Flexible cellular polymeric materials — Determination of hardness (indentation technique) (ISO 2439:2008)

ICS 83.100

National foreword

This British Standard is the UK implementation of EN ISO 2439:2008. It supersedes BS EN ISO 2439:2001 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee PRI/24, Testing of rigid and flexible cellular materials.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 January

© BSI 2008

ISBN 978 0 580 56850 3

Amendments/corrigenda issued since publication

Date	Comments				

EUROPEAN STANDARD NORME EUROPÉENNE **EUROPÄISCHE NORM**

EN ISO 2439

December 2008

ICS 83.100

Supersedes EN ISO 2439:2000

English Version

Flexible cellular polymeric materials - Determination of hardness (indentation technique) (ISO 2439:2008)

Matériaux polymères alvéolaires souples - Détermination de la dureté (technique par indentation) (ISO 2439:2008)

Weich-elastische polymere Schaumstoffe - Bestimmung der Härte (Eindruckverfahren) (ISO 2439:2008)

This European Standard was approved by CEN on 19 November 2008.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Foreword

This document (EN ISO 2439:2008) has been prepared by Technical Committee ISO/TC 45 "Rubber and rubber products" in collaboration with Technical Committee CEN/TC 249 "Plastics", the secretariat of which is held by NBN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2009, and conflicting national standards shall be withdrawn at the latest by June 2009.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN ISO 2439:2000.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Endorsement notice

The text of ISO 2439:2008 has been approved by CEN as a EN ISO 2439:2008 without any modification.

Contents Page Foreword......iv

Forewo	ordi	٧
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	Principle	2
5	Apparatus	2
6	Test pieces	3
6.1	Shape and dimensions	3
6.2	Samples showing orientation	3
6.3	Conditioning	3
7	Procedure	3
7.1	General	3
7.2	Preliminary indentation for Methods A, B and C	4
7.3	Method A — Determination of the 40 %/30 s indentation hardness index	4
7.4	Method B — Determination of the 25 %-40 %-65 %/30 s indentation hardness characteristics	4
7.5	Method C — Determination of the 40 % indentation hardness check	5
7.6	Method D — Determination of the 25 %/20 s low indentation hardness index	5
7.7	Method E — Determination of the compressive deflection coefficient and hysteresis loss rate	5
8	Repeat tests	7
9	Test report	7
Annex	A (informative) Test method parameters and typical graphs	8
Annex	B (informative) Precision of Method E	2
Bibliog	raphy1	4

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 2439 was prepared by Technical Committee ISO/TC 45, Rubber and rubber products, Subcommittee SC 4, Products (other than hoses).

This fourth edition cancels and replaces the third edition (ISO 2439:1997 and ISO 2439:1997/Cor.1:1998), which has been technically revised.

Major modifications in this revised text are:

- a) change in Scope to cover five methods;
- b) inclusion of Figure 1 to illustrate the force-indentation curve; and
- c) inclusion of informative annexes.

as of 24/03/2009 05:18,

icensed copy: The University of Hong Kong, The University of Hong Kong, Version correct

Flexible cellular polymeric materials — Determination of hardness (indentation technique)

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This International Standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope

The indentation hardness of flexible cellular materials is a measure of their load-bearing properties. This International Standard specifies four methods (A to D) for the determination of indentation hardness and one method (E) for determination of compressive deflection coefficient and hysteresis loss rate of flexible cellular materials. Annex A provides a summary of test parameters and typical force-indentation graphs obtained with these methods.

These five methods are applicable only to latex foam, urethane foam and PVC foam of the open-cell type. The methods specified can be used for testing finished articles and for the characterization of bulk material.

This International Standard specifies the following methods:

- Method A Determination of the 40 %/30 s indentation hardness index, which gives a single indentation measurement for laboratory test purposes;
- b) Method B Determination of the 25 %-40 %-65 %/30 s indentation hardness characteristics, which provides information about the shape of the hardness indentation curve;
- Method C Determination of the 40 % indentation hardness check, which is a quick procedure suitable for quality control testing;
- d) Method D Determination of the 25 %/20 s low indentation hardness index, which is a quick procedure suitable as an inspection test;
- e) Method E Determination of the compressive deflection coefficient and hysteresis loss rate, which gives additional information about the load-bearing properties of materials.

The results obtained by these methods relate only to the test conditions specified and cannot, in general, be used directly for design purposes.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1382, Rubber — Vocabulary

1

BS EN ISO 2439:2008 ISO 2439:2008(E)

ISO 7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/compression testing machines — Verification and calibration of the force-measuring system

ISO 23529, Rubber — General procedures for preparing and conditioning test pieces for physical test methods

Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 1382 and the following apply.

indentation hardness

total force required to produce, under specified conditions, a specified indentation of a standard test piece

NOTE Indentation hardness is expressed in newtons.

3.2

compressive deflection coefficient

rátio of the 65 % indentation force deflection to the 25 % indentation force deflection

hysteresis loss rate

 $A_{\!f}$ energy difference between the loading and unloading of a test piece under cyclic deformation

NOTE Hysteresis loss rate is expressed as a percentage of the loading energy.

Principle

The forces required to produce specified indentations under specified conditions are measured.

Apparatus

Test machine.

The test machine shall be capable of indenting the test piece between a supporting surface (5.2) and an indentor (5.3) having a uniform relative motion, in the vertical direction, of (100 \pm 20) mm/min.

The test machine shall have means of measuring force in conformance with Class 1 of ISO 7500-1 or of measuring with a precision of \pm 1 N, and of measuring the test piece thickness under load with a precision of \pm 0,25 mm.

The test machine for Method C and Method E shall have its force gauge fitted with a tell-tale needle and/or shall be equipped to make autographic load-indentation plots.

The test machine shall also be capable of maintaining the specified degree of indentation with a precision of \pm 0,25 mm for the specified period.

5.2 Supporting surface.

Unless otherwise specified, the test pieces shall be supported on a smooth, flat, horizontal and rigid surface larger than the test piece and suitably vented with holes approximately 6 mm in diameter and of approximately 20 mm pitch, to allow the escape of air from below the test piece.

icensed copy: The University of Hong Kong, The University of Hong Kong, Version correct BSI

BS EN ISO 2439:2008 ISO 2439:2008(E)

5.3 Indentor.

The indentor shall be mounted preferably by a ball joint free from vertical movement, although other methods of mounting are permitted. The indentor shall be flat and circular, with a diameter of 200^{+3}_{0} mm and a $1,0^{+0.5}_{0}$ mm radius at the lower edge. The lower surface shall be smooth but not polished.

Test pieces

Shape and dimensions

Material shall be cut to obtain a standard-size square of length of side 380^{+20} mm, with a thickness of (50 \pm 2) mm. Sheets of less than this standard thickness shall be plied together to approximate as closely as possible to the standard thickness.

Finished articles may be tested as agreed between purchaser and supplier.

NOTE Results on plied material and on finished articles may not be the same as would be obtained with the standard test piece.

6.2 Samples showing orientation

If samples show orientation of the cellular structure, the direction in which the indentation is to be carried out shall be agreed between the interested parties. Normally, testing should be carried out in that direction in which the finished product will be stressed under service conditions.

6.3 Conditioning

Material shall not be tested sooner than 72 h after manufacture, unless at either 16 h or 48 h after manufacture it can be demonstrated that the mean result does not differ by more than \pm 10 % from that obtained after 72 h. Testing is permitted at either 16 h or 48 h if, at the specified time, the above criterion has been satisfied.

Prior to the test, the test pieces shall be conditioned, undeflected and undistorted, for at least 16 h in one of the following atmospheres, as given in ISO 23529.

- (23 ± 2) °C, (50 ± 5) % relative humidity;
- (27 ± 2) °C, (65 ± 5) % relative humidity.

This conditioning period can form the latter part of the period following manufacture.

In case of quality control tests, test pieces may be sampled at 12 h after manufacture or later, and testing is permitted after conditioning for at least 6 h in one of the specified atmospheres.

Procedure

7.1 General

Carry out the test immediately after conditioning, preferably under the same atmospheric conditions as specified in 6.3.

NOTE See Annex A for assistance in understanding each test method. BS EN ISO 2439:2008 ISO 2439:2008(E)

Position the test piece on the supporting surface so that the centre of the test piece, or other agreed test area, is located below the centre of the indentor. Test pieces having cavities on one side shall be placed with the cavity side next to the supporting surface.

If a test piece has cavities, the acceptable characteristics of the cavities, such as quantity, dimensions and location in the test piece, should be agreed between purchaser and supplier.

7.2 Preliminary indentation for Methods A, B and C

- Apply a force of 5_{-2}^{0} N to the selected test area and measure the thickness of the test piece. This value is the point of zero indentation.
- b) Indent the test piece at an indentor rate of (100 ± 20) mm/min, to produce an indentation of (70 ± 2.5) % of the thickness. After reaching this deflection, release the load at the same rate.
- c) Repeat this loading and unloading twice more, then proceed with 7.3, 7.4 or 7.5 as appropriate.

7.3 Method A — Determination of the 40 %/30 s indentation hardness index

Immediately after the third unloading [see 7.2 c)], indent the test piece by (40 ± 1) % of its thickness. Maintain this deflection for a period of (30 ± 1) s, note the corresponding force, in newtons, and release the force.

Only the result of a test conducted by Method A, on a standard-size test piece without plying, shall be known as the indentation hardness index.

7.4 Method B — Determination of the 25 %-40 %-65 %/30 s indentation hardness characteristics

Immediately after the third unloading [see 7.2 c)], carry out the following operations:

- a) indent the test piece by (25 ± 1) % of the thickness;
- b) maintain this indentation for a period of (30 \pm 1) s;
- c) measure the force required;
- d) increase the indentation to (40 \pm 1) % of the thickness;
- e) maintain this indentation for a period of (30 \pm 1) s;
- f) measure the force required;
- g) increase the indentation to (65 \pm 1) % of the thickness;
- h) maintain this indentation for a period of (30 \pm 1) s;
- i) measure the force required.

The results of a test conducted by Method B on a standard test piece shall be known as the standard indentation hardness characteristics of that material. If a product is tested, the results shall be known as the product indentation hardness characteristics.

NOTE Convenient means of expressing the results obtained by Method B are indentation factors, which are the ratios of the forces required to obtain the indentations of 25 % and 65 % to the force required to obtain the indentation of 40 %.

BS EN ISO 2439:2008 ISO 2439:2008(E)

7.5 Method C — Determination of the 40 % indentation hardness check

Immediately after the third unloading [see 7.2 c)], carry out the following operations:

- a) start the autographic recording, or bring back the tell-tale needle of the force gauge, and indent the test piece to (40 ± 1) % of its thickness;
- record the force, in newtons, using the tell-tale needle or the instantaneous maximum of the autographic recorder;
- c) release the force.

The results of a test conducted by Method C shall be known as the indentation hardness check.

NOTE This is a faster, quality-control test for indentation hardness. The variability of results obtained in this way is usually higher. It should also be noted that the results obtained in this way may be related to results obtained with Method A but are usually higher.

7.6 Method D — Determination of the 25 %/20 s low indentation hardness index

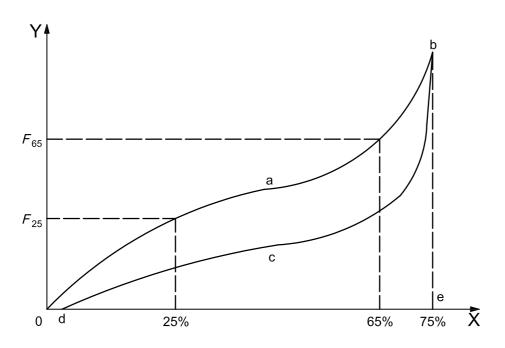
7.6.1 Preliminary indentation

- a) Apply a force of 5_{-2}^{0} N to the selected test area and measure the thickness of the test piece. This value is the point of zero indentation.
- b) Indent the test piece at an indentor rate of (100 ± 20) mm/min to produce an indentation of (75 ± 2.5) % of its thickness. After reaching this deflection, release the load at the same rate.

7.6.2 Measuring

Immediately after the unloading [see 7.6.1 b)], indent the test piece by (25 ± 1) % of its thickness. Maintain this deflection for a period of (20 ± 1) s, note the corresponding force, in newtons, and release the force.

Only the result of a test conducted by Method D, on the standard-size test piece without plying, shall be known as the low indentation hardness index.


7.7 Method E — Determination of the compressive deflection coefficient and hysteresis loss rate

7.7.1 Preliminary indentation

- a) Apply a force of 5_{-2}^{0} N to the selected test area and measure the thickness of the test piece. This value is the point of zero indentation.
- b) Indent the test piece at an indentor rate of (100 \pm 20) mm/min to produce an indentation of (75 \pm 2,5) % of its thickness. After reaching this deflection, release the load at the same rate.
- c) Allow the test piece to rest for (4 ± 1) min.

7.7.2 Measuring

Immediately after the rest period [see 7.7.1 c)], indent the test piece at an indentor rate of (100 ± 20) mm/min, to produce an indentation of (75 ± 2.5) % of the thickness as measured in 7.7.1 a), and simultaneously record the force-indentation curve. After reaching (75 ± 2.5) % indentation, release the force at the same rate and complete a whole force-indentation curve as illustrated in Figure 1. The time interval between completion of the compression cycle and commencement of the decompression cycle shall not exceed 2 s.

Key

- X indentation, %
- Y force, F
- a typical line for compression cycle
- b top point
- c typical line for decompression cycle
- d end point
- e point of 75 % indentation of the test piece

Figure 1 — Typical force-indentation curve

7.7.3 Expression of results

7.7.3.1 Compressive deflection coefficient

The compressive deflection coefficient, S_f , is given by the equation:

$$S_f = \frac{F_{65}}{F_{25}}$$

where

 F_{25} is the force at 25 % indentation in compression, in newtons;

 $F_{\rm 65}\,$ is the force at 65 % indentation in compression, in newtons.

7.7.3.2 Hysteresis loss rate

The hysteresis loss rate, A_f (%), is given by the equation:

$$A_f = \frac{\text{Area 0abcd0}}{\text{Area 0abe0}} \times 100$$

where

Area 0abcd0 is the area contained within the hysteresis curve 0abcd0 (see Figure 1);

Area 0abe0 is the area under the curve 0ab (see Figure 1).

Repeat tests

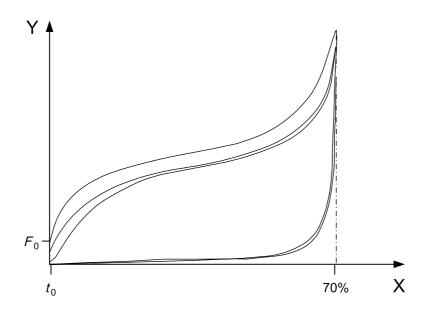
For repeat tests on the same test piece, a minimum recovery period of 16 h shall be observed.

Test report

The test report shall include the following information:

- a reference to this International Standard;
- the method used and the type of results obtained (e.g. product indentation hardness characteristics);
- the temperatures and relative humidities of conditioning and testing; C)
- whether bulk material or finished articles were tested;
- the dimensions of the test piece and, in particular, the thickness as determined in 7.2 a);
- f) where applicable, the number of plies constituting the test piece;
- whether skins were present and, if so, how many; g)
- the indentation hardness(es): values up to 100 N shall be quoted to the nearest unit; values over 100 N shall be quoted to the nearest 5 N;
- any deviations from this International Standard.

Annex A (informative)

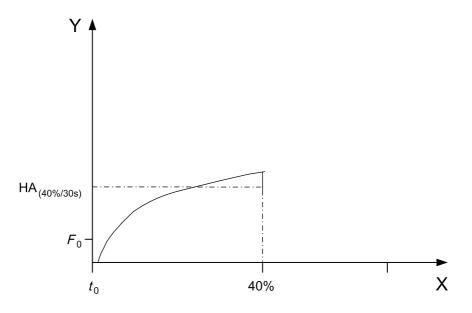

Test method parameters and typical graphs

A.1 Test parameters for Methods A, B, C, D and E

Table A.1 — Parameters of test methods

Test parameters	Method A		Method B		Method C	Method D	Method E a	
Number of preliminary indentations	3		3		3	1	1	
Preliminary indentation, % of test piece thickness	70 ± 2,5		70 ± 2,5		70 ± 2,5	75 ± 2,5	75 ± 2,5	
Rest time after preliminary indentation, min	liminary — — —				_	_	4 ± 1	
Indentation, % of test	_	25 ± 1			_	25 ± 1		
piece thickness at	40 ± 1		40 ± 1		40 ± 1	_	0~75~0	
measurement	_			65 ± 1	_	_		
Compression hold period before measuring, s	30 ± 1	30 ± 1	30 ± 1	30 ± 1	0	20 ± 1	_	
Indentation hardness symbol	HA _(40%/30s)	HB _(25%/30s)	HB _(40%/30s)	HB _(65%/30s)	HC _(40%/0s)	HD _(25%/20s)	_	
^a See 7.7.3.						•	•	

A.2 Sample force-indentation graphs using Methods A, B, C and D


Key

Χ indentation %

force, F

 5^{0}_{-2} N, preload force at which initial thickness is measured initial thickness of test piece

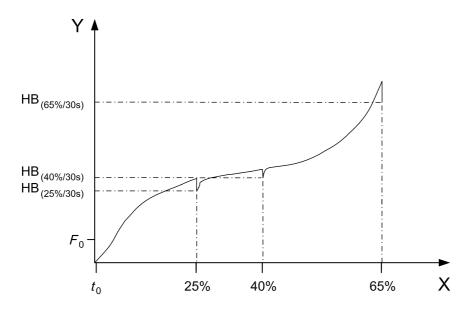
Figure A.1 — Sample force-indentation graph of preliminary indentation, Method A, B or C

Key

indentation, %

force, F

 5_{-2}^{0} N, preload force at which initial thickness is measured


initial thickness of test piece

HA hardness measured according to Method A

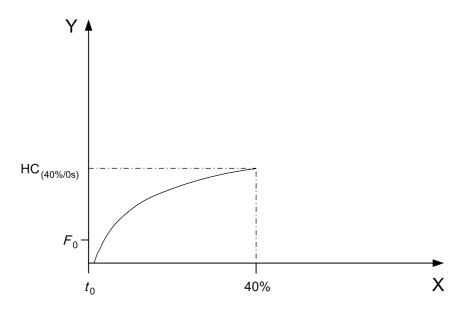
Figure A.2 — Sample force-indentation graph using Method A

9

BS EN ISO 2439:2008 **ISO 2439:2008(E)**

Key

X indentation, %


Y force, F

 F_0 5 $_{-2}^{0}$ N, preload force at which initial thickness is measured

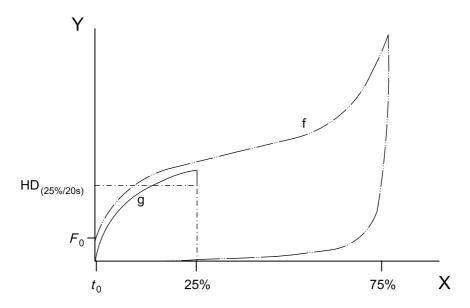
to initial thickness of test piece

HB hardness measured according to Method B

Figure A.3 — Sample force-indentation graph using Method B

Key

X indentation, %


Y force, F

 F_0 5 $_{-2}^{0}$ N, preload force at which initial thickness is measured

o initial thickness of test piece

HC hardness measured according to Method C

Figure A.4 — Sample force-indentation graph using Method C

Key

- indentation, % Χ
- force, FΥ
- $\mathbf{5}_{-2}^{\ \ 0}$ N, preload force at which initial thickness is measured preliminary indentation curve
- test indentation curve
- initial thickness of test piece
- HD hardness measured according to Method D

Figure A.5 — Sample force-indentation graph using Method D

as of 24/03/2009 05:18,

Hong Kong, Version correct

The University of

icensed copy: The University of Hong Kong,

Annex B (informative)

Precision of Method E

The precision of Method E was determined in accordance with ISO/TR 9272. The precision results as determined by this ITP (inter-laboratory test programme) should not be used for acceptance or rejection of any group of materials without documentation that the results of this precision evaluation are actually applicable to the particular group of materials tested.

The ITP for precision evaluation was organized by Japan and conducted in 2004. Seven laboratories participated in this ITP using three types of flexible polyurethane foam with different resilience levels.

The compressive deflection coefficient and hysteresis loss rate were measured using Method E in accordance with this International Standard.

B.3 Precision results

B.3.1 General

The precision results for three types of test piece with different resilience levels are given in Table B.1. Three test pieces were tested for each resilience level, and both properties were measured in accordance with the test procedure in Method E.

B.3.2 Repeatability

The repeatability, or local domain precision, for this test method was established from the values in Table B.1 for each measurement parameter. Test results obtained using Method E of this International Standard that differ by more than the tabulated values for r, in units of measurement, and (r), in percent, should be considered as suspect, i.e. to have come from different populations, and suggest that some appropriate investigative action be taken.

B.3.3 Reproducibility

The reproducibility, or global domain precision, for this test method was established from the values in Table B.1 for each measurement parameter. Test results obtained in different laboratories using Method E of this International Standard that differ by more than the tabulated values for R, in units of measurement, and (R), in percent, should be considered as suspect, i.e. to have come from different populations, and suggest that some appropriate investigative action be taken.

Table B.1 — Precision results

Test piece	Property	Mean value	Within laboratory			Between laboratories			
			s_r	r	(r)	s_R	R	(R)	
Conventional foam	Compressive deflection coefficient	1,78	0,035 2	0,100	5,58	0,069 4	0,196	11,0	
loam	Hysteresis loss rate	44,46	0,959	2,713	6,10	2,324	6,58	14,79	
Low resilience	Compressive deflection coefficient	2,15	0,044 4	0,126	5,85	0,120	0,337	15,69	
foam	Hysteresis loss rate	67,91	1,787	5,06	7,45	6,314	17,68	26,03	
High resilience	Compressive deflection coefficient	2,29	0,047	0,132	5,75	0,078	0,221	9,62	
foam	Hysteresis loss rate	33,43	0,349	0,988	2,96	2,844	8,050	24,08	

Bibliography

[1] ISO/TR 9272, Rubber and rubber products — Determination of precision for test method standards

BSI - British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001. Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact Information Centre. Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048 Email: info@bsigroup.com

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL

Further information about BSI is available on the BSI website at http://www.bsigroup.com.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means — electronic, photocopying, recording or otherwise — without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright and Licensing Manager. Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com

BSI Group Headquarters 389 Chiswick High Road, London, W4 4AL, UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/ standards