
Designation: E3080 − 16 An American National Standard

Standard Practice for
Regression Analysis1

This standard is issued under the fixed designation E3080; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers regression analysis methodology
for estimating, evaluating, and using the simple linear regres-
sion model to define the relationship between two numerical
variables.

1.2 The system of units for this practice is not specified.
Dimensional quantities in the practice are presented only as
illustrations of calculation methods. The examples are not
binding on products or test methods treated.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

E456 Terminology Relating to Quality and Statistics
E2282 Guide for Defining the Test Result of a Test Method
E2586 Practice for Calculating and Using Basic Statistics

3. Terminology

3.1 Definitions—Unless otherwise noted, terms relating to
quality and statistics are as defined in Terminology E456.

3.1.1 characteristic, n—a property of items in a sample or
population which, when measured, counted, or otherwise
observed, helps to distinguish among the items. E2282

3.1.2 coeffıcient of determination, r2, n—square of the
correlation coefficient.

3.1.3 confidence interval, n—an interval estimate [L, U]
with the statistics L and U as limits for the parameter θ and
with confidence level 1 – α, where Pr(L ≤ θ ≤ U) ≥ 1 – α.

E2586

3.1.3.1 Discussion—The confidence level, 1 – α, reflects the
proportion of cases that the confidence interval [L, U] would
contain or cover the true parameter value in a series of repeated
random samples under identical conditions. Once L and U are
given values, the resulting confidence interval either does or
does not contain it. In this sense “confidence” applies not to the
particular interval but only to the long run proportion of cases
when repeating the procedure many times.

3.1.4 confidence level, n—the value, 1 – α, of the probability
associated with a confidence interval, often expressed as a
percentage. E2586

3.1.4.1 Discussion—α is generally a small number. Confi-
dence level is often 95 % or 99 %.

3.1.5 correlation coeffıcient, n—for a population, ρ, a di-
mensionless measure of association between two variables X
and Y, equal to the covariance divided by the product of σX

times σY.

3.1.6 correlation coeffıcient, n—for a sample, r, the estimate
of the parameter ρ from the data.

3.1.7 covariance, n—of a population, cov(X, Y), for two
variables, X and Y, the expected value of (X – µX)(Y – µY).

3.1.8 covariance, n—of a sample; the estimate of the pa-
rameter cov(X,Y) from the data.

3.1.9 dependent variable, n—a variable to be predicted
using an equation.

3.1.10 degrees of freedom, n—the number of independent
data points minus the number of parameters that have to be
estimated before calculating the variance. E2586

3.1.11 deviation, d, n—the difference of an observed value
from its mean.

3.1.12 estimate, n—sample statistic used to approximate a
population parameter. E2586

3.1.13 independent variable, n—a variable used to predict
another using an equation.

3.1.14 mean, n—of a population, µ, average or expected
value of a characteristic in a population – of a sample, X̄, sum
of the observed values in the sample divided by the sample
size. E2586

3.1.15 parameter, n—see population parameter. E2586
3.1.16 population, n—the totality of items or units of

material under consideration. E2586

1 This practice is under the jurisdiction of ASTM Committee E11 on Quality and
Statistics and is the direct responsibility of Subcommittee E11.10 on Sampling /
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3.1.17 population parameter, n—summary measure of the
values of some characteristic of a population. E2586

3.1.18 prediction interval, n—an interval for a future value
or set of values, constructed from a current set of data, in a way
that has a specified probability for the inclusion of the future
value. E2586

3.1.19 regression, n—the process of estimating parameter(s)
of an equation using a set of data.

3.1.20 residual, n—observed value minus fitted value, when
a model is used.

3.1.21 statistic, n—see sample statistic. E2586

3.1.22 quantile, n—value such that a fraction f of the sample
or population is less than or equal to that value. E2586

3.1.23 sample, n—a group of observations or test results,
taken from a larger collection of observations or test results,
which serves to provide information that may be used as a basis
for making a decision concerning the larger collection. E2586

3.1.24 sample size, n, n—number of observed values in the
sample. E2586

3.1.25 sample statistic, n—summary measure of the ob-
served values of a sample. E2586

3.1.26 standard error—standard deviation of the population
of values of a sample statistic in repeated sampling, or an
estimate of it. E2586

3.1.26.1 Discussion—If the standard error of a statistic is
estimated, it will itself be a statistic with some variance that
depends on the sample size.

3.1.27 standard deviation—of a population, σ, the square
root of the average or expected value of the squared deviation
of a variable from its mean; —of a sample, s, the square root
of the sum of the squared deviations of the observed values in
the sample from their mean divided by the sample size
minus 1. E2586

3.1.28 variance, σ2, s2, n—square of the standard deviation
of the population or sample. E2586

3.1.28.1 Discussion—For a finite population, σ2 is calcu-
lated as the sum of squared deviations of values from the mean,
divided by n. For a continuous population, σ2 is calculated by
integrating (x – µ)2 with respect to the density function. For a
sample, s2 is calculated as the sum of the squared deviations of
observed values from their average divided by one less than the
sample size.

4. Significance and Use

4.1 Regression analysis is a statistical procedure that studies
the relations between two or more numerical variables and
utilizes existing data to determine a model equation for
prediction of one variable from another. In this standard, a
simple linear regression model, that is, a straight line relation-
ship between two variables, is considered (1, 2).3

5. Straight Line Regression and Correlation

5.1 Two Variables—The data set includes two variables, X
and Y, measured over a collection of sampling units, experi-
mental units or other type of observational units. Each variable
occurs the same number of times and the two variables are
paired one to one. Data of this type constitute a set of n ordered
pairs of the form (xi, yi), where the index variable (i) runs from
1 through n.

5.1.1 Y is always to be treated as a random variable. X may
be either a random variable sampled from a population with an
error that is negligible compared to the error of Y, or values
chosen as in the design of an experiment where the values
represent levels that are fixed and without error. We refer to X
as the independent variable and Y as the dependent variable.

5.1.2 The practitioner typically wants to see if a relationship
exists between X and Y. In theory, many different types of
relationships can occur between X and Y. The most common is
a simple linear relationship of the form Y = α + β X + ε, where
α and β are model coefficients and ε is a random error term
representing variation in the observed value of Y at given X,
and is assumed to have a mean of 0 and some unknown
standard deviation σ. A statistical analysis that seeks to
determine a linear relationship between a dependent variable,
Y, and a single independent variable, X, is called simple linear
regression. In this type of analysis it is assumed that the error
structure is normally distributed with mean 0 and some
unknown variance σ2 throughout the range of X and Y. Further,
the errors are uncorrelated with each other. This will be
assumed throughout the remainder of this section.4

5.1.3 The regression problem is to determine estimates of
the coefficients α and β that “best” fit the data and allow
estimation of σ. An additional measure of association, the
correlation coefficient, ρ, can also be estimated from this type
of data which indicates the strength of the linear relationship
between X and Y. The sample correlation coefficient, r, is the
estimate of ρ. The square of the correlation coefficient, r2, is
called the coefficient of determination and has additional
meaning for the linear relationship between X and Y.

5.1.4 When a suitable model is found, it may be used to
estimate the mean response at a given value of X or to predict
the range of future Y values from a given X.

5.2 Method of Least Squares—The methodology considered
in this standard and used to estimate the model parameters α
and β is called the method of least squares. The form of the best
fitting line will be denoted as Y = a + bX, where a and b are the
estimates of α and β respectively. The ith observed values of X
and Y are denoted as xi and yi. The estimate of Y at X = xi is
written ŷ i5a1bxi. The “hat” notation over the yi variable
denotes that this is the estimated mean or predicted value of Y
for a given x.

5.2.1 The least squares best fitting line is one that minimizes
the sum of the squared deviations from the line to the observed

3 The boldface numbers in parentheses refer to a list of references at the end of
this standard.

4 The normal distribution of the error structure is not required to fit the linear
model to the data but is required for performing standard model analysis such as
residual analysis, confidence and prediction intervals and statistical inference on the
model parameters.
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yi values. Note that these are vertical distances. Analytically,
this sum of squared deviations is of the form:

S~a, b!5 Σ
i51

n

~yi 2 ŷ i!
2 5 Σ

i51

n

~yi 2 a 2 bxi!
2 (1)

5.2.2 The sum of squares, S, is written as a function of a and
b. Minimizing this function involves taking partial derivatives
of S with respect to a and b. This will result in two linear
equations that are then solved simultaneously for a and b. The
resulting solutions are functions of the (xi, yi) paired data.

5.2.3 Several algebraically equivalent formulas for the least
squares solutions are found in the literature. The following
describes one convenient form of the solution. First define
sums of squares SXX and SYY and the sum of cross products SXY

as follows:

SXX 5 ~n 2 1!sx
2 5 Σ

i51

n

~x1 2 x̄!2 (2)

SYY 5 ~n 2 1!sy
2 5 Σ

i51

n

~y1 2 ȳ!2 (3)

SXY 5 Σ
i51

n

~x1 2 x̄!~y1 2 ȳ! 5 Σ
i51

n

~x1 2 x̄!y1 (4)

Note that in Eq 2 and Eq 3, sx and sy are the ordinary sample
standard deviations of the X and Y data respectively. The last
expression in Eq 4 follows from the middle expression because

Σ
i51

n

~x1 2 x̄! ȳ50.

From the least squares solution, the slope estimate is
calculated as:

b 5

Σ
i21

n

~xi 2 x̄!yi

Σ
i21

n

~xi 2 x̄!2

5
SXY

SXX

(5)

Once b is determined, the intercept term is calculated from:

a 5 ȳ 2 bx̄ (6)

5.3 Example—An example for this kind of data and the
associated basic calculations is shown in Table 1. This data is
taken from Duncan (3), and shows the relationship between the
measurement of shear strength, Y, and weld diameter, X, for 10
random specimens. Values for the estimated slope and intercept
are b = 6.898 and a = –569.468. Fig. 2 shows the scatter plot
and associated least squares linear fit.

In Eq 5, the slope estimate b is seen as a weighted average
of the yi where the weights, wi, are defined as:

wi 5
~xi 2 x̄!

SXX

(7)

Values of xi furthest from the average will have the greatest
impact on the associated weight applied to observation yi and
on the numerical determination of the slope b.

5.4 Correlation Coeffıcient—The population correlation
coefficient, or Pearson Product Moment Correlation
Coefficient, ρ, is a dimensionless parameter intended to mea-
sure the strength of a linear relationship between two variables.
The estimated sample correlation coefficient, r, for a set of
paired data (xi, yi) is calculated as:

r 5

Σ
i21

n

~xi 2 x̄!~yi 2 ȳ!

~n 2 1!sxsy

5

Σ
i21

n

~xi 2 x̄!yi

~n 2 1!sxsy

(8)

In Eq 8, the quantity
Σ

i21

n

~x 2 x̄!~y 2 ȳ!

~n 2 1!
is referred to as the

sample co-variance. Here again, the mean of y disappears from

the right side of Eq 8, because Σ
i21

n

~x 2 x̄! ȳ50.

5.4.1 An alternative formula for r uses the standard devia-
tion of the paired differences (di = yi – xi). Note that it does not
matter in what order we calculate these differences. Either di =
yi – xi or di = xi – yi will give the same result:

TABLE 1 Weld Diameter (x) and Shear Strength (y)

i xi yi di=xi–yi xi–x̄ (xi–x̄)yi

1 190 680 –490.0 –33.9 –23,052.0
2 200 800 –600.0 –23.9 –19,120.0
3 209 780 –571.0 –14.9 –11,622.0
4 215 885 –670.0 –8.9 –7,876.5
5 215 975 –760.0 –8.9 –8,677.5
6 215 1025 –810.0 –8.9 –9,122.5
7 230 1100 –870.0 6.1 6,710.0
8 250 1030 –780.0 26.1 26,883.0
9 265 1175 –910.0 41.1 48,292.5

10 250 1300 –1050.0 26.1 33,930.0

average 223.9 975.0
stdev (S) 24.196 191.645 170.987
S2 585.433 36,727.778 29,236.544

parameter estimates
b 6.898
a –569.468

SXX 5,268.900
SYY 330,550.000
SXY 36,345.000
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r 5
sx

21sy
2 2 sd

2

2sxsy

(9)

The correlation coefficient for the data in Table 1 using Eq 8
and Eq 9 are:

r 5
36,345

~10 2 1!~24.196!~191.645!
5 0.871

r 5
24.19621191.6452 2 170.8972

2~24.196!~191.645!
5 0.871

5.4.2 The value of the correlation coefficient is always
between –1 and +1. If r is negative (y decreases as x increases)
then a line fit to the data will have a negative slope; similarly,
positive values of r (y increased as x increases) are associated
with a positive slope. Values of r near 0 indicate no linear
relationship so that a line fit to the data will have a slope near
0. In cases where the (x, y) data have an r = –1 or r = +1, the
relationship between x and y is perfectly linear. An r value near
to +1 or –1 indicate that a line may provide an adequate fit to

the data but does not “prove” that the relationship is linear
since other models may provide a better fit (for example, a
quadratic model). As values of r become closer to the extremes
(–1 and +1) a line provides a stronger explanation of the
relationship. Fig. 2 shows examples of what correlated data
look like for several values of r.

5.4.3 An alternative formula for the estimated slope b as a
function of the correlation coefficient, r, and standard devia-
tions of the variables X and Y is:

b 5
rsy

sx

(10)

5.5 Residuals—For any specified xi in the data set, the
residual at xi is the difference ei5yi2 ŷ i5yi2~a 1 bxi!, the
difference between the observed value of Y and the predicted
value (the ŷ i value) at the observed value of X. The ei term
estimates the true random error term εi from the theoretical
linear model (see 5.1.1). The predicted values of Y are
computed using the estimated model equation ŷ i5a1bxi.

5.5.1 The residuals for a straight line regression with slope
and intercept fit by least squares will always sum to zero. The
sample correlation coefficient between the residuals ei and the
values of the independent variable, xi, or the estimated values,
ŷ i will also be zero.

5.5.2 The estimate of the residual error variance, σ2, is
calculated either using the squared residuals or from interme-
diate quantities SYY and SXY and b:

σ̂2 5

Σ
i51

n

~yi 2 ŷ i!
2

n 2 2
5

SYY 2 bSXY

n 2 2
(11)

5.5.3 The square root of Eq 11 is the estimate of the
unknown error standard deviation, σ. The estimated values ŷ i

require that we estimate two model parameters for their
calculation, which results in a loss of two degrees of freedom
in the denominator (n – 2).

5.5.4 Example—For the example, the estimate of σ is
calculated using the information from Table 2:

Using Eq 11:

σ̂ 5Œ330,550 2 6.898 ~36,345!
10 2 2

5 99.9

Using the residual error estimated σ, the standard errors (se)
for the estimates of slope and intercept may be calculated:

FIG. 1 Scatter Plot of Table 1 Data with Fitted Linear Model

FIG. 2 Typical Scatter Plots for Selected Values of the Correlation
Coefficient, r

TABLE 2 Calculate the Estimate of σ

i yi ŷ i y i2 ŷ i syi 2 ŷ id2

1 680 741.16 –61.16 3,740.18
2 800 810.14 –10.14 102.76
3 780 872.22 –92.22 8,504.42
4 885 913.61 –28.61 818.39
5 975 913.61 61.39 3,769.03
6 1025 913.61 111.39 12,408.27
7 1100 1017.08 82.92 6,876.07
8 1030 1155.04 –125.04 15,634.61
9 1175 1258.51 –83.51 6,973.86

10 1300 1155.04 144.96 21,013.86

SUM 79,841.31
σ̂ 99.9
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se~b! 5
σ̂

=SXX

(12)

se~a! 5 σ̂Œ1
n

1
x̄2

SXX

(13)

Standard errors for the slope and intercept for the example
are:

se~b! 5
99.9

=5268.9
5 1.376

and:

se~a! 5 99.9Œ 1
10

1
223.92

5268.9
5 309.8

5.6 Recall that the assumed model is Y5α1βX1ε.
Generally, the ε terms are assumed independent and normally
distributed with mean 0 and variance σ2. If the data are true to
these assumptions, the residuals will follow a normal distribu-
tion and be consistent with respect to time order (that is, be in
a state of statistical control). A broad collection of diagnostic
tools are available for performing residual analysis as well as
other model diagnostic tasks. A few of the key tools are
described below and illustrated in Figs. 3 and 4 using the data
from the example.

5.6.1 Probability Plots—The residuals should be checked
for an approximate normal distribution using a normal prob-
ability plotting technique. Various types of residuals may be
calculated (for example, ordinary, standardize, and deleted t).

5.6.2 Control Charts—Residuals can be plotted on a control
chart for individuals and moving ranges. This technique is
checking for statistical control of the residuals.

5.6.3 In addition, residuals can be plotted against the inde-
pendent variable. This is checking for homogeneity of variance
across values of the independent variable.

5.7 The population coefficient of determination, ρ2, is the
square of the correlation coefficient ρ. The sample coefficient
of determination is the square of r. The interpretation of r2 is

as the fraction reduction in the variance of Y from knowledge
of X in advance. In other words, the fraction of the total
variation in Y explained by the model and therefore removed
by the linear trend. This interpretation is derived from a
relation between the residual variance, σ2, and overall variance
of Y. This interpretation is mainly useful when values of X are
sampled from a population and less useful when values of X are
selected in a designed experiment.

5.7.1 Example—Using r from the above calculation, the
sample coefficient of determination for the example is r2 =
0.87122 = 0.759, to 3 significant digits. This means that
approximately 76 % of the variation in y is explained by the
model we are using. If the variance in the Y values is calculated
and compared to the residual variance (see 5.4), then the ratio
of the residual variance to the Y variance will be approximately
(100 – 76) % = 24 %.

5.8 Uses of the linear regression model for calculating
confidence intervals for the mean response and prediction
intervals for a future response depend on the residuals being
normally distributed and independent.

5.8.1 Mean Value Estimates—The estimated mean value, ŷ,
at a specific value of the independent variable, say x0, is
determined using the fitted model ŷ5a1bx0 directly. To con-
struct a confidence interval for the mean response at a specific
x0, use the following form:

a1bx06t12α ⁄ 2, n22σ̂Œ1
n

1
~x0 2 x̄!2

~n 2 1!sx
2 (14)

The estimate σ̂ is calculated first using Eq 11, then taking the
square root; t12α ⁄ 2 is a positive Student’s t quantile with n – 2
degrees of freedom that leaves a probability α/2 to the right.
Quantities x̄ and sx are the sample mean and standard deviation
of the X values in the data set.

5.8.2 Example—Suppose we are interested in the mean
response at the specific value x0 = 215. The estimated mean
response at x0 = 215 is:

ŷ0 5 2569.46816.898~215! 5 913.6

A 95 % confidence interval for the mean response at x0 = 215
is:

2569.46816.898~215!

62.306~99.9!Œ 1
10

1
~215 2 223.9!2

~10 2 1!~24.196!2

5913.6678.13

(15)

Thus the expected response at x0 = 215 falls between 835.47
and 991.73 with 95 % confidence.

5.9 Prediction Intervals—For a specified value of the inde-
pendent variable, x0, we can also determine a prediction
interval for a future response. The future response is unob-
served and that is the point of the prediction. The standard
formula for the prediction interval in this case is identical to Eq
14 with the addition of the number “1” inserted under the
radical. This form is:

a1bx06t12α ⁄ 2, n22σ̂Œ11
1
n

1
~x0 2 x̄!2

~n 2 1!sx
2 (16)

FIG. 3 Normal Probability Plot of Residuals
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In simplest form, a prediction interval is an interval estimate
in which one or more future observations would fall, with a

certain probability, given what has already been observed.
There are many variations on this theme. Prediction intervals
are substantially wider than confidence intervals because a
prediction interval applies to an individual value whereas a
confidence interval applies to the mean response. Prediction
intervals are often used in regression analysis.

5.9.1 Example—The prediction for a future value at the
specific x0 = 215 using 95 % confidence:

2569.46816.898~215!

62.306~99.9!Œ11
1
10

1
~215 2 223.9!2

~10 2 1!~24.196!2

5913.66243.26

The 95 % prediction interval is between 670.34 and 1156.86.

5.9.2 Confidence and prediction interval limits are often
plotted together on the scatter plot. This display is shown in
Fig. 5 for the example.

6. Keywords

6.1 bivariate; correlation; least squares; regression
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FIG. 4 Control Chart for Residuals

FIG. 5 Regression Plot with 95 % Confidence and Prediction In-
tervals
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