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This standard is issued under the fixed designation F3172; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide provides guidance for selecting an appropri-
ate device size(s) and determining an appropriate sample
size(s) (that is, number of samples) for design verification
testing of endovascular devices. A methodology is presented to
determine which device size(s) should be selected for testing to
verify the device design adequately for each design input
requirement (that is, test characteristic). Additionally, different
statistical approaches are presented and discussed to help guide
the developer to determine and justify sample size(s) for the
design input requirement being verified. Alternate methodolo-
gies for determining device size selection and sample size
selection may be acceptable for design verification.

1.2 This guide applies to physical design verification test-
ing. This guide addresses in-vitro testing; in-vivo/animal stud-
ies are outside the scope of this guide. This guide does not
directly address design validation; however, the methodologies
presented may be applicable to in-vitro design validation
testing. Guidance for sampling related to computational simu-
lation (for example, sensitivity analysis and tolerance analysis)
is not provided. Guidance for using models, such as design of
experiments (DOE), for design verification testing is not
provided. This guide does not address sampling across multiple
manufacturing lots as this is typically done as process valida-
tion. Special considerations are to be given to certain tests such
as fatigue (see Practice E739) and shelf life testing (see Section
8).

1.3 Regulatory guidance may exist for endovascular devices
that should be considered for design verification device size
and sample size selection.

1.4 Units—The values stated in SI units are to be regarded
as the standard. No other units of measurement are included in
this standard.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

E739 Practice for Statistical Analysis of Linear or Linearized
Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data

F2914 Guide for Identification of Shelf-life Test Attributes
for Endovascular Devices

2.2 ISO Standards:3

ISO 14971:2012 Medical devices—Application of risk man-
agement to medical devices

3. Terminology

3.1 Definitions:
3.1.1 attribute data, n—data that identify the presence or

absence of a characteristic (for example, good/bad or pass/fail).

3.1.2 design input requirements, n—physical and perfor-
mance requirements of a device that are used as a basis for
device design (typically defined as test characteristics such as
balloon burst pressure, shaft tensile strength, and so forth).

3.1.3 design output, n—features of the device (that is,
dimensions, materials, and so forth) that define the design and
make it capable of achieving design input requirements.

3.1.4 design subgroup, n—set defined by the device sizes
within the device matrix in which the essential design outputs
do not vary for a specified design input requirement (that is,
device sizes that share the same design for a specified design
input requirement).

3.1.5 design validation, n—establishing by objective evi-
dence that the device conforms to defined user needs and
intended use(s).
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3.1.6 design verification, n—confirmation by examination
and provision of objective evidence that the device design
(design output) fulfills the specified requirements (design
input).

3.1.7 device matrix, n—entire range of available models/
sizes for the device family.

3.1.8 device size, n—individual model/size (for example, 6
mm diameter by 25 mm length balloon on 135 cm length
catheter or a 6Fr 100 cm length guide catheter).

3.1.9 endovascular device, n—device used to treat vascular
conditions from within the vessel.

3.1.10 essential design output, EDO, n—design feature(s) or
characteristic(s) of the device that affects its ability to achieve
the design input requirements (that is, design output(s) that has
a relevant effect on the test results).

3.1.11 process validation, n—establishment by objective
evidence that a process consistently produces a result or device
achieving its predetermined requirements.

3.1.12 safety factor, n—ratio of the device performance to
the specification requirement (for example, how much stronger
the device is than it needs to be to meet its specification
requirement).

3.1.13 sample size, n—quantity of individual specimens of a
device tested.

3.1.14 variables data, n—data that measure the numerical
magnitude of a characteristic (how good/how bad).

4. Significance and Use

4.1 The purpose of this guide is to provide guidance for
selecting appropriate device size(s) and determining appropri-
ate sample size(s) for design verification of endovascular
devices. The device size(s) and sample size(s) for each design
input requirement should be determined before testing. The
device size(s) selected for verification testing should establish
that the entire device matrix is able to achieve the design input
requirements. If testing is not performed on all device sizes,
justification should be provided.

4.2 The sample size justification and statistical procedures
used to analyze the data should be based on sound scientific
principles and should be suitable for reaching a justifiable
conclusion. Insufficient sample size may lead to erroneous
conclusions more often than desired.

4.3 Guidance regarding methodologies for determining de-
vice size selection and appropriate sample size is provided in
Sections 5 and 6.

5. Selection of Device Size(s)

5.1 Design input requirements are the physical and perfor-
mance requirements of a device that are used as a basis for
device design. Once the device design is defined, testing is
typically performed to verify that the design input requirements
are met. The appropriate device size(s) for verification testing
should be determined for each design input requirement.
Testing the same device size(s) is typically not appropriate to
verify all design input requirements. Differences in the device

design throughout the device matrix will drive which device
size(s) is selected for verification of each design input require-
ment.

5.1.1 As explained in subsequent sections, when determin-
ing device size(s) for testing, the following should be consid-
ered for each design input requirement:

5.1.1.1 Essential design outputs,
5.1.1.2 Design subgroups, and
5.1.1.3 Other considerations.

5.2 Define Essential Design Outputs (EDOs)—The design
outputs of the device are the features of the device (that is,
dimensions, materials, and so forth) that define the design and
make it capable of achieving design input requirements. Not all
design outputs are essential for each design input requirement.
Therefore, for each design input requirement, the essential
design outputs (EDOs) should be identified. In Table 1,
example EDOs for design input requirements of a balloon
catheter device are provided.

5.3 Define Design Subgroups:
5.3.1 The design subgroups should be defined for each

design input requirement based on the EDOs identified.
5.3.2 For a specific design input requirement, the design

subgroups can be defined as one of the following:
5.3.2.1 The entire device matrix if the EDOs for the design

input requirement are constant throughout the entire device
matrix,

5.3.2.2 Subsets of the device matrix if the EDOs for the
design input requirement vary in groups or stages throughout
the device matrix, or

5.3.2.3 Each individual device size of the device matrix if
EDOs for the design input requirement are different for each
individual device size.

5.3.3 Fig. 1 represents the device matrix (entire range of
available device sizes) for a 135 cm length balloon catheter
device that has balloon diameters ranging from 3 to 7 mm and
balloon lengths ranging from 10 to 50 mm. Balloon catheters
are available in any combination of balloon diameter and
length resulting in 25 unique device sizes in the device matrix.

5.3.4 Figs. 2-4 illustrate how the device matrix in Fig. 1 is
defined by different design subgroups for different design input
requirements. Fig. 2 represents a design subgroup that is
defined by the entire device matrix because all device sizes
share the same design for the specified design input require-
ment (that is, the EDOs remain constant for all device sizes).

TABLE 1 Example EDOs for Design Input Requirements for a
Balloon Catheter Device

Design Input Requirement EDOs

Manifold connection/ Luer lockability Luer thread dimensions
Manifold material

Catheter shaft tensile strength for a
single lumen catheter

Shaft material
Shaft cross sectional area
(diameter and wall thickness)
Shaft bond design

Balloon compliance (diameter versus
pressure)

Balloon diameter
Balloon material
Balloon wall thickness

Balloon deflation time Balloon volume
Shaft deflation lumen design
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The design input requirement is manifold connection/luer
lockability testing, and the EDOs (luer thread dimensions and
manifold material) are the same for all sizes in the device
matrix.

5.3.5 Figs. 3 and 4 represent design subgroups that are
subsets of the device matrix because the EDOs for the design
input requirement vary throughout the device matrix. Fig. 3
represents design subgroups for shaft tensile strength for a
device that contains two different shaft designs in the device
matrix, but the other EDOs that were identified (shaft material
and shaft bond design) are the same for the entire device
matrix. Therefore, there is a design subgroup that is defined by
the device sizes that have shaft design “A” and a design
subgroup that is defined by the device sizes that have shaft
design “B.” Fig. 4 represents design subgroups for balloon
compliance in which each balloon diameter defines a unique
design subgroup.

5.4 Design Input Requirements and Other
Considerations—In addition to design subgroup definition,
design input, device labeling, or regulatory requirements may
make it necessary to test additional sizes.

5.5 Device Size Selection Approach:
5.5.1 Approach—Once the design subgroups are defined for

a given design input requirement, the device size(s) to be tested
for design verification testing can be appropriately selected by
using one of the following approaches:

5.5.1.1 Test each design subgroup,
5.5.1.2 Test the worst-case design subgroup, or
5.5.1.3 Test a subset of the design subgroups.
5.5.2 Test Each Design Subgroup:
5.5.2.1 Depending on the design subgroup definition, test-

ing each design subgroup may translate into testing one device
size or multiple device sizes to verify the entire device matrix.

FIG. 1 Device Matrix for a Balloon Catheter Device (25 Unique Device Sizes)

FIG. 2 Design Subgroup for Manifold Connection/Luer Lockability Testing (EDOs Remain Constant throughout the Device Matrix)
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5.5.2.2 When the design subgroup is defined by the entire
device matrix and the requirement is the same throughout the
device matrix, any device size may be selected for verification
testing to represent the entire device matrix. This approach is
appropriate since all device sizes share the same design for the
specified design input requirement (that is, the EDOs are the
same for all device sizes). Fig. 5 illustrates the design subgroup
and example device size selection for verification testing for
manifold connection/luer lockability. Since any device size
represents the entire device matrix, factors such as device sizes
used for other testing to minimize total test units or device size
with the highest sales volume may be considered.

5.5.2.3 When the design subgroups are defined by subsets of
the device matrix, a device size should be selected from within
each design subgroup to verify the design adequately since

EDOs vary throughout the device matrix. Fig. 6 illustrates the
design subgroups and example device sizes selected for veri-
fication testing for shaft tensile strength. Note that the shaft
tensile strength requirement is the same for all device sizes and
the other EDOs identified (shaft material and shaft bond
design) are the same for all device sizes.

5.5.2.4 An alternate approach to selecting one device size to
represent each design subgroup would be to pool multiple sizes
within a design subgroup for testing. Refer to Section 7 for
more information on data pooling.

5.5.3 Test the Worst-Case Design Subgroup:
5.5.3.1 For certain design input requirements, testing only

the worst-case design subgroup adequately verifies the entire
device matrix. The worst-case design subgroup is determined
by considering how the EDOs impact performance to the

FIG. 3 Design Subgroups for Shaft Tensile (EDOs Vary throughout the Device Matrix But Are Constant within Each Design Subgroup)

FIG. 4 Design Subgroups for Balloon Compliance (EDOs Vary throughout the Device Matrix But Are Constant within Each Design Sub-
group)
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design input requirements. If the design input requirement limit
varies throughout the device matrix [for example, different
rated burst pressure (RBP) requirements for different diameter
balloon catheters], a worst case could be tested for each
specification limit or one worst-case subgroup could be tested
by performing a worst-case analysis that accounts for the
differences in the specification limits, such as a safety factor
calculation. Additionally, if the design input requirement has

both an upper and a lower specification limit, there may be a
worst case for the upper specification and a different worst case
for the lower specification.

5.5.3.2 Testing the worst-case design subgroup is a com-
monly used verification method when EDOs vary throughout
the device matrix and their impact to the design input perfor-
mance is well understood/defined (for example, increasing
diameter has a negative impact on achieving the design input

FIG. 5 Example Design Subgroup and Verification Device Size Selection for Manifold/Luer Lockability Testing

FIG. 6 Example Design Subgroups and Verification Device Size Selection for Shaft Tensile Strength

FIG. 7 Worst-Case Size May be Selected Based on a Safety Factor Calculation
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requirement and decreasing the diameter has a positive impact
on achieving the design input requirement).

5.5.3.3 The worst-case design subgroup may be determined
by one of the following methods:

(1) Historical data (similar predicate device or develop-
ment characterization of current device) or

(2) Engineering judgment, analysis, computational
simulation, or safety factor calculation.

NOTE 1—While the engineering or computational analysis, or both, may
be applied to determine the worst-case size selection, additional consid-
erations that could impact which device size to test may exist. For
example, manufacturing process variations between device sizes could
result in an actual worst-case device size that is different than the
theoretical worst case. Additionally, the assembly of a multi-component
device could result in failures that would not be predicted by an

engineering analysis applied to only one component of the device. Use of
historical knowledge of failures can be used to justify whether these
factors should be considered in the device size selection. The following
are a couple examples of types of analysis to determine worst case:

(a) Hoop stress calculation—The highest balloon hoop
stress may represent the worst-case situation for balloon burst
testing when it is known that the finished device always fails in
the balloon.

(i) By using a thin-walled pressure vessel assumption,
the hoop stress of a cylindrical balloon could be calculated by:4

Hoop Stress 5
P*D

~2 * T!
(1)

4 R. C. Hibbele, Mechanics of Materials, Third Edition, 1997.

FIG. 8 Example Design Subgroups to Consider for Balloon Deflation Time

FIG. 9 Xs Represent Worst Case (Largest Balloon Volume) within Each Shaft Design Subgroup; These Are the Device Sizes Selected to
Verify that the Entire Device Matrix Can Achieve the Design Input Requirement
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where:
P = pressure (Rated Burst Pressure (RBP) design input

requirement),
D = diameter (EDO), and
T = wall thickness (EDO).

(ii) By using the rated burst specification requirement for
P in the hoop stress formula, the worst-case size (that is, the
size with the highest hoop stress at rated burst pressure) can be
calculated.

(b) Fatigue safety factor calculation—Appropriately vali-
dated finite element analysis may be used on each implant
diameter or other relevant property (for example, design
platform, length) to determine the fatigue safety factor as well
as the critical stress and strain values and locations. The
predicted stresses and strains are compared to the fatigue life
line to determine the fatigue safety factor. The implant with the
lowest fatigue safety factor may be tested as the worst case in
design verification (see Fig. 7 for a stent example).

5.5.3.4 Balloon deflation time is an example of a design
input requirement for which a worst-case design subgroup
approach may be acceptable to verify the entire device matrix.
The EDOs defined for deflation time are balloon volume and
shaft deflation lumen design. For the example in Fig. 8, the
balloon volume and the shaft deflation lumen design both vary
throughout the device matrix; therefore, there are multiple
design subgroups that should be considered when selecting the
device size(s) for testing. Fig. 8 illustrates the design subgroups
to consider for balloon deflation time testing (2 different shaft
design subgroups and 25 different balloon volume design
subgroups).

5.5.3.5 Since the relationship between deflation time and
balloon volume for a constant shaft design is well understood
(that is, the larger the balloon volume, the longer the deflation
time), a worst-case approach can be used to verify each shaft
design subgroup. Fig. 9 illustrates that the worst-case balloon

volume device is selected within each shaft design to verify
that the entire device matrix has acceptable deflation times.

5.5.3.6 Note that if the design input requirement for defla-
tion time is not the same for all balloon sizes, then additional
sizes may need to be tested to verify the worst case for each
specification requirement.

5.5.3.7 Other examples of tests that may rely on the worst-
case device size rationale for selecting the device sizes for
testing are the following: accelerated durability, particulate
generation, corrosion, and magnetic resonance imaging (MRI)
compatibility. The rationale and device size for each test is
different because each test evaluates a different aspect of
device performance.

5.5.4 Test a Subset of the Design Subgroups—For certain
design input requirements, a subset of the design subgroups
may be required for verification testing. This approach may be
used when EDOs vary throughout the device matrix and a
worst-case device size is not known. For example, a two-by-
two factorial (Fig. 10) of the largest and smallest diameters and
lengths may be an approach to device size selection to capture
the performance at the corners of the design space.

6. Statistical Approaches for Sample Size Determination

6.1 Once the device size(s) has been selected for verification
testing per the methodology presented in Section 5, the sample
size needs to be defined. The sample size justification and
statistical procedures used to analyze the data are to be based
on sound scientific principles and suitable for reaching a
justifiable conclusion. An insufficient sample size may lead to
erroneous conclusions more often than desired.

6.2 This section provides an overview of determining sta-
tistically based sample sizes for the following design verifica-
tion test methodologies:

6.2.1 Attribute testing to a predefined specification (pass/
fail) and

FIG. 10 A 2-by-2 Factorial May be Selected for Evaluation When One Device Size Does not Represent the Entire Device Matrix or a
Worst-Case Device Size is Not Known
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6.2.2 Sampling by variables for proportion nonconforming.

6.3 If a predefined specification is not initially available, a
comparison to a predicate or similar device may be performed
to justify acceptability. It is recommended that before design
verification, the predicate or similar device should be charac-
terized and a specification limit should be defined based on that
characterization. Once the specification limit is defined, either
the attribute or variable testing approaches can be used to
verify the design. In Table 2, some of the considerations/
limitations of the approaches discussed in this guide are
summarized.

6.3.1 Risk and Sample Size—Selection of a sample size is a
three-step process:

6.3.1.1 First, determine the risk level based on the perceived
risk to the patient as a result of the failure of the specific design
input requirement. Risk level may be defined as the combina-
tion of the severity outcome of the device failure and the
likelihood of that failure happening (occurrence). For addi-
tional detail regarding how to determine the risk level, refer to
ISO 14971.

6.3.1.2 Next, determine the confidence and reliability (pro-
portion of the population) levels based on the risk level. The
risk level should point to a specific confidence and reliability
combination that should be demonstrated by the output.
Typically, the higher the risk level associated with failing the
design input requirement, the higher the confidence and reli-
ability combination required. This confidence and reliability
combination defines a statistical tolerance limit. For example,
one can state that at least 99 % of the population needs to be
below the output’s upper specification limit and then calculate
the 99th percentile based on a sample of 30 values. However,
this is only a point estimate since there is still uncertainty in the
true location of the 99th percentile because of the random draw
of the samples. Therefore, an upper confidence limit on the
estimate of the 99th percentile is needed, which will take into
account the sample size and provide a margin of error on the
percentile estimate in the direction of the specification limit(s).
Placing a confidence limit on this percentile estimate creates a
statistical tolerance limit.

6.3.1.3 Finally, select a sampling plan that meets the toler-
ance limit requirement. There are usually many different
sampling plans that can satisfy the same tolerance limit
requirement. Assuming the true population characteristic meets
the percent tolerance limit, the selection of the sampling plan is
a trade-off between efficiency (lower sample size) and likeli-
hood of passing (higher sample size). Therefore, the best
practice is to select a sampling plan that efficiently provides
evidence that the product meets tolerance requirements and is
unlikely to give false conclusions.

6.4 Attribute Testing:
6.4.1 Description—When data are assessed as attribute,

each unit returns a result of pass or fail. The data collected may
be binary data (for example, successful or not successful) or
variable data individually assessed against the criteria (for
example, is the measured value greater than the specified
limit). This section provides guidance on how to determine a
sample size for attribute data to establish a desired confidence
and reliability level.

6.4.2 Sample Size Determination:
6.4.2.1 For attribute data assessment, sample sizes are

chosen to demonstrate passing a predetermined specification at
a desired confidence and reliability level. Acceptance criteria
for attribute sampling plans include a sample size (n) and a
number of allowable failures (a). In a single-stage sampling
plan when a = 0, the number of samples needed for testing may
be calculated using:5

n 5
ln~1 2 confidence!

ln~reliability!
(2)

6.4.2.2 Additional variations of attribute sampling plans
include single-stage plans in which the acceptance number (a)
> 0 and multi-stage plans in which the potential outcomes of a
given stage include passing the plan, failing the plan, or taking
additional samples per the prescribed plan so that the total
probability of acceptance meets the quoted confidence level. In
both of these variations, the test can result in a pass even when
failures are observed, which seems counterintuitive. However,
the statistics behind the sampling plan demonstrate that the
plan will be more likely to pass populations that achieve the
performance requirements and more likely to fail populations
that do not achieve the performance requirements. Reference
Appendix X1 for a more in-depth explanation of sampling
plans where a > 0. Table 3 provides an example of an attribute
sample size calculation.

6.5 Variable Testing:
6.5.1 Description—Variables data consist of measuring the

numerical magnitude of a characteristic. Common methods of
assessing variable data include statistical tolerance limits and
process performance indices (Ppk and Pp), which can both be
defined by the combination of a confidence level and reliability
level. This section provides guidance on how to assess vari-
ables data against a predetermined specification requirement.

6.5.2 Sample Size Determination—Since variables data con-
tain more information per data point than attribute data,

5 Rothbart, Harold A., Mechanical Design and Systems Handbook, McGraw-
Hill, New York, 1985.

TABLE 2 Considerations/Limitations of the Approaches in This
Guide

Approach Advantages Limitations

Attribute testing
(to a predefined
specification)

Data distribution model
does not impact results
(that is, non-normal data
can be assessed as
attribute).

Sample sizes tend to be
larger than when using
variable assessments.
If continuous data are not
obtained, the safety factor
is unknown unless the test
is run at multiple levels of
severity.

Variable testing
(to a predefined
specification limit)

For a given confidence/
reliability, sample sizes
tend to be smaller than
when using attribute
assessments.
Variable assessments allow
for a predictive model of
the entire population
performance.

Sample size or
development time may
increase if the data contain
unexpected outliers which
do not permit an
acceptable distribution fit.
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variables sampling plans typically require fewer samples than
attribute sampling plans to achieve the same level of confi-
dence and reliability. In fact, there are virtually no restrictions
on the number of samples needed for variable data. However,
normality testing typically requires a minimum sample size to
provide enough power for the test, and the probability of
passing a given confidence and reliability combination does
increase with sample size, as described in 6.3.1.

6.5.3 Normality Testing:
6.5.3.1 The normal distribution is a common statistical

distribution for modeling variable data and is known for its
diverse applications. Tolerance limits tables are based on the
normal distribution, so a good practice is to test whether the
sample data adequately fit a normal distribution or whether the
normal distribution would at least be a conservative model to
use. Many normality tests are available in commercial statistics
packages. If the data pass the normality test, the tolerance limit
will provide a good, buffered estimate of the quoted percentile
of the population. If the data fail to fit a normal distribution,
options include:

(1) Test the fit to a different statistical distribution,
(2) Assume a normal distribution if the sample skewness is

away from the specification limit,
(3) Apply a normalizing transformation to the data, or
(4) Analyze the sample as attribute data (often the choice

of last resort since more samples may be needed).
6.5.3.2 Test data populations within the realm of engineer-

ing processes follow a number of different distributions besides
the normal distribution. Since various distributions carry dif-
fering amounts of mass in the distribution tails, this can
drastically impact the accuracy of the tolerance limit estimate.
Therefore, characterization of the sample data’s distribution
may be necessary with the understanding that the normal
distribution is not always the correct model. Consider the
examples in Table 4.

6.5.3.3 If test sample sizes are not large enough to support
distribution analysis, the following options may be used to
provide support:

(1) Historical data review,
(2) Literature research, and
(3) Engineering rationale (for example, physics based).

6.5.4 Statistical Tolerance Limits:
6.5.4.1 When assessing variables data using tolerance limits

and assuming normality, the following equations are used to
determine whether data pass the acceptance criteria. The
sampling plan passes if:

(1) One-sided:

UTL 5 Avg1k1*s # USL (3)

or

LTL 5 Avg 2 k1*s $ LSL (4)

(2) Two-sided:

UTL 5 Avg1k2*s # USL and LTL 5 Avg 2 k2*s $ LSL (5)

where:
Avg = sample average,
s = sample standard deviation,
LSL and USL = lower specification limit and upper specifi-

cation limit, respectively,
LTL and UTL = lower tolerance limit and upper tolerance

limit, respectively,
k1 = one-sided k-factor = f (confidence,

reliability, sample size) given one tail; and
k2 = two-sided k-factor = f (confidence,

reliability, sample size) given two tails.

6.5.4.2 Table 5 provides some commonly used k-factors for
when the population standard deviation is unknown, that is, the
standard deviation is estimated from the collected data. There
is a different k-factor table for situations in which the popula-
tion standard deviation is known, but prior knowledge of the
standard deviation is extremely rare at the design verification
stage of the product life cycle. Note that the k-factor decreases
as the sample size increases as a result of reduced uncertainty
of the quoted percentile’s value. A lower confidence or reli-
ability level also lowers the required k-factor. Table 6 provides
an example of a variable sample size calculation for a tolerance
limit.

6.5.4.3 If the sample does not fit a normal distribution, the
user may choose to normalize the data using traditional
transformation tools such as the Box-Cox or Johnson transfor-
mations. The tolerance limits are then calculated using the
normalized data and compared against the specification limits
that have been transformed using the same normalization
function. The Box-Cox method uses a power series transfor-
mation to normalize the data, and the Johnson transformation
uses a more complex formula to normalize the data. Refer to
Sleeper (2006)6 for instructions and examples using each of
these transformations.

6.5.5 Process Capability Indices:

6 Sleeper, Andrew, Design for Six Sigma Statistics: 59 Tools for Diagnosing and
Solving Problems in DFSS Initiatives, McGraw-Hill, New York, 2006.

TABLE 3 Example of an Attribute Sample Size Calculation

Design Input
Requirement

Data Output ConfidenceA ReliabilityA Sample Size
Acceptance

Sample Size CalculationB

Device shall
withstand 20
cycles to RBP

Pass/fail (20
inflations met)

95 % 90 % a = 0 plan:
n = 29, a = 0

n = ln (1-0.95) / ln (0.90)

a >0 plans,
for example,
n = 45, a = 1

Use software package to
calculate

A Confidence and reliability recommended from Guidance for Industry and FDA Staff: Class II Special Controls Guidance Document for Certain Percutaneous Transluminal
Coronary Angioplasty (PTCA) Catheters, Sept. 8, 2010.
B Sample size equation referenced from Rothbart, Harold A., Mechanical Design and Systems Handbook, McGraw-Hill, New York, 1985.
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6.5.5.1 Process capability indices describe the relationship
between process (or product) variation and the specification
limits. The metrics Cp and Cpk are process capability indices
that account for only within-lot variation, whereas the metrics
Ppk and Pp account for the total variation, consisting of both
within-lot and between-lot variation. The metric Ppk describes

how close the sample average is to the specification limit,
relative to the total variation.

6.5.5.2 For a normal distribution with one specification
limit:

TABLE 4 Skewed Populations

Population Description Relative
to the Normal Distribution

Spec Limit True Condition Outcome when Assuming Normality

Long heavy tail to the left

Lower Should fail
Pass—the normal distribution underestimates
lower tail mass

Long heavy tail to the right

Lower Should pass
Fail—the normal distribution overestimates
lower tail mass

Long heavy tail to the left

Upper Should pass
Fail—the normal distribution overestimates
upper tail mass

Long heavy tail to the right

Upper Should fail
Pass—the normal distribution underestimates
upper tail mass

TABLE 5 Commonly Used k Factors

1-Sided k FactorsA

Confidence 90 % 95 % 95 % 95 % 95%
Reliability 90 % 90 % 95 % 99 % 99.9%

n = 10 2.066 2.355 2.911 3.981 5.203
n = 20 1.765 1.926 2.396 3.295 4.318
n = 50 1.559 1.646 2.065 2.862 3.766
n = 120 1.452 1.503 1.899 2.649 3.495

2-Sided k FactorsA

Confidence 90 % 95 % 95 % 95 % 95%
Reliability 90 % 90 % 95 % 99 % 99.9%

n = 10 2.546 2.856 3.393 4.437 5.640
n = 20 2.158 2.319 2.760 3.621 4.616
n = 50 1.918 1.999 2.382 3.129 3.995
n = 120 1.805 1.851 2.206 2.899 3.703

A The k-factor values for 90, 95, and 99% reliability levels from Gerald J. Hahn and William Q. Meeker, Statistical Intervals: A Guide for Practitioners, John Wiley and Sons,
1991. The k-factor values for 99.9 % reliability level from Robert E. Odeh and D. B. Owen, Tables for Normal Tolerance Limits, Sampling Plans, and Screening, ProQuest
Co., Ann Arbor, MI, 2002.
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Ppkestimated 5
USL 2 Avg

3*s
or

Avg 2 LSL
3*s

(6)

where:
Avg = sample average,
s = sample standard deviation, and
LSL and USL = lower specification limit and upper specifi-

cation limit, respectively.

6.5.5.3 The metric Pp is calculated when the specification
limit is two-sided. Pp describes the ratio of the specification
range over the total variation. For a two-sided specification
assuming a normal distribution, the equations for Ppk and Pp
are:

Ppkestimated 5 Min F USL 2 Avg
3*s

,
Avg 2 LSL

3*s G (7)

Ppestimated 5
USL 2 LSL

6*s
(8)

6.5.5.4 In a variables acceptance sampling plan for a one-
sided specification, Eq 9 serves as the acceptance criteria.7 The
sampling plan passes if:

Ppkestimated $ Ppkrequired (9)

where:

Ppkrequired 5
k1

3
(10)

where:

k1 = one-sided k-factor = f (confidence, reliability, sample
size) given one tail.

6.5.5.5 This k-factor for k1 is the same parameter used for a
one-sided statistical tolerance limit in the preceding section.
Table 7 provides an example of a one-sided variables sampling
plan calculation for Ppk assuming a normal distribution.

6.5.5.6 In a variables acceptance sampling plan for a two-
sided specification, there are two acceptance criteria to meet.
The sampling plan passes if:

Ppkestimated $ Ppkrequired (11)

Ppestimated $ Pprequired (12)

where:

Ppkrequired 5
k2

3
(13)

Pprequired 5
1

6*MSD
(14)

where:
k2 = two-sided k-factor = f (confidence, reliability,

sample size) given two tails, and
MSD = maximum standard deviation = f (confidence,

reliability, sample size).8

6.5.5.7 Unfortunately, there is not a closed-form solution for
MSD, although it may be calculated using appropriate software
packages. Note that this k2 value is slightly smaller than the
k-factor used earlier in the two-sided statistical tolerance limit.
This is because the tolerance limit approach demonstrates with
the quoted confidence that a quoted proportion of the product
is within the calculated tolerance interval, whereas the process
capability approach demonstrates with the quoted confidence
that a quoted proportion of the product is within specification.
In other words, the tolerance limit approach rigidly places half
of the quoted proportion on each side of the sample mean and
compares this endpoint against the specification, whereas the
process capability approach is more flexible since it is able to
compare the total quoted proportion against the specification
limits. As a result, sampling plans using the process capability
approach are slightly more likely to pass than sampling plans
using tolerance limits, especially if a small percentage is out in
one tail and there is a negligible percentage in the other tail.

7 Taylor, Wayne A., Distribution Analyzer Software User’s Guide (Version 1.2),
2006, http://www.variation.com/files/da/da12man.pdf and Negrin, I., Parmet, Y.,
and Schechtman, E., “Developing a sampling plan based on Cpk—unknown
variance,” Qual. Reliab. Engng. Int., doi: 10.1002/qre.1094, Vol 27, 2011, pp. 3-14.

8 Schilling, Edward G. and Neubauer, Dean V., Acceptance Sampling in Quality
Control, second edition, Chapman and Hall/CRC, Boca Raton, FL, 2009.

TABLE 6 Example: Variable Sample Size Calculation for a Tolerance Limit (that is, k Factor)

Design Input
Requirement

Data Output
Lower Spec Limit

(LSL)
Confidence/
ReliabilityA Test ParametersB Acceptance CalculationC

Device shall withstand
inflation to RBP

Burst pressure (each test unit is
inflated until it bursts)

RBP 95/99.9 %
k1 = 4.318

n = 20
LTL = Avg – 4.318 * s $ RBP

A Confidence and reliability requirements from Guidance for Industry and FDA Staff: Class II Special Controls Guidance Document for Certain Percutaneous Transluminal
Coronary Angioplasty (PTCA) Catheters, Sept. 8, 2010.
B The value for the k factor is from Robert E. Odeh and D. B. Owen, Tables for Normal Tolerance Limits, Sampling Plans, and Screening, ProQuest Co., Ann Arbor, MI,
2002.
C LTL shall be $ RBP for the data set to pass the acceptance criteria. Avg is the data set average and s is the data set standard deviation.

TABLE 7 Example Variable Sample Size Calculation for Ppk

Design Input
Requirement

Data Output
Confidence/
ReliabilityA Test ParametersB Ppk Calculation Ppk Requirement

Device shall withstand
inflation to RBP

Burst pressure (each test unit is
inflated until it bursts)

95/99.9 %
n = 15

k = 4.607
Ppk = 4.607 / 3 Ppk $ 1.54

A Confidence and reliability requirements from Guidance for Industry and FDA Staff: Class II Special Controls Guidance Document for Certain Percutaneous Transluminal
Coronary Angioplasty (PTCA) Catheters, Sept. 8, 2010.
B The value for the k factor is from Robert E. Odeh and D. B. Owen, Tables for Normal Tolerance Limits, Sampling Plans, and Screening, Marcel Dekker, Inc., 1980.
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6.5.5.8 Estimates for Ppk and Pp of non-normal distribu-
tions may be calculated using a variety of statistical software
packages. Table 8 lists Ppk and Pp values for commonly used
two-sided tolerance limits.

6.5.5.9 Eq 6-8 are only appropriate for normally distributed
populations, since the mean and standard deviation are not
useful predictors of tail probabilities for nonnormal distribu-
tions. When a population follows a nonnormal distribution, two
methods are widely accepted to estimate Pp and Ppk:

(1) First, the user may use a modified normal capability
metric, such as the ISO method or the Bothe percentage
method.9 The ISO method is based on specific percentiles in
the distribution tails, and the Bothe method employs the
Z-score of each specification limit. Refer to Sleeper (2007) for
a more detailed discussion of the ISO and Bothe methods.

(2) Second, the user may choose to transform the data to
follow a normal distribution using the Box-Cox or Johnson
transformations, and then calculate Pp and Ppk using the
transformed data and specification limits.6 Refer to Sleeper
(2006) for instructions and examples using each of these
transformations.

7. Data Pooling

7.1 Data pooling on multiple device sizes and/or models can
be justified when EDOs for a given design input requirement
are the same for the device sizes and/or models being pooled.
Data pooling allows the total sample size across multiple
device sizes and/or models to meet the required sample size as
opposed to each individual device size and/or model meeting
the required sample size. Fig. 11 illustrates the differences in
sample size between pooling four device sizes and testing four
device sizes individually.

8. Shelf Life

8.1 The methodologies presented in Sections 5 and 6 may
be applicable to shelf-life testing. If there is sufficient knowl-
edge of the device performance at time zero and shelf-life
conditions, a reduced number of device sizes and reduced
sample size may be appropriate to verify the device shelf life
adequately. Additionally, all design input requirements may not
need to be tested at shelf life (see Guide F2914).

9. Keywords

9.1 attribute; normality; sample size; sampling plan; statis-
tics; variables; verification

9 Sleeper, Andrew, Six Sigma Distribution Modeling. McGraw-Hill, New York,
2007.

TABLE 8 Ppk, Pp Values for Commonly Used Two-Sided Tolerance LimitsA

Confidence 90 % 90% 90% 95 % 95 % 95 % 95%
Reliability 90 % 95% 99% 90 % 95 % 99 % 99.9%

n = 10 0.70, 0.74 0.86, 0.87 1.18, 1.18 0.79, 0.81 0.97, 0.97 1.33, 1.33 1.73, 1.73
n = 15 0.64, 0.71 0.79, 0.84 1.07, 1.08 0.70, 0.76 0.86, 0.90 1.17, 1.17 1.53, 1.55
n = 20 0.61, 0.69 0.75, 0.81 1.02, 1.05 0.66, 0.73 0.81, 0.87 1.11, 1.13 1.43, 1.45
n = 25 0.58, 0.67 0.72, 0.79 0.99, 1.04 0.63, 0.71 0.78, 0.84 1.06, 1.10 1.38, 1.39
n = 30 0.57, 0.66 0.71, 0.79 0.97, 1.02 0.61, 0.70 0.75, 0.82 1.03, 1.07 1.34, 1.36
n = 35 0.55, 0.65 0.69, 0.77 0.96, 1.01 0.59, 0.68 0.74, 0.81 1.01, 1.06 1.32, 1.35
n = 40 0.55, 0.65 0.68, 0.76 0.94, 1.00 0.58, 0.67 0.72, 0.80 0.99, 1.04 1.30, 1.33
n = 50 0.53, 0.63 0.67, 0.76 0.92, 0.98 0.56, 0.66 0.70, 0.78 0.96, 1.02 1.26, 1.30
n = 60 0.52, 0.62 0.66, 0.75 0.91, 0.97 0.55, 0.65 0.69, 0.77 0.95, 1.01 1.24, 1.28
n = 80 0.51, 0.62 0.64, 0.73 0.89, 0.96 0.53, 0.63 0.66, 0.75 0.92, 0.99 1.21, 1.26
n = 100 0.50, 0.61 0.63, 0.72 0.88, 0.95 0.52, 0.63 0.65, 0.74 0.90, 0.97 1.19, 1.24
n = 150 0.48, 0.59 0.61, 0.71 0.85, 0.93 0.50, 0.61 0.63, 0.72 0.88, 0.95 1.16, 1.21
n = ` 0.43, 0.55 0.55, 0.65 0.78, 0.86 0.43, 0.55 0.55, 0.65 0.78, 0.86 1.03, 1.10

A Pp and Ppk values generated using Sampling Plan Analyzer software, v2.0.
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APPENDIX

(Nonmandatory Information)

X1. SAMPLING PLANS WITH a > 0

X1.1 A common misconception surrounding attribute sam-
pling plans is that plans with a > 0 offer less protection than a
= 0 plans. In this appendix, it will be explained why a > 0 plans
actually offer more protection than a = 0 plans. For purposes of
simplicity, in this appendix, a = 0 and a = 1 options will be
specifically compared for an attribute sampling plan with 90 %
confidence and 90 % reliability. Table X1.1 shows the a = 0
plan appears to be the better choice since it offers the
possibility of zero defectives in the population.

X1.2 The two plans can also be compared using an operat-
ing characteristic (OC) curve, as shown in Fig. X1.1. OC
curves present the probability of passing a sampling plan as a
function of the population defective rate. Intuitively, when the
defective rate is very low, the probability of passing a sampling
plan will be near 100 %, but as the defective rate increases, the
probability of passing will dwindle until the plan is very
unlikely to pass. A perfect sampling plan is depicted by the step
function in Fig. X1.1 in which the sampling plan has a 100 %
probability of passing when the defective rate is below the
maximum acceptable rate and a 0 % chance of passing above
the maximum acceptable rate. The perfect sampling plan has
perfect information, knowing the exact defective rate of the
population, so it is able to make perfect decisions.

X1.3 Unfortunately, given the random nature of sampling,
sometimes populations with defective rates below the threshold
will fail the sampling plan, and populations with defective rates

higher than the threshold will pass. Fig. X1.1 demonstrates the
a = 1 plan to be closer to the perfect sampling plan than the a
= 0 plan. The a = 1 plan has a higher probability of passing
below the maximum allowable defective rate (fewer false
alarms) and a lower probability of passing above the maximum
allowable rate (fewer escapes). The a = 1 OC curve performs
better than the a = 0 curve because it has more information
about the population due to its higher sample size.

X1.4 Another disadvantage of an a = 0 sampling plan is that
it can lead to a false sense of security. Passing an a = 0 plan can
lead the user to believe there are zero defectives in the
population regardless of how low the sample size is even when
zero defectives might be highly unlikely. An a = 1 plan
acknowledges the potential existence of defective units and
plans for their potential appearance in the sample. That being
said, note that a sampling plan with a > 0 may not be
acceptable for a design output possessing a “zero tolerance”
status for defectives, even though the a > 0 plan provides more
information about the population. In this scenario, the full
knowledge that a defective unit has been observed may deem
the design unacceptable for release.

X1.5 In summary, here is what can be stated about a = 0
plans:

X1.5.1 Fewest samples needed,

X1.5.2 Lowest chance of passing when the true defective
rate is lower than the maximum allowable defective rate,

X1.5.3 Highest chance of passing is when the true defective
rate is higher than the maximum allowable defective rate, and

X1.5.4 Can lead the user to believe there are zero defectives
in the population regardless of how low the sample size is.

FIG. 11 Four Device Sizes are Pooled Together to Meet the Sampling Plan Requirements of n = 20 Versus Testing Four Device Size Indi-
vidually to Meet the Sampling Plan Requirements of n = 20

TABLE X1.1 Lower Confidence Bound Example

Sampling Plan n = 22, a = 0 n = 38, a = 1

90 % Lower confidence bound 0 % 0.28 %
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X1.6 Here is what can be said about a = 1 plans:

X1.6.1 More samples needed than with an a = 0 plan;

X1.6.2 Better chance of passing than an a = 0 plan when the
true defective rate is lower than the maximum allowable
defective rate;

X1.6.3 Lower chance of passing than an a = 0 plan when the
true defective rate is higher than the maximum allowable
defective rate; and

X1.6.4 If the plan passes with an observed defective unit in
the sample, the population is known to contain at least one
defect.
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FIG. X1.1 Operating Characteristic Curve
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