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Standard Guide for
Application of Basic Statistical Methods to Weathering
Tests1

This standard is issued under the fixed designation G169; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers elementary statistical methods for the
analysis of data common to weathering experiments. The
methods are for decision making, in which the experiments are
designed to test a hypothesis on a single response variable. The
methods work for either natural or laboratory weathering.

1.2 Only basic statistical methods are presented. There are
many additional methods which may or may not be applicable
to weathering tests that are not covered in this guide.

1.3 This guide is not intended to be a manual on statistics,
and therefore some general knowledge of basic and interme-
diate statistics is necessary. The text books referenced at the
end of this guide are useful for basic training.

1.4 This guide does not provide a rigorous treatment of the
material. It is intended to be a reference tool for the application
of practical statistical methods to real-world problems that
arise in the field of durability and weathering. The focus is on
the interpretation of results. Many books have been written on
introductory statistical concepts and statistical formulas and
tables. The reader is referred to these for more detailed
information. Examples of the various methods are included.
The examples show typical weathering data for illustrative
purposes, and are not intended to be representative of specific
materials or exposures.

2. Referenced Documents

2.1 ASTM Standards:2

E41 Terminology Relating To Conditioning
G113 Terminology Relating to Natural and Artificial Weath-

ering Tests of Nonmetallic Materials
G141 Guide for Addressing Variability in Exposure Testing

of Nonmetallic Materials

2.2 ISO Documents:
ISO 3534/1 Vocabulary and Symbols – Part 1: Probability

and General Statistical Terms3

ISO 3534/3 Vocabulary and Symbols – Part 3: Design of
Experiments3

3. Terminology

3.1 Definitions—See Terminology G113 for terms relating
to weathering, Terminology E41 for terms relating to condi-
tioning and handling, ISO 3534/1 for terminology relating to
statistics, and ISO 3534/3 for terms relating to design of
experiments.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 arithmetic mean; average—the sum of values divided

by the number of values. ISO 3534/1

3.2.2 blocking variable—a variable that is not under the
control of the experimenter, (for example, temperature and
precipitation in exterior exposure), and is dealt with by
exposing all samples to the same effects

3.2.2.1 Discussion—The term “block” originated in agricul-
tural experiments in which a field was divided into sections or
blocks having common conditions such as wind, proximity to
underground water, or thickness of the cultivatable layer.

ISO 3534/3

3.2.3 correlation—in weathering, the relative agreement of
results from one test method to another, or of one test specimen
to another.

3.2.4 median—the midpoint of ranked sample values. In
samples with an odd number of data, this is simply the middle
value, otherwise it is the arithmetic average of the two middle
values.

3.2.5 nonparametric method—a statistical method that does
not require a known or assumed sample distribution in order to
support or reject a hypothesis.

3.2.6 normalization—a mathematical transformation made
to data to create a common baseline.

1 This guide is under the jurisdiction of ASTM Committee G03 on Weathering
and Durability and is the direct responsibility of Subcommittee G03.93 on Statistics.
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3.2.7 predictor variable (independent variable)— a variable
contributing to change in a response variable, and essentially
under the control of the experimenter. ISO 3534/3

3.2.8 probability distribution (of a random variable)—a
function giving the probability that a random variable takes any
given value or belongs to a given set of values. ISO 3534/1

3.2.9 random variable—a variable that may take any of the
values of a specified set of values and with which is associated
a probability distribution.

3.2.9.1 Discussion—A random variable that may take only
isolated values is said to be “discrete.” A random variable
which may take any value within a finite or infinite interval is
said to be “continuous.” ISO 3534/1

3.2.10 replicates—test specimens with nominally identical
composition, form, and structure.

3.2.11 response variable (dependent variable)— a random
variable whose value depends on other variables (factors).
Response variables within the context of this guide are usually
property measurements (for example, tensile strength, gloss,
color, and so forth). ISO 3534/3

4. Significance and Use

4.1 The correct use of statistics as part of a weathering
program can greatly increase the usefulness of results. A basic
understanding of statistics is required for the study of weath-
ering performance data. Proper experimental design and sta-
tistical analysis strongly enhances decision-making ability. In
weathering, there are many uncertainties brought about by
exposure variability, method precision and bias, measurement
error, and material variability. Statistical analysis is used to
help decide which products are better, which test methods are
most appropriate to gauge end use performance, and how
reliable the results are.

4.2 Results from weathering exposures can show differ-
ences between products or between repeated testing. These
results may show differences which are not statistically signifi-
cant. The correct use of statistics on weathering data can
increase the probability that valid conclusions are derived.

5. Test Program Development

5.1 Hypothesis Formulation:
5.1.1 All of the statistical methods in this guide are designed

to test hypotheses. In order to apply the statistics, it is
necessary to formulate a hypothesis. Generally, the testing is
designed to compare things, with the customary comparison
being:

Do the predictor variables significantly affect the
response variable?

Taking this comparison into consideration, it is possible to
formulate a default hypothesis that the predictor variables do
not have a significant effect on the response variable. This
default hypothesis is usually called Ho, or the Null Hypothesis.

5.1.2 The objective of the experimental design and statisti-
cal analysis is to test this hypothesis within a desired level of
significance, usually an alpha level (α). The alpha level is the
probability below which we reject the null hypothesis. It can be

thought of as the probability of rejecting the null hypothesis
when it is really true (that is, the chance of making such an
error). Thus, a very small alpha level reduces the chance in
making this kind of an error in judgment. Typical alpha levels
are 5 % (0.05) and 1 % (0.01). The x-axis value on a plot of the
distribution corresponding to the chosen alpha level is gener-
ally called the critical value (cv).

5.1.3 The probability that a random variable X is greater
than the critical value for a given distribution is written
P(X>cv). This probability is often called the “p-value.” In this
notation, the null hypothesis can be rejected if

P(X>cv) < α
5.2 Experimental Design—The next step in setting up a

weathering test is to design the weathering experiment. The
experimental design will depend on the type and number of
predictor variables, and the expected variability in the sample
population, exposure conditions, and measurements. The ex-
perimental design will determine the amount of replication,
specimen positioning, and appropriate statistical methods for
analyzing the data.

5.2.1 Response Variable—The methods covered in this
guide work for a single response variable. In weathering and
durability testing, the response variable will usually be a
quantitative property measurement such as gloss, color, tensile
strength, modulus, and others. Sometimes, qualitative data
such as a visual rating make up the response variable, in which
case nonparametric statistical methods may be more appropri-
ate.

5.2.1.1 If the response variable is “time to failure,” or a
counting process such as “the number of failures over a time
interval,” then reliability-based methods should be used.

5.2.1.2 Here are the key considerations regarding the re-
sponse variable:

(1) What is the response variable?
(2) Will the data represent quantitative or qualitative

measurements?
Qualitative data may be best analyzed with a nonparamet-

ric method.
(3) What is the expected variability in the measure-

ment?
When there is a high amount of measurement variability,

then more replication of test specimens is needed.
(4) What is the expected variability in the sample

population?
More variability means more replication.

(5) Is the comparison relative (ranked) or a direct
comparison of sample statistics (for example, means)?

Ranked data is best handled with nonparametric methods.
5.2.1.3 It is important to recognize that variability in expo-

sure conditions will induce variability in the response variable.
Variability in both outdoor and laboratory exposures has been
well-documented (for example, see Guide G141). Excessive
variability in exposure conditions will necessitate more repli-
cation. See 5.2.2 for additional information.

5.2.2 Predictor Variables—The objective of most of the
methods in this guide is to determine whether or not the
predictor variables had a significant effect on the response
variable. The variables will be a mixture of the things that are
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controllable (predictor variables – the items of interest), things
that are uncontrolled (blocking variables), or even worse,
things that are not anticipated.

5.2.2.1 The most common variables in weather and durabil-
ity testing are the applied environmental stresses. These can be
controlled, for example, temperature, irradiance, humidity
level in a laboratory device, or uncontrolled, that is, an
arbitrary outdoor exposure.

NOTE 1—Even controlled environmental factors typically exhibit
variability, which must be accounted for (see Guide G141). The controlled
variables are the essence of the weathering experiment. They can take on
discrete or continuous values.

5.2.2.2 Some examples of discrete predictor variables are:
Polymer A, B, C
Ingredient A, B, C, D
Exposure location A versus B (for example, Ohio to Florida, or,

Laboratory 1, Laboratory 2, and Laboratory
3)

5.2.2.3 Some examples of continuous predictor variables
are:

Ingredient level (for example, 0.1 %, 0.2 %, 0.4 %, 0.8 %)
Exposure temperature (for example, 40, 50, 60, 70°C)
Processing stress level (for example, temperature)

5.2.2.4 It is also possible to have predictor variables of each
type within one experiment. One key consideration for each
predictor variable is: Is it continuous or discrete? In addition,
there are other important features to be considered:

(1) If discrete, how many possible states can it take on?
(2) If continuous, how much variability is expected in the

values? If the variability is high, the number of replicates
should be increased.

5.2.2.5 The exposure stresses are extremely important fac-
tors in any weathering test. If the exposure stresses are
expected to be variable across the exposure area, then one of
two approaches to experimental design should be taken:

(1) Reposition the test specimens over the course of the
exposure to reduce this variability. This will reduce the amount
of replication required in the design.

(2) Consider a block design, where the specimen positions
are randomized. A block design will help make sure that
variability in exposure stresses are portioned out over the
sample population evenly. Position may also then be treated as
a predictor variable.

5.2.3 Experimental Matrix—It is traditional to summarize
the response and predictor variables in a matrix format. Each
column represents a variable, and each row represents the
result for the combination of predictor variables across the row.
In a full factorial design, every possible combination of all of
the levels for each predictor variable is tested (the rows of the
matrix). In addition, each combination may be tested more than
once (replication).

5.2.3.1 Table 1 illustrates an experiment with two factors,
one with three possible states (Predictor Variable 2), the other
with two (Predictor Variable 1), and two replicates per combi-
nation.

5.2.3.2 In general, it is not necessary to have identical
numbers of replicates for each factor combination, nor is it
always necessary to test every combination. A good rule of
thumb is to test all combinations of levels that are expected to

be important, and a few of the combinations at the more
extreme levels for some of the factors. A detailed treatment of
experimental designs other than the full factorial approach
involves a model for the response variable behavior and is
beyond the scope of this guide.

5.2.4 Selecting a Statistical Method—The final step in
setting up the weathering experiment is to select an appropriate
method to analyze the results. Fig. 1 uses information from the
previous steps to choose some applicable methods:

5.3 Other Issues:
5.3.1 Determining the Frequency of Measurements—In

general, the faster the materials degrade when exposed, the
more frequent the evaluations should be. If something is
known about the durability of a material in advance of a test,
that information should be used to plan the test frequency. If
very little is known about the material’s durability, it may be
helpful to adopt a variable length approach in which frequent
inspections are scheduled early on, with fewer later (according
to the observed rate of change in the material).

5.3.1.1 If the materials under investigation exhibit sudden
failures, or if the failure mechanisms are not detectable until a
certain threshold is reached, it may be necessary to continue
frequent inspections until failure. In this case, the frequent
evaluations might be cursory, for example a visual inspection,
rather than a full-blown analytical measurement. Another
option, if available, is to automate detection of failure, allow-
ing continuous inspection.

5.3.2 Determining the Evaluation Timing and Duration of
Testing—If the service life of a product is of interest, it is
usually necessary to test until at least some of the sample has
failed. Failure is typically a predetermined level of property
change, or the point at which the material can no longer
perform its intended function. It is recommended that materials
be tested until they fail, or at least until they exhibit significant
change. When comparing the relative performance of two or
more materials, it is recommended that testing continue until a
statistically significant spread is observed in their performance.
The more rapidly (across a time interval) a material changes in
a response variable, the shorter the interval between observa-
tions must be to detect changes.

5.3.2.1 Sudden changes in a response variable at any time
over the course of an exposure increase the uncertainty of the
relationship between the predictor and response variables. In
these cases, it is often a good idea to conduct multiple
exposures (over time) and exposures in different environments.

TABLE 1 EXAMPLE EXPERIMENT

Response Variable Predictor Variance 1 Predictor Variance 2
xAA1 A A
xAA2 A A
xAB1 A B
xAB2 A B
xAC1 A C
xAC2 A C
xBA1 B A
xBA2 B A
xBB1 B B
xBB2 B B
xBC1 B C
xBC2 B C
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6. Statistical Methods

6.1 Use the step-by-step approach in Section 5 to arrive at
one of the statistical methods. More than one method may
apply to a particular experiment, in which case it does not hurt
to try several approaches. A brief description of each method
follows, along with a small example application.

6.2 Student’s t-Test:
6.2.1 The Student’s t-Test can be used to compare the means

of two independent samples (random variables). This is the
simplest comparison that can be made: there is only one factor
with two possible states (by default discrete). Since it is such a
direct and limited comparison, replication must be used,
typically with at least three replicates in each sample. See
Table 2.

6.2.2 The t-Test assumes that the data are close to normally
distributed, although the test is fairly robust. The distributions
of each sample need not be equal, however. For large sample
sizes, the t-Distribution approaches the normal distribution. If
you have reason to suspect that the data are not normally
distributed, an alternate method like Mann-Whitney may be
more appropriate.

6.2.3 Often, physical property measurements are close to
normally distributed. The following is an example problem and

analysis. The analysis was calculated two ways: assuming that
the populations had equal variance, and not making such an
assumption. In either case, the resulting probability values
indicate that there is a significant difference in the sample
means (assuming an alpha level of 0.05).
Predictor samples t-test on COLOR CHANGE grouped by FORMULA:

Formula N Mean Standard Deviation
A 5 1.060 0.114
B 3 1.300 0.100

Analysis Method t Value Degrees of Freedom P(X>cv)
Separate variances 3.116 4.9 0.036
Pooled variances 3.000 6.0 0.024

P(X>cv) indicates the probability that a Student’s
t-distributed random variable is greater than the cv, that is, the

FIG. 1 Selecting a Method

TABLE 2 STUDENT’S t-TEST EXAMPLE

Color Change Formula

1.000 A
1.200 A
1.100 A
0.900 A
1.100 A
1.300 B
1.400 B
1.200 B
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area under the tail of the t-distribution to the right of Point t.
Since this value in either case is below a pre-chosen alpha level
of 0.05, the result is significant. Note that this result would not
be significant at an alpha level of 0.01.

6.3 ANOVA:
6.3.1 Analysis of Variance (ANOVA) performs comparisons

like the t-Test, but for an arbitrary number of predictor
variables, each of which can have an arbitrary number of
levels. Furthermore, each predictor variable combination can
have any number of replicates. Like all the methods in this
guide, ANOVA works on a single response variable. The
predictor variables must be discrete. See Table 3.

6.3.2 The ANOVA can be thought of in a practical sense as
an extension of the t-Test to an arbitrary number of factors and
levels. It can also be thought of as a linear regression model
whose predictor variables are restricted to a discrete set. Here
is the example cited in the t-Test, extended to include an
additional formula, and another factor. The new factor is to test
whether the resulting formulation is affected by the technician
who prepared it. There are two technicians and three formulas
under consideration.

6.3.3 This example also illustrates that one need not have
identical numbers of replicates for each sample. In this
example, there are two replicates per factor combination for
Formula A, but no replication appears for the other formulas.
Analysis of Variance
Response variable: COLOR CHANGE

Source
Sum of
Squares

Degrees of
Freedom Mean square F Ratio P(X>cv)

Formula 0.483 2 0.241 16.096 0.025
Technician 0.005 1 0.005 0.333 0.604
Error 0.045 3 0.015 - -

6.3.4 Assuming an alpha level of 0.05, the analysis indicates
that the formula resulted in a significant difference in color
change means, but the technician did not. This is evident from
the probability values in the final column. Values below the
alpha level allow rejection of the null hypothesis.

6.4 Linear Regression:
6.4.1 Linear regression is essentially an ANOVA in which

the factors can take on continuous values. Since discrete
factors can be set up as belonging to a subset of some larger
continuous set, linear regression is a more general method. It is
in fact the most general method considered in this guide. See
Table 4.

6.4.2 The most elementary form of linear regression is easy
to visualize. It is the case in which we have one predictor
variable and one response variable. The easy way to think of
the predictor variable is as an x-axis value of a two dimensional

plot. For each predictor variable level, we can plot the
corresponding measurement (response variable) as a value on
the ordinate axis. The idea is to see how well we can fit a line
to the points on the plot. See Table 5.

6.4.3 For example, the following experiment looks at the
effect of an impact modifying ingredient level on impact
strength after one year of outdoor weathering in Arizona.

6.4.4 The plot of ingredient level versus retained impact
strength shown with a linear fit and 95 % confidence bands
looks like: (See Fig. 2)

6.4.5 This example illustrates the use of replicates at one of
the levels. It is a good idea to test replicates at the levels that
are thought to be important or desirable. The analysis indicates
a good linear fit. We see this from the R2 value (squared
multiple R) of 0.976. The R2 value is the fraction of the
variability of the response variable explained by the regression
model, indicates the degree of fit to the model.

6.4.6 The analysis of variance indicates a significant rela-
tionship between modifier level and retained impact strength in
this test (the probability level is well below an alpha level of
5 %).
Linear Regression Analysis
Response Variable: Impact Retention (%)
Number of Observations: 7
Multiple R: 0.988
Squared Multiple R: 0.976

Source
Degrees of
Freedom Sum of Squares F Ratio P(X>cv)

Regression 1 0.0464 205.1 less than 0.0001
Residual 5 0.0011 - -

6.4.7 Regression can be easily generalized to more than one
factor, although the data gets difficult to visualize since each
factor adds an axis to the plot (it is not so easy to view
multidimensional data sets). It can also be adapted to nonlinear
models. A common technique for achieving this is to transform
data so that it is linear. Another way is to use nonlinear least
squares methods, which are beyond the scope of this guide.
Regression can also be extended to cover mixed continuous

TABLE 3 ANOVA EXAMPLE

Color Change Formula Technician

1.000 A Elmo
1.100 A Elmo
1.100 A Homer
0.900 A Homer
1.300 B Elmo
1.400 B Judd
1.200 B Homer
0.700 C Elmo
0.600 C Homer

TABLE 4 REGRESSION EXAMPLE

Modifier Level Impact Retention After Exposure

0.005 0.535
0.01 0.6
0.02 0.635
0.02 0.62
0.03 0.68
0.04 0.754
0.05 0.79

TABLE 5 PATHOLOGICAL LINEAR REGRESSION EXAMPLE

x v

0.01 0.029979
0.02 0.054338
0.03 0.088581
0.04 0.082415
0.05 0.126631
0.06 0.073464
0.07 0.123222
0.08 0.097003
0.09 0.099728
0.75 0.805909
0.86 0.865667
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and discrete factors. It should be noted that most spreadsheet
and elementary data analysis applications can perform fairly
sophisticated regression analysis.

6.4.8 Another use of regression is to compare two predictor
random variables at a number of levels for each. For example,
results from one exposure test can be plotted against the results
from another exposure. If the points fall on a line, then one
could conclude that the tests are “in agreement.” This is called
correlation. The usual statistic in a linear correlation analysis is
R2, which is a measure of deviation from the model (a straight
line). The R2 values near one indicate good agreement with the
model, while those near zero indicate poor agreement. This
type of analysis is different from the approaches suggested
above which were constructed to test whether one random
variable depended somehow on others. It should be noted,
however, that correlation can always be phrased in ANOVA-
like terms. The correlation example included for the Spearman
rank correlation method illustrates this. The observations then
make up a response random variable. Correlation on absolute
results is not recommended in weathering testing. Instead,
relative data (ranked data) often provide more meaningful
analysis (see Spearman’s rank correlation).

6.4.9 Regression/correlation can lead to misleadingly high
R2 values when the x-axis values are not well-spaced. Consider
the following example, which contains a cluster of data that
does not exhibit a good linear fit, along with a few outliers. Due

to the large spread in the x-axis values, the clustered data
appears almost as a single data point, resulting in a high R2

value. (See Fig. 3).
Linear Regression Analysis
Number of Observations: 11
Multiple R: 0.997
Squared Multiple R: 0.994

Source
Degrees of
Freedom Sum of Squares F Ratio P(X>cv)

Regression 1 0.9235 1509 less than 0.0001
Residual 9 0.0055 - -

6.4.10 Even though the analysis indicates a good fit to a
linear model, the cluster of data does not fit a linear model well
at all without the outliers. If the objective of this analysis were
correlation, a ranked method like Spearman’s (see 6.7) would
provide a more reliable analysis.

6.5 Mann-Whitney:
6.5.1 The Mann-Whitney test is the nonparametric analog to

the Student’s t-Test. It is used to test for difference in two
populations. This test is also known as the Rank-Sum test, the
U-test, and the Wilcoxon Test. This test works by ranking the
combined data from each population. It is important to look for
repeats of the data (these are known as “ties”) Ties are treated
as follows: the rank is equivalent to the sum of the ranking
values normally assigned for that value of the response variable
divided by the number of repeats for that value of the response
variable. (See the following example.) The ranks are then

FIG. 2 Linear Regression Fit

FIG. 3 Pathological Linear Regression Example
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summed for one of the groups. This rank sum is normally
distributed for a sufficient number of observations, with the
following mean and standard deviation:

mean 5
nA ~n A1nB11!

2
standard deviation ~SD!5

ŒnAnB~nA1nB11!
12

2

nAnB (
i51

~ t i
3 2 t i!

12~nA1nB!~nA1n B 2 1!

where
nA = number of data points in Sample A, and
nB = number of specimens in Sample B.

If there are no ties in the data (see 6.5.1), the formula for
standard deviation can be considerably simplified, because the
second term under the radical (beginning with the minus sign)
evaluates to zero.

6.5.2 The rank sum can be standardized by means of the
transformation:

(rank sum – mean)/SD
This value can be compared with a table of z-values for the
normal distribution to test for significance. (For small numbers
of data points, the Student’s t-distribution is more appropriate.)
For example, consider the same data set that appears in the
Student’s t-Test section. Table 6 indicates a significant differ-
ence in sample means, since the standardized value is below
the value of a normally distributed random variable at an alpha
level of 0.05. This is the same conclusion as the t-Test.
Mann-Whitney Analysis:

mean 5
~5!~51311!

2
5 22.5

standard deviation ~SD!5

Œ~5!~3!~51311!
12

2
~5!~3!~~23 2 2!1~23 2 2!!

~12!~513!~513 2 1!
5 3.3139

Total Number of Observations: 8
Rank sum for Formula A = 1 + 2 + 3.5 + 3.5 + 5.5 = 15.5
Rank sum - mean = 15.5 – 22.5 = –7.0
Standardized value = –7.0/3.3139 = –2.11
Compare with an alpha level of 0.05 for a normal random

variable, –1.96 to 1.96

6.6 Kruskal-Wallis:
6.6.1 The Kruskal-Wallis method is a nonparametric analog

of single-factor ANOVA. This method compares the medians
of three or more groups of samples. To carry out the Kruskal-
Wallis method, the data are ranked just as in the Mann-Whitney
Method.

6.6.2 Unlike Mann-Whitney, the sampling distribution is
arranged so that it follows the chi-square distribution, in which:

chi 2 square 5
12

N~N11! (
i51

k Ri
2

ni

2 3~N11!

And, if there are ties, the following correction must be
applied:

chi 2 square~corrected! 5
chi 2 square

1 2
( t~t2 2 1!
N~N2 2 1!

where:
N = total number of observations,
k = number of groups,
nI = sample size of the ith group,
Ri = rank sum of ith group, and
t = count of a particular tie.

6.6.3 This statistic is compared against the chi-square dis-
tribution with k – 1 degrees of freedom (see Table X2.1 if
needed), and if it exceeds the value corresponding to the alpha
level, the null hypothesis is rejected, which means that the
median of the response variable of one or more of the sample
sets is different from the others. See Table 7
Kruskal-Wallis Analysis:

TABLE 6 MANN-WHITNEY EXAMPLE

Rank Order

Color Change Formula Normal Correlation for Ties

0.9 A 1 1
1 A 2 2

1.1 A 3 3.5
1.1 A 4 3.5
1.2 A 5 5.5
1.2 B 6 5.5
1.3 B 7 7
1.4 B 8 8

TABLE 7 KRUSKAL-WALLIS EXAMPLE

Rank Order

Formula Gloss Normal Correlation for Ties

A 6 1 1
A 8 3 3
A 10 5 5
A 11 6 7
A 12 9 9
A 14 11 11.5
A 14 12 11.5
A 15 13 13
A 18 16 16
A 20 19 19
A 21 20 20
A 24 23 23
B 7 2 2
B 9 4 4
B 11 7 7
B 11 8 7
B 16 14 14
B 17 15 15
B 19 17 17.5
B 22 21 21
B 23 22 22
B 26 25 26.5
B 27 29 29.5
B 31 34 34.5
C 13 10 10
C 19 18 17.5
C 25 24 24
C 26 26 26.5
C 26 27 26.5
C 26 28 26.5
C 27 30 29.5
C 28 31 31
C 29 32 32
C 30 33 33
C 31 35 34.5
C 32 36 36
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chi 2 square 5 S 12

~36!~3611!D *S 1392

12
1

2002

12
1

3272

12 D 2 3~3611!

5 13.813

Since there are ties, the corrected chi-square must be
calculated:

chi 2 squarescorr.d 5
13.813

1 2
s3ds32 2 1d1s2ds22 2 1d1s2ds22 2 1d1s4ds4 2 2 1d1s2ds22 2 1d1s2ds22 2 1d

s36ds372 2 1d

5 13.84

Degrees of freedom = 3-1 = 2
From chi-square table – at an alpha level of 0.05 and 2

degrees of freedom – cv = 5.99
Since 13.84 > 5.99, the null hypothesis is rejected.

6.7 Spearman’s Rank Correlation:
6.7.1 Spearman rank correlation is a nonparametric analog

of correlation analysis as stated in 6.4 on linear regression.
Like regression, it can be applied to compare two predictor
random variables, each at several levels (which may be discrete
or continuous). Unlike regression, Spearman’s rank correlation
works on ranked (relative) data, rather than directly on the data
itself.

6.7.2 Like the R2 value produced by regression, the Spear-
man’s rs coefficient indicates agreement. A value of rs near one
indicates good agreement; a value near zero, poor agreement.
Of course, as a nonparametric method, the Spearman rank
correlation does not make any assumptions about the normality
of the distributions of the underlying data.

6.7.3 Spearman’s method works by assigning a rank to each
observation in each group separately (contrast this to the
previous rank-sum methods in which the ranks are pooled).
Ties are still ranked as in Mann-Whitney or Kruskal-Wallis,
but the actual calculation does not have to be corrected. The
Spearman’s correlation is calculated according to the following
formula:

rs 5 1 2
6(di

2

n~n2 2 1!

where:
n = number of observations, and
di = difference between the ranks of a pair.

7. Application

7.1 To illustrate the Spearman’s test and bring together
some common ideas between the test methods in this guide, we
will consider an example that can be analyzed many ways.
Suppose we are interested in a new laboratory test and how it
compares with a specific outdoor exposure (Arizona, for
example). There are ten different color specimens, and the
durability measure is percent of gloss retained after exposure.
We can think of this as a correlation test between the exposure
conditions, or as a two-factor ANOVA-like test with gloss as
the response variable, color as one predictor variable (10
levels), and exposure condition as another predictor variable (2
levels). See Table 8 for the data, along with rankings for use in
the Spearman’s calculation. Data analysis according to Spear-
man’s method appears as follows, along with some other
methods of comparison:

Spearman’s Rank Correlation Analysis:
Dependent Variable: 60° Gloss Retention (%)
Grouped by Exposure Type
Number of Observations: 10

r s 5 1 2
s6dfs2 2 2d21s1 2 1d21s10 2 10d21s9 2 9d21s7 2 6d21s4 2 3d21s3 2 4d 21s8 2 8d21s5 2 5d21s6 2 7d2g

s10ds102 2 1d

TABLE 8 Correlation Example

Gloss Retention Color Exposure Type Rank

0.57 1 600 Hours laboratory 2
0.54 2 600 Hours laboratory 1
0.95 3 600 Hours laboratory 10
0.91 4 600 Hours laboratory 9
0.90 5 600 Hours laboratory 7
0.73 6 600 Hours laboratory 4
0.71 7 600 Hours laboratory 3
0.91 8 600 Hours laboratory 8
0.74 9 600 Hours laboratory 5
0.90 10 600 Hours laboratory 6
0.19 1 12 Months AZ direct 2
0.18 2 12 Months AZ direct 1
0.85 3 12 Months AZ direct 10
0.83 4 12 Months AZ direct 9
0.57 5 12 Months AZ direct 6
0.25 6 12 Months AZ direct 3
0.33 7 12 Months AZ direct 4
0.72 8 12 Months AZ direct 8
0.41 9 12 Months AZ direct 5
0.65 10 12 Months AZ direct 7
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rs 5 0.975758

Linear Regression Analysis (Correlation):
Dependent Variable: 60° Gloss Retention (%)
Number of Observations: 10
Multiple R: 0.9394
Squared Multiple R: 0.8824
(See Fig. 4.)

Analysis of Variance:
Dependent Variable: 60° Gloss Retention (%)

Source
Sum of
squares

Degrees of
Freedom Mean Square F Ratio P-value

Color 0.733641 9 0.081516 9.39231 0.001323
Exposure 0.416793 1 0.416793 48.02333 6.84E05
Error 0.078111 9 0.008679 - -

8. Summary of Results

8.1 The Spearman’s method indicates good agreement in
material durability rankings between the exposures. Linear
regression indicates a good fit to a linear model.

8.2 The correlation plot illustrates this graphically.
However, from the plot, we see that the Arizona exposure
resulted in lower retained gloss overall. We also see that there
is a wide spread in durability for the 10 different colors.

8.3 ANOVA detects the differences in harshness between
exposures, and indicates that they are significantly different.
ANOVA also detects the differences in retained gloss across the
ten colors, indicating that in this example, color is a significant
factor.
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9.1 experimental design; statistics; weathering
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X2. CHI-SQUARE TABLE

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

TABLE X2.1 Critical Values for α
df 0.05 0.01 0.001

1 3.84 6.64 10.83
2 5.99 9.21 13.82
3 7.82 11.35 16.27
4 9.49 13.28 18.47
5 11.07 15.09 20.52
6 12.59 16.81 22.46
7 14.07 18.48 24.32
8 15.51 20.09 26.13
9 16.92 21.67 27.88

10 18.31 23.21 29.59
11 19.68 24.73 31.26
12 21.03 26.22 32.91
13 22.36 27.69 34.53
14 23.69 29.14 36.12
15 25 30.58 37.7
16 26.3 32 39.25
17 27.59 33.41 40.79
18 28.87 34.81 42.31
19 30.14 36.19 43.82
20 31.41 37.57 45.32
21 32.67 38.93 46.8
22 33.92 40.29 48.27
23 35.17 41.64 49.73
24 36.42 42.98 51.18
25 37.65 44.31 52.62
26 38.89 45.64 54.05
27 40.11 46.96 55.48
28 41.34 48.28 56.89
29 42.56 49.59 58.3
30 43.77 50.89 59.7
40 55.76 63.69 73.41
50 67.51 76.15 86.66
60 79.08 88.38 99.62
70 90.53 100.42 112.31
80 101.88 112.33 124.84
90 113.15 124.12 137.19

100 124.34 135.81 149.48
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