
Designation: E2807 − 11

Standard Specification for
3D Imaging Data Exchange, Version 1.01

This standard is issued under the fixed designation E2807; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification describes a data file exchange format
for three-dimensional (3D) imaging data, known as the ASTM
E57 3D file format, Version 1.0. The term “E57 file” will be
used as shorthand for “ASTM E57 3D file format” hereafter.

1.2 An E57 file is capable of storing 3D point data, such as
that produced by a 3D imaging system, attributes associated
with 3D point data, such as color or intensity, and 2D imagery,
such as digital photographs obtained by a 3D imaging system.
Furthermore, the standard defines an extension mechanism to
address future aspects of 3D imaging.

1.3 This specification describes all data that will be stored in
the file. The file is a combination of binary and eXtensible
Markup Language (XML) formats and is fully documented in
this specification.

1.4 All quantities standardized in this specification are
expressed in terms of SI units. No other units of measurement
are included in this standard.

1.4.1 Discussion—Planar angles are specified in radians,
which are considered a supplementary SI unit.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

1.6 This standard does not purport to address legal
concerns, if any, associated with its use. It is the responsibility
of the user of this standard to comply with appropriate
regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

E2544 Terminology for Three-Dimensional (3D) Imaging
Systems

2.2 IEEE Standard:3

754-1985 IEEE Standard for Binary Floating-Point Arithme-
tic

2.3 IETF Standard:4

RFC 3720 Internet Small Computer Systems Interface
(iSCSI)

2.4 W3C Standard:5

XML Schema Part 2: Datatypes Second Edition

3. Terminology

3.1 Definitions—Terminology used in this specification con-
forms to the definitions included in Terminology E2544.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 backward compatibility, n—ability of a file reader to

understand a file created by a writer of an older version of a file
format standard.

3.2.2 byte, n—grouping of 8 bits, also known as an octet.

3.2.3 camel case, n—naming convention in which com-
pound words are joined without spaces with each word’s initial
letter capitalized within the component and the first letter is
either upper or lowercase.

3.2.4 camera image, n—regular, rectangular grid of values
that stores data from a 2D imaging system, such as a camera.

3.2.5 camera projection model, n—mathematical formula
used to convert between 3D coordinates and pixels in a camera
image.

3.2.6 file offset, n—see physical file offset.

3.2.7 file-level coordinate system, n—coordinate system
common to all 2D and 3D data sets in a given E57 file.

3.2.8 forward compatibility, n—ability of a file reader to
read a file that conforms to a newer version of a format
specification than it was designed to read, specifically having
the capability to understand those aspects of the file that were
defined in the version it was designed to read, while ignoring
those portions that were defined in later versions of the format
specification.

1 This specification is under the jurisdiction of ASTM Committee E57 on 3D
Imaging Systems and is the direct responsibility of Subcommittee E57.04 on Data
Interoperability.

Current edition approved Feb. 1, 2011. Published March 2011.
2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or

contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

3 For referenced IEEE standards, visit http://grouper.ieee.org/groups/754.
4 For referenced Internet Engineering Task Force (IETF) standards, visit the

IETF website, www.ietf.org.
5 String representations (the lexical space) of the numeric datatypes are docu-

mented in the W3C standard: “XML Schema Part 2: Datatypes Second Edition”,
available on the website http://www.w3.org/TR/xmlschema-2/.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

1

http://dx.doi.org/10.1520/E2544
http://dx.doi.org/10.1520/E2544
http://www.astm.org/COMMIT/COMMITTEE/E57.htm
http://www.astm.org/COMMIT/SUBCOMMIT/E5704.htm

3.2.9 logical length, n—number of bytes used to describe
some entity in an E57 file, not including CRC checksum bytes.

3.2.10 physical file offset, n—number of bytes preceding the
specified byte location in an E57 file, counting payload bytes
and checksums.

3.2.10.1 Discussion—This term is also known as the file
offset.

3.2.11 physical length, n—number of bytes used to describe
some entity in an E57 file, including CRC checksum bytes.

3.2.12 record, n—single collection in a sequence of
identically-typed collections of elements.

3.2.13 rigid body transform, n—type of coordinate trans-
form that preserves distances between all pairs of points that
furthermore does not admit a reflection.

3.2.13.1 Discussion—A rigid body transform can be used,
for example, to convert points from the local coordinates of a
3D data set (for example, a single laser scan) to a common
coordinate system shared by multiple 3D data sets (for
example, a set of laser scans).

3.2.14 XML namespace, n—method for qualifying element
names in XML to prevent the ambiguity of multiple elements
with the same name.

3.2.14.1 Discussion—XML namespaces are used in an E57
file to support the definition of extensions.

3.2.15 XML whitespace, n—sequence of one or more of the
following Unicode characters: the space character (20
hexadecimal), the carriage return (0D hexadecimal), line feed
(0A hexadecimal), or tab (09 hexadecimal).

3.2.16 zero padding, n—one or more zero-valued bytes
appended to the end of a sequence of bytes.

4. Acronyms

4.1 ASCII—American Standard Code for Information Inter-
change

4.2 CRC—Cyclic redundancy check

4.3 GUID—Globally unique identifier

4.4 IEEE—Institute of Electrical and Electronics Engineers

4.5 IETF—Internet Engineering Task Force

4.6 iSCSI—Internet small computer system interface

4.7 JPEG—Joint Photographic Experts Group

4.8 PNG—Portable network graphics

4.9 URI—Uniform resource identifier

4.10 UTC—Coordinated universal time

4.11 UTF—Unicode Transformation Format

4.12 W3C—WorldWide Web Consortium

4.13 XML—eXtensible Markup Language

5. Notation and Mathematical Concepts

5.1 The following notation and established mathematical
concepts are used in this specification.

5.2 Intervals:

5.2.1 A closed interval is denoted [a, b], where a ≤ b. A
closed interval includes the endpoints a and b and all numbers
in between. An open interval is denoted (a, b), where a ≤ b. An
open interval includes the numbers between the endpoints a
and b, but does not include the endpoints themselves. The
half-open intervals (a, b] and [a, b) do not include the a and b
endpoints, respectively.

5.3 Cartesian Coordinate System:
5.3.1 Points in Cartesian coordinates are represented by an

ordered triplet (x, y, z), where x, y and z are coordinates along
the X, Y, and Z axes, respectively. The coordinate system is
right-handed.

5.4 Cylindrical Coordinate System:
5.4.1 Points in cylindrical coordinates are represented by an

ordered triplet (ρ, θ, z), where ρ is the radial distance (in
meters), θ is the azimuth angle (in radians), and z is the height
(in meters).

5.4.1.1 The azimuth angle is measured as the counterclock-
wise rotation of the positive X-axis about the positive Z-axis of
a Cartesian reference frame.

5.4.2 The following restrictions on cylindrical coordinates
are applied:

ρ $ 0 (1)

2π,θ # π (2)

5.4.3 The conversion from Cartesian to cylindrical coordi-
nates is accomplished through the formulas (note that the z
coordinate is the same in both systems):

ρ 5 =~x21y2! (3)

θ 5 atan2~y ,x! (4)

5.4.3.1 The function “atan2(y, x)” is defined as the function
returning the arc tangent of y/x, in the range (–π, +π] radians.
The signs of the arguments are used to determine the quadrant
of the result.

5.4.3.2 In degenerate cases, the following convention is
observed:

If x = y = 0, then θ = 0.
5.4.4 Conversely, cylindrical coordinates can be converted

to Cartesian coordinates using the formulas:

x 5 ρ cos~θ! (5)

y 5 ρ sin~θ! (6)

5.5 Spherical Coordinate System:
5.5.1 Points in spherical coordinates are represented by an

ordered triplet (r, θ, φ), where r is the range (in meters), θ is the
azimuth angle (in radians), and φ is the elevation angle (in
radians).

5.5.2 The following restrictions on spherical coordinates are
applied:

r $ 0 (7)

2π,θ # π (8)

2
π
2

φ
π
2

(9)

5.5.3 The conversion from spherical to Cartesian coordi-
nates is accomplished through the formulas:

E2807 − 11

2

x 5 r cos~φ!cos~θ! (10)

y 5 r cos~φ!sin~θ! (11)

z 5 r sin~φ! (12)

5.5.4 Conversely, in non-degenerate cases, Cartesian coor-
dinates can be converted to spherical coordinates via the
formulas:

r 5 =~x21y21z2! (13)

θ 5 atan2~y ,x! (14)

φ 5 arcsinS z
r D (15)

5.5.4.1 In degenerate cases, the following conventions are
observed:

If x = y = 0, then θ = 0;
If x = y = z = 0, then both θ = 0 and φ = 0.
5.5.5 Discussion—The elevation is measured with respect to

the XY-plane, with positive elevations towards the positive
Z-axis. The azimuth is measured as the counterclockwise
rotation of the positive X-axis about the positive Z-axis. This
definition of azimuth follows typical engineering usage. Note
that this differs from traditional use in navigation or surveying.

5.6 Quaternions:
5.6.1 A quaternion is a generalized complex number. A

quaternion, q, is represented by an ordered four-tuple (w,x,y,z),
where q = w + xi + yj + zk. The coordinate w defines the scalar
part of the quaternion, and the coordinates (x, y, z) define the
vector part.

5.6.2 The norm of a quaternion, || q ||, is defined as:

|| q || 5 =w21x21y21z2.

5.6.3 A unit quaternion, q, has the further restriction that its
norm || q || = 1.

5.6.4 Rotation of a point p by a unit quaternion q is given by
the matrix formula:

p ' 5 Rp (16)

where:

R 5 F w21x2 2 y2 2 z2

2~xy1wz!
2~xz 2 wy!

2~xy 2 wz!
w21y2 2 x2 2 z2

2~yz1wx!

2~xz1wy!

2~yz 2 wx!

w21z2 2 x2 2 y2
G

(17)

5.6.5 Discussion—Unit quaternions are used in this standard
to represent rotations in rigid body transforms.

5.7 Rigid Body Transforms:
5.7.1 A rigid body transform converts points from one

coordinate reference frame to another, preserving distances
between pairs of points and, furthermore, not admitting a
reflection. A rigid body transform can be represented as a
3 × 3 rotation matrix R and a translation 3-vector t.

5.7.2 A 3D point is transformed from the source coordinate
system to the destination coordinate system by first applying
the rotation and then the translation. More formally, the
transformation operation T(.) of a point p is defined as:

p ' 5 T~p! 5 Rp1t (18)

The rotation matrix R can be computed from a unit quater-
nion q using Eq 17.

5.7.3 Discussion—Rigid body transforms are used in this
standard to support the transformation of data represented in a
local coordinate system, such as the coordinate system of a
sensor used to acquire a 3D data set, to a common file-level
coordinate system shared by all 3D data sets.

5.8 Trees:
5.8.1 A tree is data structure that represents an acyclic

graph. A tree consists of nodes, which store some information,
and edges (also known as arcs) that connect the nodes. The
single topmost node is called the root node. A node may have
zero or more nodes connected below it, which are called child
nodes. Each node, except the root node, has exactly one node
connected above it, which is called the parent node. Nodes with
no children are called leaf nodes. A descendant is a direct or
indirect child of a given node.

5.8.2 Discussion—Trees are used in this standard to de-
scribe the structure of XML data, as well as index data in
binary sections.

5.9 XML Elements and Attributes :
5.9.1 An XML element is the fundamental building block of

an XML file. An element consists of a start tag, optional
attributes, optional child elements, optional child text, and an
end tag. Element names in an E57 file are case sensitive.
Element names in this specification are written in camel case
with a lowercase initial character. Type names in this specifi-
cation are written in camel case with an upper case initial
character.

5.9.2 Discussion—See Fig. 1 for an excerpt of XML that
illustrates the parts of an XML element.

5.9.3 XML elements that have child elements form a tree,
with each element being a node.

FIG. 1 XML Elements and Attributes

E2807 − 11

3

5.9.4 A pathname is a string that specifies the sequence of
elements names that are encountered when traversing from a
given origin element to a destination element in an XML tree.
In this standard, pathnames are only defined for destination
elements that are descendants of the origin element. A relative
pathname is formed by concatenating the sequence of element
names traversed using the forward slash (“/”) as a separator.
Each successive element in the sequence shall be a child of the
previous element. Note that the element name of the origin
element does not appear in the pathname. An absolute path-
name has an origin that is the root element of the tree, and is
formed by prepending a forward slash to the relative pathname.

5.9.5 Discussion—As an example, consider a hypothetical
E57 file consisting of a root element named e57Root which
contains a child element named data3D, which contains a
child element named 0, which contains a child element named
pose, which contains a child element named translation
, which contains a child element named x. Then the absolute
pathname of the x element is “/data3D/0/pose/
translation/x”, and the relative pathname of the x
element relative to the pose element is “translation/x”.

6. General File Structure

6.1 E57 files shall use the filename extension “.e57” (note
lowercase e).

6.2 This specification defines a binary file format composed
of a sequence of pages.

6.2.1 Each page shall be composed of 1020 bytes of data
(known as the payload) followed by a 32-bit cyclic redundancy
check (CRC) checksum computed on the preceding payload.

6.2.2 The length of an E57 file shall be an integral multiple
of 1024 bytes. Any unused bytes in the payload of the final
page in a file shall be filled with 0 values.

6.2.3 The CRC checksum shall be computed on the 1020
bytes of data using the iSCSI polynomial CRC32C (CRC
32-bit Castagnioli) as documented in IETF RFC 3720, Section
12.1 (http://tools.ietf.org/html/rfc3720).

6.2.4 Discussion—Sequences of data without the CRC
checksum bytes are known as logical sequences, while se-
quences of data with the CRC checksum bytes included are
known as physical sequences. All sequences of characters (in
XML section) or bytes (in binary sections) described in this
standard are logical sequences. The physical sequence repre-
sentation of a logical sequence may have an intervening
checksum if the logical sequence crosses a page boundary.
Page boundaries occur every 1020 bytes of logical data.

6.3 An E57 file shall be composed of two or more sections
in the following order:

6.3.1 File header section (required, see Section 7),
6.3.2 Binary sections (optional, see Section 9), and
6.3.3 XML section (required, see Section 8).

6.4 Binary portions (including the header and binary sec-
tions) of an E57 file are encoded using the little-endian byte
order.

7. File Header Section

7.1 The file header section begins at file offset 0.

7.2 The file header section is 48 bytes in length, with the
format given in Table 1.

8. XML Section

8.1 The XML section of the file describes the data hierarchy.
The data hierarchy contains a set of XML elements in a specific
format, and arbitrary XML is not allowed. The elements are
built upon a set of fundamental data types: Integer,
ScaledInteger, Float, String, Structure, Blob, Vector, and Com-
pressedVector. Additional composite data types are defined in
the standard or can be defined by an extension to the standard.

8.2 The XML section of the E57 file contains a single
well-formed XML 1.0 document using UTF-8 encoding.
However, arbitrary XML is not allowed. The elements in the
XML section shall be E57 elements, which are XML elements
of a specific format, as will be described in 8.3. Furthermore,
the elements shall follow particular grammatical rules, which
are described in 8.4.

8.3 E57 Element Data Types:
8.3.1 The E57 file format supports eight fundamental E57

element data types—five terminal types and three non-terminal
types. Non-terminal types are composed of other non-terminal
or terminal types to an arbitrary, but finite, level of nesting.
Terminal types shall not contain any child E57 elements. The
terminal types are Integer, ScaledInteger, Float, String, and
Blob. The non-terminal types are Structure, Vector, and Com-
pressedVector. Every element in an E57 file shall be one of
these types. Some or all of the data associated with an E57
element may be encoded in a binary section.

8.3.1.1 The data type of an E57 element is indicated by the
type XML attribute, which is required. Depending on the data
type, there may be other XML attributes that are required or
optional, and there may be restrictions on child elements.

TABLE 1 Format of the E57 File Header Section

Bytes Field name Data type Description

1-8 fileSignature 8-bit characters The file type signature. Shall contain the ASCII characters “ASTM-E57”.
9-12 versionMajor Unsigned 32-bit integer The file format major version number. The value shall be 1.
13-16 versionMinor Unsigned 32-bit integer The file format minor version number. The value shall be 0.
17-24 fileLength Unsigned 64-bit integer The physical length of the file, in bytes. Note that this length includes CRC bytes

and any zero padding as described in 6.2.2. Shall be in the open interval (0, 263).
25-32 xmlOffset Unsigned 64-bit integer The physical file offset, in bytes, to the beginning of the XML section of the file. As

defined in 3.2.10, this value includes CRC bytes. Shall be in the open interval (0,
263).

33-40 xmlLength Unsigned 64-bit integer The logical length, in bytes, of the XML section of the file, excluding CRC bytes and
zero padding. Shall be in the open interval (0, 263).

41-48 pageSize Unsigned 64-bit integer The size a page, in bytes, as defined in 6.2. The value shall be 1024.

E2807 − 11

4

8.3.1.2 String representations of the numeric data types are
documented in the W3C standard6 “XML Schema Part 2: Data
types Second Edition.” The following XML built-in data types
from that standard are referenced below: xsd:integer, xsd:float,
xsd:double. Instances of xsd:float and xsd:double shall not use
the special values: -0 (negative zero), +INF (positive infinity),
-INF (negative infinity), and NaN (not a number).

8.3.1.3 The rules for each E57 element data type are
detailed in following sections. The order of the XML attributes
is not important.

8.3.2 Integer Type:
8.3.2.1 Integer type E57 elements (Integer hereafter) are

used for storing integer values. The XML attributes for an
Integer are listed in Table 2.

8.3.2.2 The value of an Integer is represented as child text of
the XML element. This child text shall be zero or one
occurrence of the xsd:integer representation, with optional
leading and trailing XML whitespace. If no value is specified,
the default value of the Integer is 0.

8.3.2.3 The value of the Integer is restricted to be in the
range [minimum, maximum].

8.3.3 ScaledInteger Type:
8.3.3.1 For efficiency, it is possible to store numbers with

fractional parts using a ScaledInteger type E57 element
(ScaledInteger hereafter). A ScaledInteger stores an integer
“raw value,” and the actual floating point “scaled value” is
computed from the raw value by applying a scaling and offset.
The XML attributes for a ScaledInteger are listed in Table 3.

8.3.3.2 The rawValue of a ScaledInteger is encoded as child
text of the XML element. The child text shall be zero or one
occurrence of the xsd:integer representation, with optional
leading and trailing XML whitespace. The raw value is
restricted to be in the closed interval [minimum, maximum].
If raw value is unspecified, the default raw value is 0. The
scaled value (SV) is computed from the raw value (RV) using
the formula

SV 5 r~r ~r~RV! 3 r~scale!1r~offset!! (19)

where the r() function means rounding to the nearest
representable double precision (53-bit mantissa) IEEE 754-
1985 floating-point number using the “Round To Nearest”
rounding mode (as described in IEEE 754-1985), and the ‘×’
and ‘+’ operators are considered to be infinitely precise.

8.3.4 Float Type:
8.3.4.1 Float type E57 elements (Float hereafter) are used

for storing floating point values. The XML attributes for a Float
are listed in Table 4.

8.3.4.2 The value of a Float is represented as child text of
the XML element. This child text shall be zero or one
occurrence of the xsd:float representation (if precision is
single) or xsd:double (if precision is double), with optional
leading and trailing XML whitespace. If no value is specified,
the default value of the Float is 0. The number represented is
the nearest representable single precision (or double precision
if precision is double) IEEE 754-1985 floating point
number (including denormals, but excluding NaNs, +INF,
-INF, and -0) to the text representation.

8.3.5 String Type:
8.3.5.1 String type E57 elements (String hereafter) are used

for storing text. The XML attributes for a String are listed in
Table 5.

8.3.5.2 The value of a String shall be encoded in UTF-8 and
shall be represented as child text of the XML element. Because
the content of a String may include any combination of
characters, the XML child text shall appear inside a Character
data (CDATA) section. If the character sequence “]]>” appears
in the String value, the characters shall be split across two or
more CDATA sections such that each “]]>” in the String value
is split into “]]” and “>” in adjacent CDATA sections. There
shall be no XML whitespace before the first CDATA section,
between CDATA sections, or after the last CDATA section.

8.3.6 Blob Type:
8.3.6.1 Blob type E57 elements (Blob hereafter) are used for

storing opaque blocks of binary data that will be interpreted by
the reader. The XML attributes for a Blob are listed in Table 6.

8.3.6.2 A Blob is divided into two parts within an E57 file,
an XML portion, documented here, and a binary section. The
XML portion indicates the size and location of the binary
section of the Blob. The binary section, described in 9.2, stores
the actual data content.

8.3.6.3 A Blob shall not contain any child elements or child
text.

8.3.6.4 Discussion—The format of the Blob’s data content is
not defined in this specification. A Blob may be used, for
example, to embed an image from a camera within an E57 file.

8.3.7 Structure Type:
8.3.7.1 Structure-type E57 elements (Structure hereafter)

are used to represent unordered groups of potentially hetero-
geneous E57 elements. The XML attributes for a Structure are
listed in Table 7.

8.3.7.2 A Structure shall contain zero or more child E57
elements of any type. The names of the child elements shall be
unique within the Structure.

8.3.7.3 A Structure shall not contain any child text.
8.3.8 Vector Type:
8.3.8.1 Vector-type E57 elements (Vector hereafter) are

used for storing ordered lists of items, known as records.

6 See “http://www.w3.org/TR/xmlschema-2/

TABLE 2 Attributes for an Integer Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “Integer”.
minimum optional –263 xsd:integer The smallest value that can be encoded. Shall be in the interval [-263, 263-1].
maximum optional 263– 1 xsd:integer The largest value that can be encoded. Shall be in the interval [minimum, 263-1].

E2807 − 11

5

Vectors are intended to store identical or substantially identi-
cally typed records. The XML attributes for a Vector are listed
in Table 8.

8.3.8.2 A Vector shall have zero or more child elements, all
of which shall use the tag name vectorChild.

8.3.8.3 If the allowHeterogeneousChildren flag is
set to 0, then all the child elements shall have identical
structure in terms of number of children, element names,
element types, attributes, and descendent elements recursively

TABLE 3 Attributes for a ScaledInteger Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “ScaledInteger”.
minimum optional –263 xsd:integer The smallest rawValue that can be encoded. Shall

be in the interval [-263, 263-1].
maximum optional 263– 1 xsd:integer The largest rawValue that can be encoded. Shall

be in the interval [minimum, 263-1].
scale optional 1.0 xsd:double The scale value for the ScaledInteger. Shall be

non-zero.
offset optional 0.0 xsd:double The offset value for the ScaledInteger.

TABLE 4 Attributes for a Float Type E57 Element

Attribute
Name

Required/
Optional

Default Value Format Description

type required n/a string Shall be “Float”.
precision optional double string Shall be either “single” for 32 bit IEEE 754-1985 floating

point values, or “double” for 64 bit IEEE 754-1985 floating
point values.

minimum optional -3.402823466e+38 if precision is single, or
-1.7976931348623158e+308 if precision is
double.

xsd:double The smallest value that can be encoded. Shall be in the
interval [-3.402823466e+38, 3.402823466e+38] if precision
is single, or [-1.7976931348623158e+308,
1.7976931348623158e+308] if precision is double.

maximum optional 3.402823466e+38 if precision is single, or
1.7976931348623158e+308 if precision is
double.

xsd:double The largest value that can be encoded. Shall be in the in-
terval [minimum, 3.402823466e+38] if precision is single, or
[minimum, 1.7976931348623158e+308] if precision is
double.

TABLE 5 Attributes for a String Type E57 Element

Attribute
Name

Required/
Optional

Default Value Format Description

type required n/a string Shall be “String”.

TABLE 6 Attributes of a Blob Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “Blob”.
fileOffset required n/a xsd:integer The physical file offset of the start of the associated binary Blob section in the

E57 file. Shall be in the interval [0, 263).
length required n/a xsd:integer The logical length of the associated binary Blob section, in bytes. Shall be in

the interval (0, 263).

TABLE 7 Attributes for a Structure Type E57 Element

Attribute
Name

Required/
Optional

Default Value Format Description

type required n/a string Shall be “Structure”.

TABLE 8 Attributes for a Vector Type E57 Element

Attribute Name
Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “Vector”.
allowHeterogeneousChildren optional 1 xsd:integer Indicates whether the child elements may have different structure.

Set to 1 to enable, set to 0 to disable. Shall be either 0 or 1.

E2807 − 11

6

(that is, identical except for values), and the Vector is consid-
ered to be homogeneous. If the allowHeterogeneous-
Children flag is set to 1, then the types of the child elements
are unconstrained, and the Vector is considered to be hetero-
geneous.

8.3.8.4 A Vector shall not contain any child text.
8.3.8.5 The element names of the child E57 elements of a

Vector shall be string representations of integers beginning
with “0” for the first defined child element and incrementing by
one for each subsequently defined child element.

8.3.9 CompressedVector Type:
8.3.9.1 CompressedVector-type E57 elements (Com-

pressedVector hereafter) are used for storing ordered lists of
identically typed items, known as records, in a compressed
binary format. The XML attributes for a CompressedVector-
type E57 element are listed in Table 9.

8.3.9.2 A CompressedVector is divided into two parts within
an E57 file, an XML portion, documented here, and a binary
section. The XML portion describes the format of the records
using a prototype structure, specifies what compression scheme
is used for the data, and indicates the size and location of the
binary section of the CompressedVector. The binary section,
described in 9.3, stores the actual data content.

8.3.9.3 The child elements for a CompressedVector are
listed in Table 10. A CompressedVector shall not contain any
child text.

(1) The prototype child element specifies the structure
of the data that will be stored in the CompressedVector, as well
as the possible range of values that the data may take. The
prototype shall be any E57 element type (with potential
sub-children) except Blob and CompressedVector. The values
of the prototype elements and sub-elements are ignored,
and need not be specified.

(2) Discussion—The prototype child element describes
the abstract requirements of a representation of the data
contents. The abstract requirements, in combination with an
encoding technique (provided by the codecs child element),
specify the format of the contents of the binary section of the
file. The prototype will typically be a Structure with a
single level of child elements. A prototype with more than
one level of child elements is allowed, but not recommended.

(3) The codecs child element is a heterogeneous vector
of Codec Structures. Each Codec Structure specifies how a set
of E57 elements within a record will be compressed in the
associated binary section. The child elements for a Codec
Structure are listed in Table 11.

(a) The inputs child element is a Vector of Strings.
Each string is a relative path name of an element in the
prototype Structure that the codec will compress. The

relative pathnames shall be specified with respect to the
prototype element.

(b) The bitPackCodec child element is a Structure
with no child elements. Defining this empty Structure specifies
that all the elements described by the inputs element shall be
encoded in the binary section using the bitPackCodec. Opera-
tion of the bitPackCodec is described in 9.7.

(4) Each terminal element in the prototype shall be listed
at most once as an input to a codec. If a terminal element in the
prototype is not listed as an input to a codec, it is implied that
the element is compressed by the bitPackCodec.

8.4 XML Data Hierarchy:
8.4.1 The XML section of an E57 file shall follow a

particular format. A set of data types is defined by this standard
to support the storage of 3D point data and 2D imagery in a
common, file-level coordinate system. These data types are
defined in the following sub-sections. They are constructed
from the eight fundamental data types defined in 8.3.

8.4.1.1 Discussion—An example instance of an XML data
hierarchy is shown in Fig. 2. A more extensive example, in
XML format, is given in Appendix X1.

8.4.2 E57Root:
8.4.2.1 An E57Root Structure stores the top-level informa-

tion for the XML section of the file. The child elements for the
E57Root Structure are listed in Table 12.

8.4.2.2 The root element of the XML tree shall be an
instance of an E57Root Structure with the element name
e57Root.

8.4.2.3 The E57 XML namespace shall be declared as the
default namespace in the E57Root element as:

xmlns=9http://www.astm.org/COMMIT/E57/2010-e57-v1.09

No other default namespaces shall be declared in child
elements of the E57Root element.

8.4.2.4 All XML namespaces (with the exception of the
default namespace) shall be declared in the E57Root element
as an XML attribute in the following format:

xmlns:<namespace>=9<uri>9

where <namespace> is the namespace prefix and <uri>
is a uniform resource identifier (URI). No XML namespaces
shall be declared in child elements of the E57Root element.

8.4.2.5 Discussion—The e57LibraryVersion String is
determined by the developer of the low-level software or
library that writes E57 files, not by high-level applications that
use the E57 file writing software/library.

8.4.3 Data3D:
8.4.3.1 A Data3D Structure represents a collection of 3D

points and any associated attributes, as well as metadata about

TABLE 9 Attributes for a CompressedVector Type E57 Element

Attribute
Name

Required/
Optional

Default
Value

Format Description

type required n/a string Shall be “CompressedVector”.
fileOffset required n/a xsd:integer The physical file offset of the start of the CompressedVector binary section in

the E57 file (an integer). Shall be in the interval (0, 263).
recordCount required n/a xsd:integer The number of records in the compressed binary block (an integer). Shall be

in the interval [0, 263).

E2807 − 11

7

the collection of points. The child elements for the Data3D
Structure are listed in Table 13.

8.4.3.2 The 3D points shall be stored either in a local
coordinate system relative to the sensor or in a file-level
coordinate system common to all the 3D data sets in an E57
file. If the points are stored using the local coordinate system,
the pose child element shall be present and shall store the
transform that, when applied to the 3D points, will place them

in the file-level coordinate system. If the points are stored using
the file-level coordinate system, the pose child element shall
be omitted, and the identity transform shall be implied for the
pose.

(1) Points shall be stored in the local coordinate system
relative to the sensor when possible.

(2) Discussion—This statement implies that storing the
points in the file-level coordinate system and discarding the

TABLE 10 Child Elements for a CompressedVector Type E57 Element

Element
Name

Type
Required/
Optional

Description

prototype Structure, Integer, Float, ScaledInteger, String, or Vector required Specifies the fields of the CompressedVector records and
their range limits.

codecs Vector of Codec Structures optional A heterogeneous Vector specifying the compression
method to be used for fields within the
CompressedVector.

TABLE 11 Child Elements for the Codec Structure

Element Name Type
Required/
OptionalA

Description

inputs Vector of Strings required A Vector listing the relative path names of elements in the prototype that this codec will
compress.

bitPackCodec Structure optional* Specifies that the bitPackCodec will be used for compressing the data.
AOptional fields with an asterisk have additional constraints. See text for details.

NOTE 1—For clarity, not all elements of the hierarchy are shown. Stacked boxes indicate Vectors or Compressed Vectors of elements.
FIG. 2 An Example XML Data Hierarchy Instance

TABLE 12 Child Elements for the E57Root Structure

Element Name Type
Required/
Optional

Description

formatName String required Shall contain the string “ASTM E57 3D Imaging Data File”.
guid Guid String required A globally unique identification (GUID) String for the current version of the file

(see 8.4.22).
versionMajor Integer required The major version number of the file format. Shall be 1.
versionMinor Integer required The minor version number of the file format. Shall be 0.
e57LibraryVersion String optional The version identifier for the E57 file format library that wrote the file.
creationDateTime DateTime Structure optional Date and time that the file was created.
data3D Vector of Data3D Structures optional A heterogeneous Vector of Data3D Structures for storing 3D imaging data.
images2D Vector of Image2D Structures optional A heterogeneous Vector of Image2D Structures for storing 2D images from a

camera or similar device.
coordinateMetadata CoordinateMetadata String optional Information describing the Coordinate Reference System to be used for the

file.

E2807 − 11

8

pose transform is prohibited if the points are known in the local
coordinate system, since this practice results in loss of infor-
mation.

8.4.3.3 The originalGuids child element identifies the
data set (or sets) from which the data originated (that is, not the
most recent version, but the first version). If the original-
Guids element is present, the strings stored in the Vector shall
contain the GUIDs that identify the source of the data in the
Data3D object. The absence of the originalGuids element
shall indicate that the Data3D object has not been modified
from its original version. In this case, the original version shall
be indicated by the guid element.

8.4.3.4 If the points stored in the pointRecord element
are represented in Cartesian coordinates (that is, if
cartesianX, cartesianY, and cartesianZ are
defined), then the cartesianBounds element shall be
defined.

8.4.3.5 If the points in the pointRecord element are
represented in spherical coordinates (that is, if

sphericalRange, sphericalElevation, and
sphericalAzimuth are defined), then the spherical-
Bounds element shall be defined.

8.4.3.6 If the rowIndex element is defined for the points
in the pointRecord, then the indexBounds element shall
be defined and within the indexBounds element, the row-
Minimum and rowMaximum shall be defined. If the col-
umnIndex element is defined for the points in the
pointRecord, then the indexBounds element shall be
defined and within the indexBounds element, the colum-
nMinimum and columnMaximum shall be defined. If the
returnIndex element is defined for the points in the
pointRecord , then the indexBounds element shall be
defined and within the indexBounds element, the re-
turnMinimum and returnMaximum shall be defined.

8.4.3.7 If the intensity element is defined for the points
in the pointRecord, and if the minimum and maximum
intensity values that can be produced by the device that

TABLE 13 Child Elements for the Data3D Structure

Element Name Type
Required/
OptionalA

Description

guid Guid String required A globally unique identifier for the current version of the
Data3D object (see 8.4.22).

points CompressedVector of PointRecord Structures required A compressed vector of PointRecord Structures referring to
the binary data that actually stores the point data.

pose RigidBodyTransform Structure optional A rigid body transform that transforms data stored in the
local coordinate system of the points to the file-level
coordinate system.

originalGuids Vector of Guid Strings optional A Vector of globally unique identifiers identifying the data
set (or sets) from which the points in this Data3D
originated.

pointGroupingSchemes PointGroupingSchemes Structure optional The defined schemes that group points in different ways.
name String optional A user-defined name for the Data3D.
description String optional A user-defined description of the Data3D.
cartesianBounds CartesianBounds Structure optional* The bounding region (in Cartesian coordinates) of all the

points in this Data3D (in the local coordinate system of the
points).

sphericalBounds SphericalBounds Structure optional* The bounding region (in spherical coordinates) of all the
points in this Data3D (in the local coordinate system of the
points).

indexBounds IndexBounds Structure optional* The bounds of the row, column, and return number of all
the points in this Data3D.

intensityLimits IntensityLimits Structure optional* The limits for the value of signal intensity that the sensor is
capable of producing.

colorLimits ColorLimits Structure optional* The limits for the value of red, green, and blue color that
the sensor is capable of producing.

acquisitionStart DateTime Structure optional The start date and time that the data was acquired.
acquisitionEnd DateTime Structure optional The end date and time that the data was acquired.
sensorVendor String optional The name of the manufacturer for the sensor used to

collect the points in this Data3D.
sensorModel String optional The model name or number for the sensor.
sensorSerialNumber String optional The serial number for the sensor.
sensorHardwareVersion String optional The version identifier for the sensor hardware at the time of

data collection.
sensorSoftwareVersion String optional The version identifier for the software used for the data

collection.
sensorFirmwareVersion String optional The version identifier for the firmware installed in the sensor

at the time of data collection.
temperature Float optional The ambient temperature, measured at the sensor, at the

time of data collection (in degrees Celsius). Shall be $

−273.15° (absolute zero).
relativeHumidity Float optional The percentage relative humidity, measured at the sensor,

at the time of data collection. Shall be in the interval [0,
100].

atmosphericPressure Float optional The atmospheric pressure, measured at the sensor, at the
time of data collection (in Pascals). Shall be positive.

AOptional fields with an asterisk have additional constraints. See text for details.

E2807 − 11

9

obtained the intensity measurements are known, then the
intensityLimits element shall be defined.

8.4.3.8 If the colorRed , colorGreen, and color-
Blue elements are defined for the points in the
pointRecord, and if the minimum and maximum color
values that can be produced by the device that obtained the
color measurements are known, then the colorLimits
element shall be defined.

8.4.4 PointRecord:
8.4.4.1 A PointRecord Structure stores the information for

an individual point measurement from a 3D imaging system.
The child elements for the PointRecord Structure are listed in
Table 14.

8.4.4.2 One or more of the following elements shall be
defined: cartesianX, sphericalRange. If any elements
in the set {cartesianX, cartesianY, cartesianZ} are
defined, then all elements in that set shall be defined. If any
elements in the set {sphericalRange,
sphericalAzimuth, sphericalElevation } are
defined, then all elements in that set shall be defined.

8.4.4.3 The values for sphericalRange,
sphericalAzimuth, and sphericalElevation are
restricted to the limits described for spherical coordinates in
5.5.

8.4.4.4 If returnIndex or returnCount are defined,
then both returnIndex and returnCount shall be de-

fined. If returnIndex is defined, the PointRecords from an
emitted single pulse shall be contiguous, and shall be sorted in
ascending returnIndex values.

8.4.4.5 The intensity element shall encode the strength
of the signal for a point. The intensity value shall not include
compensation for signal strength reduction as a function of
distance, surface orientation, or other properties of the surface
being sensed.

8.4.4.6 If any elements in the set {colorRed, color-
Green , colorBlue} are defined, then all elements in that
set shall be defined. The units of colorRed, colorGreen,
and colorBlue are not specified, but they shall all be the
same.

8.4.4.7 If cartesianInvalidState is defined, its
value shall have the following interpretation. If the value is 0,
the values of cartesianX , cartesianY, and carte-
sianZ shall all be meaningful. If the value is 1, only the
direction component of the vector (cartesianX,
cartesianY, cartesianZ) shall be meaningful, and the
magnitude of the vector shall be considered non-meaningful. If
the value is 2, the values of cartesianX, cartesianY,
and cartesianZ shall all be considered non-meaningful.

8.4.4.8 If sphericalInvalidState is defined, its
value shall have the following interpretation. If the value is 0,
the values of sphericalRange , sphericalAzimuth,
and sphericalElevation shall all be meaningful. If the

TABLE 14 Child Elements for the PointRecord Structure

Element Name Type
Required/
OptionalA

Description

cartesianX Float/ScaledInteger/Integer optional* The X coordinate (in meters) of the point in Cartesian coordinates.
cartesianY Float/ScaledInteger/Integer optional* The Y coordinate (in meters) of the point in Cartesian coordinates.
cartesianZ Float/ScaledInteger/Integer optional* The Z coordinate (in meters) of the point in Cartesian coordinates.
sphericalRange Float/ScaledInteger/Integer optional* The range (in meters) of points in spherical coordinates. Shall be

non-negative.
sphericalAzimuth Float/ScaledInteger optional* Azimuth angle (in radians) of point in spherical coordinates (see 5.5

for restrictions on values).
sphericalElevation Float/ScaledInteger optional* Elevation angle (in radians) of point in spherical coordinates (see

5.5 for restrictions on values).
rowIndex Integer optional The row number of point (zero-based). This is useful for data that is

stored in a regular grid.Shall be in the interval [0, 263).
columnIndex Integer optional The column number of point (zero-based). This is useful for data

that is stored in a regular grid. Shall be in the interval [0, 263).
returnCount Integer optional* Only for multi-return sensors. The total number of returns for the

pulse that this corresponds to. Shall be in the interval (0, 263).
returnIndex Integer optional* Only for multi-return sensors. The number of this return (zero

based). That is, 0 is the first return, 1 is the second, and so on.
Shall be in the interval [0, returnCount).

timeStamp Float/ScaledInteger/Integer optional The time (in seconds) since the start time for the data, which is
given by acquisitionStart in the parent Data3D Structure. Shall be
non-negative.

intensity Float/ScaledInteger/Integer optional Point response intensity. Unit is unspecified.
colorRed Float/ScaledInteger/Integer optional* Red color coefficient. Unit is unspecified.
colorGreen Float/ScaledInteger/Integer optional* Green color coefficient. Unit is unspecified.
colorBlue Float/ScaledInteger/Integer optional* Blue color coefficient. Unit is unspecified.
cartesianInvalidState Integer optional Indicates whether the Cartesian coordinate vector or its magnitude

is meaningful. Shall be in the interval [0, 2].
sphericalInvalidState Integer optional Indicates whether the spherical coordinate vector or its range value

are meaningful. Shall be in the interval [0, 2].
isTimeStampInvalid Integer optional Indicates whether the timeStamp element is meaningful. Shall be in

the interval [0, 1].
isIntensityInvalid Integer optional Indicates whether the intensity element is meaningful. Shall be in

the interval [0, 1].
isColorInvalid Integer optional Indicates whether the colorRed, colorBlue, and colorGreen

elements are meaningful. Shall be in the interval [0, 1].
A Optional fields with an asterisk have additional constraints. See text for details.

E2807 − 11

10

value is 1, the value of sphericalRange shall be consid-
ered non-meaningful, and the value of sphericalAzimuth,
and sphericalElevation shall be meaningful. If the
value is 2, the values of sphericalRange, spheri-
calAzimuth , and sphericalElevation shall all be
considered non-meaningful.

8.4.4.9 If isTimeStampInvalid is defined and its
value is 1, the value of timeStamp shall be considered
non-meaningful. Otherwise, the value of timeStamp shall be
meaningful.

8.4.4.10 If isIntensityInvalid is defined and its
value is 1, the value of intensity shall be considered non-
meaningful. Otherwise, the value of intensity shall be
meaningful.

8.4.4.11 If isColorInvalid is defined and its value is
1, the values of colorRed, colorGreen , and color-
Blue shall be considered non-meaningful. Otherwise, the
values of colorRed, colorGreen , and colorBlue shall
all be meaningful.

8.4.4.12 If the value of cartesianInvalidState is 1
or 2, the point shall not be used for computing the carte-
sianBounds values.

8.4.4.13 If the value of sphericalInvalidState is 1
or 2, the point shall not be used for computing the spheri-
calBounds values.

8.4.4.14 Discussion—Elements that are considered non-
meaningful should be set to a consistent value, such as the
minimum allowable value for that element, for all points.

8.4.5 PointGroupingScheme:
8.4.5.1 The PointGroupingSchemes Structure supports the

division of points within a Data3D object into logical group-
ings. The child elements for the PointGroupingSchemes Struc-
ture are listed in Table 15.

8.4.5.2 The PointGroupingSchemes Structure stores the de-
fined grouping schemes of a Data3D object. Each scheme has
a unique element name in the Structure. The standard defines
one grouping scheme: GroupingByLine.

8.4.5.3 Discussion—Additional types of grouping schemes
may be defined in future versions of the standard or via the
extension mechanism. It is recommended that a grouping
scheme document the following:

(1) Does the scheme completely cover the entire set of
points, or can there be some points missing?

(2) Can the groups overlap by sharing some points, or are
the groups non-intersecting?

(3) Is there a rule that determines membership in a group
based solely on a point’s attributes?

8.4.6 GroupingByLine:
8.4.6.1 The GroupingByLine Structure stores a set of point

groups organized by the rowIndex or columnIndex
element of the PointRecord. The child elements for the
GroupingByLine Structure are listed in Table 16.

8.4.6.2 The groupingByLine partitions the points of a
Data3D object. Membership in a line group is determined by a
rule (described below) based on a point’s attributes.

8.4.6.3 The term “associated points” refers to the set of
PointRecords stored in the points element of the data3D
element of which the groupingByLine Structure is a
descendant. If idElementName is “rowIndex,” the associ-
ated points are grouped according to their rowIndex, and the
number of records in the groups CompressedVector shall
equal the number of distinct values taken by the rowIndex
field in all associated points. If idElementName is
“columnIndex,” the associated points are grouped according to
their columnIndex, and the number of records in the
groups CompressedVector shall equal the number of distinct
values taken by the columnIndex field in all associated
points. The records in the groups CompressedVector may be
in any order (that is, they are not required to be sorted).

8.4.7 LineGroupRecord:
8.4.7.1 A LineGroupRecord Structure stores information

about a single group of points in a row or column. The child
elements for the LineGroupRecord Structure are listed in Table
17.

8.4.7.2 If the idElementName of the parent Structure is
“rowIndex,” all points with rowIndex equal to the value of
idElementValue are considered to be in the group. If the
idElementName of the parent Structure is “columnIndex,”
all points with columnIndex equal to the value of idEle-
mentValue are considered to be in the group. The idEle-
mentName value for each record in a group’s Compressed-
Vector shall be unique within that CompressedVector.

8.4.7.3 If the startPointIndex element is defined,
then the pointCount element shall also be defined, and the
members of the group (as determined by idElementValue)
shall be in consecutive records in the points Compressed-
Vector starting with the record number given by start-
PointIndex. In this case, the group is considered to be
contiguous. If startPointIndex is not defined, then the
PointRecord members of the group may be noncontiguous.

(1) Discussion—Because a LineGroupRecord is stored in a
CompressedVector, if the startPointIndex is defined for
one LineGroupRecord, it shall be defined for all other Line-
GroupRecords in the same CompressedVector, and therefore
the contiguous grouping encoding can only be used if all
groups in the parent GroupingByLine structure are contiguous.

8.4.8 RigidBodyTransform:
8.4.8.1 A RigidBodyTransform Structure that defines a rigid

body transform in Cartesian coordinates. Child elements for
the RigidBodyTransform Structure are listed in Table 18.

8.4.8.2 The transform consists of a rotation, stored as a
unit-length quaternion, and a translation.

8.4.8.3 Discussion—See 5.7 for the mathematical back-
ground on rigid body transforms.

TABLE 15 Child Elements for the PointGroupingSchemes Structure

Element Name Type
Required/
Optional

Description

groupingByLine GroupingByLine Structure optional Grouping information by row or column index.

E2807 − 11

11

8.4.9 Quaternion:
8.4.9.1 A Quaternion Structure stores a quaternion. The

child elements for the Quaternion Structure are listed in Table
19.

8.4.9.2 The child elements, w, x, y, and z, shall be repre-
sented using double precision Float type E57 elements.

8.4.9.3 A quaternion shall be considered to be unit length if
the norm of the quaternion lies in the interval [1 – 10ulp, 1 +
10ulp], where the value of ulp, the “unit in last place,” is 2-53.

8.4.9.4 Discussion—See 5.6 for the mathematical back-
ground on quaternions.

8.4.10 Translation:
8.4.10.1 A translation Structure defines a rigid body trans-

lation in Cartesian coordinates. The child elements for the
Translation Structure are listed in Table 20.

8.4.10.2 The child elements, x, y, and z, shall be represented
using double precision Float type E57 elements.

8.4.10.3 The values of x, y, and z are the translation
distances in the X, Y, and Z directions, respectively.

8.4.11 Image2D:

8.4.11.1 An Image2D Structure stores a two-dimensional
image, such as an image produced by a camera. The child
elements for the Image2D Structure are listed in Table 21.

8.4.11.2 The image data is stored as part of a child element,
known as an image representation. Four image representations
are possible: VisualReferenceRepresentation (8.4.12), Pinhol-
eRepresentation (8.4.13), SphericalRepresentation (8.4.14),
and CylindricalRepresentation (8.4.15). At least one of the
following elements shall be defined:
visualReferenceRepresentation,
pinholeRepresentation,
sphericalRepresentation, and cylindricalRep-
resentation. At most one of the elements from the set
{pinholeRepresentation ,
sphericalRepresentation, cylindricalRepre-
sentation} shall be defined, and if any element from this
set is defined, then the pose element shall also be defined.

8.4.11.3 An image may be used for visual reference, for
matching 3D points to image pixels (projection), or for both
purposes. If the image is intended to be used for visual

TABLE 16 Child Elements for the GroupingByLine Structure

Element Name Type
Required/
Optional

Description

idElementName String required The name of the PointRecord element that identifies which
group the point is in. The value of this string shall be
“rowIndex” or “columnIndex” (see 8.4.4.2).

groups CompressedVector of LineGroupRecord Structures required A compressedVector of LineGroupRecord Structures.

TABLE 17 Child Elements for the LineGroupRecord Structure

Element Name Type
Required/
OptionalA

Description

idElementValue Integer required The value of the identifying element of all members in this group. Shall be in
the interval [0, 263).

startPointIndex Integer optional* The record number of the first point in the continuous interval. Shall be in the
interval [0, 263).

pointCount Integer optional* The number of PointRecords in the group. Shall be in the interval [1, 263).
cartesianBounds CartesianBounds Structure optional The bounding box (in Cartesian coordinates) of all points in the group (in the

local coordinate system of the points).
sphericalBounds SphericalBounds Structure optional The bounding region (in spherical coordinates) of all the points in the group

(in the local coordinate system of the points).
A Optional fields with an asterisk have additional constraints. See text for details.

TABLE 18 Child Elements for the RigidBodyTransform Structure

Element Name Type
Required/
Optional

Description

rotation Quaternion Structure required A unit quaternion representing the rotation, R, of the transform.
translation Translation Structure required The translation, t, of the transform.

TABLE 19 Child Elements for the Quaternion Structure

Element Name Type
Required/
Optional

Description

w Float (double precision) required The scalar part of the quaternion. Shall be nonnegative.
x Float (double precision) required The i coefficient of the quaternion.
y Float (double precision) required The j coefficient of the quaternion.
z Float (double precision) required The k coefficient of the quaternion.

E2807 − 11

12

reference, then the VisualReferenceRepresentation shall be
used. If the image is intended to be used for projection, then
one of the other three image representations shall be used.

8.4.12 VisualReferenceRepresentation :
8.4.12.1 A VisualReferenceRepresentation Structure stores

an image that is to be used only as a visual reference. The child
elements for the VisualReferenceRepresentation Structure are
listed in Table 22.

8.4.12.2 The image data, which may be stored either in
JPEG or PNG format, is stored in a Blob.

8.4.12.3 Exactly one of jpegImage or pngImage shall
be defined, and the choice indicates the format in which the
image is stored.

8.4.12.4 In the case in which the image data represents a
nonrectangular image, the imageMask child element should
be used to indicate which pixels in the image are valid. The
imageMask is a PNG format image with the same dimen-

sions as the image, but with non-zero-valued pixels at locations
where the image is valid and zero-valued pixels at locations
where it is invalid.

8.4.13 PinholeRepresentation:
8.4.13.1 A PinholeRepresentation Structure stores an image

that is mapped from 3D using the pinhole camera projection
model. The child elements for the PinHoleRepresentation
Structure are listed in Table 23.

8.4.13.2 The image data, which shall be stored either in
JPEG for PNG format, is stored in a Blob. Exactly one of
jpegImage or pngImage shall be defined, and the choice
indicates the format in which the image is stored.

8.4.13.3 An image shall be undistorted before storage in the
E57 file. Correcting a raw image for distortion may produce a
nonrectangular result. To address this issue, the undistorted
image shall be stored in a rectangular image that encompasses
the undistorted image data. The imageMask is a PNG format

TABLE 20 Child Elements for the Translation Structure

Element Name Type
Required/
Optional

Description

x Float (double precision) required The X coordinate of the translation (in meters)
y Float (double precision) required The Y coordinate of the translation (in meters)
z Float (double precision) required The Z coordinate of the translation (in meters)

TABLE 21 Child Elements for the Image2D Structure

Element Name Type
Required/
OptionalA

Description

guid Guid String required A globally unique identifier for the current version of the
Image2D object (see 8.4.22).

visualReferenceRepresentation VisualReferenceRepresentation Structure optional* Representation for an image that does not define any
camera projection model. The image is to be used for visual
reference only.

pinholeRepresentation PinholeRepresentation Structure optional* Representation for an image using the pinhole camera
projection model.

sphericalRepresentation SphericalRepresentation Structure optional* Representation for an image using the spherical camera
projection model.

cylindricalRepresentation CylindricalRepresentation Structure optional* Representation for an image using the cylindrical camera
projection model.

pose RigidBodyTransform Structure optional* A rigid body transform that transforms data stored in the
local coordinate system of the image to the file-level
coordinate system.

associatedData3DGuid Guid String optional The globally unique identifier for the Data3D object that was
being acquired when the picture was taken (see 8.4.22).

name String optional A user-defined name for the Image2D.
description String optional A user-defined description of the Image2D.
acquisitionDateTime DateTime Structure optional The date and time that the image was acquired.
sensorVendor String optional The name of the manufacturer for the sensor used to

collect the image in this Image2D.
sensorModel String optional The model name or number for the sensor.
sensorSerialNumber String optional The serial number for the sensor.

A Optional fields with an asterisk have additional constraints. See text for details.

TABLE 22 Child Elements for the VisualReferenceRepresentation Structure

Element Name Type
Required/
OptionalA

Description

jpegImage Blob optional* JPEG format image data.
pngImage Blob optional* PNG format image data.
imageMask Blob optional PNG format image mask.
imageWidth Integer required The image width (in pixels). Shall be positive.
imageHeight Integer required The image height (in pixels). Shall be positive.

A Optional fields with an asterisk have additional constraints. See text for details.

E2807 − 11

13

image with the same dimensions as the image, but with
non-zero-valued pixels at locations where the undistorted
image is valid and zero-valued pixels at locations where it is
invalid.

8.4.13.4 The pinhole camera projection model uses a cam-
era coordinate frame in which the origin is located at the
camera’s center of projection, the imaging plane is located at a
distance–focalLength along the z-axis, and the x- and
y-axes are parallel with the x- and negative y-axes of the
imaging plane, as illustrated in Fig. 3. The model assumes that
the image has been corrected for radial and tangential distor-
tion and that the pixels have no skew (that is, the pixels are
rectangular). Radial distortion is the displacement of image
points in a radial direction from the principal point. Tangential
distortion is the displacement of image points perpendicular to
a radius from the principal point.

8.4.13.5 Given a point (x, y, z) in Cartesian coordinates in
the camera frame of reference, where z < 0, the image
coordinates (ximage, yimage) are given by the following equa-
tions of projection:

ximage 5 principalPointX 2 S x
z D S focalLength

pixelWidth D (20)

yimage 5 principalPointY1S y
z D S focalLength

pixelHeightD (21)

8.4.13.6 Image coordinate (0,0) is the top, left corner of the
pixel at the top, left corner of the image.

8.4.14 SphericalRepresentation:
8.4.14.1 A SphericalProjection Structure stores an image

that is mapped from 3D using a spherical projection model.
The child elements for the SphericalRepresentation Structure
are listed in Table 24.

8.4.14.2 The image data, which shall be stored either in
JPEG or PNG format, is stored in a Blob. Exactly one of
jpegImage or pngImage shall be defined, and the choice
indicates the format in which the image is stored.

8.4.14.3 The conversion of an image into the spherical
projection model may cause the image to be non-rectangular.
To address this issue, the image shall be stored in a rectangular
image that encompasses the nonrectangular image data. The
imageMask child element shall be used to indicate which
pixels in the image are valid. The imageMask is a PNG
format image with the same dimensions as the image, but with
non-zero-valued pixels at locations where the image is valid
and zero-valued pixels at locations where it is invalid.

TABLE 23 Child Elements for the PinholeRepresentation Structure

Element Name Type
Required/
OptionalA

Description

jpegImage Blob optional* JPEG format image data.
pngImage Blob optional* PNG format image data.
imageMask Blob optional PNG format image mask.
imageWidth Integer required The image width (in pixels). Shall be positive.
imageHeight Integer required The image height (in pixels). Shall be positive.
focalLength Float required The camera’s focal length (in meters). Shall be

positive.
pixelWidth Float required The width of the pixels in the camera (in

meters). Shall be positive.
pixelHeight Float required The height of the pixels in the camera (in

meters). Shall be positive.
principalPointX Float required The X coordinate in the image of the principal

point, (in pixels). The principal point is the
intersection of the z axis of the camera
coordinate frame with the image plane.

principalPointY Float required The Y coordinate in the image of the principal
point (in pixels).

A Optional fields with an asterisk have additional constraints. See text for details.

FIG. 3 Pinhole Camera Projection Model

E2807 − 11

14

8.4.14.4 In a spherical projection model, the imaging sur-
face is part of the surface of a sphere, bounded by constant
values of elevation and azimuth. The model uses a camera
coordinate frame in which the origin is located at the camera’s
center of projection and the positive x-axis passes through the
center of the image, as illustrated in Fig. 4.

8.4.14.5 Given a point in spherical coordinates (r, θ, φ), the
image coordinates (ximage, yimage) are given by the following
equations of projection:

ximage 5
imageWidth

2
2

θ
pixelWidth

(22)

yimage 5
imageHeight

2
2

φ
pixelHeight

(23)

8.4.14.6 Image coordinate (0,0) is the top, left corner of the
pixel at the top, left corner of the image.

8.4.15 CylindricalRepresentation:
8.4.15.1 A CylindricalProjection Structure stores an image

that is mapped from 3D using a cylindrical projection model.
The child elements for the CylindricalRepresentation Structure
are listed in Table 25.

8.4.15.2 The image data, which shall be stored either in
JPEG for PNG format, is stored in a Blob. Exactly one of
jpegImage or pngImage shall be defined, and the choice
indicates the format in which the image is stored.

8.4.15.3 The conversion of an image into the cylindrical
projection model may cause the image to be non-rectangular.
To address this issue, the image shall be stored in a rectangular

image that encompasses the non-rectangular image data. The
imageMask child element shall be used to indicate which
pixels in the image are valid. The imageMask is a PNG
format image with the same dimensions as the image, but with
non-zero-valued pixels at locations where the image is valid
and zero-valued pixels at locations where it is invalid.

8.4.15.4 In a cylindrical projection model, the imaging
surface is part of the surface of a cylinder, bounded by constant
values of height and azimuth. The model uses a cylindrical
camera coordinate frame in which the origin is located at the
camera’s center of projection and the x-axis passes through the
horizontal center of the image, as illustrated in Fig. 5. The
image y-axis is parallel with the camera’s negative z-axis, and
the x-axis of the image corresponds to negative azimuth angle.

8.4.15.5 Given a point in cylindrical coordinates (ρ, θ, z),
the image coordinates (ximage, yimage) are given by the follow-
ing equations of projection:

ximage 5
imageWidth

2
2

θ
pixelWidth

(24)

yimage 5 principalPointY 2 z~radius/pixelHeight!/ρ (25)

8.4.15.6 Image coordinate (0,0) is the top, left corner of the
pixel at the top, left corner of the image.

8.4.16 CartesianBounds:
8.4.16.1 A CartesianBounds Structure specifies a box with

smallest volume enclosing a specific set of points, subject to
the constraint that the edges of the box are parallel to the
Cartesian coordinate axes. The child elements describe the
minimum and maximum coordinates of any data point in each
dimension and are listed in Table 26.

8.4.16.2 All maximum values for child elements of Carte-
sianBounds shall be not less than the corresponding minimum
values in each direction.

8.4.17 SphericalBounds:
8.4.17.1 A SphericalBounds Structure stores the bounds of a

set of points in spherical coordinates. The child elements for
the SphericalBounds Structure are listed in Table 27.

8.4.17.2 Child elements describe the minimum and maxi-
mum coordinates in range, azimuth, and elevation. The azi-
muthStart and azimuthEnd elements shall be omitted if
there are no bounds in the azimuth direction (for example, if
the data represents a full circular sweep of a rotating sensor). If
either azimuthStart or azimuthEnd is present, then both
elements are required to be present.

TABLE 24 Child Elements for the SphericalRepresentation Structure

Element Name Type
Required/
OptionalA

Description

jpegImage Blob optional* JPEG format image data.
pngImage Blob optional* PNG format image data.
imageMask Blob optional PNG format image mask.
imageWidth Integer required The image width (in pixels). Shall be positive.
imageHeight Integer required The image height (in pixels). Shall be positive.
pixelWidth Float required The width of a pixel in the image (in radians). Shall

be positive.
pixelHeight Float required The height of a pixel in the image (in radians). Shall

be positive.
A Optional fields with an asterisk have additional constraints. See text for details.

FIG. 4 Spherical Camera Projection Model

E2807 − 11

15

8.4.17.3 The ordered triplets (rangeMinimum, azi-
muthStart , elevationMinimum) and
(rangeMaximum, azimuthEnd, elevationMaximum)
represent points in a spherical coordinate system, and as such,
they are subject to the restrictions on range, units, and
degenerate representations described in 5.5.

8.4.17.4 Given a set of points, {pi}, represented in spherical
coordinates, (ri, θ i, φi), the bounds for range and elevation are
defined as follows:

rangeMinimum = min{ri}
rangeMaximum = max{ri}
elevationMinimum = min{φi}
elevationMaximum = max{φi}

8.4.17.5 The elements azimuthStart and azimuth-
End are defined such that the bounded data is contained
between these angles when traversed from azimuthStart
to azimuthEnd in the direction of increasing azimuth (cross-
ing the discontinuity at π if necessary). The values of azi-
muthStart and azimuthEnd shall be chosen to minimize
the angular difference measured from azimuthStart to
azimuthEnd in the direction of increasing azimuth.

8.4.17.6 Discussion—The azimuth bounds of a set of points
in spherical coordinates are not guaranteed to be unique.

8.4.18 IndexBounds:
8.4.18.1 An IndexBounds Structure stores the minimum and

maximum of rowIndex, columnIndex, and returnIndex fields
for a set of points. The child elements for the IndexBounds
Structure are listed in Table 28.

8.4.18.2 If any elements in the set {rowMinimum, row-
Maximum } are defined, then all elements in that set shall be
defined. If any elements in the set {columnMinimum ,
columnMaximum} are defined, then all elements in that set
shall be defined. If any elements in the set
{returnMinimum, returnMaximum} are defined, then all
elements in that set shall be defined.

8.4.18.3 Discussion—The IndexBounds is intended to be
used with 3D data that is aligned on a grid or with multiple-
return data. The information can be used, for example, to
pre-allocate space for storing point data in a 2D array.

8.4.19 IntensityLimits:
8.4.19.1 An IntensityLimits Structure specifies the limits for

the value of signal intensity that a sensor is capable of
producing. In this section, the term points refers to the
points element of the parent Data3D Structure for this Inten-
sityLimits Structure, and the term PointRecord refers to the
corresponding PointRecord defined by the prototype ele-
ment of points. See Table 29.

8.4.19.2 The intensityMinimum and intensity-
Maximum child elements shall correspond to the minimum and
maximum intensity values that the sensor is capable of
producing in the configuration used to collect the data stored in
points.

8.4.19.3 The units of intensityMinimum and inten-
sityMaximum are unspecified, but they shall be the same as
the units used for the intensity element in the PointRecord.

8.4.19.4 It is recommended that the element type of in-
tensityMinimum and intensityMaximum be the same
as the intensity element in the PointRecord.

8.4.19.5 The intensity values stored in points shall be
restricted to the range [intensityMinimum, intensi-
tyMaximum].

8.4.19.6 Discussion—The purpose of the intesityLim-
its element is to facilitate scaling of the intensity values of
the stored points such that they are comparable across different
data sets from the same type of sensor. The intensityL-
imits values should be set based on the range of possible
measurable values for a sensor in a given configuration, not the
actual measured values for a particular data set.

8.4.20 ColorLimits:

TABLE 25 Child Elements for the CylindricalRepresentation Structure

Element Name Type
Required/
OptionalA

Description

jpegImage Blob optional* JPEG format image data.
pngImage Blob optional* PNG format image data.
imageMask Blob optional PNG format image mask.
imageWidth Integer required The image width (in pixels). Shall be positive.
imageHeight Integer required The image height (in pixels). Shall be positive.
radius Float required The closest distance from the cylindrical image surface to

the center of projection (that is, the radius of the cylinder)
(in meters). Shall be non-negative.

principalPointY Float required The Y coordinate in the image of the principal point (in
pixels). This is the intersection of the z = 0 plane with the
image.

pixelWidth Float required The width of a pixel in the image (in radians). Shall be
positive.

pixelHeight Float required The height of a pixel in the image (in meters). Shall be
positive.

A Optional fields with an asterisk have additional constraints. See text for details.

FIG. 5 Cylindrical Camera Projection Model

E2807 − 11

16

8.4.20.1 A ColorLimits Structure specifies the limits for the
value of red, green, and blue color that a sensor is capable of
producing. In this section, the term points refers to the
points element of the parent Data3D Structure for this Color-
Limits Structure, and the term PointRecord refers to the
corresponding PointRecord defined by the prototype ele-
ment of points. See Table 30.

8.4.20.2 The colorRedMinium and colorRedMaxi-
mum child elements of the colorLimits element shall
correspond to the minimum and maximum colorRed values
that the sensor is capable of producing in the configuration
used to collect the data stored in points. Similarly, the
colorGreenMinimum, colorGreenMaximum, color-
BlueMinimum , and colorBlueMaximum child elements

TABLE 26 Child Elements for the CartesianBounds Structure

Element Name Type
Required/
Optional

Description

xMinimum Float required The minimum extent of the bounding region in the X direction (in meters).
xMaximum Float required The maximum extent of the bounding region in the X direction (in meters).
yMinimum Float required The minimum extent of the bounding region in the Y direction (in meters).
yMaximum Float required The maximum extent of the bounding region in the Y direction (in meters).
zMinimum Float required The minimum extent of the bounding region in the Z direction (in meters).
zMaximum Float required The maximum extent of the bounding region in the Z direction (in meters).

TABLE 27 Child Elements for the SphericalBounds Structure

Element Name Type
Required/
OptionalA

Description

rangeMinimum Float required The minimum extent of the bounding region in the r direction (in meters). Shall be non-
negative.

rangeMaximum Float required The maximum extent of the bounding region in the r direction (in meters). Shall be $

rangeMinimum.
elevationMinimum Float required The minimum extent of the bounding region in the φ direction (in radians). Shall be in the

interval [-π/2, π/2].
elevationMaximum Float required The maximum extent of the bounding region in the φ direction (in radians). Shall be in the

interval [elevationMinimum, π/2].
azimuthStart Float optional* The starting azimuth angle defining the extent of the bounding region in the θ direction (in

radians). Shall be in the interval (-π, π].
azimuthEnd Float optional* The ending azimuth angle defining the extent of the bounding region in the θ direction (in

radians). Shall be in the interval (-π, π].
A Optional fields with an asterisk have additional constraints. See text for details.

TABLE 28 Child Elements for the IndexBounds Structure

Element Name Type
Required/
OptionalA

Description

rowMinimum Integer optional* The minimum rowIndex value of any point represented by this IndexBounds object.
rowMaximum Integer optional* The maximum rowIndex value of any point represented by this IndexBounds object.
columnMinimum Integer optional* The minimum columnIndex value of any point represented by this IndexBounds object.
columnMaximum Integer optional* The maximum columnIndex value of any point represented by this IndexBounds object.
returnMinimum Integer optional* The minimum returnIndex value of any point represented by this IndexBounds object.
returnMaximum Integer optional* The maximum returnIndex value of any point represented by this IndexBounds object.

A Optional fields with an asterisk have additional constraints. See text for details.

TABLE 29 Child Elements for IntensityLimits Structure

Element Name Type
Required/
Optional

Description

intensityMinimum Float/ScaledInteger/Integer required The minimum producible intensity value. Unit is unspecified.
intenstiyMaximum Float/ScaledInteger/Integer required The maximum producible intensity value. Unit is unspecified.

TABLE 30 Child Elements for the ColorLimits Structure

Element Name Type
Required/
Optional

Description

colorRedMinimum Float/ScaledInteger/Integer required The minimum producible red color value. Unit is unspecified.
colorRedMaximum Float/ScaledInteger/Integer required The maximum producible red color value. Unit is unspecified.
colorGreenMinimum Float/ScaledInteger/Integer required The minimum producible green color value. Unit is unspecified.
colorGreenMaximum Float/ScaledInteger/Integer required The maximum producible green color value. Unit is unspecified.
colorBlueMinimum Float/ScaledInteger/Integer required The minimum producible blue color value. Unit is unspecified.
colorBlueMaximum Float/ScaledInteger/Integer required The maximum producible blue color value. Unit is unspecified.

E2807 − 11

17

of the colorLimits element shall correspond to the mini-
mum and maximum producible colorGreen and color-
Blue values respectively.

8.4.20.3 The units of colorRedMinimum and col-
orRedMaximum are unspecified, but they shall be the same as
the units used for the colorRed element in the PointRecord.
Similarly, the units of colorGreenMinimum ,
colorGreenMaximum, colorBlueMinimum, and col-
orBlueMaximum are unspecified, but they shall be the same
as the units used for the corresponding colorGreen and
colorBlue elements in the PointRecord.

8.4.20.4 It is recommended that the element type of col-
orRedMinimum and colorRedMaximum be the same as
the element type of the colorRed element in the PointRe-
cord. Similarly, it is recommended that the element type of
colorGreenMinimum, colorGreenMaximum,
colorBlueMinimum, and colorBlueMaximum be the
same as the element type of the corresponding colorGreen
and colorBlue elements in the PointRecord.

8.4.20.5 The colorRed values stored in the points shall be
restricted to the range [colorRedMinimum, colorRed-
Maximum]. Similarly, the colorGreen and colorBlue
values shall be restricted to the range
[colorGreenMinimum, colorGreenMaximum] and
[colorBlueMinimum, colorBlueMaximum] respec-
tively.

8.4.20.6 Discussion—The purpose of the colorLimits
element is to facilitate scaling of the color values of the stored
points such that they are comparable across different data sets
from the same type of sensor. The colorLimits values
should be set based on the range of possible measurable values
for a sensor in a given configuration, not the actual measured
values for a particular data set.

8.4.21 DateTime:
8.4.21.1 A DateTime Structure encodes date and time. The

child elements for the DateTime Structure are listed in Table
31.

8.4.21.2 The date and time are encoded using a single
floating point number that is based on the Global Positioning
System (GPS) time scale.

8.4.21.3 The dateTimeValue element stores the number
of seconds since GPS start epoch, and may include fractional
seconds, if needed.

8.4.21.4 Discussion—The GPS start epoch occurred at 0 h
UTC (12:00 midnight) on January 6, 1980.

8.4.21.5 If a 3D imaging system uses a GPS device to set
the time, then the child element isAtomicClockRefer-
enced shall be defined, and its value set to 1. For devices that
use another atomic clock reference – such as the GLObal
Navigation Satellite System (GLONASS) – the time value

shall be converted to GPS time, and isAtomicClockRef-
erenced shall be defined and set to 1. For devices that use an
atomic clock reference in a different time scale, such as UTC,
the time value shall be converted to GPS time based on the
current leap-second offset, and isAtomicClockRefer-
enced shall be defined and set to 1. For devices that have no
atomic clock time reference (for example, devices that use an
internal crystal-based clock only), or if the time reference is
unknown, the isAtomicClockReferenced element shall
either be omitted or set to 0.

8.4.22 Globally Unique Identifiers (GUIDs):
8.4.22.1 A GUID String stores a value that is unique in any

context. In this standard, GUIDs are used to uniquely identify
an E57 file or structures within the file.

8.4.22.2 This standard does not specify the format of
GUIDs or how they should be generated.

8.4.22.3 A Data3D or Image2D Structure shall be assigned
a GUID when it is created. If any change is applied to the
Structure (or to any of its descendents), then the Structure is
considered to be a new version and should be assigned a new
GUID. Similarly, every E57 file shall be assigned a file-level
GUID, which is stored in the guid element of the Data3D
Structure. If any change is made to the file, this change shall be
regarded as creating a new version of the file, and the file shall
be assigned a new file-level GUID.

8.4.22.4 Discussion—Guidance for Generating GUIDs—A
GUID can be generated in several ways. A GUID can be a
hexadecimal string representation of a Universally Unique
Identifier (UUID), as documented in IETF RFC4122 (http://
tools.ietf.org/html/rfc4122). Often a network address (MAC or
IP) is used in a UUID to locate the generator uniquely in space.
For equipment that is not networked, other schemes are
possible. The make/model/serial number of an instrument, in
combination with time, can be used to generate a GUID–for
example “XYZCorp:ScanMaster:0001234:2009-06-23-
T06:10:08.123456” may represent a legal GUID.

8.4.23 CoordinateMetadata:
8.4.23.1 A CoordinateMetadata String encodes a geodetic

datum, geoid, coordinate system, and map projection for an
E57 file to allow the stored Data3D and Image2D data to be
referenced in a standardized Coordinate Reference System
(CRS).

8.4.23.2 The CRS is specified by a string in well-known text
(WKT) format for a spatial reference system as defined by the
Coordinate Transformation Service specification developed by
the Open Geospatial Consortium (OGC) (http://
www.opengeospatial.org).

8.4.23.3 Point data in a Data3D object shall first be trans-
formed into the file-level coordinate system (by applying the

TABLE 31 Child Elements for DateTime Structure

Element Name Type
Required/
Optional

Description

dateTimeValue Float required The time, in seconds, since GPS start epoch. This time specification may include
fractions of a second.

isAtomicClockReferenced Integer optional This element shall be present, and its value set to 1 if, and only if, the time stored
in the dateTimeValue element is obtained from an atomic clock time source. Shall
be either 0 or 1.

E2807 − 11

18

rigid body transform stored the pose element of the Data3D
object) before the transformation described by the WKT string
is applied.

9. Binary Sections

9.1 General:
9.1.1 Binary sections are present in an E57 file whenever the

XML section contains any elements of type Blob or Com-
pressedVector. A separate binary section is required for each
such element.

9.1.2 There are two types of binary sections: Blob binary
sections and CompressedVector binary sections. A binary
section shall start on a four-byte boundary within the file and
shall be an integral multiple of four bytes in length. If the
length of a binary section is not an integral multiple of four
bytes, the section shall be padded with up to three zero-valued
bytes to achieve an integral multiple of 4 bytes in length.

9.1.3 A binary section shall be up to 263-1 bytes long,
subject to the constraint that the overall file shall be smaller
than 263-1 bytes in length.

9.1.4 Identifiers defined for the different types of binary
sections are listed in Table 32.

9.2 Blob Binary Section:
9.2.1 A Blob binary section shall contain a Blob type E57

element’s binary contents as a sequence of bytes.
9.2.1.1 Discussion—See 8.3.6 for details about the XML

portion of Blob type E57 elements.
9.2.2 The format for a Blob binary section is given in Table

33.
9.2.3 The number of used bytes in the Blob shall be

determined by the length XML attribute in the XML part of
the Blob representation, not the sectionLength field
(which includes up to three bytes of zero padding) in the Blob
binary section.

9.3 CompressedVector Binary Section:
9.3.1 The CompressedVector binary section shall contain

the binary portion of a CompressedVector type E57 element.
9.3.1.1 Discussion—See 8.3.9 for details about the XML

portion of CompressedVector type E57 elements.
9.3.2 A CompressedVector binary section shall be com-

posed of a section header followed by a sequence of variable
length binary packets. Numeric identifiers for the three types of
binary packets are listed Table 34.

9.3.3 A CompressedVector stores a sequence of zero or
more identically typed items, known as records. Each record is
numbered sequentially, starting with zero, and increasing by
one with each record. The records shall be divided into groups,
known as chunks. At least one chunk shall be present in a
CompressedVector binary section.

9.3.3.1 Discussion—Chunks allow rapid access to a specific
record number through the use of an indexing scheme that is

described in the next section. The file writer is responsible for
determining the appropriate chunk size based on the data,
compression algorithm, and application scenario.

9.3.4 The header of a CompressedVector binary section is
composed of the fields listed in Table 35.

9.3.5 The length of each binary packet is up to 216 bytes
(that is, 64 kibibytes). The physical file offset of the start of
each binary packet shall be a multiple of four. The logical
length of each binary packet shall be a multiple of four. A
sequence of binary packets shall follow the header, each of
which shall be one of the defined packet types (index, data, or
ignored). A CompressedVector shall contain at least one index
packet and at least one data packet.

9.4 Index Packet:
9.4.1 The index packets form a database of the beginning

locations of chunks. An index packet is composed of a header
followed by a sequence of between 1 and 2048 address entries.
The format of an index packet header is given in Table 36.

9.4.2 The index packet may be padded at the end with
unused address entries. Such entries shall be zero. The total of
used plus unused entries shall not exceed 2048.

9.4.3 The format for the index packet address entries is
given in Table 37.

9.4.4 The index packets are organized into a tree using the
indexLevel field in the header, and the tree nodes are
connected using the packetOffset fields in the address
entries. Fig. 6 illustrates the index packet tree concept with an
example.

9.4.5 For leaf nodes in the tree, the indexLevel field
shall be 0. In this case, the packetOffset field shall contain
the file offset of the first data packet in the chunk, and
chunkRecordIndex shall contain the record number of the
first record stored in the chunk. Only the first data packet in
each chunk shall have its compressorRestart flag set to
1. The data packet referenced by the packetOffset field
shall be in the same binary section as the index packet.

9.4.6 For non-leaf nodes in the tree, the indexLevel shall
be greater than zero. In this case, the packetOffset field
shall contain the file offset of an index packet at the next lower
level in the tree (that is, with its indexLevel field one less
than this index packet). The chunkRecordIndex shall
contain the chunkRecordIndex of the first entry in the
lower level index packet. The lower level packet shall be in the
same binary section as upper level packet.

9.4.7 There can be up to six levels of index in a binary
section, so 0 ≤ indexLevel ≤ 5.

9.4.8 The ordering of the index packets within the binary
section is not constrained. They can be all clustered at the
beginning, at the end, or interspersed with data or ignored
packets. However, the address entries within an index packet
shall be ordered by ascending chunkRecordIndex .

9.4.9 At any given level, each index packet shall be full
(that is, populated with the maximum number of address
entries) before adding a new index packet at that level.

9.4.10 Each level in the index packet tree shall be full (that
is, populated with the maximum number of address entries)
before starting a new level.

9.5 Data Packet:

TABLE 32 Type Identifiers for Binary Sections

sectionId Value

E57_BLOB_SECTION 0
E57_COMPRESSED_VECTOR_
SECTION

1

E2807 − 11

19

9.5.1 The data packets contain the actual data from the
records stored in a CompressedVector. The codecs element
of a CompressedVector E57 element specifies the algorithm to
be used to encode or decode the records stored in the
CompressedVector. When encoding CompressedVector data,
the data from one or more fields in each record is concatenated
together to form a stream of bytes, known hereafter as a
bytestream. A bytestream is split into finite length sequences,
known hereafter as bytestream buffers. The number of
bytestream buffers used to encode a prototype Structure de-
pends on the codec used to compress the given fields. The
mapping from fields to bytestreams is detailed in the codec
description in 9.7.

9.5.2 A data packet shall be composed of a header, followed
by a list of bytestream buffer lengths, followed by the
bytestream buffers themselves.

9.5.3 The format of a data packet header is given in Table
38.

9.5.4 A list of bytestream buffer lengths shall follow the
header, with one entry corresponding to each bytestream. The
number of entries shall match the value of bytestreamCount in
the header. Each bytestream buffer length entry shall be stored
as an unsigned 16-bit integer.

9.5.5 The bytestream buffers themselves shall follow the list
of bytestream buffer lengths. Each data packet in a Com-
pressedVector binary section shall have the same number and
order of bytestream buffers. The length of the Nth bytestream
buffer shall match the length given in the Nth entry in the
bytestream buffer length list.

9.5.6 A given bytestream can be reconstructed by concat-
enating the contents of the corresponding bytestream buffers
from each data packet in the order that the data packets occur
in the file. It is legal for a data packet to contain 0 bytes of a
particular bytestream. Each bytestream buffer shall contain
from 0 to 216-1 bytes. The number of bytestreams used and the
format of bytes within a bytestream is codec-dependent and is
given in the specification of the codec.

9.5.7 The packetFlags field contains bit flags, num-
bered 1 to 8, with 1 being the least significant bit, with the
format given in Table 39. The meaning of these flags is
codec-dependent and is given in the specification of the codec.

9.6 Ignored Packet:

9.6.1 The ignored packet is used to reserve space in a binary
section that may be used in the future. The format of an ignored
packet is given in Table 40.

9.6.2 The length of an ignored packet shall be a multiple of
four, and shall be ≤ 216 bytes (that is, 64 kibibytes). The
contents of ignored packets are unconstrained and may be
non-zero.

9.7 BitPack Codec Bytestream Format:
9.7.1 The bitPack codec encodes E57 elements for storage

in a bytestream or decodes a bytestream into E57 elements. The
bitPack encoding algorithm does no actual compressing of the
data–it just removes unused bits and packs the data efficiently
into bytes in the file.

9.7.2 Each input field of a bitPack encoder shall be stored in
a separate bytestream in the same order as the fields were
declared in the inputs Vector. Fields that are not explicitly
associated with a codec in the CompressedVector XML ele-
ment shall default to the bitPack codec. The bytestreams for
default codec fields shall stored after all explicit codec
bytestreams, in the depth-first order the fields were declared in
the CompressedVector’s prototype Structure. Each E57
element value of a CompressedVector field shall be converted
into an integral number of bits using a type-dependant algo-
rithm described below. Bit values from the field in later records
shall be added to the most significant end of the accumulated
buffer.

9.7.3 If number of bits in a bytestreamBuffer is not a
multiple of eight, the last byte of the last data packet shall have
the unused most significant bits set to zero. If a data packet has
the compressorRestart flag set, the previous data packet
(if one exists) may contain bytestreamBuffers whose last byte
has unused most significant bits, which shall be zero. If a data
packet does not have the compressorRestart flag set, the
bytestreamBuffers in the previous data packet (if one exists)
shall not have any unused bits. The encoding of a single field
value may span across two or more data packets, provided that
the subsequent data packets do not have the compressorRestart
flag set.

9.7.4 The next several subsections document the algorithms
for encoding each allowable E57 element type in a bytestream.

9.7.4.1 Discussion—Note that Blob and CompressedVector
E57 types are not legal within CompressedVectors. Also note
that Structure and Vector E57 element types do not directly
contain values and, therefore, are not represented in a separate
bytestream. Only terminal element types (Integer,
ScaledInteger, Float, String) are associated with a bytestream.

9.7.4.2 Integer and ScaledInteger:
(1) Integers and ScaledIntegers are encoded using the same

algorithm. The only difference is that with Integers, the value

TABLE 33 Format of a Binary Blob Section

Bytes Field name Data type Description

1 sectionId Unsigned 8-bit integer E57_BLOB_SECTION (value = 0).
2-8 reserved Unsigned 8-bit integers Reserved bytes for future versions of the standard. Shall all be 0.
9-16 sectionLength Unsigned 64-bit integer The logical length of the Blob binary section (in bytes), including any zero

padding. Shall be in the interval (0, 263).
17 to N blobData 8-bit integer (byte) The storage space for the data for the blob. The end byte (N) is determined

by the sectionLength.

TABLE 34 Types of Binary Packets

Packet type packetTypeId Value

Index packet E57_INDEX_PACKET 0
Data packet E57_DATA_PACKET 1
Ignored packet E57_IGNORED_PACKET 2

E2807 − 11

20

of the Integer is encoded, while with ScaledIntegers the
rawValue is encoded. Calculate number of bits (N) required for
storing the value using the minimum and maximum values,
which are specified in the prototype for the element, using:

N 5 ceil~log2~maximum 2 minimum11!! (26)

where:
ceil(x) = the smallest integer ≥ x.

(2) Given a value V (or rawValue for ScaledIntegers),
encode (V-minimum) in an N-bit unsigned binary number.

(3) If N = 0, a bytestream shall not be used to encode that
element in the binary section.

9.7.4.3 Float:
(1) Floating point numbers are encoded in IEEE floating

point format (IEEE 754-1985) using 32 bits if precision
=Single and 64 bits if precision=Double. The precision is
specified by the prototype for the field. The following values
shall not appear in binary section floating point numbers: NaN,
+INF, -INF, and -0.

9.7.4.4 String:
(1) Strings are encoded using UTF-8 in one of two formats,

depending on the length of the string. If L is the number of
bytes in the 8 bit UTF-8 encoding of the string, excluding any
null terminator, then for

(a) 0 ≤ L ≤ 127, the string shall be encoded in 8+8L bits
in the format given in Table 41.

(b) 128 ≤ L ≤ 263-1, the string shall be encoded in 64+8L
bits in the format given in Table 42.

(2) If the string is null terminated, the null terminator shall
not be included in the encoded stringData .

9.7.5 Discussion—For illustration, an example encoding is
described in the following subsections.

9.7.5.1 Consider a CompressedVector with the following
prototype:

<prototype type=9Structure9>
<valid type=9Integer9 minimum=909 maximum=919/>
<x type=9Integer9 minimum=909 maximum=9159/>
<y type=9Integer9 minimum=909 maximum=92559/>
<z type=9Integer9 minimum=909 maximum=940959/>

</prototype>

9.7.5.2 Based on this prototype, the valid, x, y, and z
fields require 1, 4, 8, and 12 bits of storage, respectively (using
N calculated from Eq 26). A bitPack codec is given the five
records to be encoded shown in Table 43. (Note: field values
are given in hexadecimal.)

9.7.5.3 The bitPack encoding of this data is stored in four
bytestreams as shown in Fig. 7.

10. Extensions

10.1 Extensions are designed to support forward compat-
ibility so that an older reader of the E57 file format will be able
to handle files created by a new and improved writer. Note that
backward compatibility is easily maintained by newer readers,
which can be programmed to read older, known versions of the
E57 file format.

10.2 Extensions are supported through the use of XML
namespaces. Every extension to the E57 file format shall define

TABLE 35 Fields for the CompressedVector Header

Bytes Field name Data type Description

1 sectionId Unsigned 8-bit integer E57_COMPRESSED_VECTOR_SECTION (value = 1).
2-8 reserved Unsigned 8-bit integers Reserved bytes for future versions of the standard. Shall all be 0.
9-16 sectionLength Unsigned 64-bit integer The logical length of the CompressedVector binary section (in bytes),

including any zero padding. Shall be in the interval (0, 263).
17-24 dataStartOffset Unsigned 64-bit integer The file offset of the first data packet in this binary section (in bytes). Shall

be in the interval (0, 263).
25-32 indexStartOffset Unsigned 64-bit integer The file offset to the root level index packet in this binary section (in

bytes). Shall be in the interval (0, 263).

TABLE 36 Format of an Index Packet Header

Bytes Field name Data type Description

1 packetType Unsigned 8-bit integer E57_INDEX_PACKET (value = 0).
2 reserved Unsigned 8-bit integer Reserved for future versions of the standard. Shall all be 0.
3-4 packetLengthMinus1 Unsigned 16-bit integer One less than the logical length of the packet (in bytes).

Shall be in the interval (0, 216).
5-6 entryCount Unsigned 16-bit integer The number of used address entries in this packet. Shall be

in the interval [1, 2048].
7 indexLevel Unsigned 8-bit integer The level of this index packet in the tree of index packets.

The bottom (leaf) level is zero. Shall be in the interval [0, 5].
8-16 reserved Unsigned 8-bit integers Reserved bytes for future versions of the standard. Shall all

be zero.

TABLE 37 Format of Index Packet Address Entries

Bytes Field name Data type Description

1-8 chunkRecordIndex Unsigned 64-bit integer The index of the first record stored in this chunk (for leaf nodes), or the
index of the first record stored in any chunks within the sub-tree (for non-
leaf nodes). Shall be in the interval [0, 263).

9-16 packetOffset Unsigned 64-bit integer The file offset to a data packet (for leaf nodes) or to a lower level index
packet (for non-leaf nodes). Shall be in the interval (0, 263).

E2807 − 11

21

a unique namespace. The namespace for an extension shall be
declared in an XML attribute of the E57Root element as
described in 8.4.2. New element names defined by an extension
shall be prefixed by this namespace identifier followed by a
colon.

10.3 A reader of an E57 file may ignore any element with a
tag name in an XML namespace that it does not recognize,

including all sub-elements contained within such an element. If
a reader encounters an unknown element tag name in a known
namespace, then a serious error has occurred and the reader
may abort.

10.3.1 Discussion—The ability to ignore unknown elements
enables E57 file readers to be forward compatible.

10.4 An extension shall contain the following items:

NOTE 1—This example contains three index packets, which index 2548 chunks. For the non-leaf nodes (indexPacket 1), the packetOffset fields link
to the index packets in the next lower level of the tree (indexPackets 2 and 3).

FIG. 6 An Example of a Two-Level Tree of indexPackets

TABLE 38 Format of a Data Packet Header

Bytes Field name Data type Description

1 packetType Unsigned 8-bit integer E57_DATA_PACKET (value = 1).
2 packetFlags Unsigned 8-bit integer Packet flag bit fields (described in 9.5.7).
3-4 packetLengthMinus1 Unsigned 16-bit integer One less than the logical length of the packet (in

bytes). To maintain alignment, the packet may be
padded with up to three zero-valued bytes after the
last used field. The length includes any zero
padding that is present. Shall be in the interval (0,
216).

5-6 bytestreamCount Unsigned 16-bit integer The number of bytestreams in this packet. Shall be
in the interval [0, 32763].

E2807 − 11

22

10.4.1 The XML namespace for the extension, including the
URI, which shall be unique.

10.4.2 A text description of the purpose and scope of the
extension.

10.4.3 A text description of the E57 elements that are
defined by the extension. This description shall define the
extension in terms of the E57 elements defined in 8.3 or in
terms of other, previously defined extensions. Each element
shall be fully documented in a manner consistent with the
documentation of the data types in 8.4 including the element
name, type, whether it is required or optional, and a description
of the element and any limitations on its content or usage. All
element names shall be legal XML tag names. It is recom-
mended that element names be restricted to the following

character set: a-z, A-Z, 0-9, “_”, “-”. An E57 element name
shall not begin with the three characters “xml” in any combi-
nation of capitalization.

10.5 The following items are recommended, but not re-
quired:

10.5.1 A description of the extension grammar using REgu-
lar LAnguage for XML Next Generation (RELAX NG).

10.5.2 Example code to read and write the data associated
with the extension (if applicable).

10.5.3 Example E57 files (or file excerpts) that illustrate the
extension’s format.

10.5.4 A suggested prefix to use in association with the URI,
by convention. The prefix shall be a legal XML namespace
prefix.

10.6 Extensions shall use SI units for representing quantities
for which SI units are defined. Extensions should use SI base
or derived units and should avoid using SI prefixes.

11. Keywords

11.1 3D image; file format; LADAR; laser scan; LIDAR;
point cloud

TABLE 39 Format for the packetFlags Field

Bit field Field name Description

1 compressorRestart At the beginning of this packet, reinitialize state of all the compressors/decompressors, discarding any
adaptive statistics that have been gathered about the data being compressed/decompressed.

2-8 reserved Reserved for future versions of the standard. Shall all be zero.

TABLE 40 Format of an Ignored Packet

Bytes Field name Data type Description

1 packetType Unsigned 8-bit integer E57_IGNORED_PACKET (value = 2).
2 reserved Unsigned 8-bit integer Reserved for future versions of the standard. Shall be zero.
3-4 packetLengthMinus1 Unsigned 16-bit integer One less than the logical length of the packet (in bytes). Shall be in the

interval (0, 216).

TABLE 41 String Encoding for Short Strings

Bit field Field name Description

1 stringType Set to 0 to indicate a short string.
2 to 8 length L encoded as a 7-bit unsigned integer.
9 to 8+8L stringData The UTF-8 string data values stored as unsigned 8-bit integers.

TABLE 42 String Encoding for Long Strings

Bit field Field name Description

1 stringType Set to 1 to indicate a long string.
2 to 64 length L encoded as a 63-bit unsigned integer. Shall be in the interval [128,

263).
65 to 64+8L stringData The UTF-8 string data values stored as unsigned 8-bit integers.

TABLE 43 Example Records to be Encoded by the bitPack Codec

Record valid x y z

1 116 016 1016 056016

2 016 116 1116 056116

3 116 216 1216 056216

4 016 316 1316 056316

5 116 416 1416 056416

E2807 − 11

23

APPENDIX

(Nonmandatory Information)

X1. EXAMPLE XML

<?xml version=91.09 encoding=9UTF-89?>
<e57Root type=9Structure9

xmlns:demo=9http://www.example.com/DemoExtension9

xmlns=9http://www.astm.org/COMMIT/E57/2010-e57-v1.09>
<formatName type=9String9><![CDATA[ASTM E57 3D Imaging Data File</formatName>
<guid type=9String9><![CDATA[3F2504E0-4F89-11D3-9A0C-0305E82C3300]]></guid>
<versionMajor type=9Integer9> 1</versionMajor>
<versionMinor type=9Integer9/>
<coordinateMetadata type=9String9> <![CDATA[...A WKT string here...]]></coordinateMetadata>
<creationDateTime type=9Structure9>

<dateTimeValue type=9Float9>1.23456e+002</dateTimeValue>
</creationDateTime>
<data3D type=9Vector9 allowHeterogeneousChildren=919>

<vectorChild type=9Structure9>
<guid type=9String9><![CDATA[3F2504E0-4F89-11D3-9A0C-0305E82C3301]]> </guid>
<demo:extra1 type=9String9><![CDATA[used by demo extension]]></demo:extra1>
<points type=9CompressedVector9 fileOffset=9689 recordCount=9109>

<prototype type=9Structure9>
<cartesianX type=9ScaledInteger9 minimum=909 maximum=9327679 scale=91e-0039/>
<cartesianY type=9ScaledInteger9 minimum=909 maximum=9327679 scale=91e-0039/>
<cartesianZ type=9ScaledInteger9 minimum=909 maximum=9327679 scale=91e-0039/>
<cartesianInvalidState type=9Integer9 minimum=909 maximum=929/>
<rowIndex type=9Integer9 minimum=909 maximum=919/>
<columnIndex type=9Integer9 minimum=909 maximum=949/>
<returnIndex type=9Integer9 minimum=909 maximum=909/>
<returnCount type=9Integer9 minimum=919 maximum=919>1</returnCount>

NOTE 1—The left column shows the source record from where each bit in the bytestream is drawn. When records are divided among two bytes in the
bytestream, the individual bits within the source are indicated (for example, in bytestream 4). The right column shows the encoded bytes that result from
the encoding of the source data shown in the left column.

FIG. 7 Bytestream Encoding of the Example Data

E2807 − 11

24

<timeStamp type=9Float9/>
<intensity type=9Integer9 minimum=909 maximum=92559/>
<colorRed type=9Float9 precision=9single9 minimum=909 maximum=919/>
<colorGreen type=9Float9 precision=9single9 minimum=909 maximum=919/>
<colorBlue type=9Float9 precision=9single9 minimum=909 maximum=919/>
<demo:extra2 type=9String9/>
</prototype>
<codecs type=9Vector9 allowHeterogeneousChildren=919>
</codecs>

</points>
<pose type=9Structure9>

<rotation type=9Structure9>
<w type=9Float9>1</w>
<x type=9Float9/>
<y type=9Float9/>
<z type=9Float9/>

</rotation>
<translation type=9Structure9>

<x type=9Float9/>
<y type=9Float9/>
<z type=9Float9/>

</translation>
</pose>
<pointGroupingSchemes type=9Structure9>

<groupingByLine type=9Structure9>
<idElementName type=9String9>< ![CDATA[columnIndex]]></idElementName>
<groups type=9CompressedVector9 fileOffset=94649 recordCount=959>

<prototype type=9Structure9>
<idElementValue type=9Integer9 minimum=909 maximum=949/>
<startPointIndex type=9Integer9 minimum=909 maximum=999/>
<pointCount type=9Integer9 minimum=919 maximum=929>1</pointCount>
<cartesianBounds type=9Structure9>

<xMinimum type=9Float9/>
<xMaximum type=9Float9/>
<yMinimum type=9Float9/>
<yMaximum type=9Float9/>
<zMinimum type=9Float9/>
<zMaximum type=9Float9/>

</cartesianBounds>
</prototype>
<codecs type=9Vector9 allowHeterogeneousChildren=919>
</codecs>

</groups>
</groupingByLine>

</pointGroupingSchemes>
<name type=9String9><![CDATA[Station 3F]]></name>
<description type=9String9><![CDATA[An example scan]]></description>
<cartesianBounds type=9Structure9>

<xMinimum type=9Float9/>
<xMaximum type=9Float9> 1</xMaximum>
<yMinimum type=9Float9/>
<yMaximum type=9Float9> 1</yMaximum>
<zMinimum type=9Float9/>
<zMaximum type=9Float9> 1</zMaximum>

</cartesianBounds>
<indexBounds type=9Structure9>

<rowMinimum type=9Integer9/>
<rowMaximum type=9Integer9> 1</rowMaximum>
<columnMinimum type=9Integer9/>
<columnMaximum type=9Integer9> 4</columnMaximum>
<returnMinimum type=9Integer9/>
<returnMaximum type=9Integer9/>

</indexBounds>
<intensityLimits type=9Structure9>

<intensityMinimum type=9Integer9>0</intensityMinimum>
<intensityMaximum type=9Integer9>255</intensityMaximum>

</intensityLimits>
<colorLimits type=9Structure9>

<colorRedMinimum type=9Float9 precision=9single9 >0</colorRedMinimum>
<colorRedMaximum type=9Float9 precision=9single9 >1</colorRedMaximum>
<colorGreenMinimum type=9Float9 precision=9single9 >0</colorGreenMinimum>
<colorGreenMaximum type=9Float9 precision=9single9 >1</colorGreenMaximum>
<colorBlueMinimum type=9Float9 precision=9single9 >0</colorBlueMinimum>
<colorBlueMaximum type=9Float9 precision=9single9 >1</colorBlueMaximum>

</colorLimits>
<acquisitionStart type=9Structure9>

<dateTimeValue type=9Float9> 1.235e+003</dateTimeValue>
</acquisitionStart>

E2807 − 11

25

<acquisitionEnd type=9Structure9>
<dateTimeValue type=9Float9> 1.235e+003</dateTimeValue>

</acquisitionEnd>
<sensorVendor type=9String9><![CDATA[Scan Co]]></sensorVendor>
<sensorModel type=9String9><![CDATA[Scanmatic 2000]]></sensorModel>
<sensorSerialNumber type=9String9> <![CDATA[123-321]]>< /sensorSerialNumber>
<sensorHardwareVersion type=9String9> <![CDATA[3.3.0]]></sensorHardwareVersion>
<sensorSoftwareVersion type=9String9> <![CDATA[27.0.3]]></sensorSoftwareVersion>
<sensorFirmwareVersion type=9String9> <![CDATA[27.0.3]]></sensorFirmwareVersion>
<temperature type=9Float9> 2e+001</temperature>
<relativeHumidity type=9Float9> 4e+001</relativeHumidity>

</vectorChild>
</data3D>
<images2D type=9Vector9 allowHeterogeneousChildren=919>
<vectorChild type=9Structure9>

<guid type=9String9><![CDATA[3F2504E0-4F89-11D3-9A0C-0305E82C3302]]></guid>
<pinholeRepresentation type=9Structure9>

<imageWidth type=9Integer9>1024</imageWidth>
<imageHeight type=9Integer9>1024</imageHeight>
<focalLength type=9Float9> 1</focalLength>
<pixelWidth type=9Float9> 1e-003</pixelWidth>
<pixelHeight type=9Float9> 1e-003</pixelHeight>
<principalPointX type=9Float9> 5.12e+002</principalPointX>
<principalPointY type=9Float9> 5.12e+002</principalPointY>
<jpegImage type=9Blob9 fileOffset=9409 length=9109/>

</pinholeRepresentation>
<pose type=9Structure9>

<rotation type=9Structure9>
<w type=9Float9> 1</w>
<x type=9Float9/>
<y type=9Float9/>
<z type=9Float9/>

</rotation>
<translation type=9Structure9>

<x type=9Float9/>
<y type=9Float9/>
<z type=9Float9/>

</translation>
</pose>
<name type=9String9><![CDATA[pic123]]></name>
<description type=9String9><![CDATA[trial picture]]></description>
<associatedData3DGuid type=9String9> <![CDATA[3F2504E0-4F89-11D3-9A0C-0305E82C3301]]></associatedData3DGuid>
<acquisitionDateTime type=9Structure9>

<dateTimeValue type=9Float9> 1.23456e+002</dateTimeValue>
</acquisitionDateTime>

</vectorChild>
</images2D>

</e57Root>

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

E2807 − 11

26

