Designation: F1883 - 03 (Reapproved 2013) # Standard Practice for Selection of Wire and Cable Size in AWG or Metric Units¹ This standard is issued under the fixed designation F1883; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval. ### 1. Scope - 1.1 This practice is intended as a guide to shipbuilders, shipowners, and design agents for use in the selection of conductor size for single conductor or multiple conductor cable sizes either in American Wire Gauge (AWG) or metric designations for commercial ship design and construction. - 1.2 The comparison chart of electrical conductor sizes shown in Table 1 presents a combined listing of international standard sizes of Class 2 stranded copper conductors in accordance with AWG (Specification B8) English units or IEC (IEC 60228) metric units. - 1.3 As a precautionary caveat, some conductor sizes listed in Table 1 may exceed minimal size requirements of the U.S. Coast Guard, the American Bureau of Shipping, and IEEE STD 45 for specific applications. - 1.4 The values stated for ampacity and dc resistance are presented as maximum values and are provided for information only. #### 2. Referenced Documents - 2.1 ASTM Standards:² - B8 Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft - B193 Test Method for Resistivity of Electrical Conductor Materials - 2.2 IEC Standards:³ - IEC 60092-350 Electrical Installations in Ships—Part 350: Shipboard Power: Cables—General Construction and Test Requirements - IEC 60228 Conductors of Insulated Cables ¹ This specification is under the jurisdiction of ASTM Committee F25 on Ships and Marine Technologyand is the direct responsibility of Subcommittee F25.10 on Electrical. Current edition approved May 1, 2013. Published May 2013. Originally approved in 1998. Last previous edition approved in 2008 as F1883 – 03 (2008). DOI: 10.1520/F1883-03R13. 2.3 IEEE Standard:⁴ IEEE STD 45 Recommended Practice for Electric Installations on Shipboard ### 3. Significance and Use - 3.1 The selection criteria is to be applied for uses of (1) new cable and (2) replacement cable. - 3.2 For the selection of new cable or the selection of replacement cable, this practice defines the choice criteria for conductor selection for cables in AWG (ASTM) or metric (IEC) sizes. #### 4. Selection Criteria - 4.1 When selecting cable for any application, AWG or metric sizing should be selected according to preferred sizes. The sizes of conductors that have been marked with an asterisk in Table 1 designate preferred sizes per Specification B8 and IEC 60228. Those sizes not marked are given for reference, and it is recommended that their use be discouraged. - 4.2 When selecting cable for any application, AWG or metric sizing should be selected with full consideration of the relationship of type of insulation and ampacity. Direct selection between AWG and metric sizes can be made only after a determination of the equivalence of insulation is made. - 4.3 When selecting cable, the conductor size will be determined from analysis of required ampacity, voltage drop considerations, type of cable insulation, and planned installation. Recommended practices for selection and installation of cable systems are detailed in IEEE STD 45 and IEC 60092-350. - 4.4 For the selection of cable sizes for new applications, conductor size that satisfies ampacity requirements, voltage drop factors, and the adequacy for application in the available cable space must also be considered. - 4.5 For the selection of cable sizes for replacement applications, cable size should be selected in excess of or equal to the replaced cable size. Existing cable space limitations should then be determined to ensure that space for installation of the replacement cable is adequate. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website. ³ Available from International Electrotechnical Commission (IEC), 3 rue de Varembé, Case postale 131, CH-1211, Geneva 20, Switzerland, http://www.iec.ch. ⁴ Available from Institute of Electrical and Electronics Engineers, Inc. (IEEE), 445 Hoes Ln., P.O. Box 1331, Piscataway, NJ 08854-1331, http://www.ieee.org. TABLE 1 Conversion Table—AWG/Metric Preferred Sizes of Conductors | Conductors | | | | | | |--|--------------------|--------------------|-----------------------|-------------------------|--------| | Size | | Area in | | dc Resistances at 20°CB | | | Metric, | Size | Circ Mils | Ampacity ^A | Ohms | Ohms | | mm ² | AWG/MCM | (Nominal) | | per 1000 ft | per km | | | | , , | | <u> </u> | | | | 2000* ^C | 2 000 000 | 1155 | 0.0053 | 0.0177 | | 1000* | | 1 970 000 | 1145 | 0.0054 | 0.0176 | | | 1750* | 1 750 000 | 1070 | 0.0063 | 0.0199 | | 800* | | 1 580 000 | 1009 | 0.0067 | 0.0224 | | | 1500* | 1 500 000 | 980 | 0.0071 | 0.0232 | | | 1250* | 1 250 000 | 890 | 0.0085 | 0.0278 | | 630* | | 1 240 000 | 886 | 0.0096 | 0.0286 | | | 1000* | 1 000 000 | 780 | 0.0106 | 0.0347 | | 500* | | 987 000 | 772 | 0.0105 | 0.0369 | | 400* | | 789 000 | 675 | 0.0133 | 0.0475 | | | 750* | 750 000 | 655 | 0.0141 | 0.0463 | | | 600* | 600 000 | 575 | 0.0176 | 0.0578 | | 300* | | 592 000 | 570 | 0.0211 | 0.0607 | | | 500* | 500 000 | 515 | 0.0211 | 0.0694 | | 240* | | 474 000 | 499 | 0.0219 | 0.0762 | | | 400* | 400 000 | 455 | 0.0264 | 0.0867 | | 185* | | 365 000 | 431 | 0.0286 | 0.1000 | | | 350* | 350 000 | 420 | 0.0302 | 0.0990 | | | 300* | 300 000 | 375 | 0.0353 | 0.1157 | | 150* | 000 | 296 000 | 372 | 0.0353 | 0.1260 | | 100 | 250* | 250 000 | 340 | 0.0423 | 0.1388 | | 120* | 200 | 237 000 | 327 | 0.0436 | 0.1540 | | 120 | 4/0* | 211 600 | 300 | 0.0500 | 0.1639 | | 95* | 4/0 | 187 000 | 265 | 0.0551 | 0.1059 | | 93 | 3/0* | | | | 0.1930 | | 70* | 3/0 | 167 000
138 000 | 260 | 0.0631 | | | 70* | 0/0* | | 230 | 0.0752 | 0.2700 | | | 2/0* | 133 100 | 225 | 0.0794 | 0.2605 | | F0* | 1/0* | 105 600 | 195 | 0.1002 | 0.3288 | | 50* | | 98 700 | 185 | 0.1044 | 0.3910 | | 0=+ | 1 | 83 690 | 165 | 0.1261 | 0.4139 | | 35* | | 69 100 | 144 | 0.1495 | 0.5290 | | | 2* | 66 360 | 140 | 0.1588 | 0.5211 | | | 3 | 52 620 | 120 | 0.2005 | 0.6577 | | 25* | | 49 300 | 115 | 0.2057 | 0.7340 | | | 4* | 41 740 | 105 | 0.2528 | 0.8295 | | 16* | | 31 600 | 89 | 0.3259 | 1.160 | | | 6* | 26 240 | 80 | 0.4023 | 1.320 | | 10* | | 19 700 | 63 | 0.5167 | 1.840 | | | 8* | 16 510 | 55 | 0.6380 | 2.093 | | 6.0* | | 11 800 | 43 | 0.8543 | 3.110 | | | 10* | 10 380 | 40 | 1.017 | 3.335 | | 4.0* | | 7 890 | 30 | 1.304 | 4.700 | | | 12* | 6 530 | 25 | 1.620 | 5.315 | | 2.5* | | 4 930 | 22 | 2.067 | 7.560 | | | 14* | 4 110 | 20 | 2.573 | 8.442 | | 1.5* | | 2 960 | | 3.417 | 12.20 | | | 16* | 2 580 | | 4.020 | 13.19 | | 1.0* | | 1 970 | | 5.213 | 18.20 | | 0.90 | | 1 773 | | 6.45 | 21.10 | | | 18* | 1 620 | | 6.82 | 20.95 | | 0.80 | | 1 576 | | 6.52 | 21.40 | | 0.75* | | 1 480 | | 6.82 | 24.80 | | 0.60* | | 1 182 | | 9.5 | 31.16 | | | 20* | 1 020 | | 10.5 | 34.45 | | 0.50* | _• | 987 | | 11.4 | 36.70 | | 00 | 22* | 640 | | 16.9 | 55.44 | | 0.20* | 24* | 404 | | 26.7 | 87.60 | | | 26* | 253 | | 43.6 | 143.04 | | 4 . | | | | | | | A Ampacity of single-conductor cable in air at ambient temperature of 30°C and | | | | | | ^A Ampacity of single-conductor cable in air at ambient temperature of 30°C and maximum conductor temperature not exceeding 60°C. $$R_{\tau} = R_{t} \left[1 + \alpha_{\tau} (t - T) \right] \tag{1}$$ where: R_T = resistance at reference temperature T, R_t = resistance as measured at temperature t, α_T = known or given temperature coefficient of resistance of the conductor being measured at reference temperature T. At 20°C, the value is 0.003 93, T = reference temperature, and = temperature at which measurement is made. $^{\it C}$ An asterisk (*) indicates preferred sizes for wires of American Wire Gauge or per IEC 60228 (metric) as appropriate. ## 5. Keywords 5.1 AWG conductor sizes; cable selection; conductor comparison; metric conductor sizes ^B Temperature correction: the conductor resistance may be corrected for moderate temperature differences from the noted reference temperature by the following equation. The parameter, αT , varies with conductivity and temperature. For a list of common temperature coefficients see Test Methods B193. ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility. This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below. This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).