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Standard Practice for
Probability of Detection Analysis for â Versus a Data1

This standard is issued under the fixed designation E3023; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice defines the procedure for performing a
statistical analysis on Nondestructive Testing (NDT) â versus a
data to determine the demonstrated probability of detection
(POD) for a specific set of examination parameters. Topics
covered include the standard â versus a regression
methodology, POD curve formulation, validation techniques,
and correct interpretation of results.

1.2 The values stated in inch-pound units are to be regarded
as standard. The values given in parentheses are mathematical
conversions to SI units that are provided for information only
and are not considered standard.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations
E456 Terminology Relating to Quality and Statistics
E1316 Terminology for Nondestructive Examinations
E1325 Terminology Relating to Design of Experiments
E2586 Practice for Calculating and Using Basic Statistics
E2782 Guide for Measurement Systems Analysis (MSA)
E2862 Practice for Probability of Detection Analysis for

Hit/Miss Data

2.2 Department of Defense Document:3

MIL-HDBK-1823A Nondestructive Evaluation System Re-
liability Assessment

3. Terminology

3.1 Definitions of Terms Specific to This Standard:
3.1.1 analyst, n—the person responsible for performing a

POD analysis on â versus a data resulting from a POD
examination.

3.1.2 decision threshold, âdec, n—the value of â above
which the signal is interpreted as a find and below which the
signal is interpreted as a miss.

3.1.2.1 Discussion—A decision threshold is required to
create a POD curve. The decision threshold is always greater
than or equal to the noise threshold and is the value of â that
corresponds with the flaw size that can be detected with 50%
POD.

3.1.3 demonstrated probability of detection, n—the calcu-
lated POD value resulting from the statistical analysis of the â
versus a data.

3.1.4 false call, n—– the perceived detection of a disconti-
nuity that is identified as a find during a POD examination
when no discontinuity actually exists at the inspection site.

3.1.5 noise, n—signal response containing no useful target
characterization information.

3.1.6 noise threshold, ânoise, n—the value of â below which
the signal is indistinguishable from noise.

3.1.6.1 Discussion—The noise threshold is always less than
or equal to the decision threshold. The noise threshold is used
to determine left censored data.

3.1.7 probability of detection, n—the fraction of nominal
discontinuity sizes expected to be found given their existence.

3.1.8 saturation threshold, âsat, n—the value of â associated
with the maximum output of the system or the largest value of
â that the system can record.

3.1.8.1 Discussion—The saturation threshold is used to
determine right censored data.

3.2 Symbols:
3.2.1 a—discontinuity size.

3.2.2 â—the measured signal response for a given disconti-
nuity size, a.

3.2.2.1 Discussion—The measured signal response is as-
sumed to be continuous in nature. Units depend on the NDT

1 This test method is under the jurisdiction of ASTM Committee E07 on
Nondestructive Testing and is the direct responsibility of Subcommittee E07.10 on
Specialized NDT Methods.
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inspection system and can be, for example, scale divisions,
number of contiguous illuminated pixels, or millivolts.

3.2.3 ap—the discontinuity size that can be detected with
probability p.

3.2.3.1 Discussion—Each discontinuity size has an indepen-
dent probability of being detected and corresponding probabil-
ity of being missed. For example, being able to detect a specific
discontinuity size with probability p does not guarantee that a
larger size discontinuity will be found.

3.2.4 ap/c—the discontinuity size that can be detected with
probability p with a statistical confidence level of c.

3.2.4.1 Discussion—According to the formula in MIL-
HDBK-1823A, ap/c is a one-sided upper confidence bound on
ap. ap/c represents how large the true ap could be given the
statistical uncertainty associated with limited sample data.
Hence ap/c > ap. Note that POD is equal to p for both ap/c and
ap. ap is based solely on the observed relationship between the
â and a data and represents a snapshot in time, whereas ap/c

accounts for the uncertainty associated with limited sample
data.

4. Summary of Practice

4.1 This practice describes, step-by-step, the process for
analyzing nondestructive testing â versus a data resulting from
a POD examination, including minimum requirements for
validating the resulting POD curve.

4.2 This practice also includes definitions and discussions
for results of interest (e.g., a90/95) to provide for correct
interpretation of results.

4.3 Definitions of statistical terminology used in the body of
this practice can be found in Annex A1.

5. Significance and Use

5.1 The POD analysis method described herein is based on
well-known and well-established statistical methods. It shall be
used to quantify the demonstrated POD for a specific set of
examination parameters and known range of discontinuity
sizes under the following conditions.

5.1.1 The initial response from a nondestructive evaluation
inspection system is measurable and can be classified as a
continuous variable.

5.1.2 The relationship between discontinuity size (a) and
measured signal response (â) exists and is best described by a
linear regression model with an error structure that is normally
distributed with mean zero and constant variance, σ2. (Note
that “linear” refers to linear with respect to the model coeffi-
cients. For example, a quadratic model ŷ5β01β1·x1β2·x2 is a
linear model.)

5.2 This practice does not limit the use of other statistical
models if justified as more appropriate for the â versus a data.

5.3 This practice is not appropriate for data resulting from a
POD examination on nondestructive evaluation systems that
generate an initial response that is binary in nature (for
example, hit/miss). Practice E2862 is appropriate for systems
that generate a hit/miss-type response (for example, fluorescent
penetrant).

5.4 Prior to performing the analysis it is assumed that the
discontinuity of interest is clearly defined; the number and
distribution of induced discontinuity sizes in the POD speci-
men set is known and well documented; the POD examination
administration procedure (including data collection method) is
well designed, well defined, under control, and unbiased; the
initial inspection system response is measurable and continu-
ous in nature; the inspection system is calibrated; and the
measurement error has been evaluated and deemed acceptable.
The analysis results are only valid if the â versus a data are
accurate and precise and the linear model adequately represents
the â versus a data.

5.5 The POD analysis method described herein is consistent
with the analysis method for â versus a data described in
MIL-HDBK-1823A and is included in several widely utilized
POD software packages to perform a POD analysis on â versus
a data. It is also found in statistical software packages that have
linear regression capability. This practice requires that the
analyst has access to either POD software or other software
with linear regression capability.

6. Procedure

6.1 The POD analysis objective shall be clearly defined by
the responsible engineer or by the customer.

6.2 The analyst shall obtain the â versus a data resulting
from the POD examination, which shall include at a minimum
the documented known induced discontinuity sizes, the asso-
ciated measured signal response, and any false calls.

6.3 The analyst shall also obtain specific information about
the POD examination, which shall include at a minimum the
specimen standard geometry (e.g., flat panels), specimen stan-
dard material (e.g., Nickel), examination date, number of
inspectors, type of inspection method (e.g., Eddy Current
Inspection), pertinent information about the instrument and
instructions for use (e.g., settings, probe type, scan path), and
pertinent comments from the inspector(s) and test administra-
tor.

6.3.1 In general, the results of an experiment apply to the
conditions under which the experiment was conducted. Hence,
the POD analysis results apply to the conditions under which
the POD examination was conducted.

6.4 Prior to performing the analysis, the analyst shall
conduct a preliminary review of the POD examination proce-
dure to identify any issues with the administration of the
examination. The analyst shall identify and attempt to resolve
any issues prior to conducting the POD analysis. Identified
issues and their resolution shall be documented in the report.
Examples of examination administration issues and possible
resolutions are outlined in the following subsections.

6.4.1 If problems or interruptions occurred during the POD
examination that may bias the results, the POD examination
should be re-administered.

6.4.2 If the examination procedure was poorly designed
and/or executed, the validity of the resulting data is question-
able. In this case, the examination procedure design and
execution should be reevaluated. For design guidelines see
MIL-HDBK-1823A.
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6.5 Prior to performing the analysis, the analyst shall
conduct a preliminary review of the â versus a data to identify
any data issues. The analyst shall identify and attempt to
resolve any issues prior to conducting the POD analysis.
Identified issues and their resolution shall be documented in the
report. Examples of data issues and possible resolutions are
outlined in the following subsections.

6.5.1 Any apparent outlying observations shall be reviewed
for correctness. If a typo is identified, the typo shall be
corrected prior to performing the analysis. If the value is
correct, it shall be retained in the analysis and its influence on
the â versus a model shall be evaluated during the model
diagnostic assessment. The analyst should also reference Prac-
tice E178.

6.5.2 POD cannot be modeled as a continuous function of
discontinuity size if all the measured signal responses are
below the noise threshold or above the saturation threshold. If
this occurs, the adequacy of the nondestructive testing system
should be evaluated.

6.6 Only â versus a data for induced discontinuities shall be
used in the development of the linear regression model. False
call data shall not be included in the development of the linear
model when using standard linear regression methods.

6.7 The analyst in conjunction with the responsible engineer
shall determine the value of the noise threshold, ânoise, and
saturation threshold, âsat, prior to performing the analysis.

6.7.1 The value of ânoise is determined by performing a
noise analysis. A noise analysis is typically accomplished by
assessing the distribution of measured signal responses from
sites with no known discontinuity (false calls) and/or measured
signal responses that are not influenced by the size of the
discontinuities (noise). Details on performing a noise analysis
can be found in MIL-HDBK-1823A.

6.8 The analyst shall select an appropriate linear regression
model to establish the relationship between â and a. Selection
of a linear model may be an iterative process as the significance
of the predictor variable(s) and the appropriateness of the
selected model are typically assessed after the model has been
developed.

6.8.1 “Linear” refers to linear with respect to the model
coefficients. For example, ŷ i5b01b1·~x2! and ŷ i5b01b1·x1

1b2·ln~x2! are linear regression models.

6.8.2 In general, only significant and uncorrelated predictor
variables are included in a regression model. If more than one
predictor variable is being considered for inclusion in the
model, a preliminary graphical analysis of the response vari-
able against each predictor variable may help identify which
predictor variables appear to influence the response and the
type of relationship (for example, direct, inverse, quadratic). In
addition, a preliminary graphical analysis of all possible
pairings of predictor variables shall be performed to verify
independence of the predictor variables. When plotted against
each other, there should be no apparent relationship between
any two predictor variables.

6.8.3 The appropriateness of a selected model is determined
by how well the model fits the observed data and how well the
underlying regression assumptions are met.

6.9 The analyst shall use software that has the appropriate
linear regression capabilities to perform a linear regression
analysis on the â versus a data.

6.9.1 If censored data are present, the analyst shall do the
following:

6.9.1.1 Include and identify the censored data in the analysis
(according to the notation required by the software).

6.9.1.2 Use the method of maximum likelihood to estimate
the model coefficients.

6.9.1.3 Verify that convergence was achieved. If conver-
gence is not achieved, the resulting â versus a model shall not
be used to develop a POD curve.

6.9.1.4 Check the number of iterations it took to converge
provided that information on convergence and the number of
iterations it took to converge is included in the analysis
software output. If more than twenty iterations were needed to
reach convergence, the model may not be reliable.

6.9.1.5 Include a statement in the report indicating that
convergence was achieved and the number of iterations needed
to achieve convergence.

6.9.2 If no censored data are present, the method of maxi-
mum likelihood or the method of least squares shall be used.

6.10 If included in the analysis software output, the analyst
shall assess the significance of the predictor variables in the
model. Only significant predictor variables should be included
in the model.

6.11 Once the â versus a model is estimated, the analyst
shall use, at a minimum, the model diagnostic methods listed
below to assess the underlying linear regression assumptions.
The methods listed below shall be performed using only
non-censored data. If available, other formal diagnostic meth-
ods (noted in Appendix X1) should be used to assess the linear
regression assumptions.

6.11.1 There are three main underlying assumptions in a
linear regression analysis: (1) residuals are normally distrib-
uted with mean 0 and constant variance, σ2, (2) the residuals
are independent, and (3) the relationship is in fact linear. The
residual is calculated as ei = yi – ŷi and represents the
difference between the observed result, yi, and the predicted
value, ŷi, for the ith case. In general, the results of a linear
regression analysis are not valid unless these assumptions hold.
At a minimum, the following analyses of the residuals shall be
performed to verify the assumptions.

6.11.1.1 A histogram of the residuals shall be constructed to
assess the normality assumption and centering of the residuals.
A histogram of the residuals should be roughly bell-shaped and
symmetric around zero. In general, bell shape and symmetry
around zero are more important than strict normality since
traditional estimation procedures are typically only sensitive to
large departures from normality (particularly with respect to
skewness).

6.11.1.2 The constant variance and linearity assumptions
shall be verified by plotting the residuals (y-axis) against the
predicted values (x-axis). If the residuals fall in a horizontal
band centered around zero, with no systematic preference for
being positive or negative, then the assumption of constant
variance and a linear relationship holds. (See Fig. X1.2 in
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Appendix X1.) In general, meeting the constant variance
assumption is more important than meeting the normality
assumption.

6.12 The analyst shall use at a minimum the methods listed
below to assess the goodness-of-fit, influential points, and
multicollinarity among predictor variables. If available, more
formal methods (noted in Appendix X1) should be used.

6.12.1 A plot of predicted values versus actual values shall
be used to assess goodness-of-fit. The plotted points should fall
roughly on the y = x line. Plotted points deviating from the y =
x line in a systematic way may be an indication of poor fit.

6.12.2 The analyst shall assess the influence of data that
appears to be outlying on the established â versus a model. The
histogram of the residuals and plot of the residuals versus
predicted values can help identify outlying values. The influ-
ence of a suspected outlying value shall at a minimum be
evaluated by removing the outlying value from the data and
re-running the analysis to assess its influence on the â versus a
model. A data point is said to be influential (or have high
leverage) if its exclusion from the analysis has a relatively
large effect on the â versus a model. Both analysis results (with
and without the outlying data) shall be included in the report
along with a discussion of the impact to the resulting POD
curve and confidence bound (if applicable).

6.12.3 If the model includes more than one predictor
variable, a graphical analysis shall be performed to verify
independence of the predictor variables. (This step may be
done during model selection as described in Appendix X1.)

6.13 The responsible engineer shall determine the value of
âdec that is most appropriate with respect to end use of the POD
analysis results. A value for the decision threshold is required
to create a POD curve. The value must be greater than or equal
to the value of the noise threshold. That is, âdec≥ ânoise.

6.14 The analyst shall use the decision threshold to deter-
mine a POD value for each discontinuity size given the
established relationship between â and a, the formula for which
can be found in Appendix X1. The resulting POD values shall
be plotted against discontinuity size to produce a POD Curve.

6.14.1 POD curves tend to be s-shaped when a simple linear
regression model is selected.

6.14.2 If more than one predictor variable is included in the
model, POD is a response surface rather than a single curve.

6.14.3 The analyst shall determine the most appropriate way
to plot the results.

6.15 If a c% level of confidence is specified by the respon-
sible engineer or the customer, the analyst shall put a c% lower
confidence bound on the POD curve by calculating a c% lower
confidence bound on the â versus a model fit. Methods for
constructing a confidence bound around a regression fit can be
found in MIL-HDBK-1823A as well as statistics text books on
linear regression.4

6.15.1 If, for example, the objective of the analysis is to
determine the discontinuity size that can be detected with 90%
probability and 95% confidence, denoted a90/95, then the

analyst shall put a 95% lower confidence bound on the POD
curve by calculating a 95% lower confidence bound on the â
versus a model fit. The formula for the 95% lower confidence
bound on the POD curve, which is based on the 95% lower
confidence bound around the regression fit, can be found in
Appendix X1.

6.16 The analyst shall analyze any false call data and shall
report the false call rate.

6.16.1 The responsible engineer or the customer shall
clearly define what constitutes a false call.

6.16.2 A distributional analysis of false call or noise data, or
both, is typically performed to assess the false call rate, a
discussion of which can be found in MIL-HDBK-1823A.

6.17 Acceptable false call rates shall be determined by the
responsible engineer or by the customer.

7. Report

7.1 At a minimum the following information about the POD
analysis shall be included in the report.

7.1.1 The specimen standard geometry (e.g., flat panels).
7.1.2 The specimen standard material (e.g., nickel).
7.1.3 Examination date.
7.1.4 Number of inspectors.
7.1.5 Type of inspection (e.g., Eddy Current).
7.1.6 Pertinent information about the instrument and in-

structions for use (e.g., settings, probe type, scan path).
7.1.7 Any comments from the inspector(s) or test adminis-

trator.
7.1.8 The documented known induced discontinuity sizes.
7.1.9 The associated measured signal responses, including

information about censored data.
7.1.10 Any false calls.
7.1.11 The linear regression model describing the relation-

ship between the observed â versus a data and confidence
bound (if applicable).

7.1.12 A statement indicating that convergence was
achieved and the number of iterations to convergence, if
maximum likelihood estimation was used.

7.1.13 A statement about the model diagnostic methods
used and conclusions.

7.1.14 The estimate of the error around the regression fit
(calculated as the square root of the mean square error, which
is typically included in the software output).

7.1.15 Summary of the noise analysis and rationale for
selection of the decision threshold.

7.1.16 A plot of the resulting POD curve and confidence
bound (if applicable).

7.1.17 Specific results of interest as required by the analysis
objective (e.g., a90/95).

7.1.18 Any deviations from the POD examination proce-
dure or standard POD analysis.

7.1.18.1 If the POD examination was re-administered, the
original results and rationale for re-administration shall be
documented in the report.

7.1.18.2 If a discontinuity is removed from the analysis, the
specific discontinuity and rationale for removal shall be docu-
mented in the final report.

4 Neter, J, Kutner, M, Nachtsheim, C, Wasserman, W. Applied Linear Statistical
Models, The McGraw-Hill Companies.
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7.1.18.3 If the impact of outlying data was assessed, the
results shall be included in the report along with an explana-
tion.

7.1.19 Summary of false call analysis, including a definition
of what constitutes a false call, the false call rate, and the
method used to estimate the false call rate.

7.1.20 Name of analyst and company responsible for the
POD calculation.

8. Keywords

8.1 a-hat vs. a; ahat vs. a; eddy current inspection; eddy
current POD; Linear Regression; POD; POD analysis; prob-
ability of detection; regression

ANNEX

(Mandatory Information)

A1. TERMINOLOGY

A1.1 Definitions:

A1.1.1 a90—the discontinuity size that can be detected with
90% probability.

A1.1.1.1 Discussion—The value for a90 resulting from a
POD analysis is a single point estimate of the true value based
on the outcome of the POD examination. It represents the
typical value and does not account for variability due to
sampling or inherent variability in the inspection system,
which is always present.

A1.1.2 a90/95—the discontinuity size that can be detected
with 90% probability with a statistical confidence level of 95%.

A1.1.2.1 Discussion—The value for a90 resulting from a
POD analysis is an estimate of the true a90 based on the
outcome of the POD examination. If the examination were
repeated, the outcome is not expected to be exactly the same.
Hence the estimate of a90 will not be the same. To account for
variability due to sampling, a statistical confidence bound with
a 95% level of confidence is often applied to the estimated
value for a90, resulting in an a90/95 value. POD is still 90%. The
95% refers to the ability of the statistical method to capture (or
bound) the true a90. That is, if the examination were repeated
over and over under the same conditions, the value for a90/95

will be larger than the true a90 95% of the time. In practice the
POD examination will be conducted once. Using a 95%
confidence level implies a 95% chance that the a90/95 value
bounds the true a90 and a 5% risk that the true a90 is actually
larger than the a90/95 value.

A1.1.3 a90/50—the discontinuity size that can be detected
with 90% probability with a statistical confidence level of 50%.

A1.1.3.1 Discussion—Using a one-sided 50% confidence
bound implies a 50% chance that the a90/50 value bounds the
true a90 and a 50% risk that the true a90 is actually larger than
the a90/50 value. Given this, a90/50 is really the same as a90.

A1.1.4 censored data, n —A censored data point is one in
which the value is not known exactly.

A1.1.4.1 Discussion—The two most common types of cen-
soring encountered in an â versus a POD analysis are right-
censored and left-censored. A right-censored data point is one
in which there is a lower bound yi for the ith response. That is,
the exact response value is somewhere in the interval (yi, ∞). A

left-censored data point is one in which there is an upper bound
yi for the ith response. That is, the exact response value is
somewhere in the interval (–∞, yi]. In practice, right-censoring
occurs when the signal generated by a large flaw saturates the
system. For example, suppose that the maximum amplitude
that can be reported by an inspection system is 25. The
underlying assumption is that the measured signal increases as
flaw size increases. If the measured signal from a large flaw
exceeds 25, the response for that flaw is (25, ∞). In other
words, the exact measured signal is some amplitude to the
“right” of 25. Note that the censoring in this case is predeter-
mined by the limitations of the instrument electronics. Right-
censored data is identified in an â versus a POD analysis by the
saturation threshold. Left-censoring occurs in practice when
the inspection system cannot distinguish the signal generated
by a small flaw from inherent system noise or material noise,
or both. For example, suppose that the noise threshold is 1
division. That is, any signal below 1 division is indistinguish-
able from noise. If the measured signal from a small flaw falls
below 1, the response for that flaw is recorded as (0,1). In other
words, the exact measured signal is some amplitude to the
“left” of 1, or within the noise. Note that the censoring in this
case is predetermined by inherent noise in the inspection
system. Left-censored data is identified in an â versus a POD
analysis by the noise threshold.

A1.1.5 histogram, n—graphical representation of the fre-
quency distribution of a characteristic consisting of a set of
rectangles with area proportional to the frequency. Terminol-
ogy E456, Practice E2586

A1.1.5.1 Discussion—While not required, equal bar or class
widths are recommended for histograms according to Practice
E2586. A histogram provides information on the central
tendency of the distribution, reveals the amount of variation in
the data, provides information on the shape of the distribution,
and reveals potential outlying values.

A1.1.6 linear regression model, n—any theoretical model
built of the form Yi5β01β1·x11β2·x2...βp21·xp211ε1, where Yi is
the response for case i; x1, x2, …, xp-1, are the predictor
variables; p is the number of regression coefficients; β0, β1, …,
βp-1 are the regression coefficients; and εi are the random errors
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that are assumed to be independently and identically distrib-
uted and follow a normal distribution with mean zero and
constant variance, σ2.

A1.1.6.1 Discussion—“Linear” regression means linear
with respect to the coefficients, β0, β1, …, βp-1. For example,
ŷ i5b01b1·~x!2 and ŷ i5b01b1·x11b2·ln~x2!are linear regression
models. However, ŷ i5b0·exp~β1 · x1! is not a linear regression
model. Simple linear regression refers to any linear model that
includes a single predictor variable. For example, ŷ i5b01b1·x
and ln~ ŷ i!5b01b1·ln~x! are simple linear regression models.
Estimates of linear regression coefficients can be obtained
using the method of least squares or the method of maximum
likelihood. If censored data are present, the method of maxi-
mum likelihood must be used.

A1.1.7 linear regression with censored data, n—a special-
ized linear regression modeling technique used when the
response variable is not known exactly.

A1.1.7.1 Discussion—The method of maximum likelihood
is used to estimate the model coefficients. Failure to treat
censored data correctly can have a significant impact on the
regression model, resulting in a poor model and misleading
predictions.

A1.1.8 measurement systems analysis (MSA), n—any of a
number of specialized methods useful for studying a measure-
ment system and its properties. Terminology E456, Guide
E2782

A1.1.9 method of least squares, n—a technique of estima-
tion of a parameter which minimizes ∑e2, where e is the
difference between the observed value and the predicted value
derived from the assumed model. Terminologies E456, E1325

A1.1.10 method of maximum likelihood, n—estimation
method that finds the values of the parameters of interest,
denoted by θ, that maximize the likelihood function, L(θ | x).

A1.1.10.1 Discussion—The method of maximum likelihood
chooses values for the parameters of interest (for example,
regression model coefficients) that are most consistent with the
sample data. The likelihood function is directly derived from
the joint probability function of the observed data, written as a
function of the model parameters: f(x | θ) = L(θ | x). The
method of maximum likelihood finds the parameter values θ
for which the value of the likelihood function is the largest,
indicating a high probability given the observed data. It has
been shown in theory that maximum likelihood estimates are
optimal in large samples under standard regularity conditions.
Typically the log of the likelihood function, ln(L(θ | x)) is used
instead for computational convenience. While more computa-
tionally intensive than the method of least squares, the method
of maximum likelihood is a more versatile estimation method
since it can handle not only a wide variety of models but also
a wide variety of data types, including censored data. If the
distribution of the error term is specified and follows a
location-scale distribution other than the normal distribution
(for example, Weibull or lognormal), then the method of
maximum likelihood can be used to obtain estimates of the
regression model coefficients. There are two procedures for
finding maximum likelihood estimates: analytical and iterative
numerical search. When censored data are present, the only

option is to use an iterative numerical search procedure since a
closed form solution does not exist with the analytical proce-
dure. The iterative numerical procedure searches for a solution
to the system of equations from which the estimates of the
model coefficients are derived. The procedure iterates until a
convergence criterion is met, at which point estimates of the
model coefficients are obtained from the last iteration. If no
solution exists to the system of equations from which the
model coefficients are derived, then the procedure will not
reach convergence. Some statistical analysis software may
produce estimates of the model coefficients even though the
convergence criterion has not been met. These estimates are
based on the last iteration. However, they are likely to be
erroneous and should not be used. When no censored data are
present, the values obtained for the parameter estimates using
the method of maximum likelihood are the same as those
obtained using the method of least squares and have the
properties of all least squares estimators.

A1.1.11 outlying observations, n—an observation that ap-
pears to deviate markedly in value from other members of the
sample in which it appears. Practice E178, Terminology E456

A1.1.12 probability plot, n—used to assess whether or not a
particular continuous distribution fits continuous data by plot-
ting what is expected under the assumed distribution against
what is actually observed.

A1.1.12.1 Discussion—If the data closely follow the refer-
ence line and are within the 95% confidence bounds (if
included on the plot), then the assumed distribution is consid-
ered a reasonable fit to the data. This visual assessment holds
for any probability plot. There are also more formal statistical
hypothesis tests, such as the Anderson-Darling (AD) test, that
can be performed to assess the fit of the selected distribution.
More detail on probability plots can be found in Practice
E2586.

A1.1.13 regression, n—the process of estimating param-
eter(s) of an equation using a set of data. Terminology E456,
Practice E2586

A1.1.13.1 Discussion—See Practice E2586 for a general
overview of simple linear regression analysis.

A1.1.14 residual, n—–observed value minus fitted value,
when a model is used. Terminology E456, Practice E2586

A1.1.15 statistical confidence, n—the long run frequency
associated with the ability of the statistical method to capture
the true value of the parameter of interest.

A1.1.15.1 Discussion—Statistical confidence is a probabil-
ity statement about the statistical method used to estimate a
parameter of interest—e.g., the probability that the statistical
method has captured the true capability of the inspection
system. The opposite of statistical confidence can be equated to
risk. For example, a statistical confidence level of 95% implies
a willingness to accept a 5% risk of the statistical method
yielding incorrect results—e.g., there is a 5% risk that the
wrong conclusion has been drawn about the capability of the
inspection system. (See Practice E2586, section 6.19.1 for
more detail.)
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A1.1.16 statistical confidence bound, n—a one-sided or
two-sided bound around a single point estimate representing
the variability due to sampling.

A1.1.16.1 Discussion—According to the formula in MIL-
HDBK-1823A, ap/c is a one-sided upper confidence bound on
ap. ap/c represents how large the true ap could be given the
statistical uncertainty associated with limited sample data. In
general, a confidence bound is a function of the amount of data,
the scatter in the data, and the specified level of statistical
confidence. When the sample size increases, statistical uncer-
tainty decreases (all else held constant). That is, given an
infinite amount of data (e.g., an infinite number of flaw sizes

adequately distributed across a POD specimen set), ap/c will
approach ap because the statistical uncertainty goes away. It is
important to note that a statistical confidence bound on ap only
accounts for variability due to sampling. It does not account for
inherent process variability. In order to capture inherent pro-
cess variability, a tolerance bound should be used. As opposed
to a confidence bound, a tolerance bound will always differ
from the point estimate because process variability cannot be
eliminated by increasing the sample size.

A1.1.16.2 Discussion—The term “statistical confidence
bound” in this standard is equivalent to the term “confidence
interval” in Terminology E456 and Practice E2586.

APPENDIX

(Nonmandatory Information)

X1. POD ANALYSIS PROCESS

X1.1 POD Analysis

X1.1.1 Fig. X1.1 shows a flowchart of POD Analysis for â
versus a data.

X1.2 Additional Commentary on the â versus a POD
Analysis Process as illustrated in Figure X1.1 and
its Significance

X1.2.1 Define POD Analysis Objective: In general, the
objective of a POD analysis is to determine the relationship
between discontinuity size and POD. Based on the established
relationship, the objective may be to determine the discontinu-
ity size that can be detected with a given probability p and
specified statistical confidence level c, denoted ap/c. It is
important for the analyst to have a clear understanding of the
specific analysis objective prior to performing the analysis.

X1.2.2 Obtain POD Demonstration Test Data and Exami-
nation Specifics: In general, the results of an experiment apply
to the conditions under which the experiment was conducted.

X1.2.3 Conduct Preliminary Review of Examination Proce-
dure and Data:

X1.2.3.1 If an experiment is not properly designed and
executed, the data collected are subject to question and likely
invalid. Invalid data cannot be corrected through a statistical
analysis. Hence, any results from a statistical analysis of
invalid data will be invalid as well.

X1.2.3.2 In general, a graphical assessment of the data
should be performed prior to conducting a statistical analysis to
become familiar with the data (for example resolution,
distribution, correlations). A graphical assessment can also help
identify potential outlying observations. See Practice E178.

X1.2.3.3 Prior to conducting a POD examination on a
nondestructive inspection system that generates a measurable
response, a Measurement Systems Analysis (MSA) is recom-
mend to assess the adequacy of the measurement system in
terms of its repeatability and reproducibility. See Guide E2782
for information about and guidelines for performing an MSA.

X1.2.3.4 Examples of examination procedures or data
issues, or both, and possible resolutions can be found in
sections 6.4 and 6.5.

X1.2.4 Determine Noise Threshold and Saturation Thresh-
old:

X1.2.4.1 The analyst and responsible Engineer shall deter-
mine the appropriate value for the noise threshold, ânoise, based
on the noise analysis results. Example values include the 97.73
percentile or 99.87 percentile of the noise distribution, which
corresponds to a +2σ or +3σ value respectively.

X1.2.4.2 The saturation threshold, âsat, is the largest signal
value that the system can record.

X1.2.5 Select Model: Selection of a linear model may be an
iterative process as the significance of the predictor variable(s)
and the appropriateness of the selected model is typically
assessed after the model has been developed.

X1.2.5.1 A linear model with a single predictor variable,
commonly referred to as a simple linear regression model, is
typically expressed as ŷ5b01b1·x, where x is the continuous
predictor variable, b0 is the intercept, b1 is the slope, and ŷ is
the expected response given x. “Linear” refers to linear with
respect to the model coefficients. Hence, ŷ and x may represent
transformations of the raw data. With respect to POD, for
example, ŷ = â or ŷ= ln(â) and x = a or x = ln(a), resulting in
four possible simple linear models: â5b01b1·a, â5b0

1b1·ln~a!, ln~ â!5b01b1·a, and ln~ â!5b01b1·ln~a!. If predictor
variables other than discontinuity size are quantifiable factors
(either continuous or categorical), a linear regression model
with more than one predictor may be used.

X1.2.5.2 In general, appropriateness is determined by how
well the model fits the observed â versus a data and how well
the analysis assumptions are met. If a simple linear model is
selected, for example, start with a plot of â (y-axis) against a
(x-axis) using a Cartesian scale. A natural log transformation is
common in POD analysis. Re-create the plot looking at all
possible combination of Cartesian and base e logarithmic scale
for the y-axis and x-axis respectively: Cartesian versus
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Cartesian, logarithmic versus Cartesian, Cartesian versus
logarithmic, and logarithmic versus logarithmic. Select the
simple linear model based on the plot in which the data appears
most linear. This method is consistent with that described in
MIL-HDBK-1823A.

X1.2.5.3 Model selection for linear regression models with
more than one predictor variable can be facilitated during the
analysis using formal statistical model building techniques
such as forward selection, backward selection, or stepwise
regression.4

FIG. X1.1 Flowchart of POD Analysis â versus a Data
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X1.2.5.4 Other statistical regression models exist and may
be more appropriate in some cases than the standard linear
regression model for determining the demonstrated POD for â
versus a data. It is the analyst’s responsibility to select the
appropriate statistical model and verify that all underlying
assumptions associated with the selected model hold.

X1.2.6 Perform Analysis Using Appropriate Software: POD
specific software or statistical software is commonly used to
perform an analysis on â versus a data in order to establish a
functional relationship between â and a, on which the POD
curve is based.

X1.2.6.1 Prior to performing the POD analysis, the analyst
shall format the data as required by the software used to
conduct the analysis. For some software this may require the
analyst to perform a transformation of the predictor variable
prior to running the analysis. For example, if the natural log of
discontinuity size is used as the predictor variable, then the
analyst may need to create a new variable column for the
natural log of discontinuity size prior to running the analysis. If
censored data are present, the analyst shall verify if censored
data are handled by the software and the format required by the
software to identify censored data.

X1.2.6.2 Though the software performs the complex
calculations, it does not check the validity of analysis inputs or
outputs. The analyst is responsible for ensuring that the
analysis inputs (e.g., data, model formulation) are correctly
specified and that the underlying model assumptions hold.
Treating the software as a “black box” can lead to seriously
misleading conclusions about the inspection capability of the
system. Hence, it is critical that the practitioner have a basic
understanding of the complete analysis process, including the
underlying statistical methods and techniques for validating the
results.

X1.2.6.3 The standard states that if more than twenty
iterations were needed to reach convergence when censored
data are present, the model may not be reliable. This criterion
was selected to be consistent with several well known software
packages. The criterion of twenty is used in Minitab® statis-
tical software and PODv3. MIL-HDBK-1823A uses a criterion
of twenty-five.

X1.2.7 Assess Significance of Predictor Variable(s) and
Model Adequacy:

X1.2.7.1 Only significant and uncorrelated variables are
included in a linear regression model. The significance of a
predictor variable is assessed after a model is selected and
analysis performed. An Analysis of Variance (ANOVA) is

typically used to evaluate the significance of the model as a
whole. ANOVA uses an F-test to test the significance of the
linear regression relation between the response variable and
predictor variable(s). The p-value resulting from the F-test is
used to assess the significance of the model as a whole. A
p-value less than or equal to 0.05 implies evidence of statistical
significance of the model as a whole. A t-test for significance or
confidence interval for a regression coefficient can be a useful
tool in assessing the significance of an individual predictor
variable in the model. A t-test produces a p-value, which is
used to judge how close the regression coefficient is to zero. A
p-value less than or equal to 0.05 implies evidence that the
predictor variable is a statistically significant contributor to the
model. A two-sided 95% confidence interval can also be used
to assess the significance of an individual predictor variable in
the model. If the 95% confidence interval does not include
zero, then the predictor variable is a statistically significant
contributor to the model. The same conclusion about the
significance of a predictor variable will be drawn from a t-test
at the 0.05 level of significance and a 95% confidence interval
using a confidence coefficient based on the t distribution.

X1.2.7.2 Fig. X1.2 shows three residual plot examples. If
the residuals fall in a horizontal band centered around zero,
with no systematic preference for being positive or negative as
shown in Fig. X1.2(a), then the assumption of constant
variance and a linear relationship holds. A “rainbow” (or
inverted “rainbow) pattern as shown in Fig. X1.2(b) indicates
that a linear relationship is not appropriate. A megaphone
shape, either increasing (as shown in Fig. X1.2(c)) or
decreasing, indicates non-constant variance.

X1.2.7.3 A plot of predicted values versus actual values to
assess goodness-of-fit is most useful when more than one
predictor variable is included in the model. When the model
includes only one predictor variable, it is relatively easy to
graphically assess how well a simple linear model fits the
observed data. This is not typically the case when more than
one predictor variable is included in the model.

X1.2.7.4 The analyst should use other standard statistical
model diagnostic methods recommended for assessing the
adequacy of a linear regression model beyond those described
in this standard. These methods are performed after the model
has been developed. Examples include but are not limited to
those described in the following subsections.

X1.2.7.4.1 In addition to a histogram, a normal probability
plot of the residuals should also be assessed to verify the
normality assumption. A normal probability plot is a more

FIG. X1.2 Example Residual Plots
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rigorous diagnostic tool for assessing a distributional assump-
tion. A detailed description of and method for constructing a
normal probability plot can be found in Practice E2586. More
formal statistical tests, such as the Anderson Darling Test, to
assess distributional assumptions are also available and recom-
mended.

X1.2.7.4.2 In addition to plotting the residuals against the
predicted values as illustrated in Fig. X1.2, there are also more
formal statistical tests that are recommended to assess linearity
and non-constant variance such as Levene’s Test for Constant
Variance and F-Test for Lack-of-Fit respectively. Note that the
F-Test assumes that the normality and constant variance
assumptions hold.

X1.2.7.4.3 If available in the analysis output, the R2 and
Adjusted R2 statistics should be used to verify goodness-of-fit.
When the model includes a single predictor variable, R2 shall
be used. By definition, 0 ≤ R2 ≤ 1. R2 = 1 would imply that the
change observed in the response variable is a direct result of
manipulation of the predictor variable. A low R2 value may
imply, for example, that there may be other explanatory
variables that should be considered for inclusion in the model.
When the model includes more than one predictor variable,
Adjusted R2 shall be used. Adjusted-R2 is preferred to R2

because R2 will always increase when more explanatory
variables are added. Adjusted-R2 is interpreted in the same way
as R2 when assessing goodness-of-fit.

X1.2.7.4.4 Influential observations are not necessarily
wrong or even outlying values. However, misleading or wrong
conclusions may be drawn due to a single influential observa-
tion. If available, more formal diagnostic measures for influ-
ential observations should be used to identify influential
observations. Several measures of influence which are com-
monly used include Leverage, Standardized Leverage, Delta β,
Standardized Delta β, and Cook’s Distance.

X1.2.7.4.5 A correlation analysis should accompany the
graphical analysis to test for statistically significant correla-
tions among the predictor variables (also known as multicol-
linearity). More formal diagnostic measures, such as Variance
Inflation Factor (VIF), should be used if available to determine
whether multicollinearity may be present.

X1.2.7.5 More detailed descriptions of the methods de-
scribed in X1.2.7 can be found in most statistics text books that
cover linear regression analysis.4 Most statistics software
packages with linear regression modeling capabilities have the
standard model diagnostic methods built-in.

X1.2.8 Construct a 95% Lower Confidence Bound Around
the Model Fit: A confidence bound on linear regression model
reflects the long run frequency associated with the ability of the
statistical method to capture the true relationship between â
and a. In general, statistical confidence is a probability state-
ment about the statistical method used to estimate a parameter
of interest (the regression model coefficients in this case). The
opposite of statistical confidence can be equated to risk. For

example, a statistical confidence level of 95% implies a
willingness to accept a 5% risk of the statistical method
yielding incorrect results—for example, there is a 5% risk that
the wrong conclusion has been drawn about the relationship
between â and a.

X1.2.9 Determine Decision Threshold: âdec = ânoise implies
that any signal above the noise is interpreted as a find.

X1.2.10 Establish Relationship between POD and Discon-
tinuity Size (with 95% Confidence Bound if Applicable):

X1.2.10.1 Formula for Calculating POD for the simple
linear regression model â5b01b1·a, where Φ is the cumulative
standard normal distribution function, b0 and b1 are the
estimated model coefficients, and σ̂ is the estimated standard
deviation around the predicted response:

POD 5 P~ â . âdec! (X1.1)

51 2 P~ â # âdec!

51 2 ΦS âdec 2 â
σ̂ D 5 1 2 ΦS âdec 2 ~b0 1 b1 · a!

σ̂ D
X1.2.10.2 Formula for Calculating POD for the simple

linear regression model ln~ â!5b01b1·ln~a!

POD 5 P~ â . âdec! (X1.2)

51 2 P~ â # âdec!

51 2 ΦS ln~ â
dec

! 2 ln~ â!
σ̂ D 5 1 2 ΦS ln~ â

dec
! 2 ~b0 1 b1 · ln ~a!!

σ̂ D
X1.2.10.3 See Fig. X1.3 for an illustration of calculating

POD.
X1.2.10.4 A similar formula is used to calculate POD with

95% confidence. The formula used to construct the 95% lower
confidence bound on the model fit is used in place of the model
fit. Using the simple linear regression model â5b01b1·a as an
example:

POD 5 1 2 ΦS âdec 2 ~95% lower bound formula
σ̂ D (X1.3)

X1.2.10.5 See Fig. X1.4 for an illustration of calculating
POD with 95% confidence.

X1.2.10.6 The resulting POD values with 50% confidence
and 95% confidence are plotted against their respective dis-
continuity size to produce a POD Curve and 95% lower bound
on the POD curve as illustrated in Fig. X1.5.

X1.2.11 Perform False Call Analysis: This standard does
not limit the use of other methods aside from those described
in MIL-HDBK-1823A for assessing false call rate, provided
that they are appropriate.

X1.2.12 Document the Results in a Report: The report
should contain enough information such that the analysis
results may be reproduced.
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FIG. X1.3 POD with 50% Confidence is the Area Under the Normal Curve Above âdec, Where the Normal Curve is Centered Around the
Model Fit

FIG. X1.4 POD with 95% Confidence is the Area Under the Normal Curve Above âdec, Where the Normal Curve is Centered Around the
95% Lower Bound on the Model Fit
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FIG. X1.5 POD Curve and 95% Lower Confidence Bound
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