedure for middle distillates using 4 ml vials and automatic distillation units, have been incorporated. It also incorporates ISO 10370:1993/Cor1:1996. # Petroleum products — Determination of carbon residue — Micro method WARNING — The use of this International Standard may involve hazardous materials, operations, and equipment. This International Standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this International Standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. ## 1 Scope This International Standard specifies a method for the determination of the amount of carbon residue, in the range 0,10 % (m/m) to 30,0 % (m/m), left after evaporation and pyrolysis of petroleum products under specified conditions. NOTE 1 The carbon residue value serves as an approximation of the tendency of petroleum products to form carbonaceous deposits under similar degradation conditions, and may be useful in the assessment of relative carbon-forming tendencies of products within the same class. In this case, care should be taken in the interpretation of results. For products which yield a residue in excess of 0,10 % (m/m), the test results are equivalent to those obtained by the Conradson carbon residue test (see ISO 6615[1]) in the range of 0,10 (m/m) to 25,0 (m/m) (for details see Annex A). This International Standard is also applicable to petroleum products which consist essentially of distillate material, and which may yield a carbon residue below 0,10 % (m/m). On such materials, a 10 % (V/V) distillation residue is prepared by the procedure described in 7.3.1 and 7.3.2 before analysis. Both ash-forming constituents, as defined by ISO 6245[2] and non-volatile additives present in the sample add to the carbon residue value and are included in the total value reported. NOTE 2 The presence of organic nitrates incorporated in certain distillate fuels will yield abnormally high values for the carbon residue. The presence of alkyl nitrate in the fuel may be detected by ISO 13759.[3] ## 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ${\tt ISO~3405}, \textit{Petroleum products} - \textit{Determination of distillation characteristics}$ ### 3 Terms and definitions For the purposes of this document, the following term and definition apply #### 3.1 #### carbon residue the whole residue produced of a sample from the specific conditions of evaporation and pyrolysis described in this International Standard ## 4 Principle A weighed aliquot of the oil sample is placed in a glass vial and heated to 500 °C under an inert (nitrogen) gas stream in a controlled manner for a specific time. Volatiles formed during the reactions are swept away by the inert gas. The carbonaceous residue remaining is weighed. ## 5 Reagents and materials **5.1 Nitrogen,** low oxygen content, i.e. 99,998 % (V/V) or better, with appropriate regulation to provide a delivery pressure of 0 kPa to 200 kPa. NOTE The practical minimum delivery pressure is 140 kPa. ## 6 Apparatus **6.1 Glass sample vials,** of 2 ml capacity, 12 mm outside diameter, approximately 35 mm high. A vial of 4 ml capacity, 12 mm outside diameter, approximately 72 mm high may be used with samples of very low carbon residue content, i.e. below approximately 0.20 % (m/m), but no precision data has been obtained for them. NOTE 1 An interlaboratory study [4] has been carried out by the Energy Institute on the 10 % volume distillation residue procedure for middle distillates using 4 ml vials and automatic distillation units and the precision is given in Clause 12. NOTE 2 A glass sample vial of approximately 20 ml capacity (20,5 mm to 21 mm outside diameter by (70 \pm 1) mm high) for samples that are expected to yield residues < 0,10 % (m/m) may also be used, so that a more appreciable mass difference may be determined. In this case, a 5 g sample size is suggested. No precision has been determined for this technique, but it may be found suitable for very low 10 % residue samples. - **6.2 Eyedropper or small rod,** suitable for sample transfer. - **6.3 Coking oven,** comprising a circular heating chamber approximately 85 mm diameter by 100 mm deep for top-loading, capable of heating to 500 °C at a rate of between 10 °C and 40 °C per min, with exhaust port of 13 mm inside diameter for nitrogen purge of oven chamber (inlet near top, exhaust at bottom centre), with thermocouple sensor located in oven chamber next to but not touching sample vials, and with lid capable of sealing out air. The condensate outlet leads into a short vertical section where most of the vapour condenses and falls into a removable trap located directly below the oven. A schematic diagram is given in <u>Figure 1</u>. **6.4 Sample vial holder,** comprising a cylindrical aluminium block approximately 76 mm diameter by 17 mm thick with 12 evenly spaced holes (for vials) each 13 mm diameter by 13 mm deep. The holes shall be arranged in a circular pattern approximately 3 mm from the perimeter. The holder shall have legs 6 mm long with guides to centre in the oven chamber, and an index mark on the side to use as position reference. A typical holder is shown in Figure 2. - **6.5** Thermocouple, iron-constantan, with exterior read-out and a range including 450 °C to 550 °C. - **6.6 Analytical balance,** of 0,1 mg sensitivity. - **6.7 Cooling vessel**, desiccator or similar tightly closed vessel, without desiccant. Dimensions in millimetres ## Key - 1 lid - 2 insulation - 3 ceramic ring - 4 304 stainless steel spherical top plug - 5 oven - 6 cross-section heater coils - 7 inner cylindrical shell, stainless steel - 8 outer cylindrical shell, stainless steel - 9 thermocouple leads - 10 series of holes (Ø 1) - 11 nitrogen in - 12 stainless steel exhaust tube - 13 condensate - 14 microprocessor control - 15 smoke - 16 nitrogen supply inlet - 17 insulation (two layers) - 18 heater lead to 2 × 700 W tubular heater coils $Figure \ 1 - Coking \ oven \ set-up$ Dimensions in millimetres #### Key - 1 vial holder - 2 12 identical holes uniformly spaced vials fit loosely - 3 small screws (three) for feet steel basket centring washer (one on each foot) - 4 ring aluminium alloy material - 5 handle stainless steel alloy material - 6 vial soda lime glass - L vial length (37 ± 3) for 2 ml and (72 ± 3) for 4 ml Figure 2 — Sample vial (soda lime glass, bottom) and vial holder (top) ## 7 Sample preparation ## 7.1 General instructions For samples which consist essentially of distillate material, either follow the preparation as in 7.2 or prepare a distillation residue following a modified procedure of ISO 3405, given in 7.3. This latter procedure uses 4 ml vials (6.1) and shall be used for middle distillate samples which may yield a carbon residue below 0,30 % (m/m). ## 7.2 Regular procedure Thoroughly stir the sample to be tested, first warming if necessary to reduce its viscosity. If the samples are in liquid form, transfer directly to the vials (6.1) using a rod or syringe. If the samples are solid materials, they shall either be heated, or frozen with liquid nitrogen and then shattered to provide manageable pieces. ## 7.3 Modified procedure **7.3.1** Ensure that the 4 ml vials (6.1) are clean and stored in a desiccator (without desiccant) before use. Set up the distillation as described in ISO 3405 using a clean 125 ml flask with no carbon deposits and add six glass or ceramic 'anti bumping' beads (1,5 mm to 2,5 mm diameter is recommended) to aid the mixing of residue as well as reducing bumping. The thermometer may be omitted and replaced with a snug fitting, well rolled cork or silicone rubber stopper because it is the volume of distillate collected that is critical not the temperature of distillation. For an automatic unit, the temperature recording device may be necessary to allow the instrument to operate. **7.3.2** Discontinue heating when 88 ml of distillate has been recovered in the receiver. Allow the flask to cool for 5 min at the end of the distillation. Mix the residue in the flask by swirling. Immediately after mixing, transfer 2,5 ml to 3,0 ml to a pre-weighed vial of 4 ml (6.1) and reweigh. Take care to exclude any anti-bumping beads. This residue represents a 10 % (V/V) bottom portion of the original sample. ## 8 Sample transfer - **8.1** During weighing and filling, handle the vials with forceps to minimize weighing errors. Discard the vials after use. - **8.2** Weigh the clean sample vials, and record the mass to the nearest 0,1 mg. - **8.3** Transfer an appropriate mass of the sample as indicated in <u>Table 1</u> into the bottom of a weighed sample vial, taking care to avoid contact between the sample and the vial wall, reweigh to the nearest 0,1 mg and record. Place the loaded sample vials into the vial holder (up to 12), noting the position of each sample with respect to the index mark. A control sample may be included in each batch of samples being tested. This control sample should be a typical sample which has been tested at least 20 times in the same equipment in order to define an average percent carbon residue and standard deviation. Results for each batch are deemed acceptable when results for the control sample fall within the average percent carbon residue plus/minus three standard deviations. Control results which are outside these limits indicate problems with the procedure or the equipment. Table 1 — Sample size | Sample description | Expected carbon residue % (m/m) | Sample size
g | |---------------------------------------|---------------------------------|--| | Black viscous or solid | > 5,0 | 0,15 ±0,05 | | Brown or black opaque and mobile | 1,0 to 5,0 | 0,50 ±0,10 | | Transparent or translucent | 0,2 to 1,0 | 1,50 ±0,50 | | Middle distillate, 10 % (V/V) residue | < 0,3 | 3,00 ±0,50 when used in conjunction with the 4 ml vial | ## 9 Test procedure - 9.1 With the oven at a temperature < $100\,^{\circ}$ C, place the vial holder, loaded as in 8.3, into the oven chamber and secure lid. Purge with nitrogen for at least 10 min at 600 ml/min. Subsequently, decrease the purge to 150 ml/min and heat the oven slowly to 500 °C at a rate of 10 °C/min to 15 °C/min. - **9.2** Hold the oven at 500 °C ± 2 °C for 15 min. Then shut off furnace power and allow the oven to cool freely while under a nitrogen purge of 600 ml/min. When the oven temperature is < 250 °C, remove the vial holder for further cooling in the desiccator. - NOTE 1 After the samples are removed from the oven, the nitrogen purge may be shut off. If the sample foams or spatters causing loss of sample, discard and repeat the test. NOTE 2 Spattering may be due to water that may be re-moved by prior gentle heating under reduced pressure, followed by a nitrogen sweep. Alternatively, a smaller size may be used. If another test is to be run, remove the lid to allow faster cooling. NOTE 3 A subsequent test may be started when the oven has cooled to below 100 °C. WARNING — Do not open the oven to air at any time during the heating cycle, as the introduction of air (oxygen) may form an explosive mixture with the volatile coking products formed. Do not open the oven until the oven temperature has fallen to below 250 $^{\circ}$ C during the cooling step. Maintain the nitrogen flow until after the vial holder has been removed from the oven. Either locate the coking oven in a laboratory exhaust hood for safe venting of smoke and fumes, or install a vent line from the oven exhaust to the laboratory exhaust system, being careful not to create negative pressure in the line. **9.3** Handling the vials with forceps, transfer them to the desiccator and allow them to cool to room temperature. Weigh each cooled vial to the nearest 0,1 mg and record its mass. Discard the used glass sample vials. **9.4** Examine the condensate trap at the bottom of the oven chamber; empty if necessary and replace. WARNING — The condensate trap residue may contain some carcinogenic materials, and contact with them should be avoided. They should be properly disposed of according to acceptable procedures. ## 10 Calculation Calculate the mass percentage of carbon residue in the original sample, or in the 10 % (V/V) distillation residue, to the nearest 0,01 % (m/m), μ_{CR} , using the following formula: $$\mu_{\rm CR} = \frac{m_3 - m_1}{m_2 - m_1} \times 100 \tag{1}$$ where m_1 is the mass of the empty vial, in grams; m_2 is the mass of vial + test portion, in grams; m_3 is the mass of vial + residue, in grams. For the relationship of carbon residue by micro method (this International Standard) to carbon residue by Conradson method (see ISO 6615[1]), Annex A may be used. ## 11 Expression of results Report results obtained from Formula (1) as "Carbon residue — micro method" to the nearest 0.01% (m/m). Or report carbon residue micro method on 10 % (V/V) residue to the nearest 0,01 % (m/m). ### 12 Precision #### 12.1 General The precision given was derived from statistical analysis by ISO $4259^{[5]}$ of the results of interlaboratory testing of a matrix of fuels and were first published in 1983. The precision is shown graphically in <u>Figure 3</u>. The precision data for 10 % volume residue come from statistical examination of the results of interlaboratory testing according to ISO 4259 of a matrix of fuels including automotive diesel fuels, gasoils, fuels containing up to 10 % (V/V) of fatty acid methyl esters (FAME), fuels with cetane improver and marine fuel, which was carried out by the Energy Institute in 2007. ## **12.2** Repeatability, *r* The difference between two test results obtained by the same operator with the same apparatus under constant operating conditions on identical test material would, in the normal and correct operation of the test method, exceed the values given in Formula (2), only in one case in 20: $$r = 0.077 \ 0 \ X^{2/3} \tag{2}$$ where X is the average of the results being compared, in % (m/m). For carbon residue-micro method on 10 % volume distillation residue, using 4 ml vials, the repeatability is. $$r = 0.143 \ 0 \ X^{0.5} \tag{3}$$ ## **12.3 Reproducibility,** *R* The difference between two test results independently obtained by different operators operating in different laboratories on identical test material would, in the normal and correct operation of the test method, exceed the values given in Formula (4) only in one case in 20: $$R = 0.245 \ 1 \ X^{2/3} \tag{4}$$ where *X* is the average of the results being compared, in % (m/m). For carbon residue-micro method on 10 % volume distillation residue, using 4 ml vials, the reproducibility is: $$R = 0.212 \, 5 \, X^{0.5} \tag{5}$$ 7 ## Key X-axis carbon residue — micro method average in % (m/m) Y-axis carbon residue — micro method difference in % (m/m) - 1 reproducibility, *R* - 2 repeatability, *r* Figure 3 — Carbon residue — Micro method — Precision data ## 13 Test report The test report shall contain at least the following information: - a) type and complete identification of the product tested; - b) a reference to this International Standard (i.e. ISO 10370); - c) results of the test (see <u>Clause 11</u>); - d) any deviation, by agreement or otherwise, from the standard procedures specified; - e) date of the test. # **Annex A** (informative) # Relationship of carbon residue (micro method) to carbon residue (Conradson method) A correlation between carbon residue (micro method) and the Conradson carbon residue has been derived and is shown in Figure A.1. Statistical analysis using modified Student's t tests and non-parametric analysis show that, considering the precisions of both tests, there is no difference between the two methods. The data generated by the carbon residue (micro method) test in the range 0,10 % (m/m) to 25,0 % (m/m) are statistically equivalent to the data generated by the Conradson carbon residue test, except the micro method offers better precision. ## Key X-axis carbon residue – micro method in % (m/m) Y-axis carbon residue – Conradson method in % (m/m) Figure A.1 — Correlation of Conradson and micro method carbon residue test data ## **Bibliography** - [1] ISO 6615, Petroleum products Determination of carbon residue Conradson method - [2] ISO 6245, Petroleum products Determination of ash - $[3] \hspace{1.5cm} \textbf{ISO 13759, Petroleum products} \color{red} \color{blue}- \textbf{Determination of alkyl nitrate in diesel fuels} \color{blue}- \textbf{Spectrometric method}$ - [4] *Determination of carbon residue micro method,* Energy Institute Research Report reference IP398 2008 Petroleum Products - [5] ISO 4259, Petroleum products Determination and application of precision data in relation to methods of test ## British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. ### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. ### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. #### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com #### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com #### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** **Tel:** +44 20 8996 7070 Email: copyright@bsigroup.com