Textile-glass-reinforced plastics — Prepregs, moulding compounds and laminates — Determination of the textile-glass and mineral-filler content — Calcination methods The European Standard EN ISO 1172:1998 has the status of a British Standard ICS 83.120 **B**51 NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW #### National foreword This British Standard is the English language version of EN ISO 1172:1998. The UK participation in its preparation was entrusted to Technical Committee PRI/42, Fibre reinforced thermosetting plastics and prepregs, which has the responsibility to: - aid enquirers to understand the text; - present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed; - monitor related international and European developments and promulgate them in the UK. A list of organizations represented on this committee can be obtained on request to its secretary. #### **Cross-references** The British Standards which implement international or European publications referred to in this document may be found in the BSI Standards Catalogue under the section entitled "International Standards Correspondence Index", or by using the "Find" facility of the BSI Standards Electronic Catalogue. A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. #### Summary of pages This document comprises a front cover, an inside front cover, pages i and ii, the EN ISO title page, page 2, the ISO title page, pages ii to iv, pages 1 to 6 and a back cover. This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover. This British Standard, having been prepared under the direction of the Sector Board for Materials and Chemicals, was published under the authority of the Standards Board and comes into effect on 15 April 1997 © BSI 03-2000 ISBN 0 580 27291 5 #### Amendments issued since publication | Amd. No. | Date | Comments | |----------|------------|-----------------------------------------| | 10350 | April 1999 | Implementation of the European Standard | | | | | | | | | | | | | #### Contents | | Page | |-------------------|--------------------| | National foreword | Inside front cover | | Foreword | 2 | | Foreword | iii | | Text of ISO 1172 | 1 | ii blank #### EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM **EN ISO 1172** August 1998 ICS 83.120 Supersedes EN 60:1977 Descriptors: See ISO document #### English version ## Textile-glass-reinforced plastics — Prepregs, moulding compounds and laminates — Determination of the textile-glass and mineral-filler content — Calcination methods — (ISO 1172:1996) Plastiques renforcés de verre textile — Préimprégnés, compositions de moulage et stratifiés — Détermination des taux de verre textile et de charge minérale — Méthodes par calcination — (ISO 1172:1996) Textilglasverstärkte Kunststoffe — Prepregs, Formmassen und Laminate — Bestimmung des Textilglas-und Mineralfüllstoffgehalts — Kalzinierungsverfahren (ISO 1172:1996) This European Standard was approved by CEN on 3 August 1998. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom. #### **CEN** European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung Central Secretariat: rue de Stassart 36, B-1050 Brussels © 1998 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN ISO 1172:1998 E #### **Foreword** The text of the International Standard from Technical Committee ISO/TC 61, Plastics, of the International Organization for Standardization (ISO) has been taken over as a European Standard by Technical Committee CEN/TC 249, Plastics, the Secretariat of which is held by IBN. This European Standard replaces EN 60:1977. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 1999, and conflicting national standards shall be withdrawn at the latest by February 1999. According to CEN/CENELEC Internal Regulations, the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. #### **Endorsement notice** The text of the International Standard ISO 1172:1996 has been approved by CEN as a European Standard without any modification. BS ISO 1172: 1996 ## INTERNATIONAL STANDARD ISO 1172 Second edition 1996-12-15 # Textile-glass-reinforced plastics — Prepregs, moulding compounds and laminates — Determination of the textile-glass and mineral-filler content — Calcination methods Plastiques renforcés de verre textile — Préimprégnés, compositions de moulage et stratifiés — Détermination des taux de verre textile et de charge minérale — Méthodes par calcination Reference number ISO 1172:1996(E) #### **Contents** | | | Page | |---------------------------------|------------------------------------------------------------|------| | Foreword | | iii | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Definitions | 1 | | 4 | Principle | 1 | | 5 | Sampling | 2 | | 6 | Preparation of test specimens | 2 | | 7 | Determination | 2 | | 7.1 | Method A | 2 | | 7.1.1 | Reagents | 2 | | 7.1.2 | Apparatus | 2 | | 7.1.3 | Procedure | 2 | | 7.1.4 | Expression of results | 3 | | 7.2 | Method B | 3 | | 7.2.1 | Reagents | 3 | | 7.2.2 | Apparatus | 3 | | 7.2.3 | Procedure | 3 | | 7.2.4 | Expression of results | 4 | | 8 | Precision | 4 | | 9 | Test report | 5 | | Annex | x A (informative) Alternative method of separating chopped | | | glass fibre from mineral filler | | | **Descriptors:** Reinforced plastics, textile glass, glass reinforced plastics, laminates, prepregs, tests, physical tests, roasting tests, determination of content, glass fibres, mineral matter. #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. International Standard ISO 1172 was prepared by Technical Committee ISO/TC 61, Plastics, Subcommittee SC 13, Composites and $reinforcement\ fibres$. This second edition cancels and replaces the first edition (IS) 1172:1975), which has been technically revised (an additional method, method B, has been included and the annex, which concerned the estimation of the standard deviation, has been replaced by Annex A describing an alternative method of separating chopped glass fibre from mineral filler). Annex A of this International Standard is for information only. iv blank WARNING — This International Standard does not give details of the precautions that should be taken to meet health and safety requirements. The test methods described require the use of high temperatures and concentrated acids. It is the responsibility of the user of this International Standard to follow the appropriate health and safety procedures. #### 1 Scope This International Standard specifies two calcination methods for the determination of the textile-glass and mineral-filler content of glass-reinforced plastics: Method A: for the determination of the textile-glass content when no mineral fillers are present. Method B: for the determination of the textile-glass and mineral-filler content when both components are present. This International Standard is applicable to the following types of material: - prepregs made from yarns, rovings, tapes or fabrics; - SMC, BMC and DMC moulding compounds; - textile-glass-reinforced thermoplastic moulding materials and granules; - filled or unfilled textile-glass laminates made with thermosetting or thermoplastic resins. The methods are not applicable to the following types of reinforced plastic: - those containing reinforcements other than textile glass; - those containing materials which do not completely burn off at the test temperature (for example, those based on silicone resin); - those containing mineral fillers which degrade at temperatures below the minimum calcination temperature. For these materials, ISO 11667, Fibre-reinforced plastics — Moulding compounds and prepregs — Determination of resin, reinforcement-fibre and mineral-filler content — Dissolution method, may be used. #### 2 Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 472:1988, Plastics — Vocabulary. ISO 4793:1980, Laboratory sintered (fritted) filters — Porosity grading, classification and designation. ISO 8604:1988, Plastics — Prepregs — Definitions of terms and symbols for designations. #### 3 Definitions For the purposes of this International Standard, the definitions given in ISO 472 and ISO 8604 apply. #### 4 Principle A test specimen is weighed and subsequently calcinated at a defined temperature. The specimen is then reweighed and the non-combustible matter content (glass + filler) obtained by determining the difference in mass of a test specimen before and after calcination in one of the following ways: - a) In the case of materials containing no fillers the glass content is calculated directly from the difference in mass (method A); - b) In the case of materials containing both glass and filler, the glass and filler remaining after calcination are separated by dissolution of the filler in hydrochloric acid. The difference between the mass of the specimen before calcination and the mass of the dried specimen after reaction with acid is used to measure the glass content. The filler content is obtained by calculating the difference between the mass of the specimen after calcination and the mass of the dried specimen after reaction with acid (method B). The test method requires that all weighings be made at constant mass after repeated calcination and/or drying. In those cases where known materials are being tested regularly, a minimum time for the calcination and drying stages may be determined by experiment to ensure that constant mass has been reached. NOTE 1 If the material tested contains a resin which is combustible under the test conditions and/or fillers which do not degrade by calcination, then the loss on ignition is equal to the resin content. It should be noted that the resin content calculated in this way includes the combustible part of the other components in the composition (glass size, pigments, etc.) but this is usually small compared to the resin content. NOTE 2 In those cases where fillers are present that are degraded at the test temperature, it is not possible to obtain an accurate determination of the glass, resin or filler content. #### 5 Sampling - **5.1** The determination of the glass and filler contents is shall be carried out in parallel on two specimens which are as near identical as possible. The result of the test is the average of the measurements on the two specimens, provided that the difference between the two measurements is less than 5 %. If this is not the case, a third specimen shall be tested which is as near identical to the other two as possible. The three values shall then be used to calculate the test result. - **5.2** In order to carry out an evaluation test the result of which is as representative as possible of the glass and filler content of the elementary unit or laboratory sample, this test procedure may need to be repeated a certain number of times, at specific locations in the elementary unit examined. The number of times and the actual locations will be defined either in the product specification or by the person requesting the analysis. In the latter case, the number and location will be decided by experience or as the result of previous work. - **5.3** For all tests other than those on elementary units, take specimens that are as representative of the material under test as circumstances allow. #### 6 Preparation of test specimens The test specimens shall be fully representative of the piece or batch examined. They shall be obtained in accordance with clause **5**. Unless otherwise specified, it is recommended that the specimens be cut out in a shape which allows them to fit into a silica boat or porcelain crucible. The mass of each specimen shall be within the range $2~\mathrm{g}$ to $20~\mathrm{g}$ for prepregs and moulding compounds; 2 g to 10 g for laminates. For each test result, use a minimum of two specimens (see 5.1). In the case of prepregs and moulding compounds which contain solvents or free monomer, care shall be taken to avoid loss of volatile matter. For SMC, the protective release film shall not be removed from the laboratory sample or the test specimen until just before commencing the test procedure. All prepreg and moulding-compound laboratory samples, including SMC, shall be sealed in a vapourproof plastic bag immediately after the laboratory sample has been taken. #### 7 Determination The choice of method used to determine the glass and filler content will depend on the presence or absence of filler. The methods described in this International Standard are Method A: for the determination of the glass content when no fillers are present. Method B: for the determination of the glass and filler content when both components are present. #### 7.1 Method A #### 7.1.1 Reagents No reagents are required for method A. #### 7.1.2 Apparatus Normal laboratory apparatus, plus the following: - 7.1.2.1 Balance, graduated to 0,1 mg. - **7.1.2.2** *Silica boat or porcelain crucible*, of a suitable size to contain a specimen. - **7.1.2.3** *Muffle furnace*, located under a ventilated hood and capable of maintaining the chosen temperature (see **7.1.3.2**) to within \pm 20 °C. - **7.1.2.4** *Desiccator*, containing a suitable drying agent (e.g. silica gel). - **7.1.2.5** *Ventilated drying oven*, set at 105 °C ± 3 °C. #### 7.1.3 Procedure For each specimen, proceed as follows: 7.1.3.1 Preparation of the boat or crucible Weigh the clean, dry boat or crucible (7.1.2.2) to the nearest 0,1 mg on the balance (7.1.2.1). Place in the muffle furnace (7.1.2.3) set to the chosen temperature (see 7.1.3.2), and leave for 10 min. After cooling to ambient temperature in the desiccator (7.1.2.4) verify that the mass has not changed. If there has been a change, repeat these operations until constant mass is reached. #### 7.1.3.2 Calcination Weigh the clean, dry boat or crucible, prepared as indicated in **7.1.3.1**. Record the mass in grams as m_1 . $_{\odot}$ BSI 03-2000 Place a specimen in the boat or crucible and dry in the ventilated drying oven (7.1.2.5) at 105 °C to constant mass. Cool to ambient temperature in the desiccator and reweigh. Record the mass in grams as m_2 . In the case of specimens which contain volatile matter, care is needed to avoid loss of the volatile matter. Omit the drying stage therefore. Remove the specimen from the vapourproof bag and remove any release film. Place the specimen in the boat or crucible, weigh and record the mass in grams as m_6 . Place the boat or crucible containing the test specimen in the muffle furnace, preheated to a temperature of 625 °C and heat to constant mass. For reinforced products with glass or filler which will not withstand this calcination temperature, a temperature between 500 °C and 600 °C may be used, in accordance with the specification for the glass or filler. It is essential to maintain the chosen temperature constant to \pm 20 °C. Allow the boat or crucible, together with the residue, to cool in the desiccator to ambient temperature and 7.2.3 Procedure reweigh. Record the mass in grams as m_3 . #### 7.1.4 Expression of results Calculate, for each specimen, the glass content $M_{ m glass}$, expressed as a percentage of the initial mass, using equation (1): $$M_{\rm glass} = \frac{m_3 - m_1}{m_2 - m_1} \times 100$$...(1) where is the initial mass, in grams, of the dry boat m_1 or crucible: is the initial mass, in grams, of the dry boat m_2 or crucible plus dried specimen; is the final mass, in grams, of the boat or crucible plus residue after calcination. In the case of specimens containing volatile matter, when the drying stage was omitted, replace m_2 in equation (1) by m_6 , where m_6 is the initial mass, in grams, of the dry boat or crucible plus undried test If the results of the individual measurements differ by more than 5 % in relative value, carry out an additional determination on a third specimen taken from the same location in the elementary unit or laboratory sample. Express the result of the test as the average of the two (or three) individual measurements. #### 7.2 Method B #### 7.2.1 Reagents The following reagents are required for method B. **7.2.1.1** *Hydrochloric acid*, 35 % (V/V) concentration, commercial grade. 7.2.1.2 Denatured ethanol **7.2.1.3** *Chromic acid mixture*, for cleaning. The recommended composition of the mixture is 7 % sodium dichromate in concentrated sulfuric acid. #### 7.2.2 Apparatus The apparatus given in **7.1.2**, plus the following: 7.2.2.1 40 mm diameter sintered-glass filter, porosity P 160, i.e. 100 µm to 160 µm (see ISO 4793). **7.2.2.2** 250 ml beaker 7.2.2.3 Suction flask **7.2.2.4** *Glass rod* **7.2.2.5** *Tweezers* For each test specimen, proceed as follows: **7.2.3.1** Preparation of boats or crucibles Follow the procedure given in **7.1.3.1**. 7.2.3.2 Preparation of sintered-glass filter Before each test, clean the sintered-glass filter (7.2.2.1) by soaking in the chromic acid mixture (7.2.1.3). Place the filter on the suction flask (7.2.2.3), apply the suction, and rinse the filter first with warm water, then with denatured ethanol (7.2.1.2). Dry the filter in the drying oven (7.1.2.5) to constant mass. Record the mass in grams as m_4 . 7.2.3.3 Calcination Follow the procedure given in **7.1.3.2**. 7.2.3.4 Separation of glass and filler when filler completely dissolves in hydrochloric acid Separate the filler from the glass as follows: Place into the 250 ml beaker (7.2.2.2), 5 ml of hydrochloric acid (7.2.1.1) per gram of residue remaining in the boat or crucible after calcination. Using the glass rod, slowly add the residue in the boat or crucible to the acid in the beaker. Stir carefully to ensure that all the residue has reacted with the acid, taking care that the effervescence caused by the acid reacting with the carbonate fillers does not cause droplets to spit out of the beaker. When the effervescence finished, three-quarters fill the boat or crucible with water and pour it all into the 250 ml beaker, repeating if necessary until all the residue has been transferred to the beaker. Add an additional 50 ml of water to the beaker. Place the filter, dried and weighed as described in **7.2.3.2**, on the suction flask and apply the suction. Slowly pour the acid over the glass on to the filter Rinse the glass in the beaker with water and pour the water on to the filter; then rinse with denatured alcohol, agitating with a glass rod, and pour alcohol on to the filter. Repeat this operation four or five times until the glass is thoroughly clean. Transfer the glass on to the filter using the glass rod and a jet of denaturated ethanol. Rinse twice with denaturated ethanol. Dry the filter to constant mass in the drying oven. Allow to cool in the desiccator to ambient temperature and weigh. Record the mass in grams as m_5 . Alternatively, if the fibre length is greater than 12 mm, the procedure described in informative Annex A may be used. The procedure given in **7.2.3.4** shall always be used as the reference method, however. **7.2.3.5** Separation of glass and filler when filler does not completely dissolve in hydrochloric acid If filler insoluble in hydrochloric acid remains on the filler on filtering, determine the mass m_5 as described in **7.2.3.4**, continue as follows: Using tweezers (7.2.2.5), pick out all the glass from the filter. Reweigh the filter with the insoluble filler on it. Record this mass in grams as m_7 . NOTE If the glass filaments are very short, it may not be possible to separate them from the filler manually. In this case, the method given in this International Standard is not capable of giving accurate values of the glass and filler contents separately, although the combined filler and glass content can be determined. #### 7.2.4 Expression of results Calculate, for each specimen, the glass content $M_{\rm glass}$ and the filler content $M_{\rm filler}$, expressed as a percentage of the initial mass, using equations (2) and (3), respectively: $$M_{\rm glass} = \frac{m_5 - m_4}{m_2 - m_1} \times 100$$... (2) $$M_{\text{filler}} = \left(\frac{m_3 - m_1}{m_2 - m_1} - \frac{m_5 - m_4}{m_2 - m_1}\right) \times 100$$... (3) where m_1 is the initial mass, in grams, of the dry boat or crucible; m_2 is the initial mass, in grams, of the dry boat or crucible plus the dried specimen; m_3 is the final mass, in grams, of the boat or crucible plus residue after calcination; m_4 is the mass, in grams, of the dry filter; m_5 is the mass, in grams, of the filter plus contents after reacting the residue with acid. In the case of moulding compounds containing volatile matter, when the drying stage was omitted, replace m_2 in the equation by m_6 , where m_6 is the initial mass, in grams, of the dry boat or crucible plus undried test piece. If filler insoluble in hydrochloric acid remained on the filter on filtering, replace m_4 in equations (2) and (3) by m_7 , where m_7 is the mass, in grams, of the dry filter plus undissolved mineral filler. If the results of the individual measurements differ by more than 5 % in relative value, carry out an additional determination on a third specimen taken from the same location in the elementary unit or laboratory sample. Express the result of the test as the average of the two (or three) individual measurements. #### 8 Precision The precision of this test method is not known because inter-laboratory data are not yet available. When inter-laboratory data have been obtained, a precision statement will be added at the following revision. NOTE The inter-laboratory trials will include an investigation of the relative precision of the procedure given $\bf 7.2.3.4$ and that given in Annex A. #### 9 Test report The test report shall include the following: - a) the number of this International Standard; - b) whether method A or method B was used; - c) all details necessary for complete identification of the material tested; - d) the sampling method used; - e) the number of specimens tested; - f) the dimensions and/or mass of the specimens; - g) the calcination temperature, if different from 625 °C \pm 20 °C; - h) the test result for the textile-glass content; - i) the test result for the mineral-filler content if method B was used; - j) the date of the test; - k) details of any anomaly or incident likely to have had an effect on the results, specifically: - 1) the presence of any undissolved filler, - 2) any difficulty experienced in manually separating the textile glass and undissolved filler. 6 ### Annex A (informative) Alternative method of separating chopped glass fibre from mineral filler The following variant may be used when testing material containing chopped strand at least 12 mm in length. It requires the use of a bag, made from coarse-woven fabric similar to mosquito netting, which is about 15 cm wide and 16 cm long (measured when the bag is laid out flat). The netting is made from PVC-coated yarns woven with a density of about 7 yarns/cm. After calcination, weigh at ambient temperature. Place the specimen in the bag made from the netting-type fabric. Insert the bag in the beaker containing the hydrochloric acid, maintaining the bag vertical in beaker. When the effervescence has almost finished, remove the bag and place it in another beaker containing fresher acid. (The hydrochloric acid may be used for several determinations.) When the effervescence has completely finished, rinse the bag with tap water until the specimen is white. Take the specimen out of the bag, squeeze it and verify visually that all the filler has disappeared. Dry the specimen at 105 °C for 30 min. #### **BSI** — British Standards Institution BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter. #### Revisions British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400. BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards. #### **Buying standards** Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001. In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested. #### Information on standards BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048. Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001. #### Copyright Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070. BSI 389 Chiswick High Road London W4 4AL