BSI Standards Publication Petroleum products — Gum content of fuels — Jet evaporation method BS EN ISO 6246:2017 BRITISH STANDARD ### **National foreword** This British Standard is the UK implementation of EN ISO 6246:2017. It supersedes BS EN ISO 6246:1998, which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee PTI/13, Petroleum Testing and Terminology. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2017 Published by BSI Standards Limited 2017 ISBN 978 0 580 91584 0 ICS 75.160.20 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 July 2017. Amendments/corrigenda issued since publication Date Text affected ## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM ### **EN ISO 6246** April 2017 ICS 75.160.20 Supersedes EN ISO 6246:1997 ### **English Version** # Petroleum products - Gum content of fuels - Jet evaporation method (ISO 6246:2017) Produits pétroliers - Teneur en gommes des carburants - Méthode d'évaporation au jet (ISO 6246:2017) Mineralölerzeugnisse - Abdampfrückstand von Kraftstoffen - Aufblaseverfahren (ISO 6246:2017) This European Standard was approved by CEN on 9 February 2017. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels ### **European foreword** This document (EN ISO 6246:2017) has been prepared by Technical Committee ISO/TC 28 "Petroleum and related products, fuels and lubricants from natural or synthetic sources" in collaboration with Technical Committee CEN/TC 19 "Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin" the secretariat of which is held by NEN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by October 2017, and conflicting national standards shall be withdrawn at the latest by October 2017. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. This document supersedes EN ISO 6246:1997. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. #### **Endorsement notice** The text of ISO 6246:2017 has been approved by CEN as EN ISO 6246:2017 without any modification. | Coı | itent | S | Page | |-----------|--------------|---|------| | Fore | word | | iv | | Intro | ductio | n | v | | 1 | Scop | e | 1 | | 2 | Norn | native references | 1 | | 3 | Term | ns and definitions | 1 | | 4 | Princ | ciple | 2 | | 5 | Reag | ents | 2 | | 6 | Appa | aratus | 2 | | 7 | | mbly of air-jet apparatus | | | 8 | | mbly of steam-jet apparatus | | | 9 | | pration | | | 10 | | ples and sampling | | | 11 | | edure | | | 12 | | ulation of gum content | | | 13 | | ression of results | | | | 13.1 | Aviation fuels | 8 | | | 13.2 | Non-aviation fuels | | | | 13.3 | All fuel types | 8 | | 14 | Precision | | | | | 14.1
14.2 | General Popostability # | | | | 14.2 | Repeatability, r Reproducibility, R | | | 15 | | report | | | Bibli | | NY | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. This document was prepared by ISO/TC 28, Petroleum products and related products of synthetic or biological origin. This third edition cancels and replaces the second edition (ISO 6246:1995), which has been technically revised and aligned with ASTM D381[1]. It also incorporates the Technical Corrigendum ISO 6246:1995/Cor 1:1998. The changes incorporate modern methods for temperature measurement and clarification of various measurement limits. Some process steps on the rounding of results are added. The precision in the former edition was based on very old data using samples that did not contain components found in modern gasoline, such as oxygenated compounds and deposit control additives. New precision estimates from a 1997 joint ASTM/EI study[3] are included. Unwashed and washed gum results for non-aviation fuels can now be expressed to the nearest 0,5 mg/100 ml. This study and additional work in ASTM[4] and CEN in 2014[5] have led to broadening of the scope to modern gasoline (blends). ### Introduction The true significance of this test method for determining gum in motor gasoline is not firmly established. It has been proven that high gum content can cause induction-system deposits and sticking of intake valves, and in most cases, it can be assumed that low gum content will ensure absence of induction-system difficulties. The user should, however, realize that the test is not of itself correlative to induction-system deposits. The primary purpose of the test, as applied to motor gasoline, is the measurement of the oxidation products formed in the sample prior to or during the comparatively mild conditions of the test procedure. Since many kinds of motor gasoline are purposely blended with non-volatile oils or additives, the heptane extraction step is necessary to remove these from the evaporation residue so that the deleterious material, gum, can be determined. With respect to aviation turbine fuels, large quantities of gum are indicative of contamination of fuel by higher boiling oils or particulate matter and generally reflect poor handling practices in distribution downstream of the refinery. # Petroleum products — Gum content of fuels — Jet evaporation method WARNING — The use of this document can involve hazardous materials, operations and equipment. This document does not purport to address all of the safety problems associated with its use. It is the responsibility of users of this document to take appropriate measures to ensure the safety and health of personnel prior to application of the document, and fulfil statutory and regulatory requirements for this purpose. ### 1 Scope This document specifies a method for determining the existent gum content of aviation fuels and the gum content of motor gasoline or other volatile distillates. It includes the determination of products containing ethanol (up to a volume fraction of 85 %) and ether-type oxygenates and deposit control additives. For determination of gum content in automotive ethanol (E85) fuel, no precision data is available (see 14.1). For non-aviation fuels, a procedure for the determination of the heptane-insoluble portion of the residue is also described. CAUTION — This method is not intended for the testing of gasoline components, particularly those with a high percentage of low-boiling unsaturated compounds, as they can cause explosions during evaporation. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3170, Petroleum liquids — Manual sampling ISO 3171, Petroleum liquids — Automatic pipeline sampling ISO 3696, Water for analytical laboratory use — Specification and test methods ISO 4259, Petroleum products — Determination and application of precision data in relation to methods of test ISO 4788, Laboratory glassware — Graduated measuring cylinders ASTM E2251-14, Standard specification for liquid-in-glass ASTM thermometers with low-hazard precision liquids BS 2000, IP standard thermometers #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: IEC Electropedia: available at http://www.electropedia.org/ ### ISO 6246:2017(E) ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### existent gum evaporation residue (3.2) of aviation fuels without any further treatment #### 3.2 ### evaporation residue material that remains after controlled heating under a flow of air or steam #### 3.3 ### unwashed gum content (non-aviation fuel) evaporation residue (3.2) of the product under test without any further treatment #### 3.4 #### solvent-washed gum content (non-aviation fuel) residue remaining after the *evaporation residue* (3.2) has been washed with heptane and the washings discarded ### 4 Principle A measured test portion of fuel is evaporated under controlled conditions of temperature and flow of air or steam. The resulting residue is weighed and may be subject to further treatment by solvent washing and further weighing. ### 5 Reagents During the analysis, unless otherwise stated, use reagents of recognized analytical grade. Water, where specified, shall be of a quality equivalent to grade 3 of ISO 3696. - **5.1 Heptane**, CH₃(CH₂)₅CH₃, of minimum 99,7 % purity. - **5.2 Toluene**, $C_6H_5CH_3$. - **5.3** Acetone, CH₃COCH₃. - **5.4 Gum solvent**, a mixture of equal volumes of toluene (5.2) and acetone (5.3). - **5.5 Air supply**, filtered, at a gauge pressure of not greater than 35 kPa. - **5.6 Steam supply**, free of oily residue and at a pressure of not less than 35 kPa. ### 5.7 Detergent cleaning solution. The type of detergent and conditions for its use shall be established in each laboratory. The criterion for satisfactory cleaning shall be a matching of the quality of that obtained with chromic acid cleaning solution on used beakers (fresh chromic acid, 6 h soaking period, rinsing with water and drying). #### 6 Apparatus **6.1 Balance**, capable of weighing to of the nearest 0,1 mg. **6.2 Beakers**, capacity 100 ml, tall form, as illustrated in <u>Figure 1</u>, individually permanently marked. It is expedient to arrange the beakers in sets, the number in each set being the number of beaker wells in the evaporating bath. The lowest-mass beaker in each set should be reserved for use as the tare. **6.3 Cooling vessel**, tightly covered vessel such as a desiccator without desiccant for cooling the beakers before weighing. NOTE The use of a desiccant can lead to erroneous results. **6.4 Evaporation bath**, either a solid metal block bath or a liquid bath, electrically heated and constructed in accordance with the general principles shown in <u>Figure 1</u>, having wells and jets for two or more beakers. The rate of air/steam flow at the temperature of test from each outlet jet when fitted with the conical adaptors with 500 μ m to 600 μ m copper or stainless steel screens shall be 1 000 ml/s ± 150 ml/s. A liquid bath, if used, shall be filled to within 25 mm of the top with a suitable liquid. Maintain the bath temperature either by means of thermostatic controls or by refluxing liquid of suitable composition. WARNING — If a liquid-filled evaporation bath is used, care shall be taken to ensure that the flash point of the liquid used is at least 30 °C higher than the highest bath temperature expected. - **6.5 Flow indicator**, capable of indicating a total flow of air or steam equivalent to 1 000 ml/s for each outlet. - **6.6 Sintered glass filter funnel**, capacity 150 ml, with a maximum pore diameter between 150 μm and 250 μm. - **6.7 Steam super heater**, capable of delivering to the bath inlet the required amount of steam at $232 \,^{\circ}\text{C} \pm 3 \,^{\circ}\text{C}$. - **6.8 Temperature sensors**, liquid in glass thermometer conforming to the requirements in ASTM E2251-14 or IP 73C of BS 2000, or another temperature sensor or systems, or both, of at least equivalent accuracy and precision over a temperature range from –5 °C to 400 °C. - **6.9 Graduated cylinders**, capacity 50 ml or 100 ml and 2 l, conforming to the requirements of ISO 4788. - **6.10 Forceps**, stainless steel, spade-ended. - **6.11 Oven**, capable of being maintained at 150 °C ± 2 °C. ### 7 Assembly of air-jet apparatus **7.1** Assemble the air-jet apparatus as shown in Figure 1. With the apparatus at room temperature, adjust the flow of air to a rate of 600 ml/s at one of the outlets, with the remaining conical adaptors in position. Check the other outlets individually under the same conditions for uniform air flowrate within the range of 600 ml/s \pm 90 ml/s. NOTE A total reading on a flow indicator (calibrated under ambient conditions) corresponding to 600 ml/s \pm 90 ml/s at each outlet will, in normal circumstances, ensure a flowrate of 1 000 ml/s \pm 150 ml/s at a temperature of 155 °C \pm 5 °C, provided that the back pressure across the flow indicator is not greater than 1 kPa. **7.2** In order to set the apparatus in operation, heat the bath until the temperature reaches 160 °C to 165 °C, and then introduce air into the apparatus until the reading established in accordance with 7.1 ### ISO 6246:2017(E) is obtained on the flow indicator. Measure the temperature in each well with the temperature sensors (6.8) placed with the thermometer bulb (or equivalent sensing device) resting on the bottom of a beaker (6.2) in the well. Do not use any well having a temperature that differs from 155 °C by more than 5 °C for - 1 air supply - cotton or glass wool filter 2 - 3 flow indicator - 4 thermometer and thermometer well (optional) - 5 thermometer - 6 removable adaptor - 7 copper or stainless steel screen, (500 - 600) µm - thermo-regulator - 9 metal, black bath - 10 beaker - 11 super heater - steam trap - 13 steam supply Figure 1 — Apparatus for determining gum content by jet evaporation ### Assembly of steam-jet apparatus #### Assemble the steam-jet apparatus as shown in Figure 1. 8.1 WARNING — The sample and solvent vapours evaporated during the performance of this test procedure can be extremely flammable or combustible and hazardous from the inhalation standpoint. To control such vapours and reduce the risk of thermal explosion and intoxication, national health and safety regulations are to be applied. In order to set the apparatus in operation, heat the bath until the temperature reaches 232 °C. Operate the super heater, and slowly admit dry steam into the apparatus until a flowrate of 1 000 ml/s ± 150 ml/s per outlet is obtained. Regulate the temperature of the bath within the range 239 °C ± 7 °C and that of the super heater to provide a well temperature of 232 °C ± 3 °C. Measure the temperature with the temperature sensor (6.8) placed with the thermometer bulb (or equivalent sensing device) resting on the bottom of a beaker (6.2) in the well. Do not use any well having a temperature that differs from 232 °C by more than 3 °C for standard tests. 8.3 Adjust the apparatus to give a steam flowrate of 1 000 ml/s for the outlet under test. Check the remaining outlets for uniform steam flow. Make necessary changes to individual outlets if the rate varies by more than 150 ml/s of steam, record the flowmeter reading and use this setting for subsequent testing. #### 9 Calibration Calibrate the flowmeter by successively condensing the steam from each outlet and weighing the total quantity of water recovered. To accomplish this, attach a copper tube to a steam outlet jet and extend the tube into a 2 l cylinder (6.9) that has been filled with crushed ice and then weighed. Exhaust the steam into the cylinder for approximately 60 s. Adjust the position of the cylinder so that the end of the copper tube is immersed in the water to a depth of less than 50 mm to prevent excessive back pressure. Weigh the cylinder. The gain in mass represents the amount of steam condensed. Calculate the steam flowrate, *S*, as given in Formula (1): $$S = \frac{\left(m_{\rm cs} - m_{\rm ice}\right) \cdot 1\,000}{k \cdot t} \tag{1}$$ where *S* is the flowrate of the steam, in ml/s, at 232 °C; $m_{\rm CS}$ is the mass, in g, of the cylinder with the condensed steam; $m_{\rm ice}$ is the mass, in g, of the cylinder and ice; k is the mass (0,434 g) of 1 000 ml of steam at 232 °C at atmospheric pressure; *t* is the condensing time, in s. ### 10 Samples and sampling Samples for testing by the procedures described in this document shall be taken by the procedure described in ISO 3170, ISO 3171 or in accordance with the requirements of national standards or regulations for the sampling of the product under test. #### 11 Procedure **11.1** Wash the beakers (6.2) including the tare, with the gum solvent (5.4) until free of gum. Rinse thoroughly with water and immerse in detergent cleaning solution. Remove the beakers from the cleaning solution by means of forceps (6.10) and handle only with forceps thereafter. Wash the beakers thoroughly, first with tap water and then with distilled water, and dry in the oven (6.11), controlled at 150 °C, for at least 1 h. Cool the beakers for at least 2 h in the cooling vessel (6.3) placed in the vicinity of the balance (6.1). NOTE For the comparison of cleaning efficiency, visual appearance and loss in mass on heating the glassware under test conditions can be used. Detergent cleaning avoids the potential hazards and inconvenience related to handling corrosive chromic acid solution. The latter remains as the reference cleaning practice and as such can function as an alternative to the preferred procedure of cleaning with detergent solutions. WARNING — Chromic acid is a health hazard. It is toxic, a recognized carcinogen as it contains Cr(VI) compounds, is highly corrosive and potentially hazardous when in contact with organic materials. When using chromic acid cleaning solution, protective measures in accordance with national health and safety regulations, such as eye protection and protective clothing, are essential. Never pipette the cleaning solution by mouth. After use, do not pour cleaning solution down the drain, but neutralize it with great care owing to the concentrated sulfuric acid present, and dispose of it in accordance with standard procedures for toxic laboratory waste (chromium is highly dangerous to the environment). Non-chromium-containing, strongly oxidizing acid cleaning solutions are also highly corrosive and potentially hazardous when in contact with organic materials, but do not contain chromium which has special disposal problems. **11.2** Select the required conditions for testing aviation and motor gasoline or aircraft turbine fuel from Table 1 and set the apparatus in operation following the procedures of 7.2 or 8.2 as appropriate. If an external preheater is used, regulate the temperature of the (vaporizing) medium to give the specified test well temperature. | Sample type | Vaporizing
medium | Operating temperature
°C | | |-----------------------------|----------------------|-----------------------------|------------| | | | Bath | Test well | | Aviation and motor gasoline | Air | 160 to 165 | 150 to 160 | | Aircraft turbine fuel | Steam | 232 to 246 | 229 to 235 | Table 1 — Test conditions - **11.3** Weigh the test beakers against the tare beaker to the nearest 0,1 mg. When a single-pan balance is used, weigh the tare beaker as a blank. Record the mass of each beaker. - **11.4** If suspended or settled solid matter is present, mix the contents of the sample container thoroughly. Immediately filter a quantity of the sample, at atmospheric pressure, through the sintered glass funnel $(\underline{6.6})$. Treat the filtrate as specified in $\underline{11.5}$ to $\underline{11.7}$ inclusive. - **11.5** By means of the graduated cylinders (6.9), add 50 ml \pm 0,5 ml of the sample to each beaker except the tare, using one beaker for each of the fuels to be tested. Place the filled beakers, and the tare in the evaporation bath (6.4). The elapsed time between placing the first and last beakers in the bath shall be as short as possible. When evaporating samples by means of air, replace the conical adaptor as each individual beaker is placed in the bath. When using steam, allow the beakers to heat for 3 min to 4 min before replacing the conical adaptor, which shall be preheated in the steam stream prior to attaching to the outlet. Centre the conical adaptors above the centre of the liquid surface. Take care to avoid splashing when introducing the jet of air or vapour, as this could cause gum values to be in error. Maintain the temperature and rate of flow and allow the test portions to evaporate for $30 \text{ min} \pm 0.5 \text{ min}$. Samples tested simultaneously shall have similar evaporation characteristics. NOTE In certain cases, duplicate testing is advisable to check if the test method's repeatability is met. **11.6** At the end of the heating period, transfer the beakers from the bath to the cooling vessel (6.3). Place the cooling vessel in the vicinity of the balance for at least 2 h. Weigh the beakers in accordance with 11.3. Record the mass of the beakers. - **11.7** Segregate beakers containing residues from products for which the heptane-insoluble portion of the gum is also required to be determined, and follow $\underline{11.8}$ to $\underline{11.12}$. The remaining beakers may be returned for cleaning and reuse. - 11.8 For non-aviation fuels that have unwashed results that are <0.5 mg/100 ml, it is not necessary to perform the washing steps identified in this clause, as well as in those that follow since the washed gum value will always be smaller than or equal to the unwashed gum value. If the unwashed results are not <0.5 mg/100 ml, add 25 ml of heptane to each of the beakers segregated in 11.7, together with the tare beaker, and swirl gently for 30 s. Allow the mixture to stand for 10 min \pm 1 min. - **11.9** Decant and discard the heptane solution, taking care to prevent the loss of any solid residue. - **11.10** Repeat the extraction with a second 25 ml portion of the heptane, as described in <u>11.8</u> and <u>11.9</u>. Repeat the extraction a third time if the extract is coloured. - **11.11** Place the beakers, including the tare, in the evaporation bath, maintained at $160 \, ^{\circ}\text{C}$ to $165 \, ^{\circ}\text{C}$ and, without replacing the conical adaptors, allow the beakers to dry for $5 \, \text{min} \pm 0.5 \, \text{min}$. - **11.12** At the end of the drying period, remove the beakers from the bath, place them in the cooling vessel $(\underline{6.3})$ and allow them to cool in the vicinity of the balance for at least 2 h. Weigh and record the mass of the beakers. ### 12 Calculation of gum content **12.1** Calculate the gum content, *A*, using Formula (2): $$A = 2 \ 000 \left[\left(m_1 - m_3 \right) - \left(m_2 - m_4 \right) \right] \tag{2}$$ where A is the gum content, expressed as mg per 100 ml; m_1 is the mass, in g, of the sample beaker plus residue; m_2 is the mass, in g, of the tare beaker after treatment; m_3 is the mass, in g, of the empty sample beaker; m_4 is the mass, in g, of the tare beaker before treatment. **12.2** If a double-pan balance is used, with the weighings made against the tare before and after treatment, use Formula (3): $$A = 2\ 000 \left(m_5 - m_6 \right) \tag{3}$$ where $$m_5 = m_1 - m_2$$, in g; $$m_6 = m_3 - m_4$$, in g. ### 13 Expression of results #### 13.1 Aviation fuels For aviation fuels with gum contents ≥ 1 mg/100 ml, express the results, to the nearest 1 mg/100 ml, as existent gum. Round figures in accordance with ISO 4259 practices (see also ASTM E29[2] or Appendix E of Reference [6]). For results <1 mg/100 ml, report as "<1 mg/100 ml". #### 13.2 Non-aviation fuels For non-aviation fuels with either solvent-washed or unwashed gum contents ≥ 0.5 mg/100 ml, express the results, to the nearest 0.5 mg/100 ml as either solvent-washed gum or unwashed gum content, or both. Round figures in accordance with ISO 4259 practices (see also ASTM E29[2] or Appendix E of Reference [6]). For results <0.5 mg/100 ml, report as "<0.5 mg/100 ml." If the unwashed gum content is <0.5 mg/100 ml, the washed gum may also be reported as "<0.5 mg/100 ml" (see $\frac{11.8}{}$). ### 13.3 All fuel types If the filtration step (11.4) has been carried out before the evaporation, the word "filtered" shall follow the numerical value. #### 14 Precision #### 14.1 General The precision, as obtained by statistical examination of interlaboratory test results, is given in $\underline{14.1}$ and $\underline{14.2}$. Precision estimates for gum content originate from a 1997 joint ASTM/EI study using gasoline samples containing oxygenates at a volume fraction of 0 % to 15 % and deposit control additive at 0 mg/l to 80 mg/l. The precision values given for solvent-washed and unwashed gum content were obtained on fourteen finished gasoline fuels, which included two samples containing a volume fraction of 10 % ethanol and five samples containing a volume fraction of 15 % methyl tertiary butyl ether (MTBE), as well as deposit control additives as determined in a 1997 interlaboratory study. The precision values for the solvent-washed and unwashed gum content are based on samples containing between (0 to 15) mg/100 ml and (0 to 50) mg/100 ml gum content, respectively [4]. Work in CEN [5] did not give indications that gasoline containing up to a volume fraction of 85 % ethanol would show different precision. #### 14.2 Repeatability, r The difference between successive test results obtained by the same operator with the same apparatus under constant operating conditions on identical test material would, in the normal and correct operation of the test method, exceed the value below only in one case in 20: ``` r = 1,11 + 0,095 X, for existent gum (aviation gasoline); r = 0,588 2 + 0,249 X, for existent gum (aviation turbine fuel); r = 0,997 X^{0,4}, for gum content (unwashed); r = 1,298 X^{0,3}, for gum content (solvent washed); where ``` *X* is the average of the results being compared. ### 14.3 Reproducibility, R The difference between two test results independently obtained by different operators operating in different laboratories on nominally identical test material would, in the normal and correct operation of the test method, exceed the value below only in one case in 20: ``` R = 2,09 + 0,126 X, for existent gum (aviation gasoline); R = 2,941 + 0,279 4 X, for existent gum (aviation turbine fuel); R = 1,928 X^{0,4}, for gum content (unwashed); R = 2,494 X^{0,3} for gum content (solvent washed); where ``` *X* is the average of the results being compared. ### 15 Test report The test report shall contain at least the following information: - a) a reference to this document, i.e. ISO 6246; - b) the type and complete identification of the product tested; - c) the result of the test (see <u>Clause 13</u>); - d) any deviation by agreement or otherwise from the procedure specified; - e) the date of the test. ### **Bibliography** - [1] ASTM D381-12, Standard test method for gum content in fuels by jet evaporation - [2] ASTM E29, Standard practice for using significant digits in test data to determine conformance with specifications - [3] IP Precision Evaluation Panel Report, June 18, 1998, Energy Institute, 61 New Cavendish Street, London W1G 7AR, United Kingdom - [4] Research report RR: D02-1466, An interlaboratory study for test method D381 to establish a precision statement that is applicable to modern gasoline's which contain can contain oxygenated compounds and are required to contain deposit control additives, June 2007, ASTM International, 00 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA - [5] E85 test method assessment, October 2014, CEN/TC 19 RRT report number 2013-002, available from CEN/TC 19 Secretariat, NEN, the Netherlands, energy@nen.nl, - [6] IP Standard Methods for Analysis and Testing of Petroleum and Related Products, Energy Institute, 61 New Cavendish Street, London W1G 7AR, United Kingdom #### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. #### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. #### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ### Copyright in BSI publications All the content in BSI publications, including British Standards, is the property of and copyrighted by BSI or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Save for the provisions below, you may not transfer, share or disseminate any portion of the standard to any other person. You may not adapt, distribute, commercially exploit, or publicly display the standard or any portion thereof in any manner whatsoever without BSI's prior written consent. #### Storing and using standards Standards purchased in soft copy format: - A British Standard purchased in soft copy format is licensed to a sole named user for personal or internal company use only. - The standard may be stored on more than 1 device provided that it is accessible by the sole named user only and that only 1 copy is accessed at any one time. - A single paper copy may be printed for personal or internal company use only. Standards purchased in hard copy format: - A British Standard purchased in hard copy format is for personal or internal company use only. - It may not be further reproduced in any format to create an additional copy. This includes scanning of the document. If you need more than 1 copy of the document, or if you wish to share the document on an internal network, you can save money by choosing a subscription product (see 'Subscriptions'). #### **Reproducing extracts** For permission to reproduce content from BSI publications contact the BSI Copyright & Licensing team. #### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email subscriptions@bsigroup.com. #### **Revisions** Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. ### **Useful Contacts** **Customer Services** Tel: +44 345 086 9001 **Email (orders):** orders@bsigroup.com **Email (enquiries):** cservices@bsigroup.com Subscriptions Tel: +44 345 086 9001 Email: subscriptions@bsigroup.com Knowledge Centre **Tel:** +44 20 8996 7004 $\textbf{Email:} \ knowledge centre @bsigroup.com$ Copyright & Licensing Tel: +44 20 8996 7070 Email: copyright@bsigroup.com #### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK