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Standard Guide for
Pre-clinical in vivo Evaluation of Spinal Fusion1

This standard is issued under the fixed designation F2884; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers general guidelines for the pre-clinical
in vivo assessment of tissue-engineered medical products
(TEMPs) intended to repair or regenerate bone in an interbody
and/or posterolateral spinal environment. TEMPs included in
this guide may be composed of, but are not limited to, natural
or synthetic biomaterials or composites thereof, and may
contain cells or biologically active agents such as growth
factors, synthetic peptides, plasmids, or cDNA. The models
described in this document represent a stringent test of a
material’s ability to induce and/or augment bone growth in the
spinal environment.

1.2 While clinically TEMPs may be combined with hard-
ware for initial stabilization or other purposes, the focus of this
guide is on the appropriateness of the animal model chosen and
evaluation of the TEMP induced repair and as such does not
focus on issues of hardware.

1.3 Guidelines include a description and rationale of various
animal models for the in vivo assessment of the TEMP. The
animal models utilize a range of species including rat (murine),
rabbit (lapine), dog (canine), goat (caprine), pig (porcine),
sheep (ovine), and non-human primate (primates). Outcome
measures include in vivo assessments based on radiographic,
histologic, CT imaging as well as subsequent in vitro assess-
ments of the repair, including histologic analyses and mechani-
cal testing. All methods are described briefly and referenced.
The user should refer to specific test methods for additional
detail.

1.4 This guide is not intended to include the testing of raw
materials, preparation of biomaterials, sterilization, or packag-
ing of the product. ASTM standards for these steps are
available in Referenced Documents (Section 2).

1.5 The use of any of the methods included in this guide
may not produce a result that is consistent with clinical
performance in one or more specific applications.

1.6 Other pre-clinical methods may also be appropriate and
this guide is not meant to exclude such methods. The material

must be suitable for its intended purpose. Additional biological
testing in this regard would be required.

1.7 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.

1.8 The values stated in inch-pound units are to be regarded
as standard. The values given in parentheses are mathematical
conversions to SI units that are provided for information only
and are not considered standard.

2. Referenced Documents

2.1 ASTM Standards:2

F561 Practice for Retrieval and Analysis of Medical
Devices, and Associated Tissues and Fluids

F565 Practice for Care and Handling of Orthopedic Implants
and Instruments

F895 Test Method for Agar Diffusion Cell Culture Screening
for Cytotoxicity

F981 Practice for Assessment of Compatibility of Biomate-
rials for Surgical Implants with Respect to Effect of
Materials on Muscle and Bone

F1983 Practice for Assessment of Compatibility of
Absorbable/Resorbable Biomaterials for Implant Applica-
tions

F2150 Guide for Characterization and Testing of Biomate-
rial Scaffolds Used in Tissue-Engineered Medical Prod-
ucts

2.2 Other Standards
ISO 10993 Biological Evaluation of Medical TEMPs—Part

5: Tests for in vitro Cytotoxicity3

21 CFR Part 58 Good Laboratory Practice for Nonclinical
Laboratory Studies4

21 CFR 610.12 General Biological Product Standards –
Sterility4

1 This guide is under the jurisdiction of ASTM Committee F04 on Medical and
Surgical Materials and Devices and is the direct responsibility of Subcommittee
F04.44 on Assessment for TEMPs.

Current edition approved April 1, 2012. Published April 2012. DOI: 10.1520/
F2884–12.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

3 Available from American National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036, http://www.ansi.org.

4 Available from U.S. Government Printing Office Superintendent of Documents,
732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http://
www.access.gpo.gov.
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3. Terminology

3.1 Definitions:
3.1.1 bone regeneration—the formation of bone that has

histologic, biochemical, and mechanical properties similar to
that of native bone.

3.1.2 bone remodeling—a lifelong process where old bone
is removed from the skeleton (a sub-process called bone
resorption) and new bone is added (a sub-process called bone
formation).

3.1.2.1 Discussion—These processes also control the re-
shaping or replacement of bone during growth and following
injuries. Remodeling responds to functional demands and
muscle attachments. As a result bone is added where needed
and removed where it is not required.

3.1.3 bone repair—process of healing injured bone through
cell proliferation and synthesis of new extracellular matrix.

3.1.4 cancellous bone—(also known as trabecular, or
spongy, bone), a type of osseous tissue with a low apparent
density and strength but very high surface area, that fills the
inner cavity of long bones.

3.1.4.1 Discussion—The orientation of the trabecular bone
is such that the trabecular “struts” tend to follow the lines of
stress to which the bones are normally subjected. The external
layer of cancellous bone contains red bone marrow where the
production of blood cellular components (known as he-
matopoiesis) takes place. Cancellous bone is also where most
of the arteries and veins of bone organs are found.

3.1.5 compact bone—classification of ossified bony connec-
tive tissue characterized by the presence of osteon-containing
lamellar bone; lamellar bone is highly organized in concentric
sheets.

3.1.6 cortical bone—one of the two main types of osseous
tissue; cortical bone is dense and forms the surface of bones.

3.1.7 endochondral ossification—one of the two main types
of bone formation, where a cartilaginous matrix forms first and
is subsequently replaced by osseous tissue.

3.1.7.1 Discussion—Endochondral ossification is respon-
sible for much of the bone growth in vertebrate skeletons,
especially in long bones.

3.1.7.2 Discussion—The other main mechanism for bone
formation is intramembraneous ossification, where osseous
tissue is formed directly, without cartilaginous precursor; it
occurs mainly in the formation of flat bones (skull).

3.1.8 growth plate—the anatomic location within the
epiphyseal region of long bones corresponding to the site of
growth through endochondral bone formation.

3.1.8.1 Discussion—The growth plate in skeletally mature
animals is fused.

3.1.9 interbody spine fusion—a method of obtaining spinal
fusion that involves placing bone graft between adjacent
vertebra in the area usually occupied by the intervertebral disc.

3.1.10 marrow—soft, gelatinous tissue that fills the cavities
of the bones. It is either red or yellow, depending upon the
preponderance of hematopoietic (red) or fatty (yellow) tissue.

3.1.10.1 Discussion—Red marrow is also called myeloid
tissue.

3.1.11 matrix—a term applied to either the exogenous im-
planted scaffold or the endogenous extracelluar substance
(otherwise known as extracellular matrix) derived from the
host.

3.1.12 posterolateral spine fusion—a method of obtaining
spinal fusion that involves placing bone graft in the “gutter” in
the posterolateral portion of the spine between the transverse
process and the spinous process.

3.1.12.1 Discussion—Posterolateral spine fusion is also
known as posterolateral gutter spine fusion.

3.1.13 remodeling—a lifelong process where old bone is
removed from the skeleton (bone resorption) and new bone is
added (bone formation).

3.1.14 residence time—time at which an implanted material
(synthetic or natural) can no longer be detected in the host
tissue.

3.1.15 skeletal maturity—the age at which the epiphyseal
plates are fused.

3.1.15.1 Discussion—In rodents, skeletally mature animals
are characterized by defined gonads.

3.1.16 spinal fusion—also known as spondylosyndesis, is a
surgical technique used to combine two or more vertebrae.

3.1.16.1 Discussion—Supplementary bone tissue (either au-
tograft or allograft) is often used in conjunction with the body’s
natural osteoblastic processes. This procedure is used primarily
to eliminate the pain caused by abnormal motion of the
vertebrae by immobilizing the vertebrae themselves. Spinal
fusion is done most commonly in the lumbar region of the
spine, but it is also used to treat cervical and thoracic problems.

3.1.17 trabecular bone—bony connective tissue character-
ized by spicules surrounded by marrow space.

3.1.18 vertebra—the vertebral column (singular: vertebra)
are the individual irregular bones that make up the spinal
column (also known as ischis)—a flexuous and flexible col-
umn.

3.1.18.1 Discussion—There are normally thirty-three (33)
vertebrae in humans, including the five that are fused to form
the sacrum (the others are separated by intervertebral discs)
and the four coccygeal bones which form the tailbone. The
upper three regions comprise the remaining 24, and are
grouped under the names cervical (7 vertebrae), thoracic (12
vertebrae) and lumbar (5 vertebrae), according to the regions
they occupy. This number is sometimes increased by an
additional vertebra in one region, or it may be diminished in
one region, the deficiency often being supplied by an additional
vertebra in another. The number of cervical vertebrae is,
however, very rarely increased or diminished. Each vertebra is
composed of a body anteriorly and a neural arch posteriorly.
The arch encloses an opening, the vertebral foramen, which
helps to form a canal in which the spinal cord is housed.
Protruding from the posterior extreme of each neural arch is a
spinous process and extending from the lateral edges of each
arch are transverse processes. These bony elements serve as
important sites of attachment of deep back muscles. The neural
arch of each vertebrae is divided into component parts by these
processes. The parts of the neural arch between the spinous and
transverse processes are known as the laminae and the parts of
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the arch between the transverse processes and the body are the
pedicles. At the point where the laminae and pedicles meet,
each vertebra contains two superior articular facets and two
inferior articular facets. The former pair of facets form
articulations, which are synovial joints, with the two inferior
articular facets of the vertebra immediately above (or the skull,
in the case of the first cervical vertebra). The pedicle of each
vertebra is notched at its superior and inferior edges. Together
the notches from two contiguous vertebra form an opening, the
intervertebral foramen, through which spinal nerves pass.

3.1.19 vertebral body—the largest part of a vertebra, and is
approximately cylindrical in shape.

3.1.19.1 Discussion—Its upper and lower surfaces are flat-
tened and rough, and give attachment to the intervertebral
fibrocartilages, and each presents a rim around its circumfer-
ence. In front, the body is convex from side to side and concave
from above downward. Behind, it is flat from above downward
and slightly concave from side to side. Its anterior surface
presents a few small apertures, for the passage of nutrient
vessels. On the posterior surface is a single large, irregular
aperture, or occasionally more than one, for the exit of the
basi-vertebral veins from the body of the vertebra.

4. Significance and Use

4.1 This guide is aimed at providing a range of in vivo
models to aid in preclinical research and development of
tissue-engineered medical products (TEMPs) intended for the
clinical repair or regeneration of bone in the spine.

4.2 This guide includes a description of the animal models,
surgical considerations, and tissue processing as well as the
qualitative and quantitative analysis of tissue specimens.

4.3 The user is encouraged to utilize appropriate ASTM and
other guidelines to conduct cytotoxicity and biocompatibility
tests on materials, TEMPs, or both, prior to assessment of the
in vivo models described herein.

4.4 It is recommended that safety testing be in accordance
with the provisions of the FDA Good Laboratory Practices
Regulations 21 CFR 58.

4.5 Safety and effectiveness studies to support regulatory
submissions (for example, Investigational Device Exemption
(IDE), Premarket Approval (PMA), 510K, Investigational New
Drug (IND), or Biologics License Application (BLA) submis-
sions in the U.S.) should conform to appropriate guidelines of
the regulatory bodies for development of medical devices,
biologics, or drugs.

4.6 Animal model outcomes are not necessarily predictive
of human results and should, therefore, be interpreted cau-
tiously with respect to potential applicability to human condi-
tions.

5. Animal Models
NOTE 1—This section provides a description of the options to consider

in determining the appropriate animal model and fusion location.
NOTE 2—Research using these models needs to be conducted in

accordance with governmental regulations appropriate to the locale and
guidelines for the care and use of laboratory animals. Study protocols
should be developed after consultation with the institutional attending

veterinarian, and need appropriate review and approval by the institutional
animal care and use committee prior to study initiation.

5.1 Defect Considerations:
5.1.1 Spinal fusion is typically performed on a patient who

has sustained trauma in order to stabilize the spine, to relieve
a neural deficit related to bony stenosis or to treat degenerative
disc disease. A high proportion of injuries in humans occur in
the spine. Accordingly, defects created in the spine are com-
monly used for assessing spinal bone repair/regeneration in
animal models.

5.1.2 Defects may be created surgically in both the inter-
body and posterolateral spinal locations. For the purpose of this
guide, defects created in both spinal regions will be described.

5.1.3 Significant variability exists between animal species
with respect to the size and weight of the animal, anatomy, and
gait thereby influencing kinetics, range of motion, and me-
chanical forces on defects. These factors influence bone
architecture and structure. These factors play a significant role
in the response to injury or disease of bone. The user should
consider carefully the animal model that is appropriate for the
stage of investigation of an implanted TEMPs. Table A is
provided to give guidance for the selection of animal models
and the relevancy of their results.

5.1.4 Mechanical load has been shown to affect bone repair.
The intermittent hydrostatic pressure and load-bearing stresses
play an important role in modulating bone development and
maintenance as well as bone degeneration. The impact of the
anount and duration of the mechanical load on the implanted
TEMPs, and surrounding native bone, varies depending on the
anatomic site.

5.1.5 It is recommended that an appropriate species and
anatomic site having dimensions sufficiently large to ad-
equately investigate and optimize the formulation, design,
dimensions, and associated instrumentation envisaged for hu-
man use be chosen, especially in late stages of development.

5.1.6 Spinal interbody surgical procedures generally require
a method of stabilization, typically some sort of load-bearing
interbody implant. Larger animals may be more appropriate for
studying repair in the interbody location due to size constraints
associated with applying spinal interbody fusion devices used
to provide load support, as well as sizing of appropriate
stabilization hardware such as spinal rods, plates, and/or
screws.

5.1.7 The use of pedicle screw and rod constructs varies in
the literature and is dependent upon several factors, including
the amount of instability created by the surgery as well as how
closely researchers may wish to mimic the human clinical
scenario. Accordingly, the difference in the design of the test
TEMP in models which generally do not require fixation
should be factored into the interpretation of results with respect
to predictability of outcomes in larger animal models and
humans.

5.1.8 In regards to instrumentation, both interbody fusion
devices and pedicle screws, there are pros and cons. Pros
include the fact that the surgical intervention more closely
mimics that of human clinical surgeries. Cons include in-
creased study cost, animal intervention, and surgical time. The
use of instrumentation must be balanced against the desired
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outcomes of the study and the frequency of healing in the
particular animal model compared to the human.

5.1.9 Each study should include a control group containing
an acceptable standard of care, usually autograft for positive
controls or shams for negative controls, to confirm that the
model results demonstrate consistency with accepted values for
healing. Allograft may also be an option for use in animal
models where donor material is from animals of genetically
identical strains, for example, athymic (rnu/rnu) rats. In cases
where the product being tested consists of a combination of
agents (for example, cells and a matrix), each separate com-
ponent of the combination product should be tested individu-
ally as controls, where possible or appropriate. If/once the
model is very well characterized and considered “validated,”
the use of historical data (from published literature or lab
studies using an identical “validated” model) instead of actual
control animals should be considered, in order to save on
animal numbers, unless this would compromise the objectives
of the study. For example, in pivotal preclinical proof-of-
concept studies, concurrent controls are likely to be appropri-
ate.

5.1.10 For screening materials, small animals (rats, rabbits)
are best due to relative cost and a sizeable amount of literature
to support their use in posterolateral spine material evaluations
for bone fusion.

5.1.11 Larger animals may be more appropriate for studying
repair in the interbody location due to size constraints associ-
ated with applying interbody spinal fusion devices used to
provide load support, as well as sizing of appropriate stabili-
zation hardware such as spinal rods, plates, and/or screws.

5.1.12 In TEMPs which use components that depend on a
particular dose range in order to function appropriately, the
dose ranges should be appropriate for the animal model used.
In general, larger animals require doses of material scaled
appropriately. Non-human primates are likely the best choice
when targeting doses which may potentially approach the
ranges of human clinical dose ranges.

5.1.13 Regardless, all animal models contain inherent limi-
tations and these limitations should be noted where possible.
Drawbacks may include factors such as more rapid bone
healing than observed in humans, relatively small amounts of
material that can be implanted, and these models do not reflect
the range of pathology (age, osteoporosis, soft tissue injury) or
deleterious systemic agents (steroids, malnutrition, smoking)
that may be present in humans. Also, differences in loading
environments between quadripedal animals and bipedal hu-
mans must be considered. In some instances of new intended
use and/or new materials, human clinical data may still be
necessary.

5.2 Handling:
5.2.1 Exposure of implants to extreme and highly variable

mechanical forces as a result of jumping and running, can lead
to increased variability in outcome measures.

5.2.2 Potential differences in outcome when using instru-
mented versus non-instrumented models should be carefully
considered.

5.3 Chromosomal Sex:

5.3.1 Due to the impact of circulating steroids on cartilage
and bone metabolism and regeneration, the choice of chromo-
somal sex should be considered. Animals in lactation should
not be used. For some purposes, the use of aged or ovariecto-
mized females (especially rats) may be indicated to simulate
osteoporotic conditions (1-24).5

5.3.2 It is recommended that the chromosomal sex be the
same within the cohort, and be reported. The investigator
should be aware that variances can occur between sexes, and
that appropriate statistical power needs to be instituted.

5.4 Age:
5.4.1 Bone undergoes dynamic changes in metabolism and

remodeling during growth. Due to the impact of these physi-
ologic processes on tissue repair, skeletally mature animals
should be used. The cohorts should have fused epiphyseal
growth plates. Skeletal maturity varies between species and
can be determined radiographically if necessary.

5.4.2 Older animals have a greater propensity for osteope-
nia and have a decreased capacity to repair bone defects. If
specific conditions are considered important for the intended
TEMP assessment, then an appropriate model should be used.

5.4.3 The mesenchymal stem cell pool, growth factor
responsiveness, and metabolic activity of cells generally de-
crease with age. Thus, reparative processes that are dependent
on the number and activity of native cells may be partially
compromised in older animals.

5.5 Diet or Concurrent Pathology—In general, studies are
performed with healthy animals under normal diet conditions.
However, the addition of fluoride, as well as deprivation of
vitamin D and/or calcium to mimic specific bone disease states,
has been reported (13, 21, 25, 26). In situations where
treatment of patients with systemic conditions that may affect
bone repair are contemplated, non-clinical models that mimic
the disease or condition under consideration may be appropri-
ate.

5.6 Study Duration:
5.6.1 The length of the study depends on the stage of TEMP

development, the species used, the size of the defect, and
composition and design of the implant.

5.6.2 Short-term in small animals (rats, rabbits) can be taken
to mean less than 12 weeks in life, long-term is 12 to 24 weeks
or greater. In large animals (dogs, pigs, sheep, goats, non-
human primates) short-term can be considered to mean less
than 6 months in-life, and long-term 6 months or greater.

5.6.3 In small animals, small defects implanted for 5 to 12
weeks provide information regarding residence time of implant
and fixation of the TEMP as well as the type of repair.

5.6.4 Using larger animals, study periods of 8 to 12 weeks
are limited to providing information regarding the
biocompatibility, early cellular responsiveness, and the persis-
tence and condition of the implant within the defect.

5.6.5 Periods of more than 3 months for mid-size to larger
animals are generally necessary to gain confidence in the extent
of success in the repair or regeneration of bone based on
histologic and biochemical outcome measures.

5 The boldface numbers in parentheses refer to a list of references at the end of
this standard.
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5.6.6 Depending on the study objective, it might be advis-
able to evaluate one or more cohorts in the study before full
healing occurs. This may be of interest when comparing a new
material with a standard material like autograft, where the
difference between treatment groups may reach a transient
maximum and then diminish over time. In general, it is
necessary to match the claim and study end, taking into
consideration the statistical power.

5.7 Number of Animals—A statistically significant number
of animals per group is recommended to be used, if possible.
The required number depends on the intrinsic variability
among the animals being used, the consistency of the surgical
procedure which will be performed, the accuracy of the
evaluation methods, anticipated attrition rate of animals during
the study, and the statistical techniques which will be used to
analyze the data (27). Another important factor may be the
objective of the study (for example, general feasibility/efficacy
compared to an empty defect, or comparability of different
constructs), and the variability of the treatment (for example,
load of cells/factors, implant dimensions). The group size can
be determined from existing data if the respective model is well
established (literature or results from preliminary studies). For
a pilot study, a group size of 6 to 8 is likely appropriate for
histologic and mechanical testing as evaluation methods (27).
For group sizes reported in the literature, see the appendix.

5.8 Rat Posterolateral Spine Model:
5.8.1 Rats are amongst the most commonly used species for

early-phase development, due to relatively low cost, housing
space and ease of maintenance (28-44). Often, Sprague-
Dawley or athymic rats are used to assess results because the
fusions involve human-derived materials (such as demineral-
ized bone products). In cases where autograft or synthetic
biomaterials are used, normothymic Sprague-Dawley rats may
be used (32).

5.8.2 Surgical defects are typically performed at the L4-L5
lumbar level.

5.8.3 For more details, see Appendix X2, Table Table X2.1.

5.9 Rabbit Posterolateral Spine Model:
5.9.1 Rabbits are the most commonly used animal model for

spinal posterolateral fusion (39, 45-142) assessment due to a
variety of factors (cost, model validation work, and so on) and
nonunions spontaneously occur at a similar rate as in human
(55, 143).

5.9.2 Adult rabbits with closed growth plates are preferred
(more than approximately 20 weeks old).

5.9.3 Surgical defects are typically performed at the L4-L5
or L5-L6 lumbar levels.

5.9.4 For more details, see Appendix X2, Table X2.2.

5.10 Dog Posterolateral Spine Model:
5.10.1 Canines such as medium-size mongrels (for example,

mean 10 to 20 kg) and hounds have been utilized in postero-
lateral spinal models (144-153).

5.10.2 Surgical defects are typically performed at one or
more of the L2-L3, L3-L4, L4-L5, or L5-L6 lumbar levels.

5.10.3 An average of approximately 2 to 3 grams (145, 149)
or 15 cc (150) of the desired graft material is placed at the
operative site bilaterally.

5.10.4 For more details, see Appendix X2, Table X2.3.

5.11 Dog Interbody Spine Model:
5.11.1 Canines such as medium-size mongrels (for example,

mean 10 to 15 kg) and hounds have been utilized in interbody
spinal models, mostly in the location of the cervical spine
(154-165).

5.11.2 Surgical defects are typically performed at one or
more of the C3-C4 and C5-C6 cervical levels.

5.11.3 The discs of the chosen levels are excised leaving the
posterior longitudinal ligaments intact.

5.11.4 Opposing vertebral cartilaginous endplates are
scraped clean with a curette and a high speed burr.

5.11.5 Care should be taken to produce a flat surface for
implant insertion and seating (assuming an impacted-type
implant).

5.11.6 The interbody fusion device is packed with the
desired TEMP.

5.11.7 Using finger pressure or gentle impaction, the desired
interbody fusion device is inserted.

5.11.8 The interbody fusion device is placed such that it is
in contact with the anterior cortices.

5.11.9 For more details, see Appendix X2, Table X2.4.

5.12 Sheep Posterolateral Spine Model:
5.12.1 Sheep are commonly used for posterolateral spinal

fusion studies in large species animals (166-182).
5.12.2 Surgical defects are typically performed at one or

more of the L2-L3, L3-L4, L4-L5, or L5-L6 lumbar levels.
5.12.3 10 cc of autogenous cancellous bone may be

harvested, if used as a control, per side.
5.12.4 The transverse processes of the operative levels are

decorticated bilaterally.
5.12.5 Treatment or control materials are placed alone the

“gutters” between the transverse processes.
5.12.6 Optionally, transpedicular screw fixation using

screws and rods may be used for fixation.
5.12.7 For more details, see Appendix X2, Table X2.5.

5.13 Sheep Interbody Spine Model:
5.13.1 Sheep are commonly used for interbody spinal fusion

studies in large species animals (166, 176, 181, 183-213).
5.13.2 Surgical defects are typically performed at one or

more of the L2-L3 or L4-L5 lumbar levels or the C2-C3,
C3-C4, C4-C5, or C5-C6 cervical levels.

5.13.3 An interbody fusion device is filled with an appro-
priate bone graft material and implanted at each disc space.

5.13.4 Optionally, the lumbar fusion sites may be stabilized
with unilaterally placed pedicle screws and a connecting rod.

5.13.5 For more details, see Appendix X2, Table X2.6.

5.14 Goat Posterolateral Spine Model—Goats have not
typically been used for posterolateral spinal fusion studies in
large species animals. They have been used to evaluate a
variety of bone graft materials using cassettes containing
multiple materials for evaluation at a single transverse process
site or for studying posterior construct mechanics (214-218).

5.15 Goat Interbody Spine Model:
5.15.1 Goats are commonly used for interbody spinal fusion

studies in large species animals (219-247).
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5.15.2 In comparison to sheep, goats are generally less
adverse to human interaction and are therefore easier to handle.

5.15.3 Goats should be screened by blood test for caprine
encephalitis prior to inclusion in cohort group.

5.15.4 Surgical defects are typically performed at one or
more of the L2-L3, L3-L4, L4-L5, or L5-L6 lumbar levels or
the C2-C3, C3-C4, C4-C5, or C5-C6 cervical levels.

5.15.5 An interbody fusion device is filled with an appro-
priate bone graft material and implanted at each disc space.

5.15.6 Optionally, the lumbar fusion sites may be stabilized
with unilaterally placed pedicle screws and a connecting rod.

5.15.7 For more details, see Appendix X2, Table X2.7.

5.16 Pig Posterolateral Spine Model:
5.16.1 Pigs have been utilized in posterolateral spinal

models, although not as frequently in literature as other large
animal models (248-251).

5.16.2 Surgical defects are typically performed at one or
more of the L2-L3, L3-L4, L4-L5, or L5-L6 lumbar levels.

5.16.3 Approximately 4 to 8 g of autogenous cancellous
bone may be harvested, if used as a control, per side.

5.16.4 The transverse processes of the operative levels are
decorticated bilaterally.

5.16.5 Treatment or control materials are placed alone the
“gutters” between the transverse processes.

5.16.6 Optionally, transpedicular screw fixation using
screws and rods may be used for fixation.

5.16.7 For more details, see Appendix X2, Table X2.8.

5.17 Pig Interbody Spine Model:
5.17.1 Pigs have been utilized in interbody spinal models,

although not as frequently in literature as other large animal
models (252-273).

5.17.2 Surgical defects are typically performed at one or
more of the L2-L3, L3-L4, L4-L5, or L6-L7 lumbar levels.

5.17.3 An interbody fusion device is filled with an appro-
priate bone graft material and implanted at each disc space.

5.17.4 Optionally, the lumbar fusion sites may be stabilized
with unilaterally placed pedicle screws and a connecting rod.

5.17.5 For more details, see Appendix X2, Table X2.9.

5.18 Non-human Primate Posterolateral Spine Model:
5.18.1 Non-human primates have been utilized in postero-

lateral spinal models (274-286).
5.18.2 Surgical defects are typically performed at the L4-L5

lumbar level.
5.18.3 Approximately 4 g of autogenous cancellous bone

may be harvested, if used as a control, per side.
5.18.4 The transverse processes of the operative levels are

decorticated bilaterally.
5.18.5 Treatment or control materials are placed alone the

“gutters” between the transverse processes.
5.18.6 For more details, see Appendix X2, Table X2.10.

5.19 Non-human Primate Interbody Model:
5.19.1 Non-human primates have been utilized in interbody

spinal models (287-294).
5.19.2 Surgical defects are typically performed at one or

more of the L2-L3, L3-L4, L5-L6, or L7-S1 lumbar levels.
5.19.3 An interbody fusion device is filled with an appro-

priate bone graft material and implanted at each disc space.

5.19.4 For more details, see Appendix X2, Table X2.11.

6. Considerations for the Spinal Fusion Site

6.1 The focus of this guide is on interbody and posterolat-
eral fusion sites in the spine. Not all sites have been reported
for all species.

6.2 Considerations should also include the level of difficulty
of performing the surgical procedure in regards to both surgical
access and implant fixation.

6.3 Consideration should be given to the level of translat-
ability of the surgical procedure to human clinical patients.

7. Test Procedures

7.1 Implant Preparation:
7.1.1 All materials to be implanted into animals should be

verified to be non-cytotoxic and biocompatible. Implant com-
ponents can be sterilized and prepared aseptically or end-point
sterilized by methods known to be acceptable to the implant
composition and function.

7.1.2 Bioburden or sterility testing, as appropriate, should
be completed on representative test articles. Note that for
TEMPS regulated as biologics in the United States, each lot
must be tested for sterility in accordance with 21 CFR 610.12.

7.1.3 See Guide F2150, Practices F1983, F981, F565, and
Test Method F895. See also ISO 10993 and 21 CFR Part 58.
Practice F1983 covers the assessment of compatibility of
absorbable biomaterials for implant applications.

7.2 Defect Generation:
7.2.1 The defect should be created in a standard and

reproducible manner.
7.2.2 Templates or other sizing tools should be considered,

where feasible, for preparation of consistently-sized defects.
7.2.3 Defects in all animals within a study should be created

with the same type of tools and instruments.

7.3 Test TEMP Implantation and Fixation:
7.3.1 The test TEMP should be implanted in a standard and

reproducible manner.
7.3.2 Care should be exercised to ensure that the surround-

ing bone is not excessively damaged and that the TEMP is in
contact with as much of the area of the defect as possible.

7.3.3 The defect should be fixed in a standard and repro-
ducible manner, if fixation is required.

7.4 Recovery and Husbandry:
7.4.1 Recovery conditions should be designed to reduce

potential for stress and excessive motion. For goats and sheep,
recovery pens that are sized to reduce excessive range of
mobility for a period of two to three days are recommended.

7.4.2 All housing conditions should be approved by the
United States Department of Agriculture (USDA), or the
respective governmental agency of the country where the study
is conducted.

7.4.3 Animals should be monitored frequently and observa-
tions recorded to ascertain appropriate health and physical
condition.

7.4.4 A veterinarian should approve the health condition of
animals prior to returning them to larger groups or herds.

7.5 In-Life Period:
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7.5.1 Radiographs should be used as appropriate for a given
study to assess placement of the implants.

7.5.2 Following recovery, large animals should be contained
within protected stalls for a minimum of nine days. After this
period the animals can either remain in protected stalls or
allowed to roam freely in group herds.

7.5.3 A qualified veterinarian should examine animals rou-
tinely for any gross abnormalities and for signs of discomfort.

7.5.4 Survival time should be designated based on the
objective of the study. Typically, an early timepoint (for
example, to examine the effect on early healing, including, for
example, acceleration of healing), and one or two later time-
point(s) (for example, when full or nearly full-healing is
anticipated) are chosen. Historically used in-life periods are
listed in the tables in the appendix..

7.6 Necropsy:
7.6.1 Animals should be euthanized in a humane manner

according to accepted practices of the Animal Welfare Act (in
the United States) or other applicable local statutes.

7.6.2 The implanted site should be removed along with the
surrounding cartilage and bone.

7.6.3 Retrieved tissue should be placed in a solution con-
sistent with intended outcome measures such as histology
(decalcified paraffin versus nondecalcified plastic embedded),
biochemistry, or mechanical testing.

8. Evaluation and Results

8.1 Histology—For histological processing procedures, re-
fer to Practice F561. Histological sections should be used to
assess the amount and quality of tissue regeneration or repair of
the fusion mass. Histological sections should be serially cut
and stained in a manner to allow for assessment of the quality
of tissue and for detection calcified tissue. Standard stains
include: hemotoxylin /eosin, Toluidine Blue, or Modified
Trichrome stain, and others (27). Consideration should be
given to using decalcified versus nondecalcified sections,
which may require different staining methods.

8.1.1 Microscopic Analysis and Scoring:
8.1.1.1 Histological sections should be analyzed for adverse

tissue reactions using typical histopathologic indices.
8.1.1.2 For assessment of TEMP performance, a scoring

system should be utilized to determine several aspects such as
the following: new bone formation (mineralized/ non-
mineralized) in the defect, resorption of bone graft, cortex
remodeling, marrow changes, and spinal fusion. In addition,
fibrous connective tissue should be evaluated with regard to
inflammation.

8.1.1.3 Histomorphometric analyses can be utilized to mea-
sure histological parameters, including (but not limited to)
tissue volume, lamellar bone (area, %), periosteal fibrosis
(area, %), marrow fibrosis (area, %), and cellularity (number,
mean/field).

8.1.1.4 Histological sectioning should ensure that the entire
defect site, as well as some additional surrounding tissue, is
encompassed and assessed.

8.1.1.5 Note that time points of less than 6 months for large
animals and less than 12 weeks in small animals do not
necessarily reflect the long-term outcome due to the potential

for changes in the biochemical composition and organization
of repair tissue over time.

8.1.1.6 Short-term histologic evaluation can be used for
screening and optimization. Long-term assessment should be
based on histologic and mechanical measures.

8.2 Radiography:
8.2.1 Radiographs are important to evaluate the amount and

quality of the new bone forming during the in-life portion of
the study, as well as at the endpoint.

8.2.2 Typically, radiographs should be taken in two orthogo-
nal planes to allow assessment of proper alignment and a
quasi-three dimensional view (for example, Anterior-Posterior
and Lateral).

8.2.3 Radiographic healing may be one of the decisive
factors used to terminate a study.

8.2.4 Various radiographic scoring systems have been pub-
lished. The scoring system should be specified for the species.

8.2.5 Inclusion of a metal wedge in the picture may help to
normalize radiographs.

8.2.6 Radiopaque implants and fixation materials may have
an impact on the ability to assess healing from radiographs.

8.2.7 Plain-film radiographs are not considered to be suffi-
ciently discriminating to positively identify fusion or pseudar-
throsis and should be combined with other methods to verify
fusion.

8.3 Computer Tomography:
8.3.1 Computer Tomography (CT) has been evolving in

recent years as a useful tool, allowing 3D imaging of bone
regeneration in harvested bone, as well as being used for
monitoring bone regeneration in vivo over time.

8.3.2 CT images to assess bone (mineralized tissue) area are
also useful for correct calculation and interpretation of me-
chanical test results.

8.3.3 The biggest challenge with CT analyses is to threshold
appropriately to exclude the scaffold from newly forming bone
within the defect.

8.3.4 Appropriate controls, calibrations, and scan param-
eters (energy intensity, integration time, and so on) should be
utilized in order to ensure that the results are internally
consistent within a study.

8.3.5 Where fusion versus pseudarthrosis is an outcome
measure, CT outcomes should be verified by histology, manual
manipulation or mechanical testing.

8.4 Microtomography:
8.4.1 Microtomography, or micro-CT, uses x-rays to create

cross-sections of a 3D-object that later can be used to recreate
a virtual model without destroying the original model. The
term micro is used to indicate that the pixel sizes of the
cross-sections are in the micrometer range. Scanners are much
smaller in design compared to the human versions and are used
to model smaller objects. Micro CT scanning is more focused
than regular CT scanning, meaning that it brings out details as
fine as 1000th of a millimeter. Thus it has two to three thousand
times the resolution of a regular CT scan.

8.4.2 Microtomography analysis can be used to assess
volume rendering and for image segmentation. Similar to CT,
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micro-CT images to assess bone (mineralized tissue) area are
also useful for correct calculation and interpretation of me-
chanical test results.

8.4.3 Appropriate controls, calibrations, and scan param-
eters (energy intensity, integration time, and so on) should be
utilized in order to ensure that the results are internally
consistent within a study.

8.4.4 Where fusion versus pseudarthrosis is an outcome
measure, CT outcomes should be verified by histology, manual
manipulation or mechanical testing.

8.5 Mechanical Testing of Repair Tissue:
8.5.1 Mechanical testing of the fusion usually follows

dissection. Care has to be taken when separating the spine
sections if fusion is observed. Sample preparation may involve
partial embedding into resin blocks to allow proper mounting
in the fixtures.

8.5.2 Standard non-destructive testing may include manual
palpation as an assessment of spinal fusion.

8.5.3 The specific testing apparatus, load cell resolution,
loading constraints, loading profile and other test parameters as
required need to be documented.

8.5.4 Typical non-destructive testing includes protocols to
determine global and localized range of motion (ROM) and
stiffness. Testing typically occurs under either load or displace-
ment control.

8.5.5 Typical destructive testing includes tension testing and
torsional strength testing for posterolateral fusion and dynamic
cyclic load to failure for interbody fusions.

8.5.6 Due to viscoelastic effects, consideration has to be
given to the test speed utilized in static testing, which should be
lower than an appropriate % length change for the test, for
example 0.5 % strain/min, and reported.

8.5.7 From typical stress-strain curves, the strength (maxi-
mum torque), maximum force, stiffness, and total energy to
failure can be calculated. From torsional tests, it is necessary to
also report the angle at failure. From cyclic load tests, it is
necessary to report the frequency and amplitude of the loading,
as well as the cycles to failure.

8.5.8 It is recommended to monitor and report where the
fracture at failure occurs (in or through the newly formed bone
tissue, or in the original bone outside the defect). Faxitron
radiographs may be used as a tool for this purpose.

9. Analysis

9.1 Statistical Analysis—The mean and standard deviation
should be calculated for the individual categories and the total
score for each of the graded specimens. Fisher exact test,
chi-square test, or Kruskal-Wallis test (a one-way non-
parametric analysis of variance) can be used for analyzing the
differences between the scores of different groups.

10. Keywords

10.1 animal models; biomaterials; bone; bone regeneration;
bone repair; implants; interbody spine fusion; in vivo; mechani-
cal testing; pre-clinical; products; posterolateral spine fusion;
spinal fusion; spine; synthetic biomaterials; TEMPs (tissue
engineered medical products)

APPENDIXES

(Nonmandatory Information)

X1. COMMON ANIMAL MODEL PARAMETERS AND RELEVANCE IN SPINAL FUSION PRE-CLINICAL MODELS

F2884 − 12

8

 



TABLE X1.1 Common Animal Model Parameters and Relevance in Spinal Fusion Pre-Clinical ModelsA

NOTE 1—Literature Search Strategy used PubMed and a keyword search to identify potential articles.

NOTE 2—Search terms used: spine, posterolateral, sheep, pig, dog, non-human primate, monkey, interbody, intradiscal, device, cages, goat, rat, rabbit, animal models, biomaterials, bone, bone
regeneration, bone repair; spine, spinal fusion, pre-clinical, interbody spine fusion, posterolateral spine fusion, products, implants, in vivo, mechanical testing, synthetic biomaterials, TEMPs
(Tissue-Engineered Medical Products), murine, lapine, canine, caprine, porcine, ovine, primates.

NOTE 3—Literature cited was chosen in order to be representative of the literature findings for the respective spinal animal models.

Model
Breed

Commonly
Used

Defect Site Instrumented
Duration
(see 5.6)

Typical
Evaluation
Methods

Relevance

Final
Material
Testing

Comparative
Performance

Data

Mechanistic
Studies

Screening
Safety
Studies

Large animal
(Non-human

primate,
canine,

sheep, goats)

goat: Swiss Mountain;
canine: Beagle, Hound,
Mongrel; sheep: Merino,

Pre-Alpes, other;
non-human primate: Rhesus
Macaque (Macaca mulatta),

Chacma Baboon (Papio ursinus)

Posterolateral Yes Long-term Histological,
radiographs, CT,

mechanical
(manual

palpation)

X X X

Large animal
(Non-human

primate,
canine,

sheep, goats)

goat: Swiss Mountain;
canine: Beagle, Hound,
Mongrel; sheep: Merino,

Pre-Alpes, other;
non-human primate: Rhesus
Macaque (Macaca mulatta),

Chacma Baboon (Papio ursinus)

Interbody Yes Long-term Mechanical,
Histological, CT

X X X

Large animal
(Non-human

primate,
canine,

sheep, goats)

goat: Swiss Mountain;
canine: Beagle, Hound,
Mongrel; sheep: Merino,

Pre-Alpes, other;
non-human primate: Rhesus
Macaque (Macaca mulatta),

Chacma Baboon (Papio ursinus)

Posterolateral No Long-term Histological,
radiographs, CT,

mechanical
(manual

palpation)

X X X

Large animal
(Non-human

primate,
canine,

sheep, goats)

goat: Swiss Mountain;
canine: Beagle, Hound,
Mongrel; sheep: Merino,

Pre-Alpes, other;
non-human primate: Rhesus
Macaque (Macaca mulatta),

Chacma Baboon (Papio ursinus)

Posterolateral Yes Short-term Histological,
radiographs, CT,

mechanical
(manual

palpation)

X X X

Large animal
(Non-human

primate,
canine,

sheep, goats)

goat: Swiss Mountain;
canine: Beagle, Hound,
Mongrel; sheep: Merino,

Pre-Alpes, other;
non-human primate: Rhesus
Macaque (Macaca mulatta),

Chacma Baboon (Papio ursinus)

Interbody Yes Short-term Mechanical,
Histological, CT

X X X

Small animal
(Rabbits,

Rats)

rat: Sprague-Dawley, athymic nude,
Fischer, Wistar, Lewis;

rabbit: New Zealand White,
Japanese White

Posterolateral No Long-term Histological,
micro-CT,

mechanical
(manual

palpation)

X X X X X

Small animal
(Rabbits,

Rats)

rat: Sprague-Dawley, athymic nude,
Fischer, Wistar, Lewis;

rabbit: New Zealand White,
Japanese White

Posterolateral No Short-term Histological,
micro-CT,

mechanical
(manual

palpation)

X X X X X

A Clinical efficacy can only be determined through human clinical experience. No animal model has been validated to predict actual clinical performance.
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X2. PUBLISHED SPINE FUSION PRE-CLINICAL MODEL EXAMPLES
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TABLE X2.1 Published Examples for the Rat Posterolateral Spine Fusion Model
Category Publication Reference

Citation Grauer (32) Bomback (29) Abe (31) Hidaka (34)

Breed athymic nude rat, normothymic Sprague-
Dawley rat

athymic nude rat normothymic Sprague-Dawley rat Lewis rats

Chromosomal Sex Female Not specified Male Not specified

Age 8-9 weeks (athymic), 9-10 week
normothymic

8-9 weeks 8 weeks Not specified

Weight Not Specified 170-200 g Not Specified 200-300 g

Group Size (n) N=40 athymic, N=20 normothymic
Sprague-Dawley

N=30/group (60 total) N=40, N=42 (82 total) 4 groups (9, 10, 11, 12, 12); (54 total)

Intertransverse
Location

L4-L5 L4-L5 L4-L5 L4-L5

Control No Graft None None fresh bone graft from syngeneic Lewis
rats

Bone Graft Volume 0.1-0.2 cc per side 2cc/kg (~0.2 cc per side) 0.2 g per side 50 mg/site

Bone Graft Material autograft Grafton Putty or OP-1 Putty autograft (with saline or with
subcutaneous PTH injections)

Freeze-dried allograft bone (50 mg/site)
and genetically modified syngenic bone
marrow cells (1.5×106/site) suspended in
50:l type 1 collagen gel (2 mg/mL;
Beckton Dickinson, Hopkinton, MA)

For gene expression experiments, nine
rats received Ad gal-modified cells on
one side and cells modified with AdNull
on the other side. For fusion
experiments, 10 rats received AdBMP-7-
modified cells, 11 rats received AdNull-
modified cells and 12 rats received
unmodified cells bilaterally. As a “gold
standard” control, 12 rats received fresh
bone graft (50 mg/site) from syngeneic
Lewis rats.

Duration of Study 3 & 6 weeks 3 & 6 weeks Five rats each were killed 2, 4, 7, and 14
days after the surgery; Seven rats each
were killed 14, 28, and 42 days after the
surgery

8 weeks for fusion; 14 days for in vivo
gene expression

Radiographs 3 & 6 weeks 3 & 6 weeks At sacrifice: 2, 4, 7, and 14 days; At
sacrifice: 14, 28, and 42 days

8 weeks
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TABLE X2.1 Continued

Category Publication Reference

Radiographic Scoring blinded assessment by 2-3 reviewers,
fusion determined if bridging bone was
noted in either intertransverse region

blinded assessment by 2-3 reviewers,
fusion determined if bridging bone was
noted in either intertransverse region

Fusion status of each specimen was
graded based on three categories. The
specimen was graded as a solid union
when no motion was observed; as an
immature union when bony continuity
between L4 and L5 transverse processes
was observed but the segment had slight
motion; and as a nonunion when wide
motion equivalent to adjacent segments
was detected. Fusion rate was defined
as the percentage of solid or immature
union

rRadiographs were evaluated by an
expert observer blinded to the treatment
groups. Samples were rated as fused if
radiodense cortical bridging was present
bilaterally. If discontinuities such as clefts
or gaps were apparent, spines were
graded as not fused, regardless of the
presence of new bone formation.

Histology non-decalcified (toluidine blue stain) non-decalcified (Von Kossa stain) non-decalcified (toluidine blue O stain) non-decalcified (Goldner trichromestain)

Histologic Scoring histologic fusion defined as bony
trabeculae bridging from one transverse
process to the next

histologic fusion defined as bony
trabeculae bridging from one transverse
process to the next

None None

Biomechanical Test
Method

Manual palpation Manual palpation Manual palpation manual palpation; non-destructive
flexion-extension testing under cyclic
loading

Other Assessments None None 3-D micro CT: To evaluate the calcified
fusion mass at the intertransverse
process region where bone did not
originally exist. The scans were initiated
from the lower endplate of the L4
vertebral body cranially in 13-µm
sections, for a total of 135 slices per
scan.

Histomorphometric analysis was
performed to evaluate the fusion status
and remodeling condition of the fusion
mass. Mineral apposition rate (MAR) was
calculated from the width of the double-
labeled interval, and mineralized surface/
bone surface (MS/BS) was calculated
from the length of the bone surface and
calcein-labeled surface. Osteoclast
surface (Oc.S/BS) was calculated to
evaluate bone resorption activity.

in vivo gene expression,
histomorphometry (Bioquant Nova 2000)

Comments Limitations: (1) Caution needed when
extrapolating data to a higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations.

Limitations: (1) Caution needed when
extrapolating data to a higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Limitations: Mechanical environment at
the grafted segment and healing process
of grafted bone are different than in
humans. Study results are not fully
translatable to human spinal arthrodesis
surgery. No assessment of mechanical
strength of the fusion segment.

Limitations: (1) Caution needed when
extrapolating data to a higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations.
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TABLE X2.2 Published Examples for the Rabbit Posterolateral Spine Fusion Model
Category Publication Reference

Citation Boden (55) Kraiwattanapong (295) Fredericks (296) Singh(121) Grauer(80) Magit(97)

Breed New Zealand white rabbit New Zealand white rabbit New Zealand white rabbit New Zealand white rabbit New Zealand white rabbit New Zealand white rabbit

Chromosomal
Sex

Male/female Male/female Male/female Male/female female female

Age 1-year 1-year None 1-year “adult” 1-year

Weight 4.5-5 kg 4.5-5 kg 4.5-5.5 kg 4.4-5.2 kg 4.5-5 kg 4.4 ± 0.3 kg

Group Size (n) N=60 (10 per group) N=24 (12 per group) N=30 (15) N=32 (16 per group) N=31 (10, 12, 9) N=67

Intertransverse
Location

L5-L6 L5-L6 L4-L5 L5-L6 L5-L6 L5-L6

Control Group 1 [N=2]: bone graft
without decortication; Group
2 [N=2]: decortication without
bone grafting

None autograft autograft autograft (positive control),
carrier alone (negative
control)

autograft

Bone Graft
Volume

2-2.5 cc Group 1: 1.5 cc Healos + 1.5
cc BMA; Group 2: 1.5 cc
rhBMP-2/ACS + 1.5 cc
collagen-ceramic matrix
(0.645 mg rhBMP-2 per side)

None Group 1: 2.5 cc autograft;
Group 2: 3.0 cc rhBMP-2/
ACS + autograft (0.43 mg
rhBMP-2 per side)

1-1.5 cc of autograft per side;
0.3 g of bovine collagen I
matrix and 77 mg of CMC
per side; 0.3 g of bovine
collagen I matrix and 77 mg
of CMC + 1.2 mg OP-1 per
side

autograft: 1.5-2.0 cc per side;
Healos (1.0×3.0×0.5 cm strip
per side); Healos
(1.0×3.0×0.5 cm strip per
side) + 0.5 mg/cc rhGDF-5;
Healos (1.0×3.0×0.5 cm strip
per side) + 1.0 mg/cc
rhGDF-5; Healos
(1.0×3.0×0.5 cm strip per
side) + 1.5 mg/cc rhGDF-5.

Bone Graft
Material

autograft Group 1: 1.5 cc Healos + 1.5
cc BMA; Group 2: 1.5 cc
rhBMP-2/ACS + 1.5 cc
collagen-ceramic matrix
(0.645 mg rhBMP-2 per side)

autograft; autograft with bone
stimulator

Group 1: 2.5 cc autograft
plus IV doxorubicin; Group 2:
3.0 cc rhBMP-2/ACS +
autograft (0.43 mg rhBMP-2
per side) plus IV doxorubicin

1-1.5 cc of autograft per side;
0.3 g of bovine collagen I
matrix and 77 mg of CMC
per side; 0.3 g of bovine
collagen I matrix and 77 mg
of CMC + 1.2 mg OP-1 per
side

autograft: 1.5-2.0 cc per side;
Healos (1.0×3.0×0.5 cm strip
per side); Healos
(1.0×3.0×0.5 cm strip per
side) + 0.5 mg/cc rhGDF-5;
Healos (1.0×3.0×0.5 cm strip
per side) + 1.0 mg/cc
rhGDF-5; Healos
(1.0×3.0×0.5 cm strip per
side) + 1.5 mg/cc rhGDF-5.

Duration of
Study

2, 3, 4, 5, 6, & 10 weeks 8 weeks 3, 7, 14, 21, 28 days 5 weeks 5 weeks 8 weeks

Radiographs 2, 3, 4, 5, 6, & 10 weeks 8 weeks 0 & 28 days 5 weeks 5 weeks 8 weeks

Radiographic
Scoring

blinded assessment, fusion
determined as solid/not solid
based on presence of
continuous trabecular pattern
within the intertransverse
fusion mass

blinded assessment, fusion
determined as solid/not solid
based on presence of
continuous trabecular pattern
within the intertransverse
fusion mass

3 blinded assessments from
independent reviewers, fusion
determined as yes/no based
on: (1) evidence of at least
unilateral bridging fusion
mass,(2) fully corticated
fusion mass, (3) complete
lack of bony cleft in fusion
mass

5 blinded assessments from
independent reviewers, bone
formation graded via a
6-point scale listed in Table 1
in the publication

blinded assessment, fusion
determined as solid/not solid
based on presence of
continuous trabecular pattern
within the intertransverse
fusion mass

3 blinded assessments from
independent reviewers, fusion
determined based on
presence of continuous
trabecular pattern within the
intertransverse fusion mass
in either intertransverse
region.
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TABLE X2.2 Continued

Category Publication Reference

Histology N=2 at each timepoint; non-
decalcified (hematoxylin and
eosin OR Goldner Trichrome)

N=3 at from each group; non-
decalcified (1% methylene
blue and 0.3% basic fuchsin)

None None all specimens; decalcified
(hematoxylin and eosin) &
non-decalcified (toluidine
blue)

all specimens; decalcified
(hematoxylin and eosin) &
non-decalcified (Von Kossa
toluidine blue)

Histologic
Scoring

Qualitative assessment
performed, but no grading
scale used

Qualitative assessment
performed, but no grading
scale used

None None Qualitative assessment
performed, but no grading
scale used

3 blinded assessments from
independent reviewers
graded the hematoxylin and
eosin stained sections on a
measuring scale of 1-10,
listed in Table 1 of the
publication. Fusion was
defined as a score >6,
representing the appearance
of continuous bridging of
bony trabelculae across
adjacent transverse
processes.

Biomechanical
Test Method

Manual palpation; uniaxial
tensile loading (ultimate
tensile load, stiffness)
normalized to adjacent
unfused level

Manual palpation; uniaxial
tensile loading (ultimate
tensile load, stiffness)
normalized to adjacent
unfused level

None Manual palpation and graded
according to size and on a
five-tiered classification scale
listed in Table 1 in the
publication.

Manual palpation - 2 blinded
assessments, fusion
determined as solid/not solid
based on no significant
motion present; multi-
directional ROM flexibility
testing using Optotrak motion
system

Manual palpation - 3 blinded
assessments, fusion
determined as solid/not solid
based on no significant
motion present

Other
Assessments

None CT scans None None CT scans of representative
specimens

Comments Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations. (3)
Biomechanical data on
fusions was limited.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.
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TABLE X2.3 Published Examples for the Dog Posterolateral Spine Fusion Model
Category Publication Reference

Citation Asher (144) Cunningham (145) Delcrin (146) Farey (147) Jarzem (150) Sandhu (152)

Breed Unspecified Canine Skeletally mature purpose-
bred coonhounds

Adult beagle dogs Adult beagle dogs Mature mongrel dogs Adult beagle dogs

Chromosomal
Sex

Male Not specified Not specified Not specified Not specified Female

Age 2.4 ± 1.8 yr 2-3 years Adult Adult Adult Adult

Weight 36 ± 5.1 kg 20 kg 11-13 kg Not specified ~ 20 kg Not specified

Group Size (n) N=26 (2-4 per group) N=24/treatment for total of 72
fusion sites (6 per group)

N=13 N=7 N=13 Group 1: N=6, rhBMP-2-
OPLA composite; Group 2:
N=6, autograft; Group 3:
N=2, OPLA only

Intertransverse
Location

L3-L5 L3-L4, L5-L6 L2-L4 L5-L6 L5-L6 L4-L5

Control Group 1 [N=4, 6mo., N=2, 12
mo.]: Sham, Screws
Removed, Grafts Discarded;

Group 1 (Autograft); Group 3 (autograft) Group I (n = 7), destabilized,
animals followed up 6 months
after anterior retroperitoneal
LSL6 diskectomy, resection
of the anterior longitudinal
ligament at L5-L6, and
posterior L5-L6 laminectomy
and facetectomy, no fusion
and no instrumentation

allograft autograft

Bone Graft
Volume

Not Quantified Autograft (4 g total, 2 g/side);
Autograft + OP-1 (1 g
autograft + 1 g OP-1 Putty);
OP-1 Putty alone (2 g total,
1g/side)

Autograft amount not
quantified; ceramic used was
a macroporous biphasic
material composed of 40%
[beta] TCP and 60% HA
(Triosite, Zimmer, France)
shaped into 20 mm × 5 mm ×
5 mm parallelepipedic blocks

1.5 cm2 Control: 15 cm3 of allograft/
side ; Experimental: 15 cm3

of allograft/side + 1 cm3 of
fibrin adhesive (Tisseel)

Autograft: 2.2 cc/side; 12 mm
× 6 mm × 30 mm strips for
OPLA; 1 cc rhBMP-2 solution
combined with OPLA strips

Bone Graft
Material

Group 2 [4.76 mm Rod; N=4,
6 mo. & 12 mo.]: Facet,
posterolateral, and posterior
arthrodesis (N=4, 6 mo.; N=4,
12 mo.); Group 3 [6.35 mm
Rod; N=4, 6 mo. & 12 mo.]:
Facet, posterolateral, and
posterior arthrodesis (N=4, 6
mo.; N=4, 12 mo.);

Group 2 (OP-1 Putty +
Autograft); Group 3 (OP-1
Putty alone)

Group 1: N=4, 3 ceramic
blocks aligned in both
laterovertebral grooves and 2
blocks in the area of the
transverse processes; Group
2: N=4, ceramic blocks only
in both laterovertebral
grooves; Group 3: N=5
cancellous autogenous bone
graft harvested from the
posterior iliac crest and
placed on the laminar and
intertransverse sites

Iliac crest autograft Control: 15 cm3 of allograft/
side ; Experimental: 15 cm3

of allograft/side + 1 cm3 of
fibrin adhesive (Tisseel)

Autograft; OPLA; rhBMP-2 +
OPLA

Duration of
Study

6 mo, 12 mo 4, 8, 12, 24 weeks 9 mo 6 mo 26 weeks 3 mo, 8 mo
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TABLE X2.3 Continued

Category Publication Reference

Radiographs None 4, 8, 12, 24 weeks None Microradiographs were made
using cross sections 25 µm in
thickness

CT (axial 4mm cuts at 4 mm
intervals)

CT (2, 3, & 8 mo), Faxitron
(sacrifice)

Radiographic
Scoring

None Grading scale 1. A: Solid
bilateral fusion: clearly solid
transverse process fusion
bilaterally with confluent
trabeculated bone extending
from transverse process to
transverse process.
2. B: Solid unilateral fusion:
clearly solid transverse
process fusion unilaterally
with confluent trabeculated
bone extending unilaterally
from transverse process to
transverse process.
3. C: Partial union: evidence
of bone growth between the
transverse processes either
unilaterally or bilaterally, but
with lucency indicative of
nonconfluent trabeculation.
4. D: Nonunion: no evidence
of bone growth between the
transverse processes.

None None Volumetric fusion assessment
(greater than 1.2 cm3 )

CT scale: bilateral bridging w/
isodense bone; bilateral
bridging w/ hypodense bone;
Unilateral bridging;
Incomplete bridging; No new
bone

Faxitron scale: Complete
bilateral osseous bridging;
Complete unilateral osseous
bridging; Incomplete bridging;
No new bone formation

Histology None Non-decalcified histology,
stained with Villanueva
Osteochrome Bone Stain;
High-resolution
microradiographs permitted
histomorphometric
quantification of
posterolateral trabecular bone
areas (mm2); Decalcified
histology using hematoxylin
and eosin stain; plain and
polarized light microscopy,
histopathological assessment
for all tissues included, but
was not limited to, comments
on trabecular architecture,
presence of collagen, as well
as any signs of foreign body
giant cell/granulomas
inflammatory reactions,
degenerative changes or
autolysis. Moreover, the
developmental ossification
process of new bone,
intramembranous or
endochondral, was evaluated
in all treatment groups for
each postoperative time
period.

Non-decalcified, tained with
solochrome cyanine R

Light microscopy was
performed on non-decalcified
sections stained with
hematoxylin and eosin.
Toluidine blue was used to
help differentiate mineralized
from unmineralized osteoid.
Non-decalcified sections 10
µm in thickness were
evaluated under fluorescent
light for tetracycline, alizarin,
DCAF, and xylenol orange
uptake.

None Undelcalcified & decalcified,
toluidine blue-O & basic
fuchsin stains.
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TABLE X2.3 Continued

Category Publication Reference

Histologic
Scoring

None None; Histomorphometric
data represents the area
(mm2) of trabecular bone
formation within the
intertransverse space

To evaluate bone in-growth
as a function of the local
environment, transverse
sections of each implanted
block from both sites were
divided into nine square
areas, which were considered
separately and by groups of
three squares to obtain three
groups: dorsal squares, no. 1
+ no. 2 + no. 3; middle
squares, no. 4 + no. 5 + no.
6; and ventral squares, no. 7
+ no. 8 + no. 9. The relative
area of newly formed bone
inside the pores and the total
pore area, which was
considered to be the sum of
the bone in-growth area and
the area of empty space,
were measured in relation to
the total implant area and
expressed as a percentage
for each of the nine different
areas. The total pore area
indicated the changes in
porosity. Measurements of
non-decalcified transverse
sections on microradiographs
were obtained
semiautomatically using a
computer-assisted image
analyzer. Light microscopic
manual analysis on stained
sections was used to validate
the semiautomatic image
analysis on microradiographs.

Quantitative histologic
analysis of bone was
performed using the
semiautomatic method of
Malluche et al.

None

Biomechanical
Test Method

Axial flexion-compression
stiffness of the L3-L5
segment components and
axial compression stiffness of
the bypassed and adjacent
anterior column elements
were measured.

Peak range of motion for
each loading mode was
calculated as the sum of
motions (maximum
displacement [millimetres] for
axial compression or
maximum rotation for torsion,
flexion-extension and lateral
bending [degrees]) occurring
in the neutral and elastic
zones at the fourth loading
cycle.

Four-point bending apparatus
was designed to provide a
loading mode representing a
pure bending moment;
flexion, extension, and lateral
bending

None Force-displacement
measurements of fusion
mass done using customized
jig (fusion assessed as
stiffness less than or equal to
1.07 mm/N).

Pure torques and linear loads
in flexion-extension, lateral
bending, and rotation.

Other
Assessments

None None None None None None
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TABLE X2.3 Continued

Category Publication Reference

Comments Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations. (3) Did
not address adjacent
vertebra; (4) Small numbers
of canines in each group; (5)
Differences in loading
environment between
quadripedal animals and
bipedal humans must be
considered. (6) same canine
could not be used for control
tests followed by sham or
instrumentation and
arthrodesis

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.
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TABLE X2.4 Published Examples for the Dog Interbody Spine Fusion Model
Category Publication Reference

Citation Ohyama (160) McAfee (158) Emery (157) Shima(161) Shirado(162) Cook (155)

Breed Colony-reared adult dogs Beagle Beagle Mongrel dog Coon hound Colony-bred hounds

Chromosomal
Sex

Male Not specified Female Not specified Not specified Male

Age 1-9 mo 1 yr ~ 1 yr Adult Adult 2 yr

Weight 17-18 kg Not specified 8.5-10.5 kg 11-20 kg 20-25 kg 25-30 kg

Group Size (n) N=8 (3 disc spaces per dog) N=6/group N=20 N=20 (2 sites/animal; 5
groups, 4/group)

N=21 (7/Group) N=21

Interbody
Location

L1-L2, L2-L3, L3-L4, L4-L5 L5-L6 T7-T8 C3-C4, C5-C6 L4-L6 C3-C4, C5-C6

Control Group A: autograft; Group 1: surgically
destabilized, no graft

Tricortical iliac crest graft Autologous humerus graft Group 1: strut bone graft
alone

Autogoenous
corticocancellous tri-cortical
graft

Bone Graft
Volume

Autograft not quantified; 0.3g
of beta-TCP granules for
Groups B & C; 0.2 mL of
rhBMP-2 solution in Group C.

Not specified Not specified Not specified None 10 mm × 10 mm autogenous
tri-cortical graft; HA implants
14 mm × 12 m × 5 mm.

Bone Graft
Material

Group B: beta-TCP; Group C:
rhBMP-2 + beta-TCP

Group 2: autograft; Group 3:
autograft with fibular strut
graft

Group I: Autogenous iliac
crest bone graft. (n = 6).
Group II: Hydroxyapatite
ceramic (HA; Interpore,
Irvine, CA, n = 6). The pore
size is 200 µm.
Group III: Biphasic (60: 40)
hydroxyapatite/tricalcium
phosphate ceramic (HA/TCP;
Zimmer, Warsaw, IN, n = 4),
with an average pore size of
400 µm.
Group IV: Calcium carbonate
ceramic (CC; Inoteb, Le
Guernol, France, n = 4). We
used the 20% porosity
product, which has an
average pore size of 250 µm.
All ceramic cubes had been
machined to a 6 × 6 × 6 mm
size preoperatively for a
congruent fit.

Autologous humerus graft;
TCP dowel (Synthos)

Ulna strut graft; ulna strut
graft w/ polyanhydride
copolymer (4 cm length × 1
cm DIA)

autogenous tri-cortical graft;
Hydroxyapatite implant
(Calcitek)

Duration of
Study

16 weeks 6 mo 8 weeks 3, 6, 12, 18, 22 weeks 6 mo 6, 12, & 26 weeks

Radiographs Lateral & AP (post-op, 2, 4,
8, 12, & 16 weeks)

6 mo After biomechanical testing,
AP and lateral radiographs
were obtained

3, 6, 12, 18, 22 weeks at
sacrifice

Microradiographs Plain radiographs post-op;
CT 3 mm thick and 3 mm
increments
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TABLE X2.4 Continued

Category Publication Reference

Radiographic
Scoring

High resolution
microradiographs using a
computerized
histomorphometric system
was used to evaluate fusion
status

None Qualitiative assessment only
(fused/not fused – one
reviewer)

Fusion criteria and scoring
not specified

None None, qualitative

Histology Non-decalcified, stained
using toluidine blue

None Non-decalcified, toluidine
blue stain; Unstained,
fluorochrome analysis

Decalcified & Non-decalcified,
H&E and masson’s trichrome
stain

Non-decalcified, hematoxylin,
eosin, and toluidin blue

Non-decalcified, basic fuchsin
and toluidine blue

Histologic
Scoring

None None Qualitative assessment only Qualitative assessment only Volumetric density of bone
and mean trabecular
diameter of bone calculated

% bone apposition to graft
materials

Biomechanical
Test Method

Pure torques and linear loads
in flexion-extension, lateral
bending, and rotation.

Torsional and axial
compressive stiffness

Non-destructive testing using
axial compression and
displacement loading for
flexion-extension, torsion, and
lateral bending;

None Non-destructive
biomechanical testing

Rotational torque non-
destructive testing ; flexion-
extension destructive testing
using modified 4-point
bending configuration

Other
Assessments

None None None Two-color fluorescent labeling
(Suzuki & Matthews) used to
determine state of
osteogenesis at time of
operation and sacrifice.

None None

Comments Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered. (4) Mathematical
assumptions on
histomorphometric analysis.

Limitations: (1) Caution
needed when extrapolating
data to a higher animal
models (that is, humans). (2)
These models do not reflect
the range of pathology or
deleterious systemic agents
in clinical situations.
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TABLE X2.5 Published Examples for the Sheep Posterolateral Spine Fusion Model
Category Publication Reference

Citation Wheeler(180) Gupta(168) Walsh (178) Kanayama (171) Baramki(166) Kim (173)

Breed Sheep Cross sheep Cross sheep Suffolk Sheep Dorset sheep Sheep

Chromosomal
Sex

Female Female Not specified Not specified Female Female

Age Skeletally mature 3-4 years Not specified Skeletally mature Skeletally mature Skeletally mature

Weight Not specified ~ 150 lb 45-55 kg Not specified Not specified 50-75 kg

Group Size (n) N=18 (9/group) N=24 (6/group) N=24 (8/group) N=16 (8/group) N=28 (7/group) N=12

Posterolateral
Location

L4-L5 L4-L5 L3-L4 L2-L3, L4-L5 L3-L4, L4-L5 L2-L3, L5-L6

Control N=9, iliac crest autograft Iliac crest autograft Iliac crest autograft
corticocancellous bone strips

Iliac crest autograft and local
bone

Group 2: iliac crest autograft Iliac crest autograft

Bone Graft
Volume

20 cc (10 cc/side) 10 cc (5 cc/side) Two strips of either
corticocancellous bone graft
(5 mm × 50 mm), Collagraft
strips (5 mm × 50 mm)
soaked in saline, or Collagraft
strips soaked in saline then
coated with bone marrow
aspirated from the iliac crest
were used for each side of
the fusion site.

20 g/segment Group 2: 30 cc iliac crest
autograft; Group 3: 30 cc IPH
(ProOsteon 500); Group 4:
15 cc local bone and 15 cc
IPH.

Autograft: 10 cc (5 cc/side);
20 cc (10 cc/side)

Bone Graft
Material

Iliac crest autograft; Si-CaP
(Actifuse Synthetic Bone
Graft (ApaTech Limited,
London)

Group 1: Iliac crest autograft;
Group 2: SCR-enriched TCP
(Conduit, DePuy Spine);
Group 3: TCP soaked with
whole bone marrow; Group 4:
TCP alone

Iliac crest corticocancellous
bone strips; Collagraft
hydrated with saline;
Collagraft hydrated with
saline plus bone marrow

Autograft and local bone Group 2: iliac crest autograft;
Group 3: IPH (ProOsteon
500); 15 cc local bone and
15 cc IPH.

Iliac crest autograft;
HealosMP52

Duration of
Study

180 days 6 mo 6 mo 8 weeks, 16 weeks 20 weeks 6 mo, 12 mo

Radiographs CT scans at 60, 120, & 180
days for Si-CaP group; CT
scans at 60 & 180 days for
autograft group

Plain radiographs post-op
and necropsy, micro-CT

AP radiographs at 2, 4 & 6
mo;

Plain radiographs, CT,
microradiography

Plain radiographs, CT AP plain radiographs (2
blinded reviewers); CT
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TABLE X2.5 Continued

Category Publication Reference

Radiographic
Scoring

Bilateral qualitative fusion
scores (0=no fusion,
1=moderate fusion and thin
connectivity, 2=extensive
fusion and connectivity) were
made based on rendered 3D
image by a single qualified
investigator blinded to the
treatment. The density of the
fusion mass was categorized
based on the density
phantom into four categories:
400–600, 600–800,
800–1000, 1000–1250 mg/cc.
The percentage of the total
fusion volume at each density
range was calculated to
quantify densification of the
tissue. One animal received a
CT scan of the Si-CaP graft
material immediately after
implantation to characterize
initial graft volume and
density. To measure graft
resorption and new bone
formation, specific image
slices within the 3D image
stack were evaluated at each
time point. Changes in fusion
mass density based on shifts
in the four density categories
and fusion volume were
calculated and provided
information to estimate Si-
CaP graft resorption and
bone formation over time;
Routine ventrodorsal and
lateral radiographs of the
explanted spinal segments
were performed. Radiographs
were qualitatively scored,
blinded to treatment group,
based on the extent of right
and left fusion mass and
connectivity using the same
scale applied for the CT
scans (0,1,2)

CT: Each spine segment was
rated using Sandhu’s fusion
rating scale: 0 = no fusion;
1= bone formation, but no
fusion; 2 = unilateral fusion; 3
= bilateral fusion

Qualitative assessment only Qualitative assessment by
three blinded reviewers –
solid union was defined as
complete and contiguous
bridging of the transverse
processes

CT (2 independent
radiologists): 4-point grading
system to determine bone
bridging and resorption.
Grade 1: 76% to 100%
bridging within the graft;
Grade 2: 51% to 75%
bridging within the graft;
Grade 3: 26% to 50%
bridging within the graft;
Grade 4: 0% to 25% bridging
within the graft; Grade 1
resorption: radiolucency was
0% to 25% of the graft area;
Grade 2 resorption:
radiolucency was 26% to
50% of the graft area; Grade
3 resorption: radiolucency
was 51% to 75% of the graft
area; Grade 4 resorption:
radiolucency was 76% to
100% of the graft area

Grading Scale: 0 = no bony
response; 1 = bony response
but incomplete bridging; 2 =
complete bridging, but less
than half width of adjacent
transverse process height in
the mid-intertransverse
space; 3 = complete bridging,
but less than full width of
adjacent transverse process
height in the mid-
intertransverse space; 4 =
complete bridging, with
greater than full width of
adjacent transverse process
height in the mid-
intertransverse space;
Maximum grade for each
fusion site and graft material
was 8.

Histology Non-decalcified (Von Gieson
stain)

Non-decalcified (toluidine
blue stain)

Non-decalcified, UV labeled
evaluation; hematoxylin and
eosin, von Kossa, and
toluidine blue stains; plain
radiographs taken of the thick
histologic sections prior to
polishing to examine
radiographic appearance

Non-decalcified
(Osteochrome Villanueva
bone stain)

None Non-decalcified (Sanderson
rapid Bone Stain and
counterstained with Acid
Fuchsin) Decalcified
(osteosarcoma analysis,
hemotoxylin and eosin (H&E)
stain)
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TABLE X2.5 Continued

Category Publication Reference

Histologic
Scoring

Healing, bone quality, and
graft incorporation were
scored using a
semiquantitative scale. The
scale graded graft–tissue
interface (0=gap, 1=fibrous,
2=fibrous and bone, 3=bone),
remodeling (0=woven,
1=woven>lamellar,
2=woven<lamellar,
3=lamellar), osteoblasts
(0=minimal, 1=some,
2=many), osteoclasts
(0=minimal, 1=some,
2=many), and inflammation
(0=None, 1=some, 2=many).
Scores were assigned by a
single pathologist in 0.5
increments.

The purpose of the histology
was to assess: (1) the overall
morphology of de novo bone;
(2) the maturity of the bone
and presence of osteoid and
active osteoblasts and
osteoclasts; (3) the amount of
residual implant material; and
(4) the presence of any other
cell type in the fusion site.

Qualitative assessment only None Qualitative assessment only Qualitative assessment only

Biomechanical
Test Method

None Manual palpation Right & left 3-point bending
applying non-destructive load
up to 100 N at 2mm/min;
Destructive testing in flexion-
extension at 50 mm/min; The
peak load, energy to peak
load and stiffness, and mode
of failure were determined.

Manual Palpation (graded as
solid/not solid);
nondestructive testing under
load control in compression,
flexion-extension, lateral
bending, and axial rotation.

Nondestructive pure moment
testing (6 DOF)

Manual palpation (2 blinded
reviewers, solid/not solid)

Other
Assessments

Histomorphometry;
Histomorphometric
parameters measured or
calculated included: total
reactive (area of the fusion)
area (mm2), bone within
reactive area (mm2), percent
bone within reactive area
(%), graft within reactive area
(mm2), percent graft within
reactive area (%), percent
graft+bone within the reactive
area (%), distance between
transverse processes (mm),
connecting bone within the
transverse process span
(mm), and percent distance
between transverse
processes consisting of bone
(bone union) (%).

Micro-CT None Histomophometry, assessed
total fusion mass area,
trabecular bone area, and
relative trabecular bone area.

None Backscattered electron image
analysis (to assess bone
volume); High resolution
contact radiographs (total
volume fraction of bone
present)

F
2884

−
12

23

 



TABLE X2.5 Continued

Category Publication Reference

Comments Pedicle screw stabilization
used;
Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Pedicle screw stabilization
used;
Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Pedicle screw stabilization
used and demonstrated
faster healing of fusion;
Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Pedicle screw stabilization
used;
Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans).(2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.

Pedicle screw stabilization
used;
Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans).(2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations.
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TABLE X2.6 Published Examples for the Sheep Interbody Spine Fusion Model
Category Publication Reference

Citation Sandhu (201) Ito (192) Slivka (203) Kandziora (193) Takahata (205) Thomas (213)

Breed Merino sheep Suffolk sheep Rambouillet X Columbia
sheep

Merino Sheep Suffolk sheep Rambouillet X Columbia
sheep

Chromosomal
Sex

Female Male Female Female Not specified Female

Age Skeletally mature 1-2 years >3.5 years 2 years 2-3 years Skeletally mature

Weight ~ 65 kg 65-80 kg Not specified Not specified 65-80 kg Not specified

Group Size
(n)

N=12 (6/group) N=21 (7/group) N=15 (2 sites/animal; 6
sites/group)

N=24 (8/group) N=24 (2 levels per animal) N=8

Interbody
Location

L4-L5 L2-L3, L4-L5 C2-C3, C4-C5 C3-C4 L2-L3, L4-L5 C3-C4, C4-C5, C5-C6

Control Autograft None CFRP cage alone Autologous tricortical iliac
crest bone graft

None None

Bone Graft
Volume

Autograft: not specified; rhBMP-2: one 1” × 2”
sponge

None Not Specified Group 2 & 3: 0.4 cc iliac
crest autograft

Not specified Not specified

Bone Graft
Material

Autograft; rhBMP-2 on ACS None, HAC spacer w/
varying porosity only

Autograft harvested from
the sternum

Iliac crest autograft Smooth and porous
surface ceramic blocks (23
mm × 13 mm × 10 mm)

Autograft harvested from
the sternum

Duration of
Study

6 mo 4 mo, 6 mo 6 mo 12 weeks 2, 4, 8, 12, 24, 52 weeks 6, 12, & 36 mo

Radiographs Post-op, 2, 4, & 6 mo CT (at sacrifice) Dorsal-ventral & lateral @
3 & 6 mo.

Dorsal-ventral & lateral
plain film (1, 2, 4, 8, 12
weeks); CT

AP and lateral plain
radiographs (harvested
spines);

Dorsal-ventral and lateral
radiographs were made
before and after removal
of the metallic plates and
graded to assess fusion.

Radiographic
Scoring

A score was assigned depending on absence
(Grade 0) or presence of bone anterior to the
cage. When bone was present and there was an
attempt at bridging from one side only, that
sample scored Grade 1. When there was
“attempted” bridging from both sides, the sample
was assigned Grade 2, and Grade 3 was
assigned if the attempted fusions from the
cephalad and caudad ends of the vertebrae were
one continuous mass but this mass did not project
beyond the anterior margin of the vertebral
bodies. When the fusion mass extended in front of
the anterior margins of the contiguous vertebrae,
this was assigned a Grade 4. The observer
(A.D.D.) was blinded to the groups when scoring
the radiographs. Radiographs were available for
five animals in the autograft group.

Bonding conditions
between HAC and
vertebral body analyzed
and classified into 4
grades: protrusion,
suspicious fusion,
probable fusion, absolute
fusion.

Each treatment site was
judged by the primary
author (M.A.S.) as (1) not
fused, with a clear
radiolucency present
across the disc space; (2)
partly fused, characterized
by evidence of bridging,
mineralized callus across
the disc space; or (3)
fused, clearly showing a
solid bridge of bone
spanning the disc space.

Plain films: At 1, 2, 4, 8, 12
weeks, anterior, middle,
and posterior intervertebral
disc space heights (DSH)
of the motion segment
C3/C4 were measured on
lateral radiographic scans.
Average intervertebral DSH
was calculated from
anterior, middle, and
posterior DSH
measurements (anterior _
middle _ posterior DSH/3).
Functional radiographic
assessment using lateral
radiographs post-sacrifice.
(Three independent
reviewers);
CT: BMD and bony callus
measurement

Radiographic assessment
was performed
independently by three
orthopedic surgeons who
were blinded with regard to
the mechanical and
histologic data, and the
radiographic fusion rate
was calculated at each
time-period by averaging
the results of the three
observers.

The Faxitron radiographs
were graded as follows:
1 _ nonfusion; 2 _
lucency with some bony
bridging; 3 _ increased
bone density; 4 _
continuous bony
bridging.
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TABLE X2.6 Continued

Category Publication Reference

Histology Non-decalcified (toluidine-blue-O and basic
fuchsin stain)

4 motion segments from
each group analyzed;
Non-decalcified (H&E
and toluidine-blue-O
stain)

None Non-decalcified; Stains
used: (1) safranin-O/
Lightgreen, (2) safranin-O/
van Kossa, (3) astrablue,
and (4) Masson-Goldner.
Masson-Goldner stainings
were used for
histomorphological analysis

Non-decalcified (toluidine-
blue-O stain for vertebral
interface, H&E for facet
joint)

Non-decalcified
(trichrome stain)
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TABLE X2.6 Continued

Category Publication Reference

Histologic
Scoring

The nature of the fusion was commented on after
a detailed analysis of 10 randomly selected un-
decalcified stained sagittal sections of the fusion
level for separate animals. Evaluation included
qualitative assessment of osteogenesis in contact
with the TEMPs and in the open pores of the
titanium TEMPs as well as the histologic and
cytologic host response in the vicinity of the
titanium TEMPs. In each sagittal section the
presence of intervertebral fusion anterior to,
posterior to, or through the TEMPs was
determined as follows: (1) an uninterrupted bridge
of bone present in the anterior margin was
considered an anterior fusion, (2) an uninterrupted
bridge of bone present in the posterior margin
was considered posterior fusion, or (3) continuous
bone ingrowth from the endplate of the cephalad
vertebrae through the superior, middle, and
inferior portions of the TEMPs and into the
endplate of the caudal vertebrae was considered
fusion through the TEMPs. Based on these
criteria, each specimen was assigned an overall
rating of fusion as follows: (1) complete fusion, (2)
partial or incomplete fusion, or (3) nonfusion. A
rating of complete fusion was given if the majority
of sections of a specimen depicted a complete
intervertebral bridge of bone. If intervertebral
bridging was present either through the metallic
TEMPs or anterior or posterior to it but was noted
in less than a majority of sections, then a rating of
partial fusion was given. If no sections depicted a
complete, uninterrupted, intervertebral bridge of
bone, then the sample was rated as nonfusion.
After the analysis by the orthopedic pathologist,
sections for each sample that were representative
of the fusion status were selected, photographed,
and further analyzed in a blinded fashion by one
of the investigators (A.D.D.). To study the
continuity of bone inside the cage
(intracompartmental) with that outside the cage
(extracompartmental), bony continuity was
evaluated at the fenestrations of the cage in
sagittal sections. Specifically, a trapezoidal
template was drawn centering on each
fenestration of the titanium cage and to include
the contiguous intracompartment and
extracompartment regions measuring half the
thickness of the cage from the respective inner or
outer rim of the cage. A fenestration was labeled
“all bone” if only bone was observed (blue stained
tissue), “partial bone” if there was a mixture of
bone and fibrous tissue (pink stained tissue), or
“no bone” if only fibrous tissue was seen. Results
were expressed as a percentage for each sample.

Direct bonding of the
HAC spacer was
quantified using 3 slices
from one HAC spacer
and determined using
ratio of the direct
bonding surface to the
total surface of HAC.

None Intervertebral fusion was
categorized histologically
according to Zdeblick.
The bone graft or cage-
bone interface and the
tissue content inside the
cages were analyzed (1.
cage/ vertebral interface:
empty = 0 points; fibrous
tissue = 1 point; bone = 2
points; 2. tissue inside
cage: empty = 0 points;
fibrous cartilage = 1 point;
bone = 2 points). If four
points were awarded, a
successful arthrodesis or
fusion was considered to
have occurred.
Foreign body reactions
associated with the
bioabsorbable implants
were graded histologically
according to the score of
Hoffmann.
0 None No osteolysis
1 Mild Osteolysis around
the implant< 1 mm
(osteolysis zone)
2 Moderate Osteolysis
around the implant 1–3
mm (cystic osteolysis)
3 Severe Osteolysis
around the implant >3 mm
(confluent osteolysis)
4 Extensive osteolysis
around the implant >3 mm
plus implant breakdown

Qualitative assessment
only

Based on all sections
evaluated from each
spine, the spinal level
was considered to be
fused if greater than
50 % of the sections
showed continuous bony
bridging in any of the 3
anatomic regions; a
partial fusion existed if
less than 50 % of the
sections showed
continuous bony bridging
in any of the 3 anatomic
regions, and a nonfusion
existed if none of the
sections showed
continuous bony
bridging.
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TABLE X2.6 Continued

Category Publication Reference

Biomechanical
Test Method

Nondestructive testing using pure bending
moments that were applied to the motion
segments L3-L6 to induce flexion, extension, left
and right lateral bending, and left and right axial
rotation; 14 unoperated cadaveric sheep spines
were tested as controls.
One observer in a blinded fashion evaluated the
amount of fibrous tissue in and around the cage
as an index of poor fusion (more fibrous tissue =
poorer histologic fusion). A rectangular grid was
overlaid around the cage that was tangential and
touching the caudad and cephalad outer margins
of the cage and extending two cage thicknesses
outside the anterior and posterior margins.
Percentage areas representing the cage, fibrous
tissue (pink), and bony tissue (blue–purple) were
estimated for each representative section in both
groups of animals.

Destructive tensile
testing under
displacement control.

Nondestructive testing
using pure bending
moments that were applied
to the motion segments
C3/C4 to induce flexion,
extension, left and right
lateral bending, and left
and right axial rotation;
each treatment level was
graded as fused if the
average ROM for each of
the three test modes was
less than 4°; otherwise, it
was graded as not fused,
as previously reported by
Cunningham, et al.

Nondestructive testing
using Pure bending
moments that were applied
to the motion segments
C3/C4 to induce flexion,
extension, left and right
lateral bending, and left
and right axial rotation.

Non-destructive testing
using axial compression
and pure moment loading
for flexion-extension and
lateral bending; indirect
assessment of the stiffness
of the anterior spinal fusion
mass by measuring rod
strain of the spinal
instrumentation using
uniaxial strain-gauges;

Nondestructive testing
using Pure bending
moments that were
applied to the motion
segments C3/C4 induce
flexion, extension, left
and right lateral bending,
and left and right axial
rotation;

Other
Assessments

Microradiographs Micro-CT Micro-CT to assess new
bone formation

Histomorphometry Micro-CT (qualitative
assessment to assess
fusion mass)

Microradiographs

Comments Limitations: (1) Caution needed when
extrapolating data to higher animal models (that
is, humans). (2) These models do not reflect the
range of pathology or deleterious systemic agents
in clinical situations.

Limitations: (1) Caution
needed when
extrapolating data to
higher animal models
(that is, humans). (2)
These models do not
reflect the range of
pathology or deleterious
systemic agents in
clinical situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal
models (that is, humans).
(2) These models do not
reflect the range of
pathology or deleterious
systemic agents in clinical
situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal
models (that is, humans).
(2) These models do not
reflect the range of
pathology or deleterious
systemic agents in clinical
situations.

Limitations: (1) Caution
needed when extrapolating
data to higher animal
models (that is, humans).
(2) These models do not
reflect the range of
pathology or deleterious
systemic agents in clinical
situations. (3) Differences
in loading environments
between quadripedal
animals and bipedal
humans must be
considered.

Limitations: (1) Caution
needed when
extrapolating data to
higher animal models
(that is, humans). (2)
These models do not
reflect the range of
pathology or deleterious
systemic agents in
clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered. (4) The
number of animals used
in the study was low. (5)
Time points for
histological assessment
were limited.
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TABLE X2.7 Published Examples for the Goat Interbody Spine Fusion Model
Category Publication Reference

Citation Lippman(230) Mooney(231) Krijnen(227) Brantigan(223) Takahashi(239) Pintar(234)

Breed Goat Goat Dutch milk goats Spanish goat Goats Goats

Chromosomal
Sex

Male Male Female Not specified Female Not specified

Age 1-2 years Adult Skeletally mature 1-2 years Not specified Not specified

Weight Not specified Not specified 45-70 kg 23-32 kg 40-55 kg 30-40 kg

Group Size (n) N=42 (N=8 1 cm × 2 cm
tricortical iliac bone autograft,
N=16 70/30 PLDLLA/PGA +
autograft or rhBMP-2, N=18
85:15 PLDLLA/PGA +
autograft or rhBMP-2)

N=9 (3/group) N=35 (28 stand alone [14
titanium, 14 PLDLLA], 7
PLDLLA w/ anterior fixation)

N=27 (17 iliac crest, 10
allograft)

N=14 (3 disc spaces/animal;
2 animals received only
control grafts at all 3 levels)

N=14 (56 spinal units,
4/animal)

Interbody
Location

C2-C3, C3-C4, C4-C5 L4, L5, L6 (actually placed
into vertebral body)

L3-L4 L4-L5 C3-C4, C4-C5, C5-C6 C2-C3 or C3-C4 and C4-C5
or C5-C6; 2 lumbar levels
implanted (not specified), with
an intact space between.

Control 1 cm × 2 cm tricortical iliac
bone autograft

Autograft Titanium implant w/ autograft Allograft Porous HA graft w/ PBS tricortical iliac bone autograft
in one lumbar site and one
cervical site

Bone Graft
Volume

1 cm × 2 cm tricortical iliac
bone autograft; 2 cc of iliac
crest autograft for the
PLDLLA/PGA cages

Not specified Not specified Not specified 15 mm × 15 mm × 8 mm
graft

Not specified

Bone Graft
Material

Tricortical iliac bone
autograft, 70/30 PLDLLA/
PGA + autograft or rhBMP-2,
85:15 PLDLLA/PGA +
autograft or rhBMP-2

Autograft; HA granules
(dense and porous)

Iliac crest autograft Allograft; iliac crest autograft Porous HA graft w/ PBS;
Porous HA graft w/ 5 µg of
rhBMP-2; Porous HA graft w/
50g of rhBMP-2

Tricortical iliac bone
autograft; HA (Calcitek)
blocks (14 mm × 12 mm × 6,
8, or 10 mm)

Duration of
Study

3 mo, 6 mo, 12 mo 3 mo PLDLLA stand alone: 3
(N=6), 6 (N=7), and 12 mo
(N=8); PLDLLA fixation 6 mo;
titanium 12 mo.

6, 12, 24 mo 4 weeks, 12 weeks 6 weeks (N=4), 12 weeks
(N=4), 24 weeks (N=6)

Radiographs 1, 6, 12, 24 weeks Standard radiographs were
performed in all animals to
document placement of
fusion cages.

MRI at sacrifice (to assess
cage integrity); Lateral
radiographs of sections used
to evaluate fusion

Lateral (post-op); plain film
and 3-D CT at sacrifice

Immediately post-sacrifice,
evaluated by two blinded
evaluators; CT scans; DEXA
scans

AP and lateral plain films
post-op, 1 week, 2 weeks, 3
weeks, 5 weeks, 7 weeks, 9
weeks, 11 weeks, 13 weeks,
15 weeks, 17 weeks, 19
weeks, 21 weeks, 23 weeks,
sacrifice; CT done after
explant
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TABLE X2.7 Continued

Category Publication Reference

Radiographic
Scoring

Radiographic scoring (single
reviewer):
0 no intervertebral or
transvertebral osseous
densities;
1 fragmented intervertebral or
transvertebral osseous
densities;
2 transvertebral osseous
bridge

None 3-point scoring system: 0 =
no ingrowth of bone into
cage; 1 = ingrowth of bone
with the cage securely fixed
to the vertebral bone above
and below but with a
radiolucent discontinuity
within the fusion mass; 2 =
spondylodesis with solid bone
bridging the fusion area.

Radiographic plain film and
3D CT: Fused/not fused (one
reviewer)

Fusion defined as
encapsulation of the HA block
by bone and bone growth
from superior to inferior
vertebral body for the iliac
crest bone graft specimens.

Histology Decalcified (H&E stain) Non-decalcified Non-decalcified (Golder
trichrome, H&E, or toluidine
blue stains)

Undecacified (Villaneuva
bone stain)

Non-decalcified (H&E,
toluidine blue-O, and
Villaneuva stains)

Decalcified & non-decalcified
(modified tetrachrome stain)

Histologic
Scoring

Histological scoring: 0 no
evidence of new bone
formation
1 fibrosis, osteoblast
proliferation, minor new
ossification;
2 mod, new,
fibroendochondral
ossification, partial
fibrocartilaginous bridge;
3 fusion, fibrocartilaginous
bone union to identifiable
bone bridge

None Fused/nonfused assessment Fused/not fused Bone apposition to the
implant was assessed: 0, no
tissue formation surrounding
implant; 2, mild bone
apposition and cartilage
formation surrounding
implants; 3, moderate bone
apposition on 25%-50% of
the implant surface area; 4,
extensive bone apposition on
more than 50% of the implant
surface area (and further
subgrouping into A, no
evidence of bone
incorporation into the pores;
B, evidence of bone ingrowth
into the pores)

Qualitative assessment only

Biomechanical
Test Method

Manual palpation (single
reviewer):
0 typical joint
flexion–extension mobility;
1 reduced joint
flexion–extension mobility;
2 rigidity, little to no joint
flexion–extension mobility

None None None Manual palpation (Absence of
motion = fusion, any motion =
nonfusion); Nondestructive
testing using pure bending
moments that were applied to
the motion segments to
induce flexion, extension, left
and right lateral bending, and
left and right axial rotation;

Nondestructive testing using
pure bending moments that
were applied to the motion
segments to induce flexion,
extension, left and right
lateral bending, and left and
right axial rotation;

Other
Assessments

None SEM Backscatter electron
imaging; images were
analyzed for composition of
HA matrix, bone ingrowth,
and soft tissue/vascular
spaces

Histomorphometry (mean
bone ingrowth, mean bone
volume, mean MAR, mean
MS/BS, Mean MFR); PLDLLA
degradation assessment
(qualitative); in vitro
degradation analysis;
Chemical analysis to assess
crystallinity changes and
polydispersity index.

None None Disc space height

F
2884

−
12

30

 



TABLE X2.7 Continued

Category Publication Reference

Comments Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered.

Limitations: (1) Caution
needed when extrapolating
data to higher animal models
(that is, humans). (2) These
models do not reflect the
range of pathology or
deleterious systemic agents
in clinical situations. (3)
Differences in loading
environments between
quadripedal animals and
bipedal humans must be
considered.
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TABLE X2.8 Published Examples for the Pig Posterolateral Spine Fusion Model
Category Publication Reference

Citation Xue (251) Christensen (250)

Breed Danish landrace pigs Göttingen mini-pigs

Chromosomal Sex Female Female

Age 12 weeks 24 months

Weight ~ 50 kg ~ 30 kg

Group Size (n) N=11 (autograft control); N=11 (biphasic calcium phosphate) N=18 (9/group)

Interbody Location L2-L3, L5-L6 L3-L4

Control Autogenous iliac crest autograft Autogenous iliac crest autograft

Bone Graft Volume 4 g autogenous iliac crest autograft unilaterally; 8 g autogenous iliac crest unilaterally Not specified

Bone Graft Material Autograft; biphasic calcium phosphate Autograft

Duration of Study 3 mo 3 mo

Radiographs 12 weeks None

Radiographic Scoring 2 independent blinded physicians None

Histology Calcified, Golener’s trichrome, flourochrome labeling Calcified, basic fuchsin

Histologic Scoring Blinded quantitative assessment of bone volume using the point-counting technique
(To obtain random samples, a standard box with randomly distributed points was
superimposed onto the sections under a light microscope. The box was moved up to
down, down to up, and from right to left in turn for each column. Tissue volume
identification was based on the number of points located at each tissue structure
divided by the total number of points, which had been counted. Bone volume was
calculated as percentage of the bone marrow, cartilage, and fibrous tissue in each
fusion mass. A continuous trabecular bone bridging one adjacent transverse process
to the next was identified as histologic fusion. The fusion rates and the volumes of
fusion mass were compared.

Blinded quantitative evaluation of bone ongrowth was performed using the linear
intercept technique, and a special software program (CAST-Grid, Olympus Denmark
A/S, Glostrup, Denmark). Bone ongrowth was defined as bone in direct contact with
the screw surface as a percentage of the total screw surface. Fibrous tissue and bone
marrow with screw contact were also measured as percentage values. Bone ingrowth
was defined as bone volume as a percentage of total volume. A line was drawn
between each peak of the thread. Bone volume was counted as a percentage inside
the thread enveloped by the line. Both bone ingrowth and ongrowth examinations
were done in the body part according to the location of the spinal canal. The test
systems for evaluation of bone ongrowth and ingrowth were calibrated to have
approximately 200 intercepts or points counted for each parameter per specimen.
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TABLE X2.8 Continued

Category Publication Reference

Biomechanical Test
Method

None After sacrificing the animals, a torsion test was performed on the right-side screws
and a pull-out test on the left-side screws. The specimens were thawed at room
temperature, wrapped in latex to prevent cement from penetrating the bone,
embedded in polymethylmethacrylate, and fixed into a metal holder. With the tissue
block tilted to orient the screw axis vertically, the exposed end of the transpedicular
screw was attached with two special adapters fixed to the upper load cell. The torque
angle, pull-out force, load cell displacement and moments were recorded directly with
a Teststar II acquisition system (790–10 Testware-SX Application, MTS Corp.,
Minneapolis, USA). The load-displacement data were analysed using NIH Image 1.51
producers and Excel 4.0 software producers. For the torsion tests, the screws were
rotated 30° counter-clockwise at the speed of 0.5°/s. From the torsion tests, the
maximum torque (Nmm) and angle-related stiffness (Nm/°) were calculated. For the
pull-out tests, the screws were pulled out 10 mm at a rate of 0.2 mm/s. From the pull-
out testing, the stiffness (N/mm), strength (N), and energy (Nmm) to failure of each
screw were calculated. Stiffness was determined by calculating the slope of the early,
linear portion of the load-displacement curve. To calculate the slope, a least-squares
regression was performed on the raw data. Pull-out strength was defined as the
maximum load to failure, and energy to failure was obtained by integrating the area
under the load-displacement curve to the maximum load.

Other Assessments Bone graft residual ratio/fusion mass volume (cm3)/ autograft weight (g). The bone
graft residual ratios were compared between the two groups and between the
different amounts of bone graft.

Histomorphometry

Comments Limitations: (1) Caution needed when extrapolating data to higher animal models (that
is, humans). (2) These models do not reflect the range of pathology or deleterious
systemic agents in clinical situations. (3) Differences in loading environments between
quadripedal animals and bipedal humans must be considered.

Pedicle screw fixation used;
Limitations: (1) Caution needed when extrapolating data to higher animal models (that
is, humans). (2) These models do not reflect the range of pathology or deleterious
systemic agents in clinical situations. (3) Differences in loading environments between
quadripedal animals and bipedal humans must be considered.
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TABLE X2.9 Published Examples for the Pig Interbody Spine Fusion Model
Category Publication Reference

Citation Zou (271) Li (272) Zhang (270) Ylinen (269)

Breed Danish landrace pigs Danish landrace pigs Pig Pig

Chromosomal Sex Female Female Male Not specified

Age 12 weeks 3 mo Not specified (Adult) Not specified (growing)

Weight Not specified ~ 50 kg 50-60 kg 13.5-20.5 kg

Group Size (n) N=11 (PT-ring+PSF); N=11 (PT-
ring+ASF); N+11 (CF-cage+ASF)

N=12 (3/group) Group 1 (rh-BMP-2 on a HA/TCP-
collagen sponge, n = 6): final
concentration of 0.43 mg/mL. The dosing
of rhBMP-2 was 0.6 mg for each level.
The HA/TCP-collagen sponge (15:85 HA/
TCP ratio) was trimmed into 1.0 × 2.0 ×
0.35 cm3 strips, which is approximately
70% of the total volume of carrier that
could be implanted with a given
concentration of the rhBMP-2. Group 2
(iliac crest autograft, n = 4): right iliac
crest bone was obtained through a
separate fascial incision. A total of 6.0
cm3 of corticocancellous bone was
harvested, cleaned of soft tissues, and
morselized. Group 3 (empty, n = 4): no
graft material. Group 4 (HA/TCP-collagen
sponge only, n = 4): 1.0 × 2.0 × 0.35
cm3 HA/TCP-collagen sponge strips
without rhBMP-2

N=21 implanted; N=4 control

Interbody Location L2-L3, L4-L5, L6-L7 L3-L4, L4-L5 T5-T10 L4/L5 or L3/L4

Control None Autograft Iliac crest autograft Shams in 4 pigs in non-adjacent disc
spaces

Bone Graft Volume 0.69g (PT-ring+PSF); 0.68g (PT-
ring+ASF); 1.03 (CF-cage+ASF)

0.89 g (autograft); 0.80 mg (equine bone
extract)

Group 1 (rh-BMP-2 on a HA/TCP-
collagen sponge, n = 6): final
concentration of 0.43 mg/mL. The dosing
of rhBMP-2 was 0.6 mg for each level.
The HA/TCP-collagen sponge (15:85 HA/
TCP ratio) was trimmed into 1.0 × 2.0 ×
0.35 cm3 strips, which is approximately
70% of the total volume of carrier that
could be implanted with a given
concentration of the rhBMP-2. Group 2
(iliac crest autograft, n = 4): right iliac
crest bone was obtained through a
separate fascial incision. A total of 6.0
cm3 of corticocancellous bone was
harvested, cleaned of soft tissues, and
morselized. Group 3 (empty, n = 4): no
graft material. Group 4 (HA/TCP-collagen
sponge only, n = 4): 1.0 × 2.0 × 0.35
cm3 HA/TCP-collagen sponge strips
without rhBMP-2

None, simply a reinforced HA block left
empty

F
2884

−
12

34

 



TABLE X2.9 Continued

Category Publication Reference

Bone Graft Material Autograft Autograft; COLLOS E (equine bone
rextract)

rhBMP-2/ACS; Autograft; ACS None

Duration of Study 6 mo 3 mo 4 mo 3, 6, 12, or 16 weeks

Radiographs 24 weeks 3 mo (plain and CT) None 0 week; 3, 6, 12, or 16 weeks;
microradiographs were also taken at
sacrifice and evaluated to see fracture of
the HA implant and incorporation of the
bone inside the implant

Radiographic Scoring None None None Graded on scale of 1-4 (1 = 0% fusion to
4 = 76-100% fusion);

Histology Calcified, basic fuchsin Calcified, basic fuchsin Undecalcified;
Sanderson’s Rapid Bone Stain

Masson modification of Goldner stain

Histologic Scoring None None areas of HA, ingrown connective
tissue, and ingrown new bone were
measured

Biomechanical Test
Method

None None None None

Other Assessments Histomorphometry Histomorphometry; Blinded quantitative
evaluation was performed using the
points count technique; new bone
volume was calculated as a percentage
of the total volume inside the interbody
fusion device

Histomorphometry: for each disc level,
the original area of discectomy and
remaining disc area were analyzed under
light microscopy at 4× and 20× and
defined by: (1) the remnants of the
endplate; (2) junction of new bone
formation/bone remodeling activity; and
(3) residual necrotic bone graft or HA/
TCP material. Total bone volume and
fibrous tissue volume within both the
original discectomy and remaining disc
areas were measured for each disc level,
respectively. In the remaining disc area,
any ossification of the posterior anulus
was reflected by both these indexes.

oxytetracycline (OTC) uptake was
evaluated inside the implant as well as in
the bone next to the implant. The uptake
was also studied in the non-operated
discs and in the facet joints

Comments Pedicle Screw fixation and metallic
interbody spacer used;
Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Pedicle Screw fixation and metallic
interbody spacer used;
Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Pedicle Screw fixation used;
Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.
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TABLE X2.10 Published Examples for the Non-Human Primate Posterolateral Spine Fusion Model
Category Publication Reference

Citation Boden (274) Louis-Ugbo (285) Barnes (286) Boden (284)

Breed Rhesus macaque monkey Rhesus macaque monkey Rhesus macaque monkey Rhesus macaque monkey

Chromosomal Sex Male Not reported Not reported Not reported

Age 6-15 years 6-15 years Not reported 6-15 years

Weight 13-18 kg 6-18 kg Not reported 10-16 kg

Group Size (n) N=8 N=8 N=9 N=16

Interbody Location L4-L5 L4-L5 L4-L5 L4-L5

Control DBM None None None

Bone Graft Volume 3 g DBM (~10 cc) per animal; 3000 µg
bone protein; 6000 µg bone protein,
10,000 µg bone protein

4 g autograft + Grafton Flex/side (N=4);
4 g autograft + Grafton Matrix (N=4)
unilateral and 2 g autograft + Grafton
Flex (N=4) unilateral

5.0 cc CRM; 5.0 cc CRM + 2.0 cc ACS Ne-Osteo

Bone Graft Material DBM; bone protein Autograft; Grafton Flex; Grafton Matrix rhBMP-2 + CRM; rhBMP-2 + CRM +
ACS

Duration of Study 12 weeks 24 weeks 24 weeks 24 weeks

Radiographs 12 weeks 0, 4, 8, 12, 16, 20, 24 wk (plain film); 24
wk (CT)

4-6 week intervals (plain film); 24 wk CT 24 week (plain film; CT)

Radiographic Scoring None (blinded readings for fusion based
on trabecular pattern)

Radiographs and CT scans were
evaluated in a blinded fashion by two
readers and graded semiquantitatively
for the crosssectional area of the fusion
mass (points were assigned: 3 = good, 2
= fair, 1 = poor). Also, for the extent of
bone bridging between and incorporating
into the transverse processes on each
side (0: less than 25% of the distance
between adjacent transverse processes,
1: 25–49%, 2: 50–74%, 3: 75–99%, 4:
100%). Points were then added for each
site in each animal.

None None (blinded readings for fusion based
on trabecular pattern)

Histology Non-decalcified histology (H&E stain or
Goldner Trichrome)

Non-decalcified histology (Goldner
Trichrome)

Methylene blue and basic fuchsin Goldner Trichrome

Histologic Scoring None None Histologic fusion was considered to be
present if there was continuous new
bridging bone across the carrier
connecting the 2 transverse processes

None

Biomechanical Test
Method

Manual Palpation Manual Palpation Manual Palpation Manual Palpation

Other Assessments None None None None
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TABLE X2.10 Continued

Category Publication Reference

Comments Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered. (4) Side-by-side
design in the Matrix group used to
assess the impact of the amount of
autogenous bone graft implanted (5)
Limited number of animals

Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered. (4) Side-by-side
design (5) Limited number of animals
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TABLE X2.11 Published Examples for the Non-Human Primate Interbody Spine Fusion Model
Category Publication Reference

Citation Luk (288) Hecht (291) Cook (293) Steffen (292)

Breed Rhesus macaque monkey Rhesus macaque monkey Pig-tailed macaque Baboon

Chromosomal Sex Male Female Not reported Male

Age 4-6 years Adult 10.7 ± 3 yr Not reported

Weight 5.6-7.3 kg 4-6 kg 11.7 ± 3.5 kg ~25 kg

Group Size (n) N=14 N=6 N=31 N=9

Interbody Location L3-L4 L7-S1 L5-L6 L2-L3, L3-L4

Control None Autograft + cortical allograft cylinder Autograft Empty sham

Bone Graft Volume Not reported 0.4 mg BMP (1.4 cc of Helistat) Autograft; Autograft + bone growth
stimulator

Not reported

Bone Graft Material Autograft Autograft; rhBMP-2 (0.270mL of 1.5
mg/mL solution) applied to 1.4 cc of
Helistat.

Autograft None

Duration of Study 2, 4, 6, 12 mo 6 mo 12 weeks; 26 weeks 6 mo

Radiographs 0, 2, 4, 6, 12 mo 0, 8, 14, and 18 wk (plain film); 2, 12, 24
mo (CT); 6 mo (microradiographs)

0, 12, 26 weeks (plain films, CT) 6 wk, 3 mo, 6 mo (plain film); 3 & 6 mo
(CT)

Radiographic Scoring None None 0 No healing 0% (not healed)
1 Minimal consolidation of bone graft
1–25% healed
2 Consolidation of bone graft 26–50%
healed
3 Bridging callus 51–75% healed
4 Bridging callus with trabeculations
76%–100% healed
5 Evidence of bony remodeling of callus
NA

None

Histology None Undelcalcified; decalcified; Hematoxylin
and eosin (H&E), Mallory-Heidenhain,
toluidine blue O, and safranin O/fast
green stains

basic fuchsin and toluidine blue stain toluidine blue stain

Histologic Scoring None None 0: No healing 0% (not healed)
1: Minimal consolidation of bone graft
1–25% healed,
2: Consolidation of bone graft 26–50%
healed,
3: Bridging callus 51–75% healed,
4: Bridging callus with trabeculations
76%–100% healed,
5: Evidence of bony remodeling of callus
NA

Grading: I - fibrous tissue, II - fibro-
cartilage, III - uncalcified bone matrix, IV
-woven or parallel-fibered bone, V
-remodeled cancellous bone)

Biomechanical Test
Method

Flexion/extension static loading Manual Palpation None None

F
2884

−
12

38

 



TABLE X2.11 Continued

Category Publication Reference

Other Assessments anterior, middle, and posterior disc
heights were measured on the lateral
radiograph using a computer digitizer;
biochemical analysis of the intervertebral
disc

None None None

Comments Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Metallic interbody fusion device used;
Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.

Limitations: (1) Caution needed when
extrapolating data to higher animal
models (that is, humans). (2) These
models do not reflect the range of
pathology or deleterious systemic agents
in clinical situations. (3) Differences in
loading environments between
quadripedal animals and bipedal humans
must be considered.
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