BS EN ISO 669:2016 # **BSI Standards Publication** # Resistance welding — Resistance welding equipment — Mechanical and electrical requirements BS EN ISO 669:2016 BRITISH STANDARD #### National foreword This British Standard is the UK implementation of EN ISO 669:2016. It supersedes BS 3065:2001 which is withdrawn. The UK participation in its preparation was entrusted to Technical Committee WEE/29, Resistance welding. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application. © The British Standards Institution 2016. Published by BSI Standards Limited 2016 ISBN 978 0 580 76481 3 ICS 25.160.30 Compliance with a British Standard cannot confer immunity from legal obligations. This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 March 2016. Amendments/corrigenda issued since publication Date Text affected # EUROPEAN STANDARD # NORME EUROPÉENNE # **EUROPÄISCHE NORM** March 2016 **EN ISO 669** ICS 25.160.30 # **English Version** # Resistance welding - Resistance welding equipment - Mechanical and electrical requirements (ISO 669:2016) Soudage par résistance - Matériel de soudage par résistance - Exigences mécaniques et électriques (ISO 669:2016) Widerstandsschweißen -Widerstandsschweißeinrichtungen - Mechanische und elektrische Anforderungen (ISO 669:2016) This European Standard was approved by CEN on 2 January 2016. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels # **European foreword** This document (EN ISO 669:2016) has been prepared by Technical Committee ISO/TC 44 "Welding and allied processes" in collaboration with Technical Committee CEN/TC 121 "Welding and allied processes" the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2016, and conflicting national standards shall be withdrawn at the latest by September 2016. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights. According to the CEN-CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. # **Endorsement notice** The text of ISO 669:2016 has been approved by CEN as EN ISO 669:2016 without any modification. | Co | Contents | | | |------|-------------------------------|--|----| | Fore | word | | v | | 1 | Scop | e | 1 | | 2 | Norn | native references | 1 | | 3 | Terms and definitions | | | | 3 | 3.1 | Mechanical parts of spot, projection, and seam welding equipment | | | | 3.2 | Mechanical parts of upset and flash welding equipment | 8 | | | 3.3 | Static mechanical characteristics | | | | 3.4 | Electrical and thermal characteristics | | | | 3.5 | Pneumatic and hydraulic characteristics | 16 | | 4 | Symb | ools and abbreviated terms | 16 | | 5 | | ical environment and operating conditions | | | | 5.1 | General | | | | 5.2 | Ambient air temperature | | | | 5.3
5.4 | Liquid cooling mediumHumidity | | | | 5.5 | Altitude | | | | 5.6 | Transportation and storage | | | 6 | Test | conditions | | | | 6.1 | General | | | | 6.2 | Environmental conditions | | | | 6.3 | Measuring instruments | 19 | | 7 | Rate | d no load voltage at the output | 20 | | | 7.1 | General | | | | 7.2 | a.c. no load voltage (U ₂₀) | 20 | | | 7.3 | d.c. no load voltage (U_{2d}) | | | 8 | Maximum short circuit current | | | | | 8.1
8.2 | General Spot and seam welding equipment | 20 | | | 8.3 | Projection welding equipment | | | | 8.4 | Upset and flash welding equipment | | | 9 | | mal rating | 23 | | , | 9.1 | General | | | | 9.2 | Thermal test | | | 10 | Cooli | ng liquid circuit (liquid cooled welding equipment) | 23 | | 11 | Statio | c mechanical characteristics | 24 | | | 11.1 | General | | | | 11.2 | Spot and projection welding equipment | | | | | 11.2.1 General 11.2.2 Eccentricity | | | | | 11.2.3 Angular deflection | | | | | 11.2.4 Radial deflection | | | | | 11.2.5 Axial deflection | | | | | 11.2.6 Machine stiffness | | | | | 11.2.7 Parallelism of top and bottom platen | | | | 44.0 | 11.2.8 Perpendicularity in platen movement, δ_4 | | | | 11.3 | Seam welding equipment | | | | | 11.3.1 General 11.3.2 Eccentricity | | | | | 11.3.3 Angular deflection | | | | 11.4 | Upset welding equipment | | # BS EN ISO 669:2016 **ISO 669:2016(E)** | | 11.4.2 Angular deflection | J1 | |-------|--|----| | 12 | Rating plate | 31 | | | 12.1 General | 31 | | | 12.2 Description | 32 | | | 12.3 Tolerances | 34 | | 13 | Instruction manual | | | | | | | Annex | ex A (informative) Examples of rating plates | 36 | # Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 44, *Welding and allied processes*, Subcommittee SC 6, *Resistance welding and allied mechanical joining*. This third edition cancels and replaces the second edition (ISO 669:2000), which has been technically revised. # Resistance welding — Resistance welding equipment — Mechanical and electrical requirements # 1 Scope This International Standard defines and specifies certain identified electrical and mechanical characteristics of equipment used for - resistance spot welding, - projection welding, - resistance seam welding, - upset welding¹⁾, and - flash welding²⁾. This International Standard specifies the information to be given in equipment specifications and the test methods to be used for measuring those characteristics. Not all requirements apply to all types of equipment. The following types of power sources are included: - single phase with alternating welding current; - single phase with rectified welding current by rectification of the output of the welding transformer; - single phase with inverter welding transformer; - three phase with rectified welding current by rectification of the output of the welding transformer; - three phase with a current rectification in the input of the welding transformer (sometimes called frequency convertor); - three phase with inverter welding transformers. This International Standard does not apply to welding transformers that are separate from the equipment. NOTE Safety requirements for resistance
welding equipment are covered by IEC 62135–1. # 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 5826:2014, Resistance welding equipment — Transformers — General specifications applicable to all transformers ISO 17657-2, Resistance welding — Welding current measurement for resistance welding — Part 2: Welding current meter with current sensing coil 1 ¹⁾ Often referred to by the non-preferred term, butt welding. ²⁾ Often referred to by the non-preferred term, flash butt welding. # BS EN ISO 669:2016 **ISO 669:2016(E)** ISO 17657-5, Resistance welding — Welding current measurement for resistance welding — Part 5: Verification of welding current measuring system ISO 17677-1, Resistance welding — Vocabulary — Part 1: Spot, projection and seam welding IEC 62135-1, Resistance welding equipment — Part 1: Safety requirements for design, manufacture and installation # 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 17677-1 and the following apply. # 3.1 Mechanical parts of spot, projection, and seam welding equipment # 3.1.1 #### arm device for transmitting the *electrode force* (3.1.16) which can also conduct the welding current or support a separate conductor Note 1 to entry: See Figure 1 and Figure 3. #### 3.1.2 # welding head device comprising the force generation and guiding system carrying an *electrode holder* (3.1.3), *platen* (3.1.5), or *seam welding head* (3.1.6) mounted to the upper arm or directly to the machine body Note 1 to entry: See Figure 1. #### 3.1.3 # electrode holder device holding a spot welding electrode (3.1.4) or an electrode adaptor [SOURCE: ISO 8430-1, ISO 8430-2, and ISO 8430-3] Note 1 to entry: See Figure 1. a) Spot welding equipment c) Longitudinal seam welding equipment b) Projection welding equipment d) Transverse seam welding equipment e) Rocker arm welding equipment # f) Welding gun without transformer # g) Manual gun with integrated transformer # h) Robot mount C-gun # Key - 1 force generation system 5 frame 9 platen - 2 moveable arm 6 transformer 10 seam welding head - welding head electrode holder stationary arm spot welding electrode electrode wheel electrode adapter - Figure 1 Elements of spot, projection, and seam welding equipment # Key - 1 clamping device - 2 clamping die - 3 current-carrying clamping die - 4 slide drive - 5 slide - 6 welding transformer Figure 2 — Elements of upset welding equipment Figure 3 — Arms (lower arms) ## 3.1.4 # spot welding electrode electrode designed for spot welding [SOURCE: ISO 5184 and ISO 5821] Note 1 to entry: See Figure 1. # 3.1.5 **platen** device normally having tee slots and carrying projection welding electrodes or welding tools [SOURCE: ISO 865] Note 1 to entry: See Figure 1. # 3.1.6 # seam welding head device comprising an *electrode wheel bearing* (3.1.7) and mounted on the upper and lower arm for longitudinal and/or transversal seam welding Note 1 to entry: See Figure 1. # 3.1.7 # electrode wheel bearing device guiding the *electrode wheel* (3.1.8) for force transfer and mostly for current transfer #### 3.1.8 # electrode wheel electrode as a rotating disc Note 1 to entry: See Figure 1. Note 2 to entry: This device can be driven by a motor or moved by the workpiece (idler wheels). The driver can be direct to the electrode shaft or to its circumference (knurl drive) (see Figure 6). #### 3.1.9 # electrode wheel profile form of the *electrode wheel* (3.1.8) being single- or double-sided bevelled or radiused depending on the welding conditions and access Note 1 to entry: See Figure 5. #### 3.1.10 # electrode wheel speed <direct drive seam welding> rotational speed, n, of the electrode wheel (3.1.8) Note 1 to entry: See <u>Figure 4</u>. ## 3.1.11 # electrode wheel speed <knurl drive seam welding> linear tangential speed, v, of the electrode wheel (3.1.8) at the circumference Note 1 to entry: See Figure 4. # 3.1.12 # throat gap e. <spot and seam welding equipment> usable distance between the arms (3.1.1) or the outer current conducting parts of the welding circuit Note 1 to entry: See Figure 6. #### 3.1.13 # platen distance е Note 1 to entry: See Figure 6. Note 2 to entry: See also die distance (3.2.11). #### 3.1.14 # throat depth 1 usable distance from the centre of the *platens* (3.1.5) or the axes of the electrodes or, in the case of oblique electrodes, the point of intersection of the electrode axes in the working position or the contact line of *electrode wheels* (3.1.8) and that part of the equipment body located closest to it Note 1 to entry: See Figure 6. Note 2 to entry: This definition does not consider any offset of the electrode tips. # Key - 1 electrode wheel - 2 workpieces to be welded Figure 4 — Drive types of electrode wheels Figure 5 — Electrode wheel profiles a) Spot welding equipment b) Projection welding equipment - c) Upset welding equipment (top view) - d) Seam welding equipment # Key e throat gapl throat depth Figure 6 — Main dimensions # 3.1.15 # electrode stroke С physical displacement of electrodes during process function Note 1 to entry: When the electrode is attached to the force generation system, the stroke of both the electrode and the driving cylinder is equal. # BS EN ISO 669:2016 **ISO 669:2016(E)** Note 2 to entry: When the moving electrode is attached to a hinged lever moved by a force generation system, the maximum stroke of the electrode by convention equals the length of the chord of the arc generated by the tip of the moving electrode for the full stroke of the driving cylinder. Note 3 to entry: The stroke of the electrode may be composed of a "work clearance stroke" without any contact, facilitating the introduction of the workpiece between the electrodes and a smaller "working stroke". #### 3.1.16 ## electrode force C force to the workpiece transmitted by the electrodes #### 3.1.17 # maximum electrode force F_{max} maximum electrode force which can be generated by the welding equipment without permanent damage to its mechanical parts #### 3 1 1Ω #### minimum electrode force F_{\min} minimum electrode force which can be used for proper functioning of the welding equipment # 3.2 Mechanical parts of upset and flash welding equipment #### 3.2.1 #### slide drive drive generating and transferring the movements and upset forces necessary for welding to a workpiece located in the *clamping device* (3.2.2) Note 1 to entry: See Figure 2. Note 2 to entry: For flash welding, the drive may be required to reciprocate the slide for preheating by following the flashing movement and to provide the upset force. # 3.2.2 ## clamping device device generating the contact force necessary for current flow and providing the *clamping force* (3.2.13) necessary to withstand the upset force if no *supplementary clamping devices* (3.2.3) or *backstops* (3.2.4) are used Note 1 to entry: See Figure 2. #### 3.2.3 # supplementary clamping device non-current carrying device to provide the *clamping force* (3.2.13) necessary to resist the upset force #### 3.2.4 ## backstop device to support the total or a part of the *upsetting force* (3.2.15) to a workpiece in order to prevent a workpiece from sliding during upsetting # 3.2.5 # clamping die device designed to transfer all forces to the workpiece in contacting with its clamping face Note 1 to entry: See Figure 2 and Figure 7. # Key - 1 mounting or support face - 2 contact and/or clamping face # Figure 7 — Types of clamping dies (illustrated in upsetting direction) # 3.2.6 die length G usable length of a *clamping die* (3.2.5) in the upsetting direction Note 1 to entry: See Figure 8. # 3.2.7 # die width W usable width of a *clamping die* (3.2.5) perpendicular to the upsetting and clamping direction Note 1 to entry: See Figure 8. # 3.2.8 # die thickness δ dimension of the die in the clamping direction Note 1 to entry: See Figure 8. #### 3.2.9 # die stroke q difference between the smallest and largest opening gap (3.2.10) Note 1 to entry: See Figure 8. #### 3.2.10 # opening gap f usable distance between flat clamping faces Note 1 to entry: See Figure 8. Note 2 to entry: If the workpiece has to be loaded perpendicular to the upsetting direction, the usable gap of profile dies is smaller than flat dies (see <u>Figure 7</u>). # 3.2.11 # die distance e <upset and flash welding equipment> distance between both die pairs in the upsetting direction Note 1 to entry: See Figure 8. #### 3.2.12 # throat depth 1 distance perpendicular to the direction of the *upsetting force* (3.2.15) between the machine body and the outer edge of the *clamping dies* (3.2.5) Note 1 to entry: See Figure 6 and Figure 8. Note 2 to entry: See also throat gap (3.1.12). # a) View perpendicular to clamping and upsetting direction # b) View in upsetting direction #### Key - G die length - e die distance - δ die thickness - W die width - l throat depth - q die stroke f_{\min} minimum opening gap f_{max} maximum opening gap - Upsetting direction. - b Clamping direction. Figure 8 — Upset and flash welding equipment dimensions # 3.2.13 # clamping force F_2 force applied to the workpiece by the *clamping dies* (3.2.5) # 3.2.14 #### maximum clamping force $F_{2\max}$ maximum force the equipment is capable of providing to prevent any sliding and to maintain good electrical contact with the electrodes # 3.2.15 # upsetting force F_1 force acting in the upsetting direction to press the workpieces together ## 3.2.16 # maximum upsetting force $F_{1\max}$ maximum upsetting force which can be generated by the welding equipment without damage to its mechanical parts #### 3.2.17 # minimum upsetting force $F_{1\mathrm{min}}$ minimum upsetting force which can be used for proper functioning
of the welding equipment # 3.3 Static mechanical characteristics #### 3.3.1 #### contact fault fault relating to the eccentricity (3.3.2) and deflection #### 3 3 2 # eccentricity g distance to which the central points of the electrode working faces or the clamping platens are displaced in relation to each other by the *electrode force* (3.1.16) Note 1 to entry: See Figure 9 and Figure 10. Note 2 to entry: The eccentricity of spot and seam welding equipment (see <u>Figure 9</u>) is calculated by the following formula: $$g = b - a$$ Note 3 to entry: The eccentricity of projection welding equipment (see $\underline{Figure\ 10}$) is measured in accordance with $\underline{11.2.2}$. ## 3.3.3 # angular deflection α difference between the angular position, α_1 , unloaded of the electrode axes, the clamping platen faces, or the workpiece axes and the angular position, α_2 under load Note 1 to entry: α_1 may be zero by design. Note 2 to entry: See Figure 9 to Figure 11. Note 3 to entry: The angular deflection of spot and seam welding equipment (see <u>Figure 9</u>) is calculated by the following formula: $$\alpha = \alpha_2 - \alpha_1$$ Note 4 to entry: The angular deflection of projection welding equipment (see Figure 10) is calculated by the following formula: $$\alpha = \arctan\left(\frac{b_1 - b_2}{b_3}\right)$$ Note 5 to entry: The angular deflection of upset welding equipment (see <u>Figure 11</u>) is calculated by the following formula: $$\alpha = \arctan\left(\frac{b}{k}\right)$$ # Key h_0 axial deflection - unloaded h_1 axial deflection - loaded h axial deflection $(h_1 - h_0)$ radial deflection - unloaded r_1 radial deflection - loaded r radial deflection $(r_1 - r_0)$ length for determination of the contact fault - *b* length for determination of the contact fault - g eccentricity (b a) - α_1 angular position unloaded - α_2 angular position loaded - 1 reference measurement point - 2 electrodes loaded by *F* - 3 electrodes unloaded Figure 9 — Contact fault of spot and seam welding equipment Figure 10 — Contact fault of projection welding equipment Figure 11 — Contact fault of upset welding equipment #### 3.3.4 # radial deflection r displacement, normal to the direction of the *electrode force* (3.1.16), to which the central point of the electrode working face or a *platen* (3.1.5) is displaced by the application of the electrode force Note 1 to entry: See Figure 9. Note 2 to entry: The difference between radial deflection values r1 (electrode 1) and r2 (electrode 2) is equal to the value of *eccentricity* (3.3.2). ## 3.3.5 # axial deflection h displacement of the central point of the electrode in the direction of the *electrode force* (3.1.16) as a result of the application of the electrode force Note 1 to entry: See Figure 9. #### 3.3.6 #### machine stiffness K displacement or extension of the force generation system when the *maximum electrode force*, F_{max} , (3.1.17) is applied Note 1 to entry: See <u>11.2.6</u>. Note 2 to entry: Not to be confused with stiffness as a function of force divided by displacement. #### 3.3.7 # maximum angular displacement between top and bottom platen δ_3 in projection welding, the maximum angle between the surfaces of the top and bottom *platens* (3.1.5) in two axes parallel and perpendicular to the throat of the machine Note 1 to entry: See Figure 17 and Figure 18. #### 3.3.8 # perpendicularity in movement of top and bottom platen δ_4 in projection welding, the variation in perpendicularity between the trajectory of the movable top platen and the bottom platen when used as a reference measured in three dimensions (i.e. to the right and left and at the front and rear of the *platen* (3.1.5)) Note 1 to entry: See Figure 12. Figure 12 — Perpendicularity in movement of top platen (projection welding) #### 3.4 Electrical and thermal characteristics #### 3.4.1 ## duty schedule of the operating conditions of equipment (their respective durations and sequences) #### 3.4.2 # continuous duty duty (3.4.1) corresponding to a permanent on load operation without any interruption, in which case, the duty factor (3.4.4) is 100 % #### 3.4.3 # periodic duty repeated identical cycles of a constant load and a no load time with the sum of one load time and one no load time being the weld cycle time Note 1 to entry: This International Standard considers the load to be constant, i.e. without any preheating and/or post heating period. #### 3.4.4 # duty factor X ratio for a given interval of the on load duration to the total time Note 1 to entry: This ratio, lying between 0 and 1, can be expressed as a percentage. #### 3.4.5 # rated input voltage U_{1N} input voltage for which the equipment is constructed #### 3.4.6 # rated no load voltage U_{20} or U_{2d} # 3.4.7 # a.c. no load voltage U_{20} voltage of one output winding of the transformer when the external circuit is open and the *rated input voltage* (3.4.5) is applied to the input terminals Note 1 to entry: Several settings of the input winding result in relevant values of the no load voltage. # 3.4.8 # d.c. no load voltage U_{2d} <inverter type equipment> measured maximum output voltage when operating under no load conditions with the rated input voltage (3.4.5) applied to the input terminals Note 1 to entry: See 7.3. ## 3.4.9 #### permanent input current I_{1p} or I_{Lp} input current corresponding to the permanent output current (3.4.10) Note 1 to entry: The relationship between input and output currents depend on the type of welding equipment. Note 2 to entry: I_{1p} is used for single phase equipment while I_{Lp} is used for three phase equipment. ## 3.4.10 # permanent output current I_{2p} highest output current on all settings of the regulator for continuous operation [SOURCE: 100 % duty factor (3.4.4)] Note 1 to entry: This parameter is used to characterize the performance of the equipment, but is not an operating condition except for seam welding. #### 3.4.11 # permanent power S_{p} maximum electrical input power for 100 % *duty factor* (3.4.4) without the equipment exceeding the specified temperature rise Note 1 to entry: This parameter is used to characterize the performance of the equipment, but is not an operating condition except for seam welding. #### 3.4.12 # maximum time per impulse $t_{\rm i}$ time during which the output current may flow without interruption at a given output current or voltage adjustment Note 1 to entry: This time is limited - by the saturation of the magnetic circuit for welding equipment with rectification of the input, or - by the heat rise of the rectifier for welding equipment with rectification of the output. # 3.4.13 # maximum short circuit current input I_{1cc} or I_{Lcc} root mean square (rms) value of the current at *rated input voltage* (3.4.5) at the highest output voltage tapping Note 1 to entry: The electrodes being short circuited in accordance with <u>Clause 8</u> and the two values given correspond to the minimum and maximum values of the impedance compatible with this method of short circuit. Note 2 to entry: I_{Lcc} is used for welding equipment with rectification. #### 3.4.14 # maximum short circuit output current I_{2cc} root mean square (rms) value of the current at *rated input voltage* (3.4.5) at the highest output voltage tapping Note 1 to entry: The electrodes being short circuited in accordance with <u>Clause 8</u> and the two values given correspond to the minimum and maximum values of the impedance compatible with this method of short circuit. #### 3.4.15 # input power at 50 % duty factor SEO maximum electrical input power for 50 % *duty factor* (3.4.4) without the equipment exceeding the specified temperature rise calculated by the following formula: $$S_{50} = S_{\rm p} \sqrt{2}$$ # 3.5 Pneumatic and hydraulic characteristics #### 3.5.1 # supply pressure p_1 pressure of the energizing medium at the supply point of the welding equipment # 3.5.2 # minimum supply pressure p₁mir minimum pressure at the supply point of the welding equipment to obtain the *maximum electrode force* (3.1.17) # 3.5.3 # maximum supply pressure $p_{1\max}$ maximum pressure allowable at the supply point of the welding equipment # 3.5.4 # rated cooling liquid flow Q total quantity of cooling liquid to operate the equipment at permanent power (3.4.11) without exceeding the temperature rise limits #### 3.5.5 # cooling liquid pressure drop Δ_n pressure drop at the rated cooling liquid flow (3.5.4) # 4 Symbols and abbreviated terms The symbols used in this International Standard are listed in <u>Table 1</u>. Table 1 — Symbols and their designations | Symbol | Designation | Reference | |-----------------|---|---| | а | length for determination of the contact fault | 3.3.1, Figure 9 | | a_{1}, a_{2} | lengths for determination of the angular deflection | 11.3 | | b | length for determination of the contact fault | 3.3.1, Figure 9, Figure 10 | | b_1, b_2, b_3 | lengths for determination of the contact fault | 3.3.1, 11.2.3, 11.3.3, 11.4.2,
Figure 10 | | С | electrode stroke | 3.1.15, 11.1 | | d | diameter of the tip of electrode or width of the electrode wheels | 8.2 | | $d_{ m k}$ | disc diameter | 11.2.3 | | D_1 | ball diameter | 11.2.1 | | e | 1) throat gap | 3.1.12, 3.1.13, 8.4, 11.1, 12.3 | | | 2) platen distance | 3.1.13, 12.2 | | | 3) die distance | 3.2.11, 8.4, 12.3 | | e' | distance for calculation of the length of copper bar | 8.3 | | f | opening gap | 3.2.10 | | f_{\max} | maximum opening gap | 3.2.13 | | f_{\min} | minimum opening gap | 3.2.13 | | F | electrode force | 3.1.16, 8.4 | # Table 1 (continued) | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | |
---|--------------| | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $ F_{1\min} \qquad \text{minimum upsetting force} \qquad 3.2.17, 12.3, 13 \\ F_{2} \qquad \text{clamping force} \qquad 3.2.13 \\ F_{2\max} \qquad \text{maximum clamping force} \qquad 3.2.14, 8.4, 11.4, 12.3, 13 \\ F_{2\min} \qquad \text{minimum clamping force} \qquad 12.3, 13 \\ F_{1}, F_{2}' \qquad \text{opposite forces} \qquad 11.2.3 \\ g \qquad \text{eccentricity} \qquad 3.3.2, 11.1, 11.2.2, 11.3, 12.3, Figure 9, Figure 10 \\ g_{10}, g_{50}, g_{100} \qquad \text{eccentricity at 10 \%, 50 \% or 100 \% of the maximum force} \qquad 12.3 \\ G \qquad \text{die length} \qquad 3.2.6, Figure 8 \\ h \qquad \text{axial deflection} \qquad 3.3.5, 11.2.5, Figure 9 \\ h_{0} \qquad \text{axial deflection - unloaded} \qquad \text{Figure 9} \\ h_{1} \qquad \text{axial deflection - loaded} \qquad \text{Figure 9} \\ h_{1} \qquad \text{axial deflection - loaded} \qquad \text{Figure 9} \\ h_{1} \qquad \text{axial deflection - loaded} \qquad \text{Figure 9} \\ h_{1} \qquad \text{axial deflection - loaded} \qquad \text{Figure 9} \\ h_{2\text{cc}} \qquad \text{maximum short circuit current input} \qquad 3.4.13, 8, 13 \\ h_{1p} \qquad \text{permanent input current} \qquad 3.4.9, 9.1, 13 \\ h_{1X} \qquad \text{input current at a given duty factor} \qquad 3.4.14 \\ h_{2\text{cc}} \qquad \text{maximum short circuit output current} \qquad 3.4.14, 12.3, 13 \\ h_{2p} \qquad \text{permanent output current (100 \% duty factor)} \qquad 3.4.11, 9.1, 9.2, 12.3, 13 \\ h_{Lp} \qquad \text{permanent input current} \qquad 3.4.10, 9.1, 9.2, 13 \\ k \qquad \text{distance for determination of angular deflection} \qquad 3.3.3, 11.3, 11.4, Figure K \\ machine stiffness \qquad 3.3.6, 11.2.6 \\ l \qquad \text{throat depth} \qquad 3.1.14, 3.1.16, 3.2.13, 13 \\ 3.1.14, 3.1.16, 3.2.13, 3.114, 3.1.16, 3.2.13, 3.114 \\ 3.1.14, 3.1.16, 3.2.13, 3.114 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.16, 3.2.13, 3.144 \\ 3.1.14, 3.1.1$ | | | $F_{1\min}$ minimum upsetting force $3.2.17, 12.3, 13$ F_2 clamping force $3.2.13$ $F_{2\max}$ maximum clamping force $3.2.14, 8.4, 11.4, 12.3, 13$ $F_{2\min}$ minimum clamping force $12.3, 13$ F_1, F_2' opposite forces $11.2.3$ g eccentricity $3.3.2, 11.1, 11.2.2, 11.3, 12.4, 12.3, 13.3, 12.4, 12.3, 13.3, 12.4, 12.3, 13.3, 12.4, 12.3, 13.3, 12.4, 12.3, 13.3, 12.4, 12.3, 13.3, 12.4, 12.3, 13.3, 12.4, 12.3, 13.3, 12.4, 13.3, 12.4, 13.3, 13.3, 11.4, 13.1, 14.4, 1$ | <u> </u> | | $F_{2\max}$ maximum clamping force $3.2.14, 8.4, 11.4, 12.3, 13$ $F_{2\min}$ minimum clamping force $12.3, 13$ $F_{1'}, F_{2'}$ opposite forces $11.2.3$ g eccentricity $3.3.2, 11.1, 11.2.2, 11.3, 12.3, 12.3, 13.2, 12.3, 13.2, 12.3, 13.2, 12.3, 13.2, 12.3, 13.2, 12.3, 13.2, 13.3, 13.3, 13.3, 13.3, 11.2.5, Figure 9.Gdie length3.2.6, Figure 8haxial deflection3.3.5, 11.2.5, Figure 9h_0axial deflection - unloadedFigure 9h_1axial deflection - loadedFigure 9I_{1cc}maximum short circuit current input3.4.13, 8, 13I_{1p}permanent input current3.4.9, 9.1, 13I_{1x}input current at a given duty factor3.4.14, 12.3, 13I_{2cc}maximum short circuit output current3.4.14, 12.3, 13I_{2p}permanent output current (100 % duty factor)3.4.11, 9.1, 9.2, 12.3, 13I_{Lp}permanent input current3.4.15, 13I_{Lp}permanent input current3.4.10, 9.1, 9.2, 13kdistance for determination of angular deflection3.3.3, 11.3, 11.4, FigurKmachine stiffness3.3.6, 11.2.6Ithroat depth3.1.14, 3.1.16, 3.2.13, 1$ | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | <u> </u> | | $F_{1}',F_{2}' \qquad \text{opposite forces} \qquad \qquad 11.2.3$ $g \qquad \qquad \text{eccentricity} \qquad \qquad 3.3.2, 11.1, 11.2.2, 11.3$ $I_{2.3}, \qquad \qquad Figure 9, Figure 10$ $g_{10},g_{50},g_{100} \qquad \text{eccentricity at } 10 \%, 50 \% \text{ or } 100 \% \text{ of the maximum force} \qquad 12.3$ $G \qquad \qquad \text{die length} \qquad \qquad 3.2.6, Figure 8$ $h \qquad \qquad \text{axial deflection} \qquad \qquad 3.3.5, 11.2.5, Figure 9$ $h_{0} \qquad \qquad \text{axial deflection - loaded} \qquad \qquad \qquad Figure 9$ $h_{1} \qquad \qquad \text{axial deflection - loaded} \qquad \qquad \qquad \qquad Figure 9$ $I_{1cc} \qquad \qquad \text{maximum short circuit current input} \qquad \qquad 3.4.13, 8, 13$ $I_{1p} \qquad \qquad \text{permanent input current} \qquad \qquad 3.4.9, 9.1, 13$ $I_{1X} \qquad \qquad \text{input current at a given duty factor} \qquad \qquad 3.4.14$ $I_{2cc} \qquad \qquad \text{maximum short circuit output current} \qquad \qquad 3.4.14, 12.3, 13$ $I_{2p} \qquad \qquad \text{permanent output current} (100 \% \text{ duty factor}) \qquad \qquad 3.4.11, 9.1, 9.2, 12.3, 13$ $I_{Lp} \qquad \qquad \text{permanent input current} \qquad \qquad 3.4.15, 13$ $I_{Lp} \qquad \qquad \text{permanent input current} \qquad \qquad 3.4.10, 9.1, 9.2, 13$ $k \qquad \qquad \text{distance for determination of angular deflection} \qquad \qquad 3.3.3, 11.3, 11.4, Figure$ $K \qquad \qquad \text{machine stiffness} \qquad \qquad 3.3.6, 11.2.6$ $l \qquad \text{throat depth} \qquad \qquad 3.1.14, 3.1.16, 3.2.13, 1$ | | | $\begin{array}{c} g \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | | | G die length $3.2.6$, Figure 8 h axial deflection $3.3.5$, $11.2.5$, Figure 9 h_0 axial deflection - unloadedFigure 9 h_1 axial deflection - loadedFigure 9 I_{1cc} maximum short circuit current input $3.4.13$, 8 , 13 I_{1p} permanent input current $3.4.9$, 9.1 , 13 I_{1X} input current at a given duty
factor $3.4.14$ I_{2cc} maximum short circuit output current $3.4.14$, 12.3 , 13 I_{2p} permanent output current (100% duty factor) $3.4.11$, 9.1 , 9.2 , 12.3 , 1.3 I_{Lp} permanent input current $3.4.15$, 13 I_{Lp} permanent input current $3.4.10$, 9.1 , 9.2 , 13 k distance for determination of angular deflection $3.3.3$, 11.3 , 11.4 , Figur K machine stiffness $3.3.6$, $11.2.6$ l throat depth $3.1.14$, $3.1.16$, $3.2.13$, 1 | .2, | | h axial deflection $3.3.5, 11.2.5, Figure 9$ h_0 axial deflection - unloadedFigure 9 h_1 axial deflection - loadedFigure 9 I_{1cc} maximum short circuit current input $3.4.13, 8, 13$ I_{1p} permanent input current $3.4.9, 9.1, 13$ I_{1x} input current at a given duty factor $3.4.14$ I_{2cc} maximum short circuit output current $3.4.14, 12.3, 13$ I_{2p} permanent output current (100 % duty factor) $3.4.11, 9.1, 9.2, 12.3, 13$ I_{Lcc} maximum short circuit current input $3.4.15, 13$ I_{Lp} permanent input current $3.4.10, 9.1, 9.2, 13$ k distance for determination of angular deflection $3.3.3, 11.3, 11.4, Figur$ K machine stiffness $3.3.6, 11.2.6$ I throat depth $3.1.14, 3.1.16, 3.2.13, 1$ | | | h_0 axial deflection - unloadedFigure 9 h_1 axial deflection - loadedFigure 9 I_{1cc} maximum short circuit current input $3.4.13, 8, 13$ I_{1p} permanent input current $3.4.9, 9.1, 13$ I_{1X} input current at a given duty factor $3.4.14$ I_{2cc} maximum short circuit output current $3.4.14, 12.3, 13$ I_{2p} permanent output current (100 % duty factor) $3.4.11, 9.1, 9.2, 12.3, 13$ I_{Lcc} maximum short circuit current input $3.4.15, 13$ I_{Lp} permanent input current $3.4.10, 9.1, 9.2, 13$ k distance for determination of angular deflection $3.3.3, 11.3, 11.4, Figur$ K machine stiffness $3.3.6, 11.2.6$ I throat depth $3.1.14, 3.1.16, 3.2.13, 1$ | | | h_1 axial deflection – loadedFigure 9 I_{1cc} maximum short circuit current input $3.4.13, 8, 13$ I_{1p} permanent input current $3.4.9, 9.1, 13$ I_{1X} input current at a given duty factor $3.4.14$ I_{2cc} maximum short circuit output current $3.4.14, 12.3, 13$ I_{2p} permanent output current (100 % duty factor) $3.4.11, 9.1, 9.2, 12.3, 13$ I_{Lcc} maximum short circuit current input $3.4.15, 13$ I_{Lp} permanent input current $3.4.10, 9.1, 9.2, 13$ k distance for determination of angular deflection $3.3.3, 11.3, 11.4, Figur$ K machine stiffness $3.3.6, 11.2.6$ I throat depth $3.1.14, 3.1.16, 3.2.13, 1$ | | | I_{1cc} maximum short circuit current input $3.4.13, 8, 13$ I_{1p} permanent input current $3.4.9, 9.1, 13$ I_{1X} input current at a given duty factor $3.4.14$ I_{2cc} maximum short circuit output current $3.4.14, 12.3, 13$ I_{2p} permanent output current (100 % duty factor) $3.4.11, 9.1, 9.2, 12.3, 13$ I_{Lcc} maximum short circuit current input $3.4.15, 13$ I_{Lp} permanent input current $3.4.10, 9.1, 9.2, 13$ k distance for determination of angular deflection $3.3.3, 11.3, 11.4, Figur$ K machine stiffness $3.3.6, 11.2.6$ I throat depth $3.1.14, 3.1.16, 3.2.13, 1$ | | | I_{1p} permanent input current $3.4.9, 9.1, 13$ I_{1X} input current at a given duty factor $3.4.14$ I_{2cc} maximum short circuit output current $3.4.14, 12.3, 13$ I_{2p} permanent output current (100 % duty factor) $3.4.11, 9.1, 9.2, 12.3, 13$ I_{Lcc} maximum short circuit current input $3.4.15, 13$ I_{Lp} permanent input current $3.4.10, 9.1, 9.2, 13$ k distance for determination of angular deflection $3.3.3, 11.3, 11.4, Figur$ K machine stiffness $3.3.6, 11.2.6$ I throat depth $3.1.14, 3.1.16, 3.2.13, 1$ | | | I_{1X} input current at a given duty factor3.4.14 I_{2cc} maximum short circuit output current3.4.14, 12.3, 13 I_{2p} permanent output current (100 % duty factor)3.4.11, 9.1, 9.2, 12.3, 13 I_{Lcc} maximum short circuit current input3.4.15, 13 I_{Lp} permanent input current3.4.10, 9.1, 9.2, 13 k distance for determination of angular deflection3.3.3, 11.3, 11.4, Figur K machine stiffness3.3.6, 11.2.6 I throat depth3.1.14, 3.1.16, 3.2.13, 1 | | | I_{2cc} maximum short circuit output current $3.4.14, 12.3, 13$ I_{2p} permanent output current (100 % duty factor) $3.4.11, 9.1, 9.2, 12.3, 13$ I_{Lcc} maximum short circuit current input $3.4.15, 13$ I_{Lp} permanent input current $3.4.10, 9.1, 9.2, 13$ k distance for determination of angular deflection $3.3.3, 11.3, 11.4, Figur$ K machine stiffness $3.3.6, 11.2.6$ I throat depth $3.1.14, 3.1.16, 3.2.13, 1$ | | | I_{2p} permanent output current (100 % duty factor)3.4.11, 9.1, 9.2, 12.3, 13 I_{Lcc} maximum short circuit current input3.4.15, 13 I_{Lp} permanent input current3.4.10, 9.1, 9.2, 13 k distance for determination of angular deflection3.3.3, 11.3, 11.4, Figur K machine stiffness3.3.6, 11.2.6 I throat depth3.1.14, 3.1.16, 3.2.13, 1 | | | I_{Lcc} maximum short circuit current input $3.4.15, 13$ I_{Lp} permanent input current $3.4.10, 9.1, 9.2, 13$ k distance for determination of angular deflection $3.3.3, 11.3, 11.4, Figur$ K machine stiffness $3.3.6, 11.2.6$ l throat depth $3.1.14, 3.1.16, 3.2.13, 1$ | | | I_{Lp} permanent input current 3.4.10, 9.1, 9.2, 13 k distance for determination of angular deflection 3.3.3, 11.3, 11.4, Figur K machine stiffness 3.3.6, 11.2.6 k throat depth 3.1.14, 3.1.16, 3.2.13, 1 | 3 | | k distance for determination of angular deflection 3.3.3, 11.3, 11.4, Figur K machine stiffness 3.3.6, 11.2.6 throat depth 3.1.14, 3.1.16, 3.2.13, 1 | | | K machine stiffness 3.3.6, 11.2.6 l throat depth 3.1.14, 3.1.16, 3.2.13, 1 | | | <i>l</i> throat depth 3.1.14, 3.1.16, 3.2.13, 1 | e 11 | | | | | 12.3 | <u>1.1</u> , | | $L_{\rm sc}$ short circuit length of copper bar $8.4, 11.4$ | | | L length of copper bar 8.3 | | | m mass of the welding equipment 12.3, Annex A | | | n (rotational) electrode wheel speed 3.1.10, 12.3 | | | p_1 supply pressure $3.5.1$ | | | $p_{1\min}$ minimum supply pressure 3.5.2, 12.3, 13 | | | $p_{1\text{max}}$ maximum supply pressure 3.5.3, 12.3, 13 | | | <i>q</i> die stroke <u>3.2.9, Figure 8</u> | | | <i>Q</i> rated cooling liquid flow 3.5.4, 10, 12.3, 13 | | | r radial deflection 3.3.4, 11.2.4, Figure 9 | | | r_0 radial deflection – unloaded Figure 9 | | | radial deflection – loaded Figure 9 | | | S _p permanent power (100 % duty factor) 3.4.11, 9.1, 9.2, 12.3 | | | S_{50} input power at 50 % duty factor $3.4.15,12.2$ | | | $t_{\rm i}$ maximum time per impulse 3.4.12 | | | U_{1N} rated input voltage 3.4.5, 7, 9.2, 12.3, 13 | | | U'_{1N} input voltage \overline{Z} | | **Table 1** (continued) | Symbol | Designation | Reference | |--|---|---| | U_{20} | rated a.c. no-load voltage | 3.4.6, 3.4.7, 7, 12.3, 13 | | U'_{20} | a.c. no-load voltage | Z | | U_{2d} | rated d.c. no-load voltage from inverter type welding equipment | 3.4.8, 3.4.9, 7, 7.1, 12.3, 13 | | v | (linear tangential) electrode wheel speed | 3.1.11, 12.3 | | W | die width | 3.2.7, Figure 8, 8.4 | | X | duty factor | 3.4.4, 3.4.14 | | α | angular deflection | 3.3.3, Figure 10, Figure 11, 11.1, 11.2.3, 11.4.2, 12.3 | | α_1, α_2 | angular positions for determination of the angular deflection | 3.3.3, 11.3.3, Figure 9 | | $\alpha_{10}, \alpha_{50}, \alpha_{100}$ | angular deflection at 10 %, 50 % or 100 % of the maximum force | 12.3 | | Δ_p | pressure drop of the cooling liquid circuit | 3.5.5, 12.3, 13 | | δ | die thickness | 3.2.8, Figure 8 | | δ_3 | maximum angular displacement between top and bottom platen | 3.3.7, 11.2.7 | | δ_4 | perpendicularity in movement of top and bottom platen | <u>3.3.8, 11.2.8</u> | # 5 Physical environment and operating conditions # 5.1 General Welding equipment shall be suitable for use in the physical environment and operating conditions specified below. This International Standard is only applicable to resistance welding equipment used indoors. When the physical environment and/or operating conditions are outside those specified below, an agreement may be needed between the supplier and the user (see IEC 60204-1). NOTE Examples of these conditions are outdoor use, different altitude, different temperature of cooling medium, high humidity, unusually corrosive fumes, steam, excessive oil vapour, abnormal vibration or shock, excessive dust, unusual sea coast, or shipboard conditions. # 5.2 Ambient air temperature Welding equipment shall be capable of operating correctly in an ambient air temperature of between +5 °C and +40 °C. # 5.3 Liquid cooling medium The temperature of the cooling liquid can be up to $+30\,^{\circ}\text{C}$ at the inlet of the welding equipment. Condensation caused by high cooling liquid flow or low cooling liquid temperature in relation to the relative humidity should be prevented. # 5.4 Humidity The welding equipment shall be capable of operating correctly when the relative humidity does not exceed 50 % at a maximum temperature of +40 °C. Higher relative humidities are permitted at lower temperatures (for example, 90 % at 20 °C) (see IEC 60204-1). Harmful effects of occasional condensation shall be avoided by proper design of the welding equipment or, where necessary, by proper additional measures (e.g. built in heaters, air conditioners, drain holes). ## 5.5 Altitude Welding equipment shall be capable of operating correctly at altitudes up to 1 000 m above mean sea level. For other altitudes, see ISO 5826:2014, Annex B. NOTE At altitudes over 1 000m, additional electrical safety considerations may be required (see IEC 60204-1). # 5.6 Transportation and storage Welding equipment shall be designed to withstand or suitable precautions shall be taken to protect against transportation and storage temperatures between -25 °C and +55 °C
and for short periods not exceeding 24 h up to +70 °C. Suitable means shall be provided to prevent damage from humidity, vibration, and shock. Consider frost/freezing protection and draining cooling water before shipping/storage. # 6 Test conditions #### 6.1 General The electrical and mechanical characteristics are valid for specific resistance welding equipment configuration(s). If the welding circuit is reconfigured or modified, for example, changes to geometries and/or materials, these characteristics may no longer be valid. For equipment with interchangeable components, the options tested shall be clearly identified and recorded. # **6.2** Environmental conditions The tests shall be carried out on new, dry, and completely assembled welding equipment at an ambient air temperature of between +10 °C and +40 °C. The ventilation shall be identical with that prevailing under normal service conditions. The measuring devices used shall not interfere with the normal ventilation of the welding equipment or cause abnormal transfer of heat to or from it. Liquid cooled welding equipment shall be tested with cooling liquid conditions as specified by the manufacturer. # 6.3 Measuring instruments The accuracy of measuring instruments shall be the following: - a) electrical measuring instruments: ±1,0 % of full-scale except for the measurement of insulation resistance and dielectric strength where the accuracy of the instruments is not specified, but shall be taken into account for the measurement; - b) instruments for measuring welding current: ±5,0 % of full-scale; - Electrical measurements shall be made under full wave, non-transient conditions. - c) temperature measuring instruments: ±2 K. Unless otherwise specified, the tests required in this International Standard are type tests. The measurement of welding current shall be carried out using a measuring instrument in accordance with ISO 17657-2 and ISO 17657-5. # 7 Rated no load voltage at the output #### 7.1 General The following parameters are used to specify rated output voltage characteristics: - U_{20} equipment with a.c. current output; - U_{2d} equipment with d.c. current output. The values measured according to $\overline{7.2}$ and $\overline{7.3}$ shall not deviate from the value specified on the rating plate by more than ± 2 % for U_{20} and ± 5 % for U_{2d} . Measurement shall be given for all output voltage settings (if applicable). During the test the input voltage, U_1 , shall correspond to $U_{1N} \pm 5$ %. The input voltage, U_1 , shall be recorded and a correction formula, expressed in volts, shall be used to compensate the measurement if the input voltage, U_1 , is different from U_{1N} . $$U_{20} = U_{20} \frac{U_{1N}}{U'_{1N}} \tag{1}$$ Welding equipment may be provided with automatic systems that prevent the transformer from being energized to its maximum output when there is no welding current (e.g. constant current or inverter equipment). In this case, assistance from the manufacturer may be needed to disable these systems or circuits to allow a correct measurement. # 7.2 a.c. no load voltage (U_{20}) The RMS value of the a.c. no load voltage shall be measured at the output of the equipment under the following conditions: - with an open welding circuit; - with the equipment welding current adjustment set to the maximum value. # 7.3 d.c. no load voltage (U_{2d}) The RMS value of the d.c. no load voltage shall be measured at the output of the equipment under the following conditions: - with a load resistor of $R = 10 \Omega$ ($\pm 10 \%$) connected across the output; - with the equipment welding current adjustment set to the maximum value. The RMS values of voltage at the output connections, U_{2d} , shall be measured using an integration time of 100 ms. # 8 Maximum short circuit current #### 8.1 General The maximum short circuit current shall be directly measured with a tolerance of ±5 %. The short circuit shall be achieved by use of copper tools having a conductivity of at least $(45 \times 10^6) \, \text{Sm}^{-1} \, \text{at} \, 20 \, ^{\circ}\text{C}$. For equipment operating at line frequency if during measurement of the short circuit current, I'_{2cc} , the measured input voltage, U'_{1N} , differs from the rated input voltage, U_{1N} . The following correction formula shall be used to calculate the maximum short circuit output current, I_{2cc} : $$I_{2cc} = I'_{2cc} \frac{U_{1N}}{U'_{1N}}$$ (2) Both measured input voltage, U'_{1N} , and short circuit current, I'_{2cc} , shall be measured with the same integration time equal to the welding current impulse duration. Compliance shall be checked by measurement in accordance with the conditions given in the following: - 8.2 for spot and seam welding equipment; - 8.3 for projection welding equipment; - 8.4 for upset and flash welding equipment. For equipment with adjustable arms, the following current measurements are made successively: - a) minimum impedance condition, i.e. throat gap and throat depth are minimum; - b) maximum impedance condition, i.e. throat gap and throat depth are maximum. For equipment with interchangeable arms, the test shall be performed on equipment equipped with the arms specified by the manufacturer. Information on maximum short circuit current shall always be related to the actual arms used in the test and shall be included on the data plate and in product documentation. # 8.2 Spot and seam welding equipment The electrodes or the rotating electrode wheels are brought into contact by applying the maximum electrode force, $F_{\rm max}$, in accordance with the arm length used. The diameter, d, expressed in millimetres, of the tip of the electrodes or the width of the electrode wheels is related to the electrode force in accordance with Formulae (3) and (4), but it shall be at least 2,5 mm: spot welding: $$d = 0.16 \sqrt{F_{\text{max}}} \pm 5 \%,$$ (3) seam welding: $$d = 0.08 \sqrt{F_{\text{max}}} \pm 5 \%$$ (4) where F_{max} is in daN. # 8.3 Projection welding equipment A copper bar with a cross section sufficient to prevent overheating is placed between the centres of the platens. The maximum electrode force, F_{max} , is applied and maintained. The length, *L*, expressed in millimetres, of the copper bar is given by Formula (5): $$L = 122 F_{\text{max}} 10^{-5} + 75 \tag{5}$$ where F_{max} is the maximum electrode force developed by the machine, in daN. If the obtainable minimum distance between the platens is greater than the calculated length, the length shall be equal to the minimum distance plus 5 mm. An additional test shall be made by inserting a copper bar of length, L + e', between the platens where e' is the vertical distance between the lowest and highest position of the lower platen. # 8.4 Upset and flash welding equipment A copper bar with a cross section sufficient to prevent overheating is placed between the dies. The contact surfaces shall be as large as possible. The maximum clamping force F_{2max} , is applied. The short circuit length, L_{sc} , expressed in millimetres, of the copper bar between the opposing faces of the dies (see Figure 13) is given by the following formula, but it shall be at least equal to the minimum die distance plus 5 mm. $$L_{\rm sc} = 1.5 \; \frac{F}{W} + 2 \tag{6}$$ For machines that operate with preheating, *F*, expressed in daN, is calculated as follows: $$F = \frac{F_{1\,\text{max}}}{30} \tag{7}$$ For machines that operate without preheating, *F*, expressed in daN, is calculated as follows: $$F = \frac{F_{1 \max}}{150} \tag{8}$$ where *W* is in millimetres; $F_{1\text{max}}$ is in daN. For machines that can operate with and without preheating, the lowest value of L_{SC} is used. #### Key 1 die 2 copper bar Figure 13 — Short circuit bar for upset welding equipment # 9 Thermal rating ### 9.1 General The thermal rating of the equipment is determined by the thermal features of all equipment parts including the welding transformer, welding circuit conductors, and the electric power control circuits. The thermal rating for the equipment input is expressed by the permanent input current (I_{1p} or I_{Lp}) and permanent power (S_p). The thermal rating for the equipment output is expressed by the permanent output current (I_{2p}). These parameters are determined by performing an equipment thermal test as specified in accordance with 9.2. If the transformer has been tested in accordance with ISO 5826, the equipment test can be performed without measuring the transformer temperature rise. In this case, the declared thermal rating parameters are lower between the transformer parameters and equipment test parameters results. ## 9.2 Thermal test Thermal testing shall be performed in accordance with IEC 62135-1. During the test, equipment is operated in an output condition equivalent to the permanent output current (l_{2p}). NOTE Typical resistance welding equipment is operated at a reduced duty factor with high output current. Some welding equipment (i.e. seam welders) are designed to operate at the permanent output current, therefore, are tested at this condition. IEC 62135–1 specifies the test conditions. The permanent input current (I_{1p} or I_{Lp}) is measured during the test. The permanent power (S_p) is calculated on the input by Formulae (9) and (10): $$S_{\rm p} = I_{\rm 1p} U_{\rm 1N} \tag{9}$$ for single phase equipment, or $$S_{\rm p} = I_{\rm Lp} \ U_{\rm 1N} \ \sqrt{3}$$ (10) for three phase balanced equipment. # 10 Cooling liquid circuit (liquid cooled welding equipment) For water cooled welding equipment, the cooling liquid circuits shall enable a sufficient flow in order to ensure efficient cooling. The cooling liquid circuit - a) shall be leak-tight at a pressure of 2,5 × the specified maximum operating pressure up to a maximum of 8 bar for 10 min, and - b) shall not have a cooling liquid pressure drop at the
rated cooling liquid flow (Q) higher than that stated on the rating plate (Δ_n) (see Clause 12). # 11 Static mechanical characteristics ### 11.1 General The following static mechanical characteristics are recommended to be given in agreement between the manufacturer and the purchaser: - a) for spot, projection, and seam welding equipment: - 1) eccentricity, g, in millimetres; - 2) angular deflection, α , in milliradians; - b) for upset welding equipment: - 1) angular deflection, α , in milliradians. Compliance shall be checked by measurement with - 10 %. - 50 %, and - **—** 100 % of the maximum electrode force, F_{max} , (see <u>3.1.17</u>) or upsetting force, $F_{1\text{max}}$, (see <u>3.2.17</u>) at the maximum adjustment of the - electrode stroke, c (see 3.1.15), - throat depth, l (see 3.1.14), and - throat gap, e (see 3.1.12). The measurements are carried out in accordance with - 11.2 for spot and projection welding equipment, - 11.3 for seam welding equipment, and - <u>11.4</u> for upset welding equipment. Additionally, for moveable guns, eccentricity is also evaluated with the arms oriented vertically and horizontally. NOTE The results are given as absolute values. If the deflection reverses when the force is increased, this is indicated by plus or minus as appropriate. # 11.2 Spot and projection welding equipment # 11.2.1 General The measurement of eccentricity requires elimination of the friction between electrode faces with an apparatus such as described here. Two hardened discs, as shown in Figure 14 and Figure 15, are placed with their plugs (instead of spot welding electrodes) or with their flanges at the centre of the platens in such a way that their opposite faces are parallel and the eccentricity does not exceed 0,05 mm. A steel ball is placed between the two hardened discs and centred using an appropriate flexible device. CAUTION — Appropriate precautions shall be taken to prevent the expulsion of the steel ball when under pressure. NOTE 1 The hardened discs are machined to a tolerance of h6. NOTE 2 The diameter of the ball, D_1 , and the material used for the hardened discs are chosen so that no impression appears on the contact faces at the maximum force. The contact faces, in particular, should be of hardened steel. Dimensions in millimetres ## Key - 1 hardened disc - 2 plug - 3 support (steel ball recessed to prevent expulsion) Figure 14 — Measurement accessory for spot welding equipment 9100h6 A A F₁ B B #### Dimensions in millimetres # Key - 1 hardened disc - 2 support - 3 mounting flange Figure 15 — Measurement accessory for projection welding equipment # 11.2.2 Eccentricity The eccentricity (g) is directly measured with a gauge calibrated to 0,01 mm (see Figure 16). Dimensions in millimetres #### Kev - 1 hardened disc - 2 support Figure 16 — Measurement of eccentricity and deflection # 11.2.3 Angular deflection The angular deflection (α), expressed in milliradians, is calculated using Formula (11): $$\alpha = \arctan\left(\frac{b_1 - b_2}{100 - g}\right) \times 1000 \tag{11}$$ The distances, b_1 and b_2 , between the hardened discs are measured using thickness gauges with an accuracy unit of 0,01 mm. For rocker arm welding equipment, the electrodes should be parallel at the beginning of the test. NOTE 1 The methods of fixing shown in Figure 14 and Figure 15 are for information only. Plugs can be fitted with adaptors to suit the welding equipment. NOTE 2 If it is not possible to use discs with a diameter of 100 mm because of the dimensions of the welding equipment, smaller diameters, d_k , can be used by agreement with the user. In this case, the angular deflection, α , is given by Formula (12): $$\alpha = \arctan\left(\frac{b_1 - b_2}{d_k - g}\right) \times 1000 \tag{12}$$ NOTE 3 In order to estimate the behaviour of the welding equipment when using offset electrodes, the discs may be subjected to the simultaneous application of - a) the maximum electrode force, and - b) two opposite forces, F_1 and F_2 , equal to 10 % of the appropriate electrode force in a plane parallel to reference faces C and D (see <u>Figure 14</u> and <u>Figure 15</u>) in the less favourable direction for the welding equipment. This measurement is repeated with the forces, F_1 and F_2 , reversed. # 11.2.4 Radial deflection Radial deflection, r, is calculated as the difference of the values of r_0 and r_1 measured before and after the application of the electrode force between a fixed point on the welding equipment and the central point of the electrode working face. #### 11.2.5 Axial deflection Axial deflection, h, is calculated as the difference of the values of h_0 and h_1 measured before and after the application of the electrode force between a fixed point on the welding equipment and the central point of the electrode working face. #### 11.2.6 Machine stiffness The machine stiffness, K, is determined by taking the difference in the stroke of the force generation system when the electrodes are brought into contact without electrode force and the maximum weld force, F_{max} . # 11.2.7 Parallelism of top and bottom platen The top platen position is set as recommended by the manufacturer. A straightedge is placed on the bottom platen. The base of the dial gauge is placed on the straightedge with its measurement probe in contact with the top platen in accordance with Figure 17. The displacement between the top and bottom platens as shown on the dial gauge is measured at positions A, B, C and D, 15 mm from the edges of the top platen, in accordance with <u>Figure 18</u>. The distance between positions A and B and C and D are also recorded. δ_3 is the maximum angle of the calculated values for the two axes A to B and C to D. NOTE For welding machines where the bottom platen slope can be adjusted, measurement can only be performed on the non-adjustable axis. #### Kev - 1 top platen (reference position) - 2 bottom platen (reference position) - 3 dial gauge - 4 straightedge Figure 17 — Measurement method for parallelism of top and bottom platen # Key - 1 front edge - 2 rear edge - 3 centre line Figure 18 — Platen accuracy at measurement point # 11.2.8 Perpendicularity in platen movement, δ_4 A straightedge is placed on the bottom platen in accordance with <u>Figure 19</u>. A square is placed on the straightedge. The base of the dial gauge is fixed on the upper platen with its measurement probe at 90° to the direction of travel of the platen and in contact with the vertical edge of the square in accordance with <u>Figure 19</u>. The top platen is moved over its total stroke, L. The displacement of the dial gauge over the total stroke is recorded with the square placed both parallel and perpendicular to the throat of the machine. δ_4 is the maximum value of the two measurements. For machines where the bottom platen can be moved, measurements are repeated with the bottom platen in the highest and lowest positions. NOTE For welding machines where the bottom platen slope can be adjusted, measurement can only be performed on the non-adjustable axis. ### Key - 1 top platen (reference position) - 2 bottom platen (reference position) - 3 dial gauge - 4 straightedge - 5 square Figure 19 — Measurement of perpendicularity in movement of top and bottom platen, δ_4 ### 11.3 Seam welding equipment ### **11.3.1** General The welding equipment is fitted with electrode wheels that are normally delivered with it. The measurement device consists of a holder with two knife edges that are applied to the lower electrode wheel (see Figure 20). Using a gauge calibrated to 0,01 mm, the dimensions, a_1 and b_1 , with no load, and a_2 and b_2 with load are measured. The distance between a_1 , a_2 and b_1 , b_2 is k (see Figure 20). ### 11.3.2 Eccentricity Eccentricity, *g*, expressed in millimetres, is calculated using Formula (13): $$g = a_1 - a_2 (13)$$ ### 11.3.3 Angular deflection Angular deflection, α , expressed in milliradians, is calculated using Formula (14): $$\alpha = \alpha_1 - \alpha_2 \tag{14}$$ where $$\alpha_1 = \arctan\left(\frac{b_1 - a_1}{k}\right) \times 1000$$ (in milliradians); $$\alpha_2 = \arctan\left(\frac{b_2 - a_2}{k}\right) \times 1000$$ (in milliradians). Figure 20 — Measurement arrangement in electrode wheels ### 11.4 Upset welding equipment ### 11.4.1 General Two bars of steel having a sectional area equal to the maximum area that can be welded and each fitted with a graduated scale approximately 1 000 mm in length are fixed in the dies and placed in contact in such a way that the distance between the dies, $L_{\rm sc}$, is as given in 8.4. These bars are kept in position by application of the maximum clamping force, $F_{2\text{max}}$. The contact face of one of the bars shall be curved and of radius R100 mm (see Figure 21). Dimensions in millimetres ### Kev - 1 clamping die - 2 graduated straight-edge Figure 21 — Measurement arrangement for upset welding equipment Using a gauge calibrated to 0,01 mm, the dimensions, b_1 , with no load and b_2 , with load, are measured in the distance, k, from the plane of the contact (see Figure 21). ### 11.4.2 Angular deflection Angular deflection, α , expressed in milliradians, is calculated by Formula (15): $$\alpha = \arctan\left(\frac{b_2 - b_1}{k}\right) \times 1000 \tag{15}$$ ### 12 Rating plate ### 12.1 General A clearly and indelibly marked rating plate shall be fixed securely to or printed on all welding equipment. Compliance is checked by visual inspection and by rubbing the marking by hand for 15 s with a piece of cloth soaked with water and again for 15 s with a piece of cloth soaked with petroleum spirit. After the test, the marking shall be easily legible and it shall not be easy to remove the rating plate which shall show no curling. NOTE The purpose of the rating plate is to inform the user of the electrical and
mechanical characteristics of the equipment in order to enable correct selection, installation, and use. ### 12.2 Description The rating plate shall be divided into sections containing at least the following information: ### a) Identification | Box 1 | Name and address of the manufacturer and optionally, a trademark and the country of origin, if required. | |-------|---| | Box 2 | Type (identification) as given by the manufacturer. | | Box 3 | Traceability of design and manufacturing data (e.g. serial number) and year of production. | | Box 4 | Reference to this International Standard and year of publication, i.e. ISO 669:2016 (confirming the data presented has been determined using the methods presented in this International Standard). | ### b) Mains supply | Box 5 | $U_{1N} = V$ | rated input voltage | |-------|--------------------------|--| | Box 6 | ~ Hz | number of phases, e.g. one or three, symbol for alternating current (\sim), and the rated frequency, e.g. 50 Hz or 60 Hz | | Box 7 | $S_p = \dots \text{kVA}$ | permanent power (duty factor 100 %) | ### c) Welding output Items with an asterisk are optional on the nameplate, but shall nevertheless be included in the documentation. | | | l, for example: | |---------|--|---| | | === direct cur | rent (d.c.), or | | | | g current (a.c.) and additionally, the rated v in Hz (e.g.: $_{\sim}$ 50 Hz). | | Box 9 | $U_{20} = \dots V - \dots V - \dots V$ | a.c. no-load voltage values, or | | | $U_{20} = \text{ V to } \text{ V in } \text{ ste}$ | ps range of a.c. no-load voltage values and number of adjustable steps. | | | $U_{2d} = V V V$ | d.c. no-load voltage values, or | | | $U_{2d} = V \text{ to } V \text{ in } \text{ ste}$ | ps range of d.c. no-load voltage values and number of adjustable steps. | | Box 10 | $I_{2cc} = \dots A$ | maximum short circuit output current corresponding to the minimum impedance ($\it l$ and $\it e$ minimum), | | | | or for equipment with interchangeable arms, maximum short circuit current and specification of the arms (i.e. arm lengths, arms reference number, or arms drawing). | | Box 11* | $I_{2cc} = A$ | maximum short circuit output current corresponding to the maximum impedance (l and e maximum) | | Box 12 | $I_{2p} = \dots A$ | permanent output current | ### d) Other characteristics Items with an asterisk are optional on the nameplate, but shall nevertheless be included in the documentation. | Box 13* | $e = \dots mm$ to mm | range of the throat gap, platen distance, or die distance | |---------|---|--| | Box 14* | $l = \dots mm$ to mm | range of the throat depth | | Box 15 | $F_{\text{max}} = \dots \text{daN}$ | maximum electrode force corresponding to the minimum throat depth and optionally, the maximum throat depth | | Box 16* | $F_{\min} = \dots \operatorname{daN}$ | minimum electrode force | | Box 17 | $F_{1\max} = \dots daN$ | maximum upsetting force | | Box 18* | $F_{1\min} = \dots daN$ | minimum upsetting force | | Box 19 | $F_{2\max} = \dots daN$ | maximum clamping force | | Box 20 | $F_{2\min} = \dots daN$ | minimum clamping force | | NOTE | Box 17 to box 20 are only applicable for | upset welding equipment. | | Box 21 | $p_{1\max} =$ bar | maximum supply pressure of the energizing medium that the equipment can support | | Box 22 | $p_{1\min} = \dots $ bar | minimum supply pressure of the energizing medium to obtain the maximum electrode force | | Box 23 | $Q = \dots l/min$ | rated cooling liquid flow | | Box 24* | $\Delta_p = \dots$ bar | rated cooling liquid pressure drop | | Box 25 | $m = \dots \text{kg}$ | mass of the welding equipment | | Box 26* | $v = \dots m/\min to \dots m/\min$ | range of electrode wheel speed | | | $n = \dots \min^{-1} \text{to} \dots \min^{-1}$ | | | NOTE | Box 26 is only applicable to seam welding | ng equipment. | | Box 27* | α_{10} = mrad | angular deflection at 10 % of $F_{\rm max}$ or $F_{\rm 1max}$ | | | α_{50} = mrad | angular deflection at 50 % of $F_{\rm max}$ or $F_{\rm 1max}$ | | NOTE | These values are given only by agreeme | nt between the manufacturer and purchaser. | | | $\alpha_{100} = \text{mrad}$ | angular deflection at 100 % of $F_{\rm max}$ or $F_{\rm 1max}$ | | Box 28* | $g_{10} = \text{ mm}$ | eccentricity at 10 % of $F_{\rm max}$ or $F_{\rm 1max}$ | | | $g_{50} = \text{ mm}$ | eccentricity at 50 % of F_{max} or $F_{1\text{max}}$ | | | $g_{100} = \text{ mm}$ | eccentricity at 100 % of $F_{\rm max}$ or $F_{\rm 1max}$ | | | | | NOTE 1 These values are given only by agreement between the manufacturer and purchaser. NOTE 2 The eccentricity, g, is not applicable for upset welding equipment. The arrangement and sequence of the data shall comply with the principle shown in Figure 22 (for examples, see Annex A). The dimensions of the rating plate are not specified and may be chosen freely. NOTE 1 Additional information (e.g. angular deflection, eccentricity, g, maximum time per impulse, t_i) could be given. NOTE 2 Other useful information could be given in technical literature supplied by the manufacturer, e.g. S_{50} . | 1) | | | | | | |---|----------------|----------------------|---|--|--| | 2) | | | | | | | 3) | 4) | | | | | | b) Mains supply | | | | | | | 5) | | 6) | | | | | 7) | | | | | | | c) Welding Output | Welding Output | | | | | | 8) | 9) | | | | | | 10) | 11) | 11) 12) | | | | | d) Other characteristics | | | | | | | 13) 14) | | | | | | | 15) | | 16) | 16) | | | | 17) if applicable 19) if applicable 21) | | ¹⁸) if a | 18) if applicable 20) if applicable | | | | | | 20) if a | | | | | | | 22) | 22) | | | | 23) | | 24) | 24) | | | | 25) | | 26) if a | pplicable | | | | ²⁷⁾ if agreed | · | 28) if a | ²⁸⁾ if applicable and agreed | | | Figure 22 — Principle of the rating plate ### 12.3 Tolerances The actual values obtained from resistance welding equipment shall meet the rated values within the tolerances given in the corresponding subclauses. Compliance shall be checked by measurement and comparison. ### 13 Instruction manual All welding equipment shall be delivered with an instruction manual. In addition to other required information, the instruction manual shall include at least the following information related to this International Standard: - a) rated input voltage, U_{1N} , frequency, and number of phases; - b) rated no load voltage, U_{20} or U_{2d} ; - c) permanent power, S_p ; - d) permanent input current, I_{1p} or I_{Lp} ; - e) maximum short circuit current input, I_{1cc} or I_{Lcc} ; - f) maximum short circuit output current, I_{2cc} , corresponding to the minimum impedance (l and e minimum); - g) maximum short circuit output current, I_{2cc} , corresponding to the maximum impedance (l and e maximum); - h) permanent output current, I_{2p} ; - i) minimum supply pressure, p_{1min} (if applicable); - j) maximum supply pressure, $p_{1\text{max}}$ (if applicable); - k) rated cooling liquid flow, *Q*; - l) cooling liquid pressure drop, Δ_p . - m) maximum electrode force corresponding to the minimum and maximum throat depth, F_{max} (if applicable). The following data are only applicable to upset and flash welding equipment: - a) maximum upsetting force, $F_{1\text{max}}$; - b) minimum upsetting force, F_{1min} ; - c) maximum clamping force, F_{2max} ; - d) minimum clamping force, F_{2min} . All values shall be identified by the symbols defined in this International Standard. Additional information related to the parameters defined by this International Standard may also be given. Compliance shall be checked by reading the instruction manual. ### Annex A (informative) ## **Examples of rating plates** | a) | Identification | | | | | |----|---|----------------------------------|---------------------------------|------------------------------|--| | | 1) Manufacturer, country, trademark | | | | | | | 2) Resistance seam welding equipr | nent | | | | | | 3) Serial number Yea | r of production | 4) ISO 669:20X | ΚX | | | b) | Mains supply | | | | | | | 5) $U_{1N} = 400 \text{ V}$ | | 6) 1 ∼50 Hz | | | | | 7) $S_{\rm p} = 176 \text{kVA}$ | | | | | | c) | Welding Output | | | | | | | 8) ~ | 9) $U_{20} = 4 \text{ V to } 8$ | V in 4 steps | | | | | 10) $I_{2cc} = 45 \text{ kA}$ | 11) $I_{2cc} = 30 \text{ kA}$ | | 12) $I_{2p} = 22 \text{ kA}$ | | | d) | Other characteristics | | | | | | | e = 215 mm to 350 mm | | 14) l = 550 mm | | | | | 15) $F_{\text{max}} = 1 \ 200 \ \text{daN}$ | 16) $F_{\min} = 200 \text{ daN}$ | | | | | | 21) $p_{1\text{max}} = 8 \text{ bar}$ | | 22) $p_{1\min} = 6 \text{ bar}$ | | | | | 23) $Q = 16 \text{ l/min}$ | | $\Delta_p = 2 \text{ bar}$ | | | | | m = 1350 kg | | $v = 0.8 \mathrm{m/m}$ | nin to 8,0 m/min | | | | 27) $\alpha_{10} = \text{mrad}$ | | 28) $g_{10} = mm$ | | | | | $\alpha_{50} = 0.05 \text{mrad}$ | | $g_{50} = 0.015$ | | | | | $\alpha_{100} = 0.24 \text{ mrad}$ | | $g_{100} = 0.02$ | mm | | Figure A.1 — Seam welding equipment | 1) Manufacturer, country, trademark | | | | | | |--|--|------------------------------------|----------------------------------|--|--| | 2) Resistance seam welding |
equipment | | | | | | 3) Serial number | Year of production | 4) ISO 669:20X | X | | | | Mains supply | | | | | | | 5) $U_{1N} = 400 \text{ V}$ | | ⁶⁾ 1 ∼50 Hz | | | | | $S_{\rm p} = 56 \rm kVA$ | | | | | | | Welding Output | | | | | | | 8) ~ | 9) $U_{20} = 3.5 \text{ V}$ | to 8 V in 4 steps | | | | | 10) $I_{2cc} = 21 \text{ kA}$ | 11) $I_{2cc} = 15 \text{ k}$ | A | 12) $I_{2p} = 7.8 \text{ kA}$ | | | | Other characteristics | | | | | | | e = 115 mm to 415 mm | | ¹⁴⁾ <i>l</i> = 1 050 mm | | | | | 15) $F_{\text{max}} = 600 \text{ daN}$ | 15) $F_{\text{max}} = 600 \text{ daN}$ | | 16) $F_{\min} = 100 \text{ daN}$ | | | | 21) $p_{1\text{max}} = 10 \text{ bar}$ | | 22) $p_{1\min} = 6 \text{ bar}$ | | | | | Q = 12 l/min | | $\Delta_p = 2 \text{ bar}$ | | | | | 23) V - 12 1/111111 | | | | | | **Figure A.2** — **Spot welding equipment** (if indication of angular deflection, α , and eccentricity, g, has not been agreed) | a) | Identification | | | | | |----|---------------------------------------|--------------------------------|----------------------------------|--------------------------------|--| | | 1) Manufacturer, country, trademark | | | | | | | 2) Resistance seam welding equipme | ent | | | | | | 3) Serial number Year | of production | 4) ISO 669:20XX | ζ. | | | b) | Mains supply | | | | | | | 5) $U_{1N} = 400 \text{ V}$ | | ⁶⁾ 3 ∼50 Hz | | | | | 7) $S_{\rm p} = 212 \rm kVA$ | | | | | | c) | Welding Output | | | | | | | 8) | 9) $U_{20} = 11 \text{ V}$ | | | | | | 10) $I_{2cc} = 165 \text{ kA}$ | 11) $I_{2cc} = 130 \text{ kA}$ | | 12) $I_{2p} = 22.5 \text{ kA}$ | | | d) | Other characteristics | | | | | | | e = 200 mm to 500 mm | | ¹⁴⁾ <i>l</i> = 350 mm | | | | | 15) $F_{\text{max}} = 3000\text{daN}$ | | 16) $F_{\min} = 230 \text{ da}$ | aN | | | | 21) $p_{1\text{max}} = 8 \text{ bar}$ | | 22) $p_{1\min} = 6 \text{ bar}$ | | | | | Q = 38 l/min | | $\Delta_p = 4 \text{ bar}$ | | | | | m = 2230 kg | | | | | **Figure A.3 — Projection welding equipment** (if indication of angular deflection, α , and eccentricity, g, has not been agreed) | a) | Identification | | | | | | |----|--|---|---|--------------------------------|--|--| | | 1) Manufacturer, country, trademark | | | | | | | | 2) Resistance seam welding equipm | ient | | | | | | | 3) Serial number Year | of production | 4) ISO 669:20X | X | | | | o) | Mains supply | | | | | | | | 5) $U_{1N} = 400 \text{ V}$ | | 6) 3 ∼50 Hz | | | | | | 7) $S_p = 410 \text{ kVA}$ | | | | | | | c) | Welding Output | | | | | | | | 8) | 9) $U_{20} = 11 \text{ V}$ | | | | | | | 10) $I_{2cc} = 220 \text{ kA}$ | 11) $I_{2cc} = 200 \text{ kA}$ | | 12) $I_{2p} = 53.4 \text{ kA}$ | | | | d) | Other characteristics | | | | | | | | 13) e = 135 mm to 180 mm | | 14) l = 450 mm | | | | | | 15) $F_{\text{max}} = 1000\text{daN}$ | | 16) $F_{\min} = 300 \text{ daN}$ 18) $F_{\min} = 500 \text{ daN}$ | | | | | | 17) $F_{1\text{max}} = 1\ 000\ \text{daN}$ | | | | | | | | 19) $F_{2\text{max}} = 2\ 000\ \text{daN}$ | 20) $F_{2min} = 1000 \text{ daN}$
22) $p_{1min} = 130 \text{ bar}$ | | | | | | | 21) $p_{1\text{max}} = 140 \text{ bar}$ | | | | | | | | 23) Q = 150 l/min | 24) $\Delta_p = 6 \text{ bar}$ | | | | | | | $m = 26000\mathrm{kg}$ | | | | | | Figure A.4 — Upset welding equipment ### **Bibliography** - [1] ISO 865, Slots in platens for projection welding machines - [2] ISO 5184, Straight resistance spot welding electrodes - [3] ISO 5821, Resistance welding Spot welding electrode caps - [4] ISO 8430-1, Resistance spot welding Electrode holders Part 1: Taper fixing 1:10 - [5] ISO 8430-2, Resistance spot welding Electrode holders Part 2: Morse taper fixing - [6] ISO 8430-3, Resistance spot welding Electrode holders Part 3: Parallel shank fixing for end thrust - [7] IEC 60204-1, Safety of machinery Electrical equipment of machines Part 1: General requirements - [8] IEC 60664-1, Insulation coordination for equipment within low-voltage systems Part 1: Principles, requirements and tests # British Standards Institution (BSI) BSI is the national body responsible for preparing British Standards and other standards-related publications, information and services. BSI is incorporated by Royal Charter. British Standards and other standardization products are published by BSI Standards Limited. ### About us We bring together business, industry, government, consumers, innovators and others to shape their combined experience and expertise into standards -based solutions. The knowledge embodied in our standards has been carefully assembled in a dependable format and refined through our open consultation process. Organizations of all sizes and across all sectors choose standards to help them achieve their goals. ### Information on standards We can provide you with the knowledge that your organization needs to succeed. Find out more about British Standards by visiting our website at bsigroup.com/standards or contacting our Customer Services team or Knowledge Centre. ### **Buying standards** You can buy and download PDF versions of BSI publications, including British and adopted European and international standards, through our website at bsigroup.com/shop, where hard copies can also be purchased. If you need international and foreign standards from other Standards Development Organizations, hard copies can be ordered from our Customer Services team. ### **Subscriptions** Our range of subscription services are designed to make using standards easier for you. For further information on our subscription products go to bsigroup.com/subscriptions. With **British Standards Online (BSOL)** you'll have instant access to over 55,000 British and adopted European and international standards from your desktop. It's available 24/7 and is refreshed daily so you'll always be up to date. You can keep in touch with standards developments and receive substantial discounts on the purchase price of standards, both in single copy and subscription format, by becoming a **BSI Subscribing Member**. **PLUS** is an updating service exclusive to BSI Subscribing Members. You will automatically receive the latest hard copy of your standards when they're revised or replaced. To find out more about becoming a BSI Subscribing Member and the benefits of membership, please visit bsigroup.com/shop. With a **Multi-User Network Licence (MUNL)** you are able to host standards publications on your intranet. Licences can cover as few or as many users as you wish. With updates supplied as soon as they're available, you can be sure your documentation is current. For further information, email bsmusales@bsigroup.com. ### **BSI Group Headquarters** 389 Chiswick High Road London W4 4AL UK #### Revisions Our British Standards and other publications are updated by amendment or revision. We continually improve the quality of our products and services to benefit your business. If you find an inaccuracy or ambiguity within a British Standard or other BSI publication please inform the Knowledge Centre. ### Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) and has formally licensed such information to BSI for commercial publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. Details and advice can be obtained from the Copyright & Licensing Department. #### **Useful Contacts:** #### **Customer Services** Tel: +44 845 086 9001 Email (orders): orders@bsigroup.com Email (enquiries): cservices@bsigroup.com ### Subscriptions Tel: +44 845 086 9001 Email: subscriptions@bsigroup.com ### **Knowledge Centre** Tel: +44 20 8996 7004 Email: knowledgecentre@bsigroup.com #### **Copyright & Licensing** Tel: +44 20 8996 7070 Email: copyright@bsigroup.com