Paints and varnishes— Natural weathering of coatings— Exposure and assessment The European Standard EN ISO 2810:2004 has the status of a British Standard ICS 87.040 #### National foreword This British Standard is the official English language version of EN ISO 2810:2004. It is identical with ISO 2810:2004. The UK participation in its preparation was entrusted to Technical Committee STI/10, Test methods for paints, which has the responsibility to: - aid enquirers to understand the text; - present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed; - monitor related international and European developments and promulgate them in the UK. A list of organizations represented on this committee can be obtained on request to its secretary. #### **Cross-references** The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of British Standards Online. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 23 July 2004 #### Summary of pages This document comprises a front cover, an inside front cover, the EN ISO title page, the EN foreword page, the ISO title page, pages ii to iv, pages 1 to 11 and a back cover. The BSI copyright notice displayed in this document indicates when the document was last issued. #### Amendments issued since publication Amd. No. Date Comments © BSI 23 July 2004 ISBN 0 580 44141 5 ## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM **EN ISO 2810** July 2004 ICS 87.040 #### English version ## Paints and varnishes - Natural weathering of coatings - Exposure and assessment (ISO 2810:2004) Peintures et vernis - Vieillissement naturel des revêtements - Exposition et évaluation (ISO 2810:2004) This European Standard was approved by CEN on 7 June 2004. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: rue de Stassart, 36 B-1050 Brussels #### **Foreword** This document (EN ISO 2810:2004) has been prepared by Technical Committee ISO/TC 35 "Paints and varnishes" in collaboration with Technical Committee CEN/TC 139 "Paints and varnishes", the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2005, and conflicting national standards shall be withdrawn at the latest by January 2005. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. #### **Endorsement notice** The text of ISO 2810:2004 has been approved by CEN as EN ISO 2810:2004 without any modifications. # INTERNATIONAL STANDARD ISO 2810 Second edition 2004-07-01 # Paints and varnishes — Natural weathering of coatings — Exposure and assessment Peintures et vernis — Vieillissement naturel des revêtements — Exposition et évaluation | Со | Contents | | |-----|------------------------------------------------|-----| | 1 | Scope | . 1 | | 2 | Normative references | . 1 | | 3 | Terms and definitions | . 2 | | 4 | General | . 2 | | 5 | Exposure racks | . 3 | | 6 | Apparatus for measurement of climatic factors | . 4 | | 7 | Test specimens | . 5 | | 8 | Procedure | . 6 | | 9 | Supplementary test conditions | . 6 | | 10 | Evaluation of properties | . 7 | | 11 | Precision | . 7 | | 12 | Test report | . 7 | | Ann | nex A (normative) Environment and climate | . 8 | | Ann | nnex A (normative) Environment and climate | | | Bib | nex B (informative) Classification of climates | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 2810 was prepared by Technical Committee ISO/TC 35, *Paints and varnishes*, Subcommittee SC 9, *General test methods for paints and varnishes*. This second edition cancels and replaces the first edition (ISO 2810:1974), which has been technically revised. # Paints and varnishes — Natural weathering of coatings — Exposure and assessment #### 1 Scope This International Standard specifies the conditions which need to be taken into consideration in the selection of the type of natural weathering and the natural weathering procedure to be used to determine the resistance of coatings or coating systems (direct weathering or weathering behind window glass). Natural weathering is used to determine the resistance of coatings or coating systems (denoted in the following text simply by coatings) to the sun's radiation and the atmosphere. Special atmospheric influences, e.g. industrial pollution, are not taken into account in this International Standard. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1514, Paints and varnishes — Standard panels for testing ISO 2808, Paints and varnishes — Determination of film thickness ISO 2813, Paints and varnishes — Determination of specular gloss of non-metallic paint films at 20°, 60° and 85° ISO 3668, Paints and varnishes — Visual comparison of the colour of paints ISO 3696, Water for analytical laboratory use — Specification and test methods ISO 4628-1, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 1: General introduction and designation system ISO 4628-2, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 2: Assessment of degree of blistering ISO 4628-3, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 3: Assessment of degree of rusting ISO 4628-4, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 4: Assessment of degree of cracking ISO 4628-5, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 5: Assessment of degree of flaking ISO 4628-6, Paints and varnishes — Evaluation of degradation of paint coatings — Designation of intensity, quantity and size of common types of defect — Part 6: Rating of degree of chalking by tape method ISO 4628-7, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 7: Assessment of degree of chalking by velvet method ISO 4628-8, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 8: Assessment of degree of delamination and corrosion around a scribe ISO 4628-10, Paints and varnishes — Evaluation of degradation of coatings — Designation of quantity and size of defects, and of intensity of uniform changes in appearance — Part 10: Assessment of degree of filiform corrosion ISO 7724-1, Paints and varnishes — Colorimetry — Part 1: Principles ISO 7724-2, Paints and varnishes — Colorimetry — Part 2: Colour measurement ISO 7724-3, Paints and varnishes — Colorimetry — Part 3: Calculation of colour differences ISO 8565:1992, Metals and alloys — Atmospheric corrosion testing — General requirements for field tests ISO 12944-2, Paints and varnishes — Corrosion protection of steel structures by protective paint systems — Part 2: Classification of environments EN 13523-19, Coil coated metals — Test methods — Part 19: Panel design and method of atmospheric exposure testing SAE J1976:2002, Outdoor weathering of exterior materials WMO, *Guide to meteorological instruments and methods of observation*, WMO Publication No. 8, sixth edition, World Meteorological Organization, Geneva, 1996 #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### durability ability of a coating to resist the deleterious effect of its environment #### 3.2 #### time of wetness period during which an exposed coating has visible water present on it #### 4 General The durability of a coating during natural weathering depends on how, where and when the coating is weathered. Therefore, these parameters and the intended use of the coating shall be taken into account when exposures are carried out. In particular, the following parameters shall be considered: - a) The location of the exposure site, for example industrial, marine, rural. In choosing sites, those which differ markedly in the type or level of pollution from the normal shall be avoided, unless they are appropriate to the intended end use of the coating under test. - b) The height, angle and orientation of the exposure rack. These parameters will govern the extent to which the specimens are affected, for example by dew, frost and atmospheric pollutants. - c) The nature of the terrain on which the rack is constructed (for example concrete, grass, gravel). The terrain may affect the climatic conditions around the specimen under test. It would rarely be feasible to select an - ideal terrain in practice, but the effect of such variations in climatic conditions will be minimized by ensuring that all specimens are situated sufficiently high above the ground (see Clause 5). - d) Whether the performance of the coating on the front and/or the back of the specimen is of interest. Certain types of degradation, for example rust formation and/or mould growth, are frequently more severe on the sheltered parts of the specimen. - e) The intended use of the coating, including its substrate, and whether the coating is to be washed or polished in service. The results of tests on an exposure rack will apply precisely only to the environment in which they were obtained. Provided that the test conditions are reasonably appropriate to the intended end use, the relative performance of a number of coatings tested at the same time will enable valid deductions to be drawn. It is recommended that each series of specimens under evaluation include coatings of known performance to act as reference standards. The results of natural weathering may vary according to the time of year during which the tests are carried out. The influence of these variations will be reduced if the exposure period is sufficiently long. The exposure period should be at least one year, or a multiple of one year. The reproducibility of the results will be improved if the exposure period always starts at the same time of year, preferably in spring. Natural weathering tests are normally carried out for a fixed period of time. However, in many cases it is preferable to define the test period in terms of a certain degree of degradation or by the radiant exposure (dosage) of solar radiation to which the specimen is to be subjected (see Clause 6). The latter procedure may reduce the influence of seasonal variations but does not eliminate it. Radiant exposure may be determined by measurement of irradiance, and integration of the measurements over the period of natural weathering. The climatic conditions shall be monitored and a complete record reported, together with the other conditions of weathering. Care is required in the selection of test specimens of substrates with variable (anisotropic) properties, for example wood or steel. In these cases, replication of the tests is essential if misleading results are to be avoided. Washing and polishing during exposure will affect the durability of the coating. It shall therefore be mentioned in the test report. #### 5 Exposure racks Unless otherwise specified or agreed, use exposure racks on which the specimens are facing towards the equator. The specimens shall be firmly held on the racks by attachments made of stainless steel or other corrosion-resistant material, in such a manner that they are mechanically stressed as little as possible. The exposure racks shall be constructed so that the atmosphere has free access to the specimens and that no water drains from one specimen on to another. In addition, the racks may be designed so that a portion of the specimens can be covered to allow evaluation between an exposed and an unexposed area. By using special devices, particular conditions may be simulated, for example by using a "black box" in accordance with SAE J1976¹⁾ to simulate automotive conditions, or backing the test panel with plywood or other insulation material to simulate building side wall or roof area conditions. Metal substrates for corrosion tests shall not be in electrical contact with metals during the exposure period or, as far as possible, in direct contact with wood or other porous materials. If specimens are supported in grooves, suitable drainage holes shall be provided to prevent accumulation of water. ¹⁾ SAE — Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096, USA. Unless otherwise stated, the racks shall be constructed so that all specimens are supported either at a minimum height of 0,45 m above the ground or at a height sufficient to avoid contact with vegetation and to prevent damage. The area beneath and in the vicinity of the racks shall be characterized by low reflectance and by ground cover typical of that climatological area. In desert areas, the racks shall be located on gravel, in most temperate areas on low-cut grass. Usually the panels are supported at an angle of 45° to the horizontal. Depending on the intended end use of the coating, other angles may be agreed, for example 5° for automotive finishes or roof coatings, or vertical exposure for textured wall finishes. When testing corrosion performance, it is appropriate to expose specimens vertically facing away from the equator as well as inclined at 45° and 5° facing towards the equator (see EN 13523-19). Specimens facing away from the equator will remain wet for longer periods since they dry less rapidly than those exposed facing towards the equator. This will lead to a higher tendency to corrode. The racks shall be situated so that, at a sun height of 20° and more, no shadow falls on to the specimens. When testing the durability of coatings for interior use which are exposed to radiation which has passed through window glass, racks that are covered by a window pane are used. Since, depending on the quality, the transmission of window glass in the UV range is different, the type of window glass shall be agreed upon between the interested parties for each particular case (see Clause 9). #### 6 Apparatus for measurement of climatic factors #### 6.1 Measurement of solar radiation #### 6.1.1 Pyranometers Pyranometers are radiometers used to measure the total solar radiant energy incident upon a surface per unit time per unit area. The energy measured includes direct and diffuse radiant energy as well as radiant energy reflected from the background. Pyranometers shall meet at least the requirements for a Second Class instrument as defined by the World Meteorological Organization (WMO). In addition, pyranometers shall be calibrated at least annually, and their calibration factor shall be traceable to the World Radiometric Reference (WRR) (see WMO Publication No. 8, Chapter 9). #### 6.1.2 Pyrheliometers Pyrheliometers are radiometers used to measure the direct (beam) solar irradiance incident on a surface normal to the sun's rays. The energy measured excludes diffuse radiant energy as well as radiant energy reflected from the background. Pyrheliometers shall meet at least the requirements for a First Class instrument as defined by the World Meteorological Organization (WMO). In addition, pyrheliometers shall be calibrated at least annually, and their calibration factor shall be traceable to the World Radiometric Reference (WRR) (see WMO Publication No. 8, Chapter 9). #### 6.1.3 Total-ultraviolet radiometers When used to define exposure stages, total-ultraviolet radiometers shall have a passband that maximizes the acceptance of radiation in the 300 nm to 400 nm, 295 nm to 385 nm, or any other commonly used total-ultraviolet wavelength region, and they shall be cosine-corrected to include ultraviolet sky radiation. Commercially available total-ultraviolet radiometers require annual calibration checks if they are deployed between latitudes 40° north and 40° south. Outside these latitudes, annual calibration is not a requirement, but it is considered satisfactory. #### 6.1.4 Narrow-band ultraviolet radiometers When used to define exposure stages, narrow-band ultraviolet radiometers shall be cosine-corrected if used in conjunction with either natural fixed-angle or glass-filtered exposures. They shall be calibrated following the manufacturer's instructions. #### 6.2 Other climate-measuring instruments Instrumentation required for the measurement of air temperature, specimen surface temperature, relative humidity, rainfall, time of wetness, and sunshine hours shall be appropriate to the exposure method used, and shall be agreed upon between the interested parties. #### 7 Test specimens The simplest and most widely used test specimen is a flat panel of the appropriate substrate, but much useful additional information may be obtained by carrying out exposure tests on structures. This is particularly true of wooden assemblies such as window frames, where coating performance at the joints is of interest. Design features which allow accumulation and entrapment of water may also lead to premature coating degradation. Therefore, test specimens should preferably be included which show the characteristics of such structures. Unless otherwise agreed, use standard test panels complying with ISO 1514, with the area of the panels at least $0.03 \,\mathrm{m}^2$ and no side less than 100 mm long. Coat the panels with the product(s) under test by the appropriate method and dry (or stove) each coat in the specified manner for the specified time, followed (if appropriate) by conditioning or ageing. Coat both faces and the edges of the panels with the product under test, unless the panel would not be so used in practice. Alternatively, the back and edges may be coated with a good-quality protective paint [see Clause 4, item d)]. If specified or agreed, particularly in the case of corrosion tests, provide uncoated areas on the specimen, preferably by one or more of the following methods: - a) After the specified drying time and immediately before placing the specimens on the exposure rack, make a straight scratch or scribe mark through the coating to the substrate. To make the scratch, use an instrument with a hard tip. The scratch shall have a width of 0,2 mm to 1,0 mm, unless otherwise agreed. As the result of the test depends on e.g. the depth of the scratch and the scratching tool used, the details of how the scratch was made shall be stated in the test report. - NOTE Normally, vertical and/or horizontal lines are used. By agreement, diagonal criss-cross lines (a St. Andrew's cross) can be employed. However, in this case the coating may flake where the lines cross which makes evaluation, e.g. by image analysis, difficult. - b) Before applying the product(s) under test, attach to the prepared specimen a strip of pressure-sensitive adhesive tape of agreed size at an agreed location. Coat the specimen in the normal way. Either directly after coating or immediately before placing on the exposure rack, carefully remove the tape. Clean off any residues of adhesive with a suitable solvent which does not affect the coating. Determine the thickness, in micrometres, of the coating by using one of the non-destructive methods specified in ISO 2808. Provide the specimens with a suitable marking which is resistant to natural weathering. The number of test specimens depends on - the number of different properties to be investigated and the number of specimens required for each test method; - the number of times each test method is to be carried out before, during and after weathering. If not otherwise specified or agreed, the number of test specimens shall be not less than three. The use of reference specimens of known durability and of composition similar to that of the test specimen is recommended. #### 8 Procedure After any conditioning or ageing specified, expose the specimens on the rack for the specified time or until the specified level of radiant exposure has been reached or until a defined degree of degradation is reached. If specified, wash all or part of the specimen at the required intervals. If only part of the specimen is to be washed, it is preferable to wash a strip on the right or left of the specimen, rather than at the top or bottom. It may also be necessary to define exactly the particular area to be washed. When the specimen-washing procedure is not specified in detail, use water meeting the requirements of ISO 3696, grade 3, to which a suitable wetting agent has been added. Apply the washing solution with a soft brush or soft sponge, subsequently rinsing the surface thoroughly with water of grade 3, avoiding mechanical damage. If specified, wash and polish all or part of each specimen at the required intervals, using the specified polish. Examine the specimens at defined intervals, separately noting the resistance of the coating on the front, back, edges or bare areas. Examinations shall be at intervals appropriate to the rate of degradation, for example for change of colour, for loss of gloss, for blistering of the coating and for signs of corrosion of the substrate. If specified, also examine with $\times 10$ magnification for cracking, blistering, etc., of the coating and for signs of corrosion of the substrate. Examine for signs of chalking by pressing and rotating (or wiping) a piece of velvet of contrasting colour over the surface, for example in accordance with the method described in ISO 4628-7. After the specified period of exposure, carry out a final examination of the coating. If it is required to examine the substrate for signs of attack, remove the coating by the specified method. #### 9 Supplementary test conditions For any particular application of the test method specified in this International Standard, more details, in addition to those in the preceding clauses, may need to be given. To enable the method to be carried out, the following test conditions shall be laid down as appropriate: - a) the material, the thickness and the surface preparation of the substrate; - b) the method of application of the coating materials under test to the substrate; - c) the duration and conditions of drying (or stoving) and ageing (if applicable) of the coating, the intervals between coats and the period of conditioning before exposure; - d) the thickness, in micrometres, of the dry coating and the method of measurement in accordance with ISO 2808, and whether it is a single coating or a multicoat system; - e) whether bare areas are to be provided on the specimen and, if so, their size and position and by what means they are to be made; - f) details of any periodic washing or polishing procedure to be carried out during the course of exposure; - g) any particular requirements regarding the exposure location; - h) the duration of the test; - i) which properties of the coating are to be evaluated prior to, during and after exposure, and the standards to be used: - j) where requested, the method of removal of the coating from the substrate; - k) the spectral transmittance of the window glass, if used. These test conditions should preferably be agreed between the interested parties and may be derived, in part or totally, from an international or national standard or other document related to the product under test. #### 10 Evaluation of properties Measure the specified or agreed properties of the coating (see Clause 9) prior to, during and after the exposure in accordance with ISO 2813, ISO 7724-1 to ISO 7724-3, ISO 3668, ISO 4628-1 to ISO 4628-8 and/or ISO 4628-10. #### 11 Precision The principle of repeatability and reproducibility is not applicable to this International Standard. However, experience has shown that for test specimens exposed under the same test parameters at the same exposure site a comparable ranking of products may be obtained. #### 12 Test report The test report shall contain at least the following information: - a) all information necessary for complete identification of the product tested (e.g. manufacturer, brand name, batch number, etc.); - b) a reference to this International Standard (ISO 2810:2004); - c) the supplementary test conditions referred to in Clause 9; - d) a reference to the international or national standard, product specification or other document supplying the information referred to in c); - e) the weathering procedure used (direct weathering or weathering behind window glass); - f) the test details: - 1) exposure aspect (for example tilt and azimuth orientation), - 2) location and details of exposure site (e.g. longitude, latitude, altitude, annual climate characteristics), - 3) class and type of climate (quote from Annex B, giving reference authority), - 4) nature of masking, backing, support and attachments, if used, - 5) procedure used to determine the exposure stages, - 6) exposure stages: - starting time, - elapsed time (weeks, months, years), - total solar radiant exposure, expressed in joules per square metre, including the method used to measure it, if it is measured (see 6.1), - 7) details of washing procedure, if specified (see Clause 8); - g) details of the scratch, if made, and of the tool used to make it; - h) the test results as indicated in Clause 10, including: - the intervals between removal of specimen from rack and property measurement, - climatological data (see Annex A); - i) any items which were agreed between the interested parties; - j) any deviation from the weathering procedure specified; - k) any unusual features (anomalies) observed during the test; - I) the dates of the test. #### Annex A (normative) #### **Environment and climate** #### A.1 Classification of environment and climate #### A.1.1 Environment A classification of environments, used especially to describe the environmental impact on steel structures, is given in ISO 12944-2 which in turn is based on ISO 9223^[1]. For general requirements for atmospheric corrosion field tests, including requirements for monitoring, see Clause 3 of ISO 8565:1992. Marine and industrial influences are likely to have a significant impact on the basic climatic conditions of a region. These particular conditions are referred to as the microclimate of the test site. In coastal regions, where the atmosphere may contain traces of salt but is generally otherwise clean, exposed specimens receive more solar radiation and are likely to degrade more rapidly than in comparable inland regions. NOTE Certain coatings are known to degrade more rapidly in desert exposure sites than in coastal test sites. In industrial areas, atmospheric pollution and dirt retained on the specimens reduce the effect of solar radiation, although the pollution and dirt may at the same time make the effects of moisture more pronounced. #### A.1.2 Climate Climates are divided into classes, each subdivided into several types. Annex B gives details of one such classification in use throughout the world. The classification is such that significant differences are to be expected between each class with respect to its effect on the weathering behaviour of paints. #### A.2 Additional observations on climate The general description of the climate at the exposure site by class, type and special conditions should preferably be supplemented by the following detailed observations: #### **Temperature** - a) monthly mean of daily maxima; - b) monthly mean of daily minima; - c) monthly maximum and minimum. #### Relative humidity - a) monthly mean of daily maxima; - b) monthly mean of daily minima; - c) monthly maximum and minimum. #### **Precipitation** - a) total monthly rainfall, in millimetres; - b) total monthly time of wetness due to condensation, in hours; - c) total monthly time of wetness due to precipitation, in hours. #### Time of wetness - a) monthly mean of the daily percentage time of wetness; - b) monthly range of the daily percentage time of wetness. #### Other observations Other observations, such as wind speed and direction, incidence and nature of any atmospheric pollution, total ultraviolet radiant exposure (if measured) and any special local features, may also be recorded. #### **Annex B** (informative) #### Classification of climates A well-known system of climate classification is presented below, giving a general classification, subdivided into detailed types of climate with their letter designations. NOTE This classification is taken from ISO 877:1994, *Plastics — Methods of exposure to direct weathering, to weathering using glass-filtered daylight, and to intensified weathering by daylight using Fresnel mirrors.* It was originally published in TREWARTHA, G.T. *An Introduction to Weather and Climate*, McGraw-Hill, New York, 1947, Plate 1. #### a) Tropical rainy climates - 1) Tropical rainforest Af, Am - 2) Tropical savanna Aw - b) Dry climates - 1) Steppe BS - i) Tropical and subtropical steppe Bsh - ii) Middle latitude steppe Bsk - 2) Desert BW - i) Tropical and subtropical desert Bwh - ii) Middle latitude desert Bwk #### c) Humid meso-thermal climates - 1) Mediterranean subtropical/dry summer Cs - 2) Humid subtropical/warm summer Ca - i) Dry winter Caw - ii) No dry season Caf - 3) Marine/cool summer Cb, Cc #### d) Humid micro-thermal climates - 1) Humid continental/warm summer Da - 2) Humid continental/cool summer Db - 3) Subarctic Dc, Dcl - e) Undifferentiated highland climates H - f) Polar climates - 1) Tundra ET - 2) Ice cap EF Another commonly used system of climate classification is given in ISO 9223:1992^[1], Annex B. ### **Bibliography** [1] ISO 9223:1992, Corrosion of metals and alloys — Corrosivity of atmospheres — Classification ### **BSI** — British Standards Institution BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at http://www.bsi-global.com. In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com. Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001. Email: membership@bsi-global.com. Information regarding online access to British Standards via British Standards Online can be found at http://www.bsi-global.com/bsonline. Further information about BSI is available on the BSI website at http://www.bsi-global.com. #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager. Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553. Email: copyright@bsi-global.com. BSI 389 Chiswick High Road London W4 4AL