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Standard Practice for
Estimating the Power Spectral Density Function and Related
Finish Parameters from Surface Profile Data 1

This standard is issued under the fixed designation F 1811; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice defines the methodology for calculating a
set of commonly used statistical parameters and functions of
surface roughness from a set of measured surface profile data.
Its purposes are to provide fundamental procedures and nota-
tion for processing and presenting data, to alert the reader to
related issues that may arise in user-specific applications, and
to provide literature references where further details can be
found.

1.2 The present practice is limited to the analysis of one-
dimensional or profile data taken at uniform intervals along
straight lines across the surface under test, although reference
is made to the more general case of two-dimensional measure-
ments made over a rectangular array of data points.

1.3 The data analysis procedures described in this practice
are generic and are not limited to specific surfaces, surface-
generation techniques, degrees of roughness, or measuring
techniques. Examples of measuring techniques that can be used
to generate profile data for analysis are mechanical profiling
instruments using a rigid contacting probe, optical profiling
instruments that sample over a line or an array over an area of
the surface, optical interferometry, and scanning-microscopy
techniques such as atomic-force microscopy. The distinctions
between different measuring techniques enter the present
practice through various parameters and functions that are
defined in Sections 3 and 5, such as their sampling intervals,
bandwidths, and measurement transfer functions.

1.4 The primary interest here is the characterization of
random or periodic aspects of surface finish rather than isolated
surface defects such as pits, protrusions, scratches or ridges.
Although the methods of data analysis described here can be
equally well applied to profile data of isolated surface features,
the parameters and functions that are derived using the
procedures described in this practice may have a different
physical significance than those derived from random or
periodic surfaces.

1.5 The statistical parameters and functions that are dis-
cussed in this practice are, in fact, mathematical abstractions
that are generally defined in terms of an infinitely-long linear

profile across the surface, or the “ensemble” average of an
infinite number of finite-length profiles. In contrast, real profile
data are available in the form of one or more sets of digitized
height data measured at a finite number of discrete positions on
the surface under test. This practice gives both the abstract
definitions of the statistical quantities of interest, and numerical
procedures for determining values of these abstract quantities
from sets of measured data. In the notation of this practice
these numerical procedures are called “estimators” and the
results that they produce are called “estimates”.

1.6 This practice gives “periodogram” estimators for deter-
mining the root-mean-square (rms) roughness, rms slope, and
power spectral density (PSD) of the surface directly from
profile height or slope measurements. The statistical literature
uses a circumflex to distinguish an estimator or estimate from
its abstract or ensemble-average value. For example, Â denotes
an estimate of the quality A. However, some word-processors
cannot place a circumflex over consonants in text. Any
symbolic or verbal device may be used instead.

1.7 The quality of estimators of surface statistics are, in
turn, characterized by higher-order statistical properties that
describe their “bias” and “fluctuation” properties with respect
to their abstract or ensemble-average versions. This practice
does not discuss the higher-order statistical properties of the
estimators given here since their practical significance and use
are application-specific and beyond the scope of this document.
Details of these and related subjects can be found in References
(1–10)2 at the end of this practice.

1.8 Raw measured profile data generally contain trending
components that are independent of the microtopography of the
surface being measured. These components must be subtracted
before the difference or residual errors are subjected to the
statistical-estimation routines given here. These trending com-
ponents originate from both extrinsic and intrinsic sources.
Extrinsic trends arise from the rigid-body positioning of the
part under test in the measuring apparatus. In optics these
displacement and rotation contributions are called “piston” and
“tilt” errors. In contrast, intrinsic trends arise from deliberate or
accidental shape errors inherent in the surface under test, such
as a circular or parabolic curvature. In the absence of a-priori
information about the true surface shape, the intrinsic shape
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error is frequently limited to a quadratic (parabolic) curvature
of the surface. Detrending of intrinsic and extrinsic trends is
generally accomplished simultaneously by subtracting a de-
trending polynomial from the raw measured data, where the
polynomial coefficients are determined by least-squares fitting
to the measured data.

1.9 Although surfaces and surface measuring instruments
exist in real or configuration space, they are most easily
understood in frequency space, also known as Fourier trans-
form, reciprocal or spatial-frequency space. This is because
any practical measurement process can be considered to be a
“linear system”, meaning that the measured profile is the
convolution of the true surface profile and the impulse response
of the measuring system; and equivalently, the Fourier-
amplitude spectrum of the measured profile is the product of
that of the true profile and the frequency-dependent “transfer
function” of the measurement system. This is expressed
symbolically by the following equation:

Ameas~ f x! 5 A true~ fx! · T ~fx!

where:
A = the Fourier amplitudes,
T ( fx) = instrument response function or the measurement

transfer function, and
f x = surface spatial frequency.

This factorization permits the surface and the measuring
system to be discussed independently of each other in fre-
quency space, and is an essential feature of any discussion of
measurement systems.

1.10 Figure 1 sketches different forms of the measurement
transfer function,T( fx):

1.10.1 Case (a) is a perfect measuring system, which has
T ( fx) = 1 for all spatial frequencies, 0# fx# ` . This is
unrealistic since no real measuring instrument is equally
sensitive to all spatial frequencies. Case (b) is an ideal mea-
suring system, which hasT (fx) = 1 for LFL # f x# HFL and
T (f x) = 0 otherwise, whereLFL and HFL denote the
low-frequency and high-frequency limits of the measurement.
The rangeLFL # f x# HFL is called the bandpass or
bandwidth of the measurement, and ratioHFL/LFL is called
the dynamic range of the measurement. Case (c) represents a
realistic measuring system, since it includes the fact thatT (fx)
need not be unity within the measurement bandpass or strictly
zero outside the bandpass.

1.11 If the measurement transfer function is known to
deviate significantly from unity within the measurement band-
pass, the measured power spectral density (PSD) can be
transformed into the form that would have been measured by
an instrument with the ideal rectangular form through the
process of digital “restoration.” In its simplest form restoration
involves dividing the measuredPSD by the known form of
?T ~ fx! ?2 over the measurement bandpass. Restoration is par-
ticularly relevant to measuring instruments that involve optical
microscopes since the transfer functions of microscope systems
are not unity over their bandpass but tend to fall linearly
between unity atT (0) = 1 andT(HFL) = 0. The need for, and
methodology of digital restoration is instrument specific and
this practice places no requirements on its use.

1.12 This practice requires that any data on surface finish

parameters or functions generated by the procedures described
herein be accompanied by an identifying description of mea-
suring instrument used, estimates of its low- and high-
frequency limits,LFL andHFL, and a statement of whether or
not restoration techniques were used.

1.13 In order to make a quantitative comparison between
profile data obtained from different measurement techniques,
the statistical parameters and functions of interest must be
compared over the same or comparable spatial-frequency
regions. The most common quantities used to compare surfaces
are their root-mean-square (rms) roughness values, which are
the square roots of the areas under thePSDbetween specified
surface-frequency limits. Surface statistics derived from mea-
surements involving different spatial-frequency ranges cannot
be compared quantitatively except in an approximate way. In
some cases measurements with partially or even nonoverlap-
ping bandwidths can be compared by using analytic models of
the PSDs to extrapolate thePSDs outside their measurement
bandwidth.

1.14 Examples of specific band-width limits can be drawn
from the optical and semiconductor industries. In optics the
so-called total integrated scatter or TIS measurement technique
leads to rms roughness values involving an annulus in two-
dimensional spatial frequencies space from 0.069 to 1.48 µm–1;
that is, a dynamic range of 1.48/0.069 = 21/1. In contrast, the
range of spatial frequencies involved in optical and mechanical
scanning techniques are generally much larger than this,
frequently having a dynamic ranges of 512/1 or more. In the
latter case the subrange of 0.0125 to 1 µm–1 has been used to
discuss the rms surface roughness in the semiconductor indus-
try. These numbers are provided to illustrate the magnitudes
and ranges ofHFL andLFL encountered in practice but do not
constitute a recommendation of particular limits for the speci-
fication of surface finish parameters. Such selections are
application dependent, and are to be made at the users’
discretion.

1.15 The limits of integration involved in the determination
of rms roughness and slope values from measured profile data
are introduced by multiplying the measuredPSD by a factor
equal to zero for spatial frequencies outside the desired
bandpass and unity within the desired bandpass, as shown in
Case (b) in Fig. 1. This is called a top-hat or binary filter
function. Before the ready availability of digital frequency-
domain processing as employed in this practice, bandwidth
limits were imposed by passing the profile data through analog
or digital filters without explicitly transforming them into the
frequency domain and multiplying by a top-hat function. The
two processes are mathematically equivalent, providing the
data filter has the desired frequency response. Real data filters,
however, frequently have Gaussian orRC forms that only
approximate the desired top-hat form that introduces some
ambiguity in their interpretation. This practice recommends the
determination of rms roughness and slope values using top-hat
windowing of the measuredPSD in the frequency domain.

1.16 ThePSD and rms roughness are surface statistics of
particular interest to the optics and semiconductor industries
because of their direct relationship to the functional properties
of such surfaces. In the case of rougher surfaces these are still
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valid and useful statistics, although the functional properties of
such surfaces may depend on additional statistics as well. The
ASME Standard on Surface Texture, B46.1, discusses addi-
tional surface statistics, terms, and measurement methods
applicable to machined surfaces.

1.17 The units used in this practice are a self-consistent set
of SI units that are appropriate for many measurements in the
semiconductor and optics industry. This practice does not
mandate the use of these units, but does require that results
expressed in other units be referenced to SI units for ease of
comparison.

1.18 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
E 284 Terminology Relating to Appearance of Materials3

E 1392 Practice for Angle Resolved Optical Scatter Mea-
surements on Specular or Diffuse Surfaces4

F 1048 Test Method for Measuring the Effective Surface
Roughness of Optical Components by Total Integrated
Scattering4

2.2 ANSI Standard:
ANSI/ASME B46.1 Surface Texture (Surface Roughness,

Waviness and Lay)5

3. Terminology

3.1 Definitions: Introduction—This section provides the
definitions of special terms used in this practice, and includes
the mathematical definitions of different profile statistics in
terms of continuous, infinitely-long profiles. The corresponding
estimators of those statistics based on linear, sampled, finite-
trace-length data are given in Section 5. Definitions of terms
not included here will be found in Terminology E 284, Practice
E 1392, Test Method F 1048 or ANSI/ASME B46.1.

3.2 aperture averaging, local averaging, data
averaging—As used here, aperture and local averaging mean

that an estimate of the power spectral density function (PSD) is
“smoothed” by replacing its value at a given spatial frequency
by its average over a local frequency range using a particular
weighting function. Data averaging means the numerical aver-
aging of statistical estimates of the PSD, the mean-square
surface roughness or the mean-square profile slope derived
from different measurements, in order to obtain a single,
composite result. For example, a rectangular or square array of
measurements can be separated into a set of parallel profile
measurements which can be analyzed separately and the results
averaged.

3.2.1 Discussion—The averaged quantities must include the
same range of surface spatial frequencies.

3.3 bandwidth, bandwidth limits—The range of surface
spatial frequencies included in a measurement or specification.
It is specified by a high-frequency limit (HFL) and a low-
frequency limit (LFL).

3.3.1 Discussion—The bandwidth and the measurement
transfer function over the bandwidth must be taken into
account when measurements or statistical properties are com-
pared. Different measuring instruments are generally sensitive
to different ranges of surface spatial frequencies; that is, they
have different bandwidth limits. Real bandwidth limits are
necessarily finite since no measuring instrument is sensitive to
infinitely-low or to infinitely-high surface spatial frequencies.

3.4 bias error—The average deviation between an estimate
of a statistical quantity and its true value.

3.4.1 Discussion—The periodogram estimator of the power
spectral density (PSD) given in this practice is a zero-bias or
unbiased estimator of thePSD. On the other hand, local
averaging of the periodogram can introduce bias errors in
regions where the spectrum varies rapidly with frequency.

3.5 deterministic profile, deterministic roughness—A deter-
ministic profile is a surface profile that is a known function of
surface position, with no random dependencies on position.

3.5.1 Discussion—In contrast, a random profile is known
only in terms of a probability distribution function.

3.6 dynamic range—The ratio of the high- to low-frequency
limits of the bandwidth of a given measurement technique:

Dynamic range = HFL/LFL.
3.6.1 Discussion—This is a useful single-number character-

istic of a measuring apparatus. It completely describes the
measurement effects on surfaces with power-law power spec-
tra.

3.7 detrended profile, Zd(x)—The raw or measured profile

3 Annual Book of ASTM Standards, Vol 06.01.
4 Annual Book of ASTM Standards, Vol 10.05.
5 Available from the American National Standards Institute, 11 W. 42nd St., 13th

Floor, New York, NY 10036.

FIG. 1 Different Forms of the Measurement-Transfer or Instrumental-Response Function as a Function of Spatial Frequency, f x.
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after removing instrumental and surface trends. The detrended
profile is the input for the statistical estimation routines
described in Section 5.

3.7.1 Discussion—If the parametric form of the trend is
known, its least-squares-fitted form can be subtracted from the
measured profile data. Otherwise a generic power-series form
can be used. This practice describes the procedures for remov-
ing a zero-, first- or second-order polynomial in the trace
distance. A zero-order polynomial removes piston; a first-order
polynomial removes piston and tilt; and a second-order poly-
nomial removes piston, tilt and quadratic curvature. In each
case the detrended data set has zero mean. The coefficients of
constant and linear terms correspond to the rigid-body orien-
tation of the part being measured and need not be recorded.
However, the coefficient of the quadratic term represents the
intrinsic curvature of the surface being measured and should be
recorded.

3.8 ensemble, ensemble-average value—An “ensemble” is
an infinitely large collection (infinite ensemble) of quantities,
the properties of which are governed by some statistical
distribution law. For example, surface profiles, and rms rough-
ness values. An “ensemble average value” is the value of a
particular surface parameter or function averaged over the
appropriate distribution functions. The ensemble average value
of the quantityA is denoted by <A>.

3.8.1 Discussion—Estimates of ensemble-average quanti-
ties based on a finite collection of measurements (finite
ensemble) can deviate from their infinite-ensemble values by
fluctuation and bias errors.

3.9 estimator, estimated value, or estimate—An estimator is
an algorithm or mathematical procedure for calculating an
“estimate” the ensemble-average value of a roughness statistic
from a finite set of measured profile data.

3.9.1 Discussion—In this practice a circumflex is used to
distinguish estimators and estimates from the corresponding
ensemble-average quantities (see also 1.6).

3.10 fast fourier transform or FFT—An algorithm for
calculating the Fourier transform (discrete Fourier transform or
DFT) of a set of numerical data. It is now ubiquitous and can
be found in any computer data analysis package (see 5.4.2 for
details).

3.10.1 Discussion—The discovery of theFFT is generally
attributed to Cooley and Tukey, although it was used and
reported in the earlier literature by a number of others,
including Gauss, two centuries before.

3.11 finish parameters and functions—Numbers or func-
tions that characterize surface height fluctuations. Their values
and forms may vary depending on the bandwidth of surface
frequencies that they contain, and the shapes of the transfer
functions of the measurement instruments involved. These
quantities are represented by their ensemble-average values
derived from measurements using specific estimation routines.

3.11.1 Discussion—In general, the finish parameters and
functions of an area are different from those of profiles taken
across the surface. In the case of surfaces that are statistically
isotropic, however, the area and profile statistics have a
one-to-one relationship. Except for incidental remarks, this

practice is concerned exclusively with the properties of surface
profiles.

3.12 fluctuation error—A general term denoting the devia-
tion of a quantity from its mean, average or detrended value.
Fluctuation errors are usually measured in terms of their
mean-square or rms values.

3.12.1 Discussion—For example,Rq is the rms fluctuation
error in the surface height andDq is the rms fluctuation error in
the profile slope. In turn, the estimates ofRq andD q have their
own fluctuation errors. The magnitudes of these higher fluc-
tuation errors not discussed in this practice.

3.13 high-frequency limit, HFL, 1/micrometers—The high-
est spatial frequency contained in a profile data set or specifi-
cation. TheHFL of a measurement is determined by the details
of the measurement process, and its value in specifications is
determined by the user.

3.13.1 Discussion—If the sampling interval in the measure-
ment process isD, the extreme value of theHFL is given by the
Nyquist criterion: HFL = 1⁄2D. However, other electrical,
mechanical, or optical filtering mechanisms may further limit
the HFL. Examples of such mechanisms are: the stylus tip
radius, projected measurement pixel size, optical resolution,
and electrical and digital filters, all of which contribute to the
high-frequency roll-off of the instrument transfer function. If
the Nyquist frequency is used to determine theHFL, care
should be taken to determine that the trueHFL is not reduced
by these additional mechanisms.

3.14 intrinsic surface or finish parameters—Surface param-
eters such as the rms roughness or rms slope that contain all
surface spatial frequencies from zero to infinity.

3.14.1 Discussion—Intrinsic parameters are statistical ab-
stractions that cannot be measured or estimated directly since
real measurements are sensitive to only limited ranges of
surface spatial frequencies. They can, however, be inferred
from real measurements by augmenting measurements with
a-priori information about very low and very high spatial
frequencies contained in physically-based models of thePSDs
of the surfaces involved. All measured finish parameters are
finite but their corresponding intrinsic values need not be. The
important distinction between intrinsic and measured (band-
width limited) finish parameters is not always made in the
literature.

3.15 impulse response—The impulse response of a profile-
measuring system is the measured shape of an impulse or
infinitely-sharp ridge lying perpendicularly to the profile direc-
tion. In the case of a linear measuring system the impulse
response is the Fourier transform of the system transfer
function.

3.15.1 Discussion—The impulse response of a perfect mea-
suring system would be an infinitely sharp spike or delta
function. In contrast, the impulse response of real measuring
systems has a finite width.

3.16 isotropic surface, statistically-isotropic surface—A
surface whose intrinsic finish parameters and functions are
independent of the rotational position of the surface about its
surface normal.

3.16.1 Discussion—The rms roughness of profiles taken
across an isotropically rough surface is independent of the
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profile directions, and equals the rms roughness of the surface
area. The rms slope of an isotropically rough surface is also
independent of the profile direction and equals 1/=(2) of the
rms area gradient. The one-dimensional or profile power
spectrum of an isotropic surface is also independent of the
direction of the profile on the surface, and is related to the
two-dimensional spectrum of the surface area by an integral
transform. Examples of this are given in 3.37.

3.17 linear systems, linear measurement system—A signal-
processing concept more precisely described as a linear,
shift-invariant system. For the present purposes, a linear
measurement of the surface profile is the true profile convolved
with the impulse response of the measuring system, or equiva-
lently, the Fourier amplitude spectrum of the measurement is
the true amplitude spectrum times the measurement transfer
function as indicated in 1.9.

3.17.1 Discussion—All practical measurement systems are
taken to be linear over their operating ranges.

3.18 low-frequency limit, LFL, 1/micrometers—The lowest
spatial frequency contained in a profile data set or specifica-
tion.

3.18.1 Discussion—The minimumLFL in a profile mea-
surement is the reciprocal of the length of the surface profile.
The estimated value of thePSD at this value of theLFL is
generally attenuated by the detrending process. To avoid this
effect the lowest practicalLFL is sometimes taken to be 3 to 5
times the reciprocal of the scan length. TheLFL in surface
specifications is determined by the user.

3.19 mean-square profile roughness, Rq
2, nanometers

squared—The ensemble-average value of the square of the
height of the detrended profile:

Rq
2 5 L → `

Lim 1
L*–L/2

1L/2
dx ~Zd ~x!! 2 5 *0

1`
dfx S1~ f x!

where:
Zd (x) is the detrended surface profile, and
S1(f x) is its power spectral density.
The optics literature uses the symbols for Rq.
3.19.1 Discussion—The intrinsic value of the mean-square

roughness of an isotropically-rough surface area equals the
mean-square roughness of any profile across it. The rms
roughness,R q, is distinct from the arithmetic-average rough-
ness,Ra. The two are only related through a specific height-
distribution function. For example, for a Gaussian height
distribution,

Ra 5 =~2/p! Rq 5 0.798 Rq .

3.20 mean-square profile slope,D q
2, units of choice—The

average value of the square of the slope of the detrended
profile:

Dq
2 5 L → `

Lim 1
L*–L/2

1L/2
dx SdZd

dx D 2

5 *0

1`
dfxS1~fx! · ~2p fx!

2

3.20.1 Discussion—This expression assumes that the aver-
age slope has been removed in the detrending process. The
integrand in the frequency integral on the right can be viewed
as the slope power spectral density. The mean-square surface
slope of an isotropically-rough two-dimensional surface is half
the mean-square gradient of the surface itself.

3.21 measured profile parameters and functions—

Quantities derived from detrended profile data that include the
bandwidth and transfer function effects of the particular mea-
surement system used.

3.21.1 Discussion—Measured parameters and functions can
be used for comparing surfaces quality providing the same
measurement system is used in all cases. In order to compare
quantitative measurements made by different measurement
systems, or to estimate intrinsic surface properties, the system
bandwidths and transfer functions must be taken into account.
In the early literature, measurement systems were taken to be
“perfect” in the sense of 1.10.1, and the effects of their
bandwidths and transfer functions were ignored.

3.22 Nyquist frequency, 1/micrometers—The spatial fre-
quency equal to the reciprocal of twice the sampling interval.
See 3.13.1.

3.22.1 Discussion—The Nyquist frequency represents the
highest undistorted frequency involved in a series of
uniformly-spaced profile measurements. Higher-frequency
components in the surface appear at lower-frequencies through
the process of aliasing. Unless the effects of aliasing are
removed by anti-aliasing mechanisms in the measurement
process, they will corrupt the measured spectrum immediately
below the Nyquist frequency. In that case theHFL should be
taken to be a factor of 3 to 5 below the Nyquist frequency.

3.23 periodic roughness, periodic random roughness—
Purely periodic roughness is deterministic. Periodic random
roughness is modified version of purely periodic roughness that
has a definite fundamental spatial frequency but random
variations in its phase or amplitude.

3.23.1 Discussion—The power spectra of periodic and pe-
riodic random roughness appear as isolated peaks in the power
spectral density function. This pattern is distinct from the broad
variations appearing for purely random surfaces. Random
surfaces can be viewed as periodic surfaces with a broad
distribution of fundamental periods.

3.24 periodogram estimator, periodogram estimates—The
periodogram is the particular estimator for the power spectral
density discussed in this practice. It is proportional to the
square magnitude of the discrete Fourier transform of the
detrended data set. Periodogram estimates are estimates of
particular finish parameters that are derived from the peri-
odogram estimate of the power spectrum.

3.25 power spectral density, PSD or power spectrum—A
statistical function that shows how the mean-square (rms)2 of a
given quantity is distributed among the various surface spatial
frequencies inherent in the profile height.

3.25.1 Discussion—The two conventional measures of sur-
face roughness,R a andRq do not carry any information about
the transverse scale of the surface roughness. That is, they are
independent of how much the surface profile is squeezed or
stretched parallel to the surface plane. ThePSDis the simplest
statistic that carries that important additional information.

(1) profile or one-dimensional PSD of the surface height,
micrometers-cubed—This quantity has the units of µm3, and is
a function of the spatial frequency,fx, in units of inverse
micrometers, µm–1. It is defined as follows:

S1~fx! 5 L → `
Lim K 2

LU*–L/2

1 L/2
dx Z~x!ei2pfxxU2L, fx . 0
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3.25.1.1Discussion—The subscript “x” on “f x” corre-
sponds to the direction of the profile on the surface and can be
omitted if no confusion is involved. In this definition the spatial
frequency,fx, is always positive and greater than zero. The
value atfx = 0 corresponds to the average value of the profile
height, which is zero for detrended profiles. The factor of 2
accounts for the equal contribution from negative frequencies
and ensures that the area under the positive-frequency profile
spectrum equals the rms-squared (mean-square) profile height.

3.25.1.2Discussion—A mathematical variant of the peri-
odogram estimator is the correlation method. This is a two-step
process that requires the estimation of an intermediate func-
tion, the autocovariance function, which is then Fourier trans-
formed to obtain the periodogram estimate of the power
spectrum. This method is not discussed in this practice since it
is indirect, and when properly applied gives identically the
same results as the direct transform method recommended in
this practice.

3.25.1.3Discussion—The signal-processing literature con-
tains many different estimators of the power spectrum in
addition to the periodogram. In general, they differ from the
periodogram in that they incorporate different types and
degrees of a-priori physical or mathematical information about
the original data set. The periodogram, in contrast, includes the
maximum number of degrees of freedom and is always used
for first-cut evaluation and analysis. Details of the correlation
and other spectral estimation methods are discussed in the
literature found in “References” at the end of this practice.

(2) area or two-dimensional PSD of the surface height,
micrometers-fourth power—This quantity has the dimensions
of µm 4, and is a function of the spatial frequencies in both the
x andy directions on the surface,fx and fy, in units of inverse
micrometers, µm–1. It is defined as follows:

S2~fx, fy! 5 A → `
Lim K 1

AU**A
dx dy ei2p~fx x1fyy! Z ~x, y!U 2L,

– ` , f x, fy , 1 `

3.25.1.4Discussion—The spatial frequency ranges included
in this definition cover the entire frequency plane and are not
limited to positive frequencies only as in the case of the profile
spectrum. In the case of an isotropically-rough surface the area
spectrum is a function only of the magnitude of the two-
dimensional frequency vector:f = =(f x

2+ fy
2). The profile

spectrum can be derived from the area spectrum, but the area
spectrum cannot, in general, be derived from the profile
spectrum. Uniaxial and isotropically-rough surfaces are excep-
tions.

3.25.1.5Discussion of units—The surface height fluctua-
tions of optical surfaces are usually measured in units of
nanometers (1 nm = 10–3 µm), or the non-SI units of Ångstroms
(1 Å = 10–4 µm). Values of thePSDs estimated using height
data in these units can be converted to the recommended units
by multiplying by the following conversion factors:

(1) To convert S1 in units of nm 2µm to units of µm3

multiply it by 10–6,
(2) To convertS1 in units of Å2µm to units of µm3 multiply

it by 10–8,
(3) To convertS2 in units of nm 2µm 2 to units of µm4

multiply it by 10 –6, and

(4) To convert S2 in units of Å 2µm2 to units of µm4

multiply it by 10 –8.
If the sample interval is given in millimeters instead of

micrometers, the conversion factors forS1 should be multiplied
by an additional factor of 103, and those forS 2 should be
multiplied by an additional factor of 106.

3.26 radius of curvature, Rˆ x, units of choice—The radius of
a circle fitted to the measured surface profile.

3.26.1 Discussion—When the radius us large relative to the
profile length its magnitude is most easily determined from the
quadratic term in the detrending polynomial. If the average
surface profile is written asZ(x) = a + bx + cx 2, the estimate
of the radius of curvature in thex direction isR̂ x = 1/(2c). If
Z andx are expressed in micrometers,R̂x will be in microme-
ters. Since the radii of curvature of nominally flat surfaces can
be quite large, other reporting units, such as meters or
kilometers, may be more appropriate.

3.27 random roughness, random surface profile—A surface
height profile that involves parameters that are distributed
according to statistical distribution laws rather than having
fixed or deterministic values.

3.27.1 Discussion—For example, the profile
Z(x) = A Cos (2pfx x + f) is deterministic iff = const., but
random iff has a finite-width probability distribution function
P (f). Finish parameters and functions such as Z(x)2, are then
the values of those quantities averaged overP (f).

3.28 restoration—The signal-processing procedure in
which measurements are compensated for a non-unit measure-
ment transfer function by passing them through a digital filter
that restores the effective measurement function to unity over
its bandpass.

3.28.1 Discussion—The measured profile can be restored
and the statistics of the restored profile can then be estimated.
The most common spatial- and frequency-domain filters used
for this purpose are “inverse” and “Wiener” filters. This
practice does not discuss the details of such restoration
processes, which may be found in standard signal-processing
texts such as those given in “References” at the end of this
practice.

3.29 RMS profile roughness, Rq, nanometers—The square
root of the mean-square profile roughness.

3.30 RMS profile slope,Dq, units of convenience—The
square root of the mean-square profile slope.

3.30.1 Discussion—The slope is dimensionless, although
the fundamental unit is the radian. In practice it may be
convenient to express the rms slope of highly polished surfaces
in microradians.

3.31 sample or sampling interval, D, micrometers—The
distance between adjacent measurements of the surface height
along thex axis.

3.31.1 Discussion—The sample interval is usually chosen
or recommended by the manufacturer of the profile instrument
being used. The sample interval defines the Nyquist frequency
and hence, the extremeHFL of the measurement. This practice
does not address measurements with unequal sample intervals
or those made along nonlinear traces over the surface.

3.32 sampled profile, Z(xn), nanometers—The surface
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height,Z(xn), measured atN equally-spaced points along thex
axis.

3.32.1 Discussion—This practice uses the indexing conven-
tion for the position of the height samples,

xn 5 ~n – 1!D, n 5 1, 2 · · · N

The distance between the first and last points in the profile
trace is then (N–1)D.

3.33 sampled slope, m(xn), units of convenience—The sur-
face slope,m(xn), measured atN equally-spaced points thex
axis using the same indexing convention as for the sampled
profile.

3.33.1 Discussion—Some instruments measure the surface
slope directly, while others, in effect, measure the surface
height atN+1 points and generateN slope values using the
equation:

m~xn! 5
1
D @Z ~xn11! – Z ~xn!#, n 5 1, 2, · · ·N

3.34 slope power spectrum, S8(fx), micrometers—The statis-
tical function that shows how the mean-square profile slope is
distributed over surface spatial frequencies as follows:

S18~fx! 5 L → `
Lim K1

LU*–L/2

1L/2
dx m~x!ei2pf xxU2L 5 ~2pf x!

2 · S1~fx!

The prime onS1, on the left denotes that this is thePSDof
the slope, while the unprimedS1 on the far right is thePSDof
the height.

3.34.1 Discussion—This simple connection between the
slope and roughness power spectra permits one to be deter-
mined immediately in terms of the other.

3.35 spatial frequency, fx, 1/micrometers—The frequency
parameter in the Fourier transform of the surface profileZ(x).

3.35.1 Discussion—fx is related to the spatial wavelength,d
x through fx = 1/ dx. Similar quantities are defined for they
component, and the magnitude of the two-dimensional spatial-
frequency vector,f = =(( fx)

2 + (f y)
2), that appears in the

two-dimensional power spectral density of an isotropically-
rough surface,S 2(f).

3.36 spatial wavelength, dx, micrometers—The reciprocal
of the spatial frequency,fx.

3.36.1 Discussion—The mechanical-engineering com-
munity frequently uses the symboll for the spatial wave-
length, while the optical community reserves that symbol for
the radiation wavelength.

3.37 spectral models and spectral parameters—A spectral
model is an analytic expression for the power spectral density
which contains a number of adjustable parameters called finish
parameters. The values of these parameters are obtained by
fitting estimates of thePSD of the surface height or slope
fluctuations to the model.

3.37.1 Discussion—The fitting process performs a number
of important functions: it averages out the fluctuations appear-
ing in individual estimates of the power spectrum, it condenses
the data into a few intrinsic surface parameters, and provides a
mechanism for extrapolating the measured data outside the
measurement bandwidth.

(1) ABC spectral model—The spectral model that has the
following form for the profilePSD:

S1~fx! 5
A

@1 1 ~Bfx!
2#C/2

and

S2~f! 5
A8

@1 1 ~Bf!2# ~C11!/2, A8 5
1

2=p
·
G~~C 1 1!/2!

G~C / 2!
· AB

for the two-dimensional spectrum of an isotropically-rough
surface.

3.37.1.1Discussion—The finish parameters in this model
areA, B andC, which have the dimensions of µm3, µm 1, and
µm0.

Discussion: This model is sometimes called the
K-correlation model, and the quantityB/(2p), the correlation
length.

(2) fractal spectral model—The spectral model which has
the following form for the profile PSD:

S1~fx! 5
Kn

f x
n

and

S2~f! 5
Kn

8

f n–1 , Kn
8 5

1

2=p
·
G~~C 1 1! / 2!

G~C / 2!
· Kn

for the two-dimensional spectrum of an isotropically-rough
surface.

3.37.1.2Discussion—The finish parameters in this model
areKn andn, which have the dimensions of µm(3–n) and µm0.
The dimensionsless numbern usually lies between 1 and 3 but
need not be an integer. The quantityKn is sometimes referred
to as the spectral strength, and the parameter,n, the spectral
index.

3.37.1.3Discussion—The fractal model is the limiting case
of the ABC model when the finish parameterB becomes very
large. The value of the intrinsic mean-square profile and area
roughness of theABCmodel, obtained by integrating theABC
spectrum over all frequencies, is as follows:

Rq
2 5 *0

`
dfx S1~f x! 5 2 p*0

`
f df S2~f! 5

2p
C – 1

A8

B2

which is finite for C > 1. The intrinsic value of the
mean-square roughness of the fractal model is always infinite
because of its divergence at low spatial frequencies. In con-
trast, the measured roughness values, obtained by integrating
only over the measurement bandpass, are finite for theABCfor
any value ofC, and for the fractal model.

(3) periodic spectral model—The spectral model for a
surface consisting of a periodic structure having the form:

S1~fx! 5
1
2 (

k51

k5`

Ak
2 · d~f x – k / do!

and

S2~fx,fy! 5
1
4 (

k 5 – `

k 5 1 `

A|k|
2 · d~f x – k / do! · d~f y!

for the two-dimensional spectrum. (All sums exclude the
valuek = 0.)

3.37.1.4Discussion—The finish parameters of this model
are theAk’s, the Fourier amplitudes of the periodic profile, and
d o, the fundamental spatial wavelength of the periodicity, both
expressed in µm.Ak

2/2 is the mean-square roughness of the
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k-th harmonic of the profile (k = 1 is the fundamental), and
d( F) is a unit-area function that is sharply peaked about the

point F = 0. The value of the intrinsic mean-square profile and
area roughness of the periodic model is as follows:

Rq
2 5 *0

`
dfx S1 ~f x! 5 *–`

1`
dfx*

2`

1`
dfy S2 ~fx,fy! 5

1
2 (

k 5 1

`

Ak
2

In contrast, the measured value is the right-hand side
summed over those spectral lines that fall within the measure-
ment bandpass.

(4) composite spectral model—A spectral model made up of
a sum of terms involving different models or models with
different parameters, or both.

3.38 trace or profile length, L, micrometers—The total
length of the surface sampled by a linear profile measurement.
In the indexing used in this practice

L 5 xN 5 ~N – 1!D

where:
xN = the position of theN-th or last point in the measure-

ment, and
D = the same interval.

3.38.1 Discussion—The periodogram estimate is based on a
Fourier representation of the surface profile. The basic period-
icity of that expansion isND rather than the literal profile
lengthL = ( N–1)D. Depending on the type ofFFT used in the
practical evaluation of thePSD, Nmay be required to be a
power of 2, such as 1024, although in general, there is no
restriction onN in the present practice.

3.39 transfer function, measurement transfer function—A
function of spatial frequency having a magnitude between zero
and one which describes the sensitivity of a linear measuring
system to the amplitudes of different spatial-frequency com-
ponents in the profile being measured.

3.39.1 Discussion—The ideal transfer function is unity
within the measurement bandpass and zero for frequencies
outside the bandpass. Real-world measurement transfer func-
tions can deviate significantly from this. The transfer function
is the Fourier transform of the impulse response function of the
measuring apparatus.

3.40 uniaxial or grating-like surface—A surface whose
roughness is confined to a particular direction or lay, so that it
can be completely characterized by profile measurements
perpendicular to the lay direction. Surfaces that display har-
monic lines are frequently uniaxial.

3.40.1 Discussion—In contrast, an isotropic surface can
also be completely characterized by profile measurements
made in one direction, but there is no preferred direction as
there is for uniaxial surfaces. Surfaces that are neither uniaxial
nor isotropic can be characterized using the procedures de-
scribed in this practice, although profile measurements taken
on many directions across the surface may be needed to
generate a complete statistical description of the surface under
test.

3.41 window function, data window, W(xn)—A bell-shaped
or smooth-edged function which multiplies the detrended
profile data set before it is inserted into the periodogram
estimation routine.

3.41.1 Discussion—The window function “smoothes out”

possible discontinuities at the ends of the measured, finite-
length data set in order to eliminate the spurious oscillations
which those discontinuities would otherwise generate in the
spectral estimate. As long as the window function performs its
function of reducing the contributions from the ends of the data
record and has the proper normalization, its shape is of
secondary importance.

3.42 zero padding—The procedure of adding zero values to
a data set to bring the total number of data points,N, to a power
of two to facilitate the evaluation of theFFT appearing in the
periodogram spectral estimate.

3.42.1 Discussion—The window functions should be ap-
plied to the data set before zero padding. Zero padding is less
important with the ready availability of arbitrary-N FFT
computing packages.

4. Significance and Use

4.1 There is currently some confusion in the roughness-
measurement community concerning the use of estimators and
the calculation of power spectral densities (PSDs) from dis-
crete data sets. Use of the present practice will eliminate these
differences and result in the use of consistent units for thePSD
and related parameters. It also provides a uniform reporting
procedure for digital roughness data that will facilitate com-
munication between different workers and different laborato-
ries.

5. Procedure

5.1 The estimators defined in this section are based on the
analysis of a data set {Z ( n)} consisting ofN discrete values of
the surface profileZ (xn= (n–1)D) measured at equally-spaced
locations along a straight line of lengthL, wheren = 1 to N. If
Z ( n) is the measured profile, the detrended profile is given by:

Zd~n! 5 Z ~n! – @a 1 b · n 1 c · n 2# (1)

where the quantity in the square bracket is the quadratic
detrending polynomial. The estimated values of the polynomial
coefficientsa, b, c, denoted by aˆ, b̂, and ĉ, are determined by
least-squares fitting of the polynomial to the measured profile
data as now described. The degree of the detrending polyno-
mial is chosen by the following considerations: Removing
piston only (zeroth-order polynomial,a) is useful for instruc-
tional purposes but is inadequate in practice. It affects only the
zero-frequency or “dc” term in the power spectral density.
Removing piston and tilt (first-order polynomial,a+ b·n) is
sufficient for the removing uncertainties in the rigid-body
positioning of a nominally flat sample in the measurement
apparatus. Removing piston, tilt and curvature (second-order
polynomial, a+b·n+c·n2) removes an additional quadratic term
in the profile that may result from instrumental (extrinsic)
effects or true (intrinsic) curvature in the surface being mea-
sured. See “detrending” for additional discussion.

5.1.1 Piston detrending is as follows:

Ẑd~n! 5 Z ~n! – @ â# (2)

and

â 5 1M0 (3)

where Mo is evaluated using the general moment expression,
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MP 5
1
N (

n51

n5N

nP · Z ~n! (4)

which appears here and the other detrending polynomials
discussed in 5.1.2.

5.1.2 Piston and tilt detrending is as follows:

Ẑd~n! 5 Z ~n! – @ â 1 b̂ · n# (5)

where:
n = 1, 2 · · ·N

and

â 5 1
2

N – 1 · @~2N1 1! · M0 – 3 M1# (6)

b̂ 5 –
6

N – 1 ·FM0 –
2

N 1 1 · M1G
5.1.3 Piston, tilt, and curvature detrending is as follows:

Ẑd~n! 5 Z ~n! – @ â 1 b̂ · n 1 ĉ · n2#, (7)

where:
n = 1, 2, · · · N

and

â 5 1
3

~ N – 1!~N – 2!
· @~3N2 1 3N1 2! · M0 – 6~2 N 1 1! · M 1 1

10 · M 2#

b̂ 5 –
6

~N2 – 1!~N2 – 4!
· @3!N 1 1!~N 1 2!~2N1 1! · M0 – 2~2N1 1!~8N

1 11! · M1 1 30~N 1 1! · M2# (8)

ĉ 5 1
30

~N2 – 1!~ N2 – 4!
· @~N 1 1!~N 1 2! · M0 – 6~ N 1 1! · M 1 1

6 · M 2#

NOTE 1—The estimated values of the coefficients depend on the degree
of the polynomial being detrended. For example, the value of the
coefficient â for piston and piston-plus-tilt detrending derived from the
same data set are generally different.

NOTE 2—Despite these apparent differences, the mean values of each of
the detrended profiles given by

M ean value5
1
N (

n51

N

Zd~n! 5 0 (9)

vanishes in all cases. This means that the “dc” value of the estimated
power spectrum of the detrended profile is zero, which offers a convenient
numerical check on the numerical processing routines used.

NOTE 3—Least-squares fitting routines are available in many computer
packages. Analytic results are given above for reference and checking.

5.2 RMS Roughness:
5.2.1 There are two different estimators for the rms rough-

ness,Rq— one expressed in configuration space, and the other
in frequency space, as follows:

R̂q
2~ Config! 5

1
N (

n51

n5 N

Ẑd~n!2 (10)

and

R̂q
2~Freq! 5

1
ND (

m51

m511N/2

Ŝ1~m! (11)

where Ŝ1(m) is the periodogram estimate of thePSDbased

on Ẑd(n) discussed in 5.4.

NOTE 4—These two estimates ofRq
2 are mathematically identical if the

periodogram is evaluated using a unit data window,W (n) = 1. Although
a unit window function is not recommended for general use, the numerical
identity of the Eq 10 and Eq 11 in that case offers a convenient check on
the programming of the periodogram estimator.

NOTE 5—If a non-unit data window is used in the calculation of the
PSDthe two estimates of the rms roughness given will not, in general, be
numerically identical for a particular profile measurement. On the other
hand, the two estimates are identical for an ensemble average over a large
number of profile measurements. In other words, the two estimates ofRq

2

are statistically the same.
NOTE 6—The first estimator has the advantage of familiarity and

simplicity since it is expressed directly in terms of the detrended values of
the measured profile data. Its disadvantage is that it involves, perforce, the
transfer function of the measuring apparatus, and in a nonobvious way. In
contrast, the frequency-space form may be more complicated to evaluate
but has the advantage that it permits the bandwidth to be included in the
rms value to be varied by selecting the range ofm values included in the
frequency sum. In addition, it permits the effects of a non-unit instrumen-
tal transfer function within that bandpass to be examined directly, and to
be divided out by restoration processes, if its form is known indepen-
dently.

NOTE 7—The spectra of real surfaces frequently tend to diverge at low
spatial frequencies so that the values of the rms roughness obtained using
either estimator may depend significantly on the value of theLFL of the
measurement process, or chosen as a reference value. In some cases, the
presence of a non-vanishingLWL can give a finite value of the profile
roughness when its intrinsic value is infinite or undefined.

5.3 RMS Slope:
5.3.1 There are two different estimators for the rms slope,

Dq— one expressed in configuration space, and the other in
frequency space, as follows:

D̂q
2~ Con fig! 5

1

N · D 2 (
n51

n5 N–1

@Ẑd~n 1 1! – Ẑd~n!#2 (12)

and

D̂q
2~Freq! 5

1
ND (

m51

m511N/2

Ŝ1 ~m! · @2p~m – 1! / ND#2 (13)

NOTE 8—The magnitudes of these two estimates are generally different
since the first treats the profile as a collection of straight-line segments
connecting the measurement points, while the second connects them with
a bandwidth-limited interpolation curve and involves a smaller bias error.

NOTE 9—The notes for the rms roughness estimators just made gener-
ally apply to slope estimates as well. One difference is that the significant
bandwidth effects on the slope occur principally at theHFL rather than the
LFL as is the case for rms roughness measurements.

5.4 Periodogram Estimators of the Profile Power Spectral
Density:

5.4.1 Form for height-measuring profilometers is as fol-
lows:

Ŝ1~m! 5
2 D
N · ? FFT ~m!? 2 · K ~m! (14)

where the spatial frequency is evaluated at the discrete
values, and

fx 5
m – 1
ND (15)

where:
m = 1, 2, · · · (1 + N/ 2)

5.4.2 The symbolFFT stands for discrete Fourier transform,
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which is always evaluated using some version of the fast
Fourier transform as follows:

FFT ~m! 5 (
n51

n5N

ei2p~n–1!~m–1!/NW ~n! · Ẑd~n! (16)

where:
W(n) = data window discussed in the following subsection,

and
K(m) = book-keeping factor:

thus:

K ~m! 5 $1/2
1 otherwise

for m5 1 or 11 N / 2 (17)

NOTE 10—Eq 16 and Eq 17 apply for the conventional case of evenN.
Different forms apply for oddN.

NOTE 11—The casem = 1 corresponds to the zero-frequency or dc
component of the detrended surface profile andm = 2 corresponds to the
spatial frequency 1/ND, which is essentially the reciprocal of the trace
length, (N–1)D. On the opposite extreme, the frequency corresponding to
m = 1 + N/2 is the Nyquist frequency, 1/2D. The extreme range of surface
wavelengths included in the measurement is therefore 1/ND < f < 1/2D. In
other words, the extremeLFL = 1/ND, the extremeHFL = 1/2D, and the
dynamic range of the measurement isN/2.

NOTE 12—A convenient and readable reference to theFFT and its
evaluation is Chapter 12 inNumerical Recipesby Flannery, Teukolsky and
Vetterling (1).2

NOTE 13—The Brookhaven National Laboratory Report(2) contains
further background information on these procedures along with a com-
puter program and numerical examples. (The BASIC routines used there
involve different forms for the quantitiesM p appearing in the expressions
for the detrending polynomials than those discussed in this practice,
although the numerical values of the detrending polynomials are identical
in both cases.)

NOTE 14—The periodogram estimator just given is not the only method
of estimating the power spectral density from a set of profile data, but it
is the most direct and common method. It is sufficient for general use, and
is a necessary first step to be taken before adding embellishments such as
post-processing or considering more complicated estimators. This practice
does not exclude the use of post-processing or alternative methods of
analysis, but does require that the basic periodogram estimates just
described be included in the discussion for comparative purposes.

5.4.3 Form for slope-measuring profilometers is as follows:

Ŝ1~m! 5 S 2p ·
m – 1
ND D–2

·
2D
N ?FFT ~m!?2 · K ~m! (18)

where:

FFT8~m! 5 (
n51

n5N

ei2p~n–1!~m–1!/N W ~n!·M̂d~n! (19)

and M̂d(n) is the value of the profile slope measurements
detrended using either the least-squares piston or the piston-
plus-tilt expressions given in 5.1.

NOTE 15—This estimate of the profile power spectrum is the power
spectrum of the profile slope divided by (2p fm) 2. The prime on theFFT
on the left denotes that it involves slope rather than height data.

NOTE 16—The casem = 1 corresponds to zero spatial frequency and
must be excluded in the use of the above expressions.

5.5 Periodogram Estimators of the Rms Profile Roughness
and Slope:

5.5.1 The periodogram estimator of the rms profile height,
R̂q, is as follows:

R̂q 5Œ 1
ND (

m52

11N/2

Ŝ1~m! (20)

5.5.1.1 This quantity has the same dimension as the original
height measurements and is independent of the magnitude and
dimensions of the sampling interval,D.

5.5.2 The corresponding estimator for the rms profile slope,
Dq, is as follows:

D̂q 5Œ 1
ND (

m52

11N/2

Ŝ18 ~m! 5 2 pŒ 1

~ND! 3 (
m52

11N/2

~m – 1! 2 · Ŝ1~m!

(21)

5.5.2.1 In evaluating these quantities the height measure-
ments,Z, and the sampling interval,D, must be expressed in
the same length units. AlthoughD̂q is in the dimensionless
units of radians, its magnitude scales as 1/D.

5.6 Window Functions:
5.6.1 Window functions appear in a wide variety of signal-

processing applications, with different shapes and normaliza-
tions. Although this practice recommends the use of the Hann
or Blackman data window, other forms are included for
comparison. All are normalized so that:

1
N (

n51

n5N

W ~n!2 5 1 (22)

in order to preserve the magnitudes of average values of the
mean-square profile statistics.

5.6.2 Particular forms are:
(1) Rectangular or Daniell window:

W ~n! 5 1 (23)

(2) Hann, or raised Cosine window:

W ~n! 5Œ 2
1728· @24 – 24 Cos$2p~n – 1! / N%# (24)

(3) Hamming window:

W ~n! 5Œ 2
1987· @27 – 23 Cos$2 p~n – 1! / N%# (25)

(4) Blackman window:

W ~n! 5Œ 2
1523· @21 – 25 Cos$2 p~n – 1! / N% 1 4 Cos$4p~n – 1! / N%#

(26)

NOTE 17—The choice of window functions is of minor importance for
randomly-rough surfaces as long as it smoothes the data at the ends of the
data record. The rectangular or Daniell window does not do this, but is
useful for numerical checking.

NOTE 18—In the case of profiles with a smoothPSD, the principal
effect the window shape is to change the fine-scale fluctuations in the
periodogram estimate without changing its ensemble-average value,
except, perhaps, near theLFL.

NOTE 19—In the case of profiles involving periodicities, the window
shape can change the shape of the sharp lines in thePSD, albeit without
changing their areas. The choice of the window shape then involves a
trade-off between line width and smoothness. The raised Hann or
Blackman windows are recommended for general use.

NOTE 20—If the estimation routines are applied to deterministic pro-
files, such as individual steps, pits, or bumps, a data window must still be
used to minimize effects of the finite data record, but the object should be
placed in the center of the profile where the window function is relatively
flat.

5.7 Zero Padding:
5.7.1 The fastestFFT routines require the total number of

data points to be a power of two, such asN = 210= 1024. If the
number of measured points,N, is not a power of two but lies
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between 2a and 2b, the power-of-two routines can be used by
droppingN - 2 a points from one end of the original data set, or
by adding 2b- N zeros and replacingN in the routines
everywhere by 2b.

5.7.2 The first method is wasteful of data, while the second
uses the full set of measured data but requires that the
estimatedPSDbe renormalized by multiplying it by the factor
2b/N.

5.8 Averaging of Statistical Quantities:
5.8.1 Power spectral density functions, the mean-square

roughness, and slope values estimated from a number of
individual profiles that have the same statistical properties can
each be averaged together to obtain composite results. In the
case of homogeneously- and isotropically-rough surfaces the
profiles can lie in any position and direction on the surface
under test. In the case of homogeneously- but anisotropically-
rough surfaces they can lie anywhere on the surface but must
lie parallel with each other, preferably perpendicular to the
surface axis. Averaging data lowers the errors associated with
individual measurements.

6. Numerical Test Sequences

6.1 Table 1 presents a set of numerical data for testing the
execution of the users’ implementations of algorithms dis-
cussed in Section 5.

6.2 Although these simulated profile data are in standard
notation, they have been generated by a random number
generator corresponding to a constantPSD and are not the
results of an actual measurement. In addition, the number of
data points has been limited toN = 32 and the profile heights
have been rounded to digits with magnitudes less than 100 to
simplify their manual input into the users’ programs.

6.3 Actual measured data sets would generally involve
many more data points with height values involving a larger
number of significant digits, and with different orders of
magnitude than those used in this test sequence.

6.4 In order to provide a means for checking the proper
inclusion of the sampling distance,D, in the spectral-
estimation routines, the valueD = 0.1 has been used.

6.5 Table 2 and Table 3 give the values of the periodogram
estimates of the profile power spectral density, Sˆ

1(m), of the
data in Table 1 for the three different types of detrending
described in 5.1. The values of these estimates depend on the
data window used. Table 2 uses a rectangular window and
Table 3 uses the Blackman window.

6.6 The dimensions of the power spectral densities in these
tables is length-cubed = (units of Z)2· (units of D), and its
magnitude at a given spatial frequency scales as the sampling
interval,D.

6.7 The spatial frequency is given as follows:

fm 5 ~m – 1!/ ND (27)

where:

m = 1 corresponds to the dc or piston part of the profile, and
m = 1 + N/2 = 17 is the Nyquist frequency in (units ofD–1).

6.7.1 Note that since the window function has been applied

TABLE 1 Simulated Height Data A

n Z(n) n Z(n) n Z(n) n Z(n)

1 –38 9 –40 17 3 25 –35
2 15 10 45 18 6 26 23
3 36 11 20 19 17 27 4
4 22 12 3 20 20 28 –8
5 29 13 47 21 24 29 –45
6 –43 14 –18 22 16 30 26
7 –1 15 45 23 –5 31 1
8 –5 16 43 24 –17 32 6

A A total of N = 32 data points.

TABLE 2 Periodogram Estimates S ˆ
1(m) for Different Types of

Data Detrending

Rectangular data window

m None Piston Piston+Tilt Full Quadratic

1 120.0500 0 0 0
2 205.9506 205.9506 182.5409 14.81781
3 142.1861 142.1861 137.3580 204.3631
4 56.98463 56.98463 44.47469 53.08546
5 147.9039 147.9039 139.6268 126.5831
6 58.60630 58.60630 55.67305 50.13899
7 248.4120 248.4120 264.7417 266.1277
8 152.8321 152.8321 158.6038 154.5160
9 185.1250 185.1250 192.8103 190.0105
10 28.81090 28.81090 26.22179 25.40131
11 28.61438 28.61438 27.90264 28.74841
12 153.1641 153.1641 145.7812 145.2367
13 356.5711 356.5711 366.4113 365.4717
14 199.1965 199.1965 202.6268 203.4514
15 41.53757 41.53757 40.26207 40.50671
16 163.6550 163.6550 168.8428 169.0258
17 16.20000 16.20000 17.87214 17.87215

TABLE 3 Periodogram Estimates S ˆ
1(m) for Different Types of

Data Detrending

Blackman data window

m None Piston Piston+Tilt Full Quadratic

1 312.4632 87.20874 90.11245 9.832211
2 536.6033 268.4217 260.2453 76.63136
3 195.1412 166.9871 162.0176 93.70938
4 1.046170 1.046172 1.041742 1.303189
5 30.14155 30.14156 30.16028 30.25176
6 54.87353 54.87350 54.91950 54.94658
7 188.9816 188.9818 188.8795 188.8293
8 74.45938 74.45934 74.50156 74.51955
9 45.28967 45.28967 45.27541 45.29324
10 59.40473 59.40471 59.41950 59.41210
11 94.24771 94.24768 94.23248 94.23342
12 202.7328 202.7328 202.7405 202.7253
13 289.7414 289.7414 289.7450 289.7637
14 130.1287 130.1287 130.1230 130.1162
15 76.22277 76.22275 76.22527 76.22248
16 62.42836 62.42840 62.42742 62.43071
17 5.585947 5.585948 5.585947 5.584926
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after the detrending process, the dc terms do not necessarily
vanish for a non-rectangular window functions.

6.8 Table 4 gives values of Rˆ
q derived from the spectra in

Table 2 and Table 3 using the expression given in Table 4.
6.8.1 As mentioned, the unit of Rˆ

q is the same as that of the
height measurement since the magnitude and dimensions of the
sampling interval,D, cancels out in the evaluation ofR̂q.

6.9 The data in Table 2 through Table 4 are adequate for
checking the users’ implementation of the estimators described
in Section 5, and further test data are not included in this
practice.

7. Keywords
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TABLE 4 Values of the Estimates R ˆ
q for Different Types of

Detrending Followed by Different Types of Data Windowing

Data Window Type of Data Detrending
None Piston Piston+Tilt Full Quadratic

Rectangular 26.13517 26.13517 26.05133 25.34362
Hann 25.49031 24.02299 23.91725 22.31003
Hamming 25.53997 24.26072 24.15406 22.58759
Blackman 25.29220 23.38999 23.30221 21.54917

F 1811

12


