
Designation: E2586 − 16 An American National Standard

Standard Practice for
Calculating and Using Basic Statistics1

This standard is issued under the fixed designation E2586; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers methods and equations for comput-
ing and presenting basic descriptive statistics using a set of
sample data containing a single variable. This practice includes
simple descriptive statistics for variable data, tabular and
graphical methods for variable data, and methods for summa-
rizing simple attribute data. Some interpretation and guidance
for use is also included.

1.2 The system of units for this practice is not specified.
Dimensional quantities in the practice are presented only as
illustrations of calculation methods. The examples are not
binding on products or test methods treated.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations
E456 Terminology Relating to Quality and Statistics
E2282 Guide for Defining the Test Result of a Test Method
E3080 Practice for Regression Analysis
2.2 ISO Standards:3

ISO 3534-1 Statistics—Vocabulary and Symbols, part 1:
Probability and General Statistical Terms

ISO 3534-2 Statistics—Vocabulary and Symbols, part 2:
Applied Statistics

3. Terminology

3.1 Definitions—Unless otherwise noted, terms relating to
quality and statistics are as defined in Terminology E456.

3.1.1 characteristic, n—a property of items in a sample or
population which, when measured, counted, or otherwise
observed, helps to distinguish among the items. E2282

3.1.2 coeffıcient of variation, CV, n—for a nonnegative
characteristic, the ratio of the standard deviation to the mean
for a population or sample

3.1.2.1 Discussion—The coefficient of variation is often
expressed as a percentage.

3.1.2.2 Discussion—This statistic is also known as the
relative standard deviation, RSD.

3.1.3 confidence bound, n—see confidence limit.

3.1.4 confidence coeffıcient, n—see confidence level.

3.1.5 confidence interval, n—an interval estimate [L, U]
with the statistics L and U as limits for the parameter θ and
with confidence level 1 – α, where Pr(L ≤ θ ≤ U) ≥ 1 – α.

3.1.5.1 Discussion—The confidence level, 1 – α, reflects the
proportion of cases that the confidence interval [L, U] would
contain or cover the true parameter value in a series of repeated
random samples under identical conditions. Once L and U are
given values, the resulting confidence interval either does or
does not contain it. In this sense “confidence” applies not to the
particular interval but only to the long run proportion of cases
when repeating the procedure many times.

3.1.6 confidence level, n—the value, 1 – α, of the probability
associated with a confidence interval, often expressed as a
percentage.

3.1.6.1 Discussion—α is generally a small number. Confi-
dence level is often 95 % or 99 %.

3.1.7 confidence limit, n—each of the limits, L and U, of a
confidence interval, or the limit of a one-sided confidence
interval.

3.1.8 degrees of freedom, n—the number of independent
data points minus the number of parameters that have to be
estimated before calculating the variance.

3.1.9 estimate, n—sample statistic used to approximate a
population parameter.

3.1.10 histogram, n—graphical representation of the fre-
quency distribution of a characteristic consisting of a set of
rectangles with area proportional to the frequency. ISO 3534-1

3.1.10.1 Discussion—While not required, equal bar or class
widths are recommended for histograms.
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3.1.11 interquartile range, IQR, n—the 75th percentile (0.75
quantile) minus the 25th percentile (0.25 quantile), for a data
set.

3.1.12 kurtosis, γ2, g2, n—for a population or a sample, a
measure of the weight of the tails of a distribution relative to
the center, calculated as the ratio of the fourth central moment
(empirical if a sample, theoretical if a population applies) to the
standard deviation (sample, s, or population, σ) raised to the
fourth power, minus 3 (also referred to as excess kurtosis).

3.1.13 mean, n—of a population, µ, average or expected
value of a characteristic in a population – of a sample, X̄, sum
of the observed values in the sample divided by the sample
size.

3.1.14 median, X̃, n—the 50th percentile in a population or
sample.

3.1.14.1 Discussion—The sample median is the [(n + 1) ⁄2]
order statistic if the sample size n is odd and is the average of
the [n/2] and [n/2 + 1] order statistics if n is even.

3.1.15 midrange, n—average of the minimum and maxi-
mum values in a sample.

3.1.16 order statistic, x(k), n—value of the kth observed value
in a sample after sorting by order of magnitude.

3.1.16.1 Discussion—For a sample of size n, the first order
statistic x(1) is the minimum value, x(n) is the maximum value.

3.1.17 parameter, n—see population parameter.

3.1.18 percentile, n—quantile of a sample or a population,
for which the fraction less than or equal to the value is
expressed as a percentage.

3.1.19 population, n—the totality of items or units of
material under consideration.

3.1.20 population parameter, n—summary measure of the
values of some characteristic of a population. ISO 3534-2

3.1.21 prediction interval, n—an interval for a future value
or set of values, constructed from a current set of data, in a way
that has a specified probability for the inclusion of the future
value.

3.1.22 quantile, n—value such that a fraction f of the sample
or population is less than or equal to that value.

3.1.23 range, R, n—maximum value minus the minimum
value in a sample.

3.1.24 residual, n—observed value minus fitted value, when
a model is used. E3080

3.1.25 sample, n—a group of observations or test results,
taken from a larger collection of observations or test results,
which serves to provide information that may be used as a basis
for making a decision concerning the larger collection.

3.1.26 sample size, n, n—number of observed values in the
sample.

3.1.27 sample statistic, n—summary measure of the ob-
served values of a sample.

3.1.28 skewness, γ1, g1, n—for population or sample, a
measure of symmetry of a distribution, calculated as the ratio
of the third central moment (empirical if a sample, and

theoretical if a population applies) to the standard deviation
(sample, s, or population, σ) raised to the third power.

3.1.29 standard error—standard deviation of the population
of values of a sample statistic in repeated sampling, or an
estimate of it.

3.1.29.1 Discussion—If the standard error of a statistic is
estimated, it will itself be a statistic with some variance that
depends on the sample size.

3.1.30 standard deviation—of a population, σ, the square
root of the average or expected value of the squared deviation
of a variable from its mean; —of a sample, s, the square root
of the sum of the squared deviations of the observed values in
the sample from their mean divided by the sample size
minus 1.

3.1.31 statistic, n—see sample statistic.

3.1.32 variance, σ2, s2, n—square of the standard deviation
of the population or sample.

3.1.32.1 Discussion—For a finite population, σ2 is calcu-
lated as the sum of squared deviations of values from the mean,
divided by n. For a continuous population, σ2 is calculated by
integrating (x – µ)2 with respect to the density function. For a
sample, s2 is calculated as the sum of the squared deviations of
observed values from their average divided by one less than the
sample size.

3.1.33 Z-score, n—observed value minus the sample mean
divided by the sample standard deviation.

4. Significance and Use

4.1 This practice provides approaches for characterizing a
sample of n observations that arrive in the form of a data set.
Large data sets from organizations, businesses, and govern-
mental agencies exist in the form of records and other
empirical observations. Research institutions and laboratories
at universities, government agencies, and the private sector
also generate considerable amounts of empirical data.

4.1.1 A data set containing a single variable usually consists
of a column of numbers. Each row is a separate observation or
instance of measurement of the variable. The numbers them-
selves are the result of applying the measurement process to the
variable being studied or observed. We may refer to each
observation of a variable as an item in the data set. In many
situations, there may be several variables defined for study.

4.1.2 The sample is selected from a larger set called the
population. The population can be a finite set of items, a very
large or essentially unlimited set of items, or a process. In a
process, the items originate over time and the population is
dynamic, continuing to emerge and possibly change over time.
Sample data serve as representatives of the population from
which the sample originates. It is the population that is of
primary interest in any particular study.

4.2 The data (measurements and observations) may be of
the variable type or the simple attribute type. In the case of
attributes, the data may be either binary trials or a count of a
defined event over some interval (time, space, volume, weight,
or area). Binary trials consist of a sequence of 0s and 1s in
which a “1” indicates that the inspected item exhibited the
attribute being studied and a “0” indicates the item did not
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exhibit the attribute. Each inspection item is assigned either a
“0” or a “1.” Such data are often governed by the binomial
distribution. For a count of events over some interval, the
number of times the event is observed on the inspection
interval is recorded for each of n inspection intervals. The
Poisson distribution often governs counting events over an
interval.

4.3 For sample data to be used to draw conclusions about
the population, the process of sampling and data collection
must be considered, at least potentially, repeatable. Descriptive
statistics are calculated using real sample data that will vary in
repeating the sampling process. As such, a statistic is a random
variable subject to variation in its own right. The sample
statistic usually has a corresponding parameter in the popula-
tion that is unknown (see Section 5). The point of using a
statistic is to summarize the data set and estimate a correspond-
ing population characteristic or parameter.

4.4 Descriptive statistics consider numerical, tabular, and
graphical methods for summarizing a set of data. The methods
considered in this practice are used for summarizing the
observations from a single variable.

4.5 The descriptive statistics described in this practice are:
4.5.1 Mean, median, min, max, range, mid range, order

statistic, quartile, empirical percentile, quantile, interquartile
range, variance, standard deviation, Z-score, coefficient of
variation, skewness and kurtosis, and standard error.

4.6 Tabular methods described in this practice are:
4.6.1 Frequency distribution, relative frequency

distribution, cumulative frequency distribution, and cumulative
relative frequency distribution.

4.7 Graphical methods described in this practice are:
4.7.1 Histogram, ogive, boxplot, dotplot, normal probability

plot, and q-q plot.

4.8 While the methods described in this practice may be
used to summarize any set of observations, the results obtained
by using them may be of little value from the standpoint of
interpretation unless the data quality is acceptable and satisfies
certain requirements. To be useful for inductive generalization,
any sample of observations that is treated as a single group for
presentation purposes must represent a series of measurements,
all made under essentially the same test conditions, on a
material or product, all of which have been produced under
essentially the same conditions. When these criteria are met,
we are minimizing the danger of mixing two or more distinctly
different sets of data.

4.8.1 If a given collection of data consists of two or more
samples collected under different test conditions or represent-
ing material produced under different conditions (that is,
different populations), it should be considered as two or more
separate subgroups of observations, each to be treated inde-
pendently in a data analysis program. Merging of such
subgroups, representing significantly different conditions, may
lead to a presentation that will be of little practical value.
Briefly, any sample of observations to which these methods are
applied should be homogeneous or, in the case of a process,
have originated from a process in a state of statistical control.

4.9 The methods developed in Sections 6, 7, and 8 apply to
the sample data. There will be no misunderstanding when, for
example, the term “mean” is indicated, that the meaning is
sample mean, not population mean, unless indicated otherwise.
It is understood that there is a data set containing n observa-
tions. The data set may be denoted as:

x1, x2, x3 … xn (1)

4.9.1 There is no order of magnitude implied by the
subscript notation unless subscripts are contained in parenthe-
sis (see 6.7).

5. Characteristics of Populations

5.1 A population is the totality of a set of items under
consideration. Populations may be finite or unlimited in size
and may be existing or continuing to emerge as, for example,
in a process. For continuous variables, X, representing an
essentially unlimited population or a process, the population is
mathematically characterized by a probability density function,
f(x). The density function visually describes the shape of the
distribution as for example in Fig. 1. Mathematically, the only
requirements of a density function are that its ordinates be all
positive and that the total area under the curve be equal to 1.

5.1.1 Area under the density function curve is equivalent to
probability for the variable X. The probability that X shall occur
between any two values, say s and t, is given by the area under
the curve bounded by the two given values of s and t. This is
expressed mathematically as a definite integral over the density
function between s and t:

P ~s,X # t! 5 *
s

t

f~x!dx (2)

5.1.2 A great variety of distribution shapes are theoretically
possible. When the curve is symmetric, we say that the
distribution is symmetric; otherwise, it is asymmetric. A
distribution having a longer tail on the right side is called right
skewed; a distribution having a longer tail on the left is called
left skewed.

5.1.3 For a given density function, f(x), the relationship to
cumulative area under the curve may be graphically shown in
the form of a cumulative distribution function, F(x). The
function F(x) plots the cumulative area under f(x) as x moves

FIG. 1 Probability Density Function—Four Examples of Distribu-
tion Shape
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to the right. Fig. 2 shows a symmetric distribution with its
density function, f(x), plotted on the left-hand axis and distri-
bution function, F(x), plotted on the right-hand axis.

5.1.4 Referring to the F(x) axis in Fig. 2, observe that
F(30) = 0.5. The point x = 30 divides the distribution into two
equal halves with respect to probability (50 % on each side of
x). In general, where F(x) = 0.5, we call the point x the median
or 50th percentile of the distribution. In like manner, we may
define any percentile, for example, the 25th or the 90th

percentiles. In general, for 0 < p < 1, a 100p % percentile is a
location point, Qp, that divides the distribution into two parts,
with 100p % lying to the left and (1 – p)100 % lying to the
right.

5.2 A density function is often given as a equation with one
or more parameters, which, when given values, allow the curve
to be drawn.4 For many distributions, two parameters are
sufficient (some have one parameter and others have more than
two). The parameters may also have meaning with respect to
the shape of the curve, the scale used, or some other property
of the curve.

5.2.1 The mean or “expected value” of a distribution,
denoted by the symbol µ, is a parameter that defines the central
location of a distribution. The mean can be thought of as a
“center of gravity” for the distribution. When the distribution is
symmetric, the mean will coincide with the 50th percentile and
occur exactly in the center, splitting the area under the curve
into two equal halves of 0.5 each. For right-skewed
distributions, the mean will occur to the right of the median; for
left-skewed distributions, the mean will occur to the left of the
median.

5.2.2 The standard deviation, denoted by the symbol σ, is
another important parameter in many distributions. It carries
the same units as the variable X, and is also called a scale
parameter. Generally, it is a standard measure of variability.
The larger the value of σ, the greater will be the variation in the
variable X. One of the most important theoretical distributions
in statistics is the normal, or Gaussian, distribution. It arises in
complex phenomena when many uncontrolled factor effects
cause variability and no single effect is of dominating magni-

tude. The normal distribution is a symmetrical, bell-shaped
curve and is completely determined by its mean, µ, and its
standard deviation, σ. The parameter µ locates the center, or
peak, of the distribution, and the parameter σ determines its
spread. The distance from the mean to the inflection point of
the curve (maximum slope point) is σ. This is illustrated in Fig.
3.

5.2.3 The probability of obtaining a value in a given interval
on the measurement scale is the area under the curve over the
interval. This gives some numerical meaning to the parameter
σ. Table 1 gives the normal probability for several selected
intervals in terms of parameters µ and σ. The first two columns
in Table 1 are known as the empirical rule for symmetric and
mound-shaped distributions.

5.2.4 The variance of a distribution, σ2, is the square of the
standard deviation. It is the average value of the quantity
(X – µ)2 in the population. It is the variance that is computed
first, and then the standard deviation is the positive square root
of the variance. For a population specified by a density
function, f(x), the theoretical mean and variance are defined
mathematically as:

µ 5 *
2`

`

xf~x!dx (3)

σ2 5 *
2`

`

~x 2 µ!2 f~x!dx (4)

5.2.5 Here the variable X is assumed to take on all values in
the interval (-∞, +∞), but this need not be the case.

5.3 In addition to the mean and standard deviation, mea-
sures may be theoretically defined that attempt to describe the
general shape of a distribution. Two such quantities are
skewness and kurtosis. For a continuous variable, X, skewness
is defined as the average value of the quantity (X – µ)3/σ3, and
kurtosis as the average value of the quantity (X – µ)4/σ4,
minus 3. Each of these calculations is taken over the popula-
tion. The symbols used for the theoretical skewness and
kurtosis are γ1 and γ2, respectively. For a population specified
by a density function, f(x), the theoretical skewness and
kurtosis are defined mathematically as:

γ1 5

*
2`

`

~x 2 µ!3 f~x!dx

σ3 (5)

4 In the same way a straight line, y = mx + b, has “parameters” referred to as the
slope, m, and y-intercept, b. Once these parameters are known, the line is completely
known and may be drawn precisely.

FIG. 2 Cumulative Distribution Function, F(x), and Density
Function, f(x) Relationship

FIG. 3 Normal Distribution and Relationship to
Parameters µ and σ
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γ2 5

*
2`

`

~x 2 µ!4 f~x!dx

σ4 2 3 (6)

5.3.1 Here again, the variable X is assumed to take on all
values in the interval (-∞, +∞).

5.3.2 When a distribution is perfectly symmetric, γ1 = 0.
This is the case for the normal distribution in Fig. 3. If the
distribution has a longer tail on the right, we say that it is right
skewed and γ1 > 0 as in Fig. 4. If the distribution has a longer
tail on the left, we say that it is left skewed and γ1 < 0 as in Fig.
5.

5.3.3 For the normal distribution (Fig. 3), γ2 = 0. The large
base of applications for the normal distribution is the reason for
subtracting 3 in the definition of kurtosis. Subtracting of 3
from (6) makes γ2 = 0 for the normal distribution. For any
distribution the quantity γ2 cannot be less than –2 (1).5 Several
examples of skewness and kurtosis as related to specific
distributions are given in Table 2.

5.3.4 Table 2 shows that there is great variation in both
skewness and kurtosis for several commonly occurring distri-
butions. Also, for some distributions such as the normal,
exponential, and uniform, skewness and kurtosis are constant
and not dependent on the value of any other parameter; for
others, however, skewness and kurtosis are a function of some
other parameter. Here we see that for the Poisson distribution,
both γ1 and γ2 are functions of the mean, λ. For the Weibull
distribution, both γ1 and γ2 are functions of the Weibull shape
parameter β.

5.4 Statistics is the study of the properties, behavior, and
treatment of numerical data. A statistic may be defined as any
function of the data values that originate from a sample. In
many applications in which one has a specific model in mind,
the initial goal is to try to estimate the population (model)
parameters using the sample data. These estimates are called
descriptive statistics. For example, the sample mean and
standard deviation are attempting to estimate the parameters µ
and σ, sample skewness and kurtosis are attempting to estimate
γ1 and γ2, and sample percentiles may be calculated that are
attempting to estimate population percentiles. In some cases,
there may be more than one statistic that may be used for the
same purpose.

5.4.1 In addition to estimation, descriptive statistics serve to
organize and give meaning to the raw sample data. By itself a
set of numbers in columnar format may yield little useful
information. The methods of descriptive statistics include
numerical, tabular, and graphical methods that will lead to
great insight for the underlying phenomena being studied.

6. Descriptive Statistics

6.1 Mean or Arithmetic Average—The mean is a measure of
centrality or central tendency of a distribution of observations.
It is most appropriate for symmetric distributions and is
affected by distribution nonsymmetry (shape) and extreme
values. The calculation of the mean is the sum of the n sample
values divided by the number of values, n. This equation is:

x̄ 5
(
i51

n

Xi

n
(7)

6.2 Median or 50th Percentile—The median is a measure of
centrality or central tendency that is generally not affected by
the extremes of the distribution. It is a value that divides the
distribution into two equal parts. For continuous distributions,
50 % will lie to the left and 50 % to the right of the median. To
obtain the 50th percentile of a sample, arrange the n values of
a sample in increasing order of magnitude. The median is the
[(n + 1) ⁄2]th value when n is odd. When n is even, the median
lies between the (n/2)th and the [(n/2) + 1]th values and is not

5 The boldface numbers in parentheses refer to a list of references at the end of
this standard.

TABLE 1 Areas Under the Curve for the Normal Distribution

Interval Area Interval Area

µ ± 1σ 0.68270 µ ± 0.674σ 0.50
µ ± 2σ 0.95450 µ ± 1.645σ 0.90
µ ± 3σ 0.99730 µ ± 1.960σ 0.95
µ ± 4σ 0.99994 µ ± 2.576σ 0.99

FIG. 4 Curve with Positive Skewness, γ1 > 0

FIG. 5 Curve with Negative Skewness, γ1 < 0

TABLE 2 Skewness and Kurtosis for Selected Distribution Forms

Distribution Form Skewness Kurtosis

Normal 0 0
Exponential 2 6
Uniform 0 –1.2
PoissonA 1/=λ 1/λ
Student’s tB 0 6/(v – 4)
WeibullC , β = 3.6 0 –0.28
Weibull, β = 0.5 6.62 84.72
Weibull, β = 50.0 –1 1.9
A For the Poisson distribution, λ is the mean.
B For the Student’s t distribution, v is the degrees of freedom. When v # 4, kurtosis
is infinite.
C For the Weibull distribution, β is the shape parameter.
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defined uniquely among the data values. It is then taken to be
the arithmetic average of these two values.

6.2.1 As a measure of central tendency, the median is often
preferred over the average, particularly for quantities that tend
to be skewed in a natural way. Examples include life length of
a product, salary, and other monetary quantities or any quantity
that has a natural lower or upper bound.

6.3 Midrange—Midrange is a measure of central tendency.
It is the average of the largest (max) and smallest (min)
observed values in a sample of n items. It is greatly affected by
any outliers in the data set.

6.4 Max—The largest observed value in a sample of n items.

6.5 Min—The smallest observed value in a sample of n
items.

6.6 Range—The difference, R, between the largest and
smallest observed value in a sample of n items is called the
sample range and is used as a measure of variation. Its equation
is:

R 5 max~x! 2 min~x! (8)

6.6.1 The sample range is useful for assessing variation for
two basic reasons: (1) it is easy to calculate, and (2) it is readily
understood. But caution is advised when the sample size is
modest to large as the min and max then come from the tails of
the distribution and can be extremely variable. The sample
range is therefore directly affected by extreme values. In
general, the standard deviation of a sample is the preferred
measure of variation (see 6.12).

6.6.2 The range is particularly useful for small samples, say
when n = 2 to 12 and there is possibly the burden of
calculation, as the standard deviation is more calculation
intensive and abstract. An important application occurs when
the range is used in quality control applications. For a given
sample size, the sample range can be converted into an
estimate of the standard deviation. This is done by dividing the
range or average range in a group of ranges, by a constant (2),
d2, which is the ratio of expected range in a sample of size n to
standard deviation for a normal distribution. Table 3 contains
values of d2 for sample sizes of 2 through 16.

6.6.3 An important application of this type of estimate for
the standard deviation is in quality control charts. When there
are available several sample ranges, all with the same sample
size, n, we take the average range and divide by the appropriate
constant, d2, from Table 3.

6.7 Order Statistics—When the observations in a sample are
arranged in order of increasing magnitude, the order statistics
are:

x
~1!

# x
~2!

# x
~3!

# … x
~n21!

# x
~n!

(9)

6.7.1 The bracketed subscript notation indicates that the
value is an ordered value. Thus, x(k) is the kth largest value in
n called the kth order statistic of the sample. This value is said
to have a rank of k among the sample values. In a sample of
size n, the smallest observation is x(1) and the largest observa-
tion is x(n). The sample range may then be defined in terms of
the 1st and nth order statistics:

R 5 x
~n!

2 x
~1!

(10)

6.8 Empirical Quantiles and Percentiles—A quantile is a
value that divides a distribution to leave a given fraction, p, of
the observations less than or equal to that value (0 < p < 1). A
percentile is the same value in which the fraction, p, is
expressed as a percent, 100p %. For example, the 0.5 quantile
or 50th percentile (also called the median) is a value such that
half of the observations exceed it and half are below it; the 0.75
quantile or 75th percentile is a value such that 25 % of the
observations exceed it and 75 % are below it; the 0.9 quantile
or 90th percentile is a value such that 10 % of the observations
exceed it and 90 % are below it.

6.8.1 The sample estimate of a quantile or percentile is an
order statistic or the weighted average of two adjacent order
statistics. The ith order statistic in a sample of size n is the
i/(n + 1) quantile or 100i/(n + 1)th percentile estimate.6 The
quantity i/(n + 1) is referred to as the mean rank for the ith order
statistic. In repeated sampling, the expected fraction of the
population lying below the ith order statistic in the sample is
equal to i/(n + 1) for any continuous population.

6.8.2 To estimate the 100pth percentile, compute an approxi-
mate rank value using the following equation: i = (n + 1)p. If i
is an integer between 1 and n inclusive, then the 100pth

percentile is estimated as x(i). If i is not an integer, then drop the
fractional portion and keep the integer portion of i. Let k be the
retained integer portion and r be the dropped fractional portion
(note that 0 < r < 1). The estimated 100pth percentile is com-
puted from the equation:

x
~k!

1r~x
~k11!

2 x
~k!! (11)

6.8.2.1 Example—For a sample of size 20, to estimate the
15th percentile. Calculate (n + 1)p = 21(0.15) = 3.15, so k = 3
and r = 0.15. The 15th percentile is estimated as x(3) + 0.15(x(4)

– x(3)).

6.9 Quartile—The 0.25 quantile or 25th percentile, Q1, is the
1st quartile. The 0.75 quantile or 75th percentile, Q3, is the third
quartile. The 50th percentile or Q2, is the 2nd quartile. Note that
the 50th percentile is also referred to as the median.

6.10 Interquartile Range—The difference between the 3rd

and 1st quartiles is denoted as IQR:

IQR 5 Q3 2 Q1 (12)

6.10.1 The IQR is sometimes used as an alternative estima-
tor of the standard deviation by dividing by an appropriate

6 Several alternatives to the mean rank equation i/(n + 1) are available (3),
including the median rank and Kaplan-Meier methods. A equation for the exact
median rank is available but is computationally intensive. The Behnard approxima-
tion equation to the median rank, (i – 0.3) ⁄(n + 0.4), is widely used. The modified
Kaplan-Meier equation is (i – 0.5) ⁄n.

TABLE 3 Values of the Constant, d2, for Converting the Sample
Range into an Estimate of Standard DeviationA

n d2 n d2 n d2

2 1.128 7 2.704 12 3.258
3 1.693 8 2.847 13 3.336
4 2.059 9 2.970 14 3.407
5 2.326 10 3.078 15 3.472
6 2.534 11 3.173 16 3.532

A Source: ASTM Manual on Presentation of Data and Control Chart Analysis (2).
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constant. This is particularly true when several outlying obser-
vations are present and may be inflating the ordinary calcula-
tion of the standard deviation. The dividing constant will
depend on the type of distribution being used. For example, in
a normal distribution, the IQR will span 1.35 standard devia-
tions; then dividing the sample IQR by 1.35 will give an
estimate of the standard deviation when a normal distribution
is used.

6.11 Variance—A measure of variation among a sample of n
items, which is the sum of the squared deviations of the
observations from their average value, divided by one less than
the number of observations. It is calculated using one of the
two following equations:7

s2 5
(
i51

n

~x1 2 x̄!2

n 2 1
5

n(
i51

n

xi
2 2 S (

i51

n

xiD 2

n~n 2 1!
(13)

6.12 Standard Deviation—The standard deviation is the
positive square root of the variance.8 The symbol is s. It is used
to characterize the probable spread of the data set, but this use
is dependent on distribution shape. For mound-shaped distri-
butions that are symmetric, such as the normal form, and
modest to large sample size, we may use the standard deviation
in conjunction with the empirical rule (see Table 1). This rule
states that approximately 68 % of the data will fall within one
standard deviation of the mean; 95 % within two standard
deviations, and nearly all (99.7 %) within three standard
deviations. The approximations improve when the sample size
is very large or unlimited and the underlying distribution is of
the normal form. The rule is applied to other symmetric
mound-shaped distributions based on their resemblance to the
normal distribution.

6.13 Z-Score—In a sample of n distinct observations, every
sample value has an associated Z-score. For sample value, xi,
the associated Z-score is computed as the number of standard
deviations that the value xi lies from the sample mean. Positive
Z-scores mean that the observation is to the right of the
average; negative values mean that the observation is to the left
of the average. Z-scores are calculated as:

Zi 5
~xi 2 x̄!

s
(14)

6.13.1 Sample Z-scores are often useful for comparing the
relative rank or merit of individual items in the sample.
Z-scores are also used to help identify possible outliers in a set
of data. There is a much-used rule of thumb that a Z-score
outside the bounds of 63 is a possible outlier to be examined
for a special cause. Care should be exercised when using this
rule, particularly for very small as well as very large sample
sizes. For small sample sizes, it is not possible to obtain a
Z-score outside the bounds of 63 unless n is at least 11. Eq 15
and Table 4 illustrates this theory:

?Zi? # ~n 2 1!/=n (15)

6.13.2 Table 4 was constructed using the equation for the
maximum (contained in Ref (4)).

6.13.3 On the other hand, for very large sample sizes, such
as n = 250 or more, it is a common occurrence in practice to
find at least one Z-score outside the range of 63. Where we can
claim a normal distribution is the underlying model, the
approximate probability of at least one Z-score beyond 63 is
approximately 50 % when the sample size is around 250. At
n = 300, it is approximately 55 %. A thorough treatment of the
use of the sample Z-score for detecting possible outlying
observations may be found in Practice E178.

6.14 Coeffıcient of Variation—For a non-negative
characteristic, the coefficient of variation is the ratio of the
standard deviation to the average.

6.15 Skewness, g1—Skewness is a measure of the shape of
a distribution. It characterizes asymmetry or skew in a distri-
bution. It may be positive or negative. If the distribution has a
longer tail on the right side, the skewness will be positive; if
the distribution has a longer tail on the left side, the skewness
will be negative. For a distribution that is perfectly
symmetrical, the skewness will be equal to 0; however, if the
skewness is equal to 0, this does not imply that the distribution
is symmetric.9

6.16 Kurtosis, g2—Kurtosis is a measure of the combined
weight of the tails of a distribution relative to the rest of the
distribution.

6.16.1 Sample skewness and kurtosis are given by the
equations:

g1 5
(
i51

n

~xi 2 x̄!3

n s3 , g2 5
(~xi 2 x̄!4

n s4 2 3 (16)

6.16.2 Alternative estimates of skewness and kurtosis are
defined in terms of k-statistics. The k-statistic equations have
the advantage of being less biased than the corresponding
moment estimators. These statistics are defined by:

k1 5 x̄ , k2 5 s2, k3 5

n(
i51

n

~xi 2 x̄!3

~n 2 1!~n 2 2!
(17)

k4 5

n~n11!(
i51

n

~xi 2 x̄!4

~n 2 1!~n 2 2!~n 2 3!
2

3S (
i51

n

~xi 2 x̄!2D 2

~n 2 2!~n 2 3!
(18)

6.16.3 From the k-statistics, sample skewness and kurtosis
are calculated from Eq 19. Notice than when n is large, g1 and
g2 reduce to approximately:

g1'k3/k2
1.5, g2'k4/k2

2 (19)

7 These equations are algebraic equivalents, but the second form may be subject
to round off error.

8 When the denominator of the sample variance is taken as n instead of n – 1, the
square root of this quantity is called the root mean squared deviation (RMS).

9 For example, an F distribution having four degrees of freedom in the
denominator always has a theoretical skewness of 0, yet this distribution is not
symmetric. Also, see Ref (5), Chapter 27, for further discussion.

TABLE 4 Maximum Z-Scores Attainable for a Selected Sample
Size, n

n 3 5 10 11 15 18

Z(n) 1.155 1.789 2.846 3.015 3.615 4.007
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6.16.4 One cannot definitely infer anything about the shape
of a distribution from knowledge of g2 unless we are willing to
assume some theoretical distribution such as the Pearson or
other distribution family provides.

6.17 Degrees of Freedom:
6.17.1 The term ‘degrees of freedom’ is used in several

ways in statistics. First, it is used to denote the number of items
in a sample that are free to vary and not constrained in any way
when estimating a parameter. For example, the deviations of n
observations from their sample average must of necessity sum
to zero. This property, that Σ~y 2 ȳ!50, constitutes a linear
constraint on the sum of the n deviations or residuals y1

2 ȳ ,y22 ȳ , ..., yn2 ȳ used in calculating the sample variance,
s25Σ~y 2 ȳ!2⁄~n 2 1!. When any n–1 of the deviations are
known, the nth is determined by this constraint – thus only n–1
of the n sample values are free to vary. This implies that
knowledge of any n–1 of the residuals completely determines
the last one. The n residuals, y12 ȳ , and hence their sum of
squares Σ~yi 2 ȳ!2 and the sample variance Σ~y 2 ȳ!2⁄~n 2 1!
are said to have n–1 degrees of freedom. The loss of one degree
of freedom is associated with the need to replace the unknown
population mean µ by the sample average ȳ. Note that there is
no requirement that Σ~yi 2 µ!50 . In estimating a parameter,
such as a variance as described above, we have to estimate the
mean µ using the sample average ȳ. In doing so, we lose 1
degree of freedom.

6.17.1.1 More generally, when we have to estimate k
parameters, we lose k degrees of freedom. In simple linear
regression where there are n pairs of data (xi, yi) and the
problem is to fit a linear model of the form y5mx1b through
the data, there are two parameters (m and b) that must be
estimated, and we effectively lose 2 degrees of freedom when
calculating the residual variance. The concept is further ex-
tended to multiple regression where there are k parameters that
must be estimated and to other types of statistical methods
where parameters must be estimated.

6.17.2 Degrees of freedom are also used as an indexing
variable for certain types of probability distributions associated
with the normal form. There are three important distributions
that use this concept: the Student’s t and chi-square distribu-
tions both use one parameter in their definition. The parameter
in each case is referred to as its “degrees of freedom.” The F
distribution requires two parameters, both of which are referred
to as “degrees of freedom.” In what follows we assume that
there is a process in statistical control that follows a normal
distribution with mean µ and standard deviation σ.

6.17.2.1 Student’s t Distribution—For a random sample of
size n where ȳ and s are the sample mean and standard
deviation respectively, the following has a Student’s t distribu-
tion with n–1 degrees of freedom:

t 5
x̄ 2 µ

s ⁄=n
(20)

The t distribution is used to construct confidence intervals
for means when Σ is unknown and to test a statistical
hypothesis concerning means, among other uses.

6.17.2.2 The Chi-Square Distribution—For a random
sample of size n where s is the sample standard deviation, the
following has a chi-square distribution with n–1 degrees of
freedom:

q 5
~n 2 1!s2

σ2 (21)

The chi-square distribution is used to construct a confidence
interval for an unknown variance; in testing a hypothesis
concerning a variance; in determining the goodness of fit
between a set of sample data and a hypothetical distribution;
and in categorical data analysis, among other uses.

6.17.2.3 The F Distribution—There are two independent
samples of sizes n1 and n2. In the most common variant the
samples are selected from normal distributions having the same
standard deviation. In that case the following has an F
distribution with n1–1 and n2–1 degrees of freedom:

F~n1 2 1 , n2 2 1! 5
s 1

2

s 2
2 (22)

Both degrees of freedom are required to use the F distribu-
tion. It is common to specify one as associated with the
numerator and one as associated with the denominator. If the
two populations being sampled have differing standard
deviations, say σ1 for population 1 and σ2 for population 2,
then the F ratio above is multiplied by σ2

2⁄σ1
2. The F distribution

is used to construct confidence intervals for a ratio of two
variances, and in hypothesis testing associated with designed
experiments, among other uses.

6.18 Statistics for Use with Attribute Data:
6.18.1 Case 1—Binomial simple count data occurs in an

inspection process in which each inspection unit is classified
into one of two dichotomous categories. The population being
sampled is either very large relative to the sample or a process
(essentially unlimited). Often we use “0” or “1” to stand for the
categories. Other designations are: conforming and noncon-
forming unit or nondefective and defective unit. In all cases,
there is a sample size, n, and the interest lies in the fraction of
nonconforming units in the sample. This fraction is an estimate
of the probability, p, that a future randomly selected unit will
be a nonconforming unit. Often, the population being sampled
is conceptual—that is, a process with some unknown noncon-
forming fraction, p.

6.18.1.1 If an indicator variable, X, is defined as X = 1 when
the unit is nonconforming and 0 if not, then the statistic of
interest may be defined as:

p̂ 5
(
i51

n

Xi

n
(23)

6.18.1.2 In some applications, such as in quality control,
there are k samples each of size n. Each sample gives rise to a
separate estimate of p. Then the statistic of interest may be
defined as:

p̄ 5
(
i51

k

Pi

k
(24)
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6.18.1.3 The bar over the “p” indicates that this is an
average of the sample fractions which estimates the unknown
probability p. The binomial distribution is the basis of the p and
np charts found in classical quality control applications.

6.18.2 Case 2—Poisson Simple Count Data—If an inspec-
tion process counts the number of nonconformities or “events”
over some fixed inspection area (either a fixed volume, area,
time, or spatial interval), the estimate of the mean is identical
to the equation in 6.1. We refer to this as the estimate of the
mean number of events expected to occur within the interval,
volume, area, weight, or time period sampled. The Poisson
distribution is the basis of the c and u charts found in classical
quality control applications.

6.19 Standard Error Concept—When a statistic is calcu-
lated from a set of sample data there is usually some population
parameter that is of interest and for which the statistic or some
simple function therefore serves as the estimate of the param-
eter. We know that when a second sample is taken, we will not
get the same result as the first sample provided. This is because
the sample values are different every time a sample is taken.
Different sample values will necessarily give us different
values for the statistic. A statistic is a random variable subject
to variation in repeated sampling. The standard error of the
statistic is the standard deviation of the statistic in repeated
sampling.

6.19.1 In using or reporting any statistic, it is good practice
to also report a standard error for that statistic. This gives the
user some idea of the uncertainty in the results being stated.
For example, suppose that a sample mean and standard
deviation of 29.7 and 2.8 is obtained from a sample of n = 20.
Suppose further that the sample data originate from a process
so that the population is conceptually unlimited. It may be
shown that the standard error of the mean (sample average) is
specified as:

se~ x̄! 5
σ

=n
'

s

=n
5

2.8

=20
5 0.63 (25)

6.19.1.1 Here the quantity σ represents the unknown popu-
lation standard deviation, s is the sample standard deviation
and estimates σ, and n is the sample size. In this example, the
estimated standard error of the mean is approximately 0.63.

6.19.2 Any standard error calculation or equation will
typically be a function of the sample size (as it is for the mean)
as well other items such as the kind of distribution being
sampled. Tables 5 and 6 contain a short list of commonly
required statistics along with associated standard errors

6.19.3 Many other equations for finding or approximating
the standard error for a given statistic are available in the
literature. When a statistic is complicated to the point at which
a closed-form solution or even an approximate equation may
be very difficult to find, computer-intensive methodology can
be used. Monte Carlo simulation methods are very useful for
such purposes. In particular, the technique known as a para-
metric bootstrap (6) uses the original data to generate many
new samples (the so-called bootstrap samples) each of the
same size n as the original sample. For each bootstrap sample,
the statistic of interest is again calculated and saved to a file.

Following this process, the standard deviation is calculated for
the set of bootstrap estimates, and this number is taken as the
standard error.

6.20 Confidence Intervals—A confidence interval for an
unknown population parameter is constructed using sample
data and provides information about the uncertainty of an
estimate of that parameter in the form of a probability
statement. The confidence interval consists of a set of plausible
values for the parameter, bounded by a lower limit (L) and an
upper limit (U). The limit values that make up the confidence
interval are referred to as confidence limits.

6.20.1 Since the limits of a confidence interval are sample
statistics, they will vary in repeated sampling. A confidence
interval is said to include, cover or capture the parameter of
interest if the upper and lower confidence limits fall on
opposite sides of the true parameter value. The probability of

TABLE 5 Commonly Required Statistics and Their Standard
Errors—Data Is of the Variable Type and Population Is Normal

NOTE 1—For skewness and kurtosis,A the range for the sample size is
n = 5 through 1000. The constant c4 is a function of the sample size n and
is widely available in tables. Alternatively, this approximate equation may
be used. See Table 7 and Ref (5).

Skewness, g1 = k3 / k2
1.5, let v = ln(n)

ln(se) = 0.54 – 0.3718v – 0.01144 v2

Kurtosis, g2 = k4 / s4, let v = ln(n)
ln(se) = 1.641 – 0.6752v – 0.05498 v2 – 0.004492v3

Statistic Estimated Standard Error

Mean

x̄ 5

o
i51

n

xi

n

ses x̄d 5
s

œn

Variance

s2 5

o
i51

n

sxi 2 xd2

n 2 1

sess2d 5 Œ 2s4

n 2 1

Standard Deviation
sessd 5 sœ1 2 c4

2

s 5!o
i51

n

sxi 2 xd2

n 2 1

<
sœ8n 2 7

4n 2 3

A The standard error equations for these statistics were determined using a Monte
Carlo simulation.

TABLE 6 Commonly Required Statistics and Their Standard
Errors—Data Is of the Attribute Type

Statistic Estimated Standard Error

Binomial Distribution, Mean

p̂ 5

o
i51

n

xi

n

sesp̂d 5 Œp̂s1 2 p̂d
n 2 1

Poisson Distribution, Mean

λ̂ 5

o
i51

n

xi

n

ses λ̂d 5 œλ̂
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this coverage is called the confidence coefficient or confidence
level. The term “confidence” refers to the long run fraction of
such intervals that would actually cover the parameter in
repeating the experiment a large number of times for a fixed
value of the parameter. The confidence level is calculated
theoretically or by means of computer simulations. Confidence
levels are most often expressed as percentages, up to but not
including 100 %. Commonly used confidence coefficients are
90 %, 95 %, and 99 %. Generally, the greater the confidence
level, the wider (more conservative) will be the confidence
interval.

6.20.2 An approximate confidence interval for an unknown
parameter, θ, can be expressed in terms of the standard error:

θ̂6z12α/2 3 se~ θ̂! (26)

The quantity θ̂ is a statistic, the estimator of the unknown
parameter θ; se(θ̂) is an estimate of the standard error of θ̂; and
the multiplier z1-α/2 is the 1 – α ⁄2 quantile selected from the
standard normal distribution (5.3) for a (1 – α) two sided
confidence interval. For example, when 95 % confidence level
is used (α = 0.05), z0.975 = 1.960; when 99 % confidence level
is used, z0.995 = 2.576.

6.20.3 To construct a confidence interval for an unknown
proportion, p, using the observed sample proportion p̂ from a
sample of size n, the general approximate Eq 26 may be used
with the standard error as specified in Table 6. For the
approximation to be adequate, np̂ and n(1 – p̂) should be 5 or
more. The equation for this interval is:

p̂6z12α/2 =p̂~1 2 p̂!/~n 2 1! (27)

6.20.4 When the parameter is the mean of a normal
distribution, use the standard error estimate in Eq 25 or Table
5 and a multiplier based on Student’s t distribution. This gives
a theoretically exact confidence interval when the population
distribution is a normal curve (5.2.2):

x̄6t12α/2, df s/=n (28)

t1-α/2, df is the 1-α/2 quantile of Student’s t distribution with
df degrees of freedom when the standard deviation s has df
degrees of freedom.

6.20.4.1 Example—For a sample of size 20, having sample
mean 29.7 and sample standard deviation 2.8 (6.19.1), a 95 %
confidence interval for the mean is:

29.762.093 3 2.8/=20

or 28.4 to 31.0. The multiplier 2.093 comes from a table of
Student’s t distribution. The confidence interval may be ex-
pressed as (28.4, 31.0) or as 29.7 6 1.3.

6.20.5 One-sided confidence intervals are used when only
an upper or a lower bound on the plausible range of values of
the parameter is of interest. For example, when the character-
istic of interest is the strength of a material, a lower confidence
limit can be provided. If the characteristic is a proportion of
defective units, and interest is on how large this might be, an
upper confidence limit can be provided.

6.20.5.1 Example—The lower one-sided 95 % confidence
limit for the example of (6.19.1) and (6.20.4.1) is:

x̄ 2 t12α , df s/=n 5 29.7 2 1.729 3 2.8/=20

or 28.6.
6.20.6 Procedures for calculating confidence intervals from

sample data are available in textbooks and in the literature for
parameters of a variety of distribution functions and for a
variety of scenarios (for example, single parameter, difference
between two parameters, ratio of two parameters, etc.). Widely
available published tables are used to construct confidence
intervals for cases involving the binomial, Poisson, exponential
and normal distributions. For the common cases as well as
others, tables of Student’s t, the chi-square and F distributions
are required for construction of the interval. Generally, the
coverage probability depends on the correctness of the as-
sumed distribution from which the data have arisen.

6.21 Prediction-Type Intervals for a Normal
Distribution—It may sometimes be the case that we have a
sample of n observations from a normal distribution and we
want to construct an interval that would contain one or more
future observations with some stated confidence C. Such
intervals are called prediction intervals.

6.21.1 Two-Sided Prediction Intervals for a Single Future
Value From a Normal Population—A prediction interval for a
single future observation, y, from a normal population is
constructed using a sample of n observations from a normal
distribution and provides the limits within which the future
value is expected to fall with some confidence C = 1 – α. We
can have both single sided and double sided limits. Let y be the
future value. The prediction limits for the two sided interval for
the future value are P

L
≤ y ≤ P

U
. Equations for these limits are:

PL 5 x̄ 2 t12α/2 s=111/n (29)

PU 5 x̄1t12α/2 s=111/n (30)

t1-α/2 is the 1 – α ⁄2 quantile from Student’s t distribution with
n – 1 degrees of freedom; x̄ and s are the sample mean and
standard deviation from the original sample of the x values; and
the sample size is n. The interval [P

L
, P

U
] is the region wherein

the next observation is expected to fall with confidence
C = 100 (1 – α ⁄2) %.

6.21.2 Single-Sided Prediction Intervals For a Single Fu-
ture Value From a Normal Population—A prediction interval
for a single future for the one sided case uses the on of the
following forms:

6.21.2.1 For the lower limit use:

PL 5 x̄ 2 t12α s=111/n (31)

TABLE 7 Values for the Constant, c4, Used in Calculating the
Standard Error of a Sample Standard Deviation When Sampling

from a Normal Distribution

n c4 n c4 n c4

11 0.975350 25 0.989640
2 0.797885 12 0.977559 30 0.991418
3 0.886227 13 0.979406 35 0.992675
4 0.921318 14 0.980971 40 0.993611
5 0.939986 15 0.982316 45 0.994335
6 0.951533 16 0.983484 50 0.994911
7 0.959369 17 0.984506 75 0.996627
8 0.965030 18 0.985410 100 0.997478
9 0.969311 19 0.986214 150 0.998324

10 0.972659 20 0.986934 200 0.998745
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The future value satisfies y ≥ PL with confidence
100 (1 – α) %. t1-α is the 1-α quantile from Student’s t distri-
bution with n – 1 degrees of freedom.

6.21.2.2 For the upper limit use:

PU 5 x̄1t12α s=111/n (32)

The future value satisfies y ≤ PU with confidence
100 (1 – α) %. t1-α is the 1 – α quantile from Student’s t
distribution with n – 1 degrees of freedom.

6.21.3 Prediction Intervals For More Than One Future
Value(s) From a Normal Population—The prediction intervals
discussed in 6.21.1 and 6.21.2 can be modified to apply to more
than 1 future value. There is only a slight modification to the
quantile level for the t value used in equations Eq 29-32. When
a prediction interval is to apply to m future observations using
a confidence level of C = 1–α, the Student’s t value is modified
as follows.

Use t12α/~2m!
for a two-sided interval.

Use t12α/~m!
, for a one-sided interval.

6.21.3.1 The degrees of freedom remain n – 1. The modifi-
cation of the quantile level is an application of the Bonferroni
inequality (see Ref (7)). Many variations on the theme of
prediction intervals are possible. Note that the interval meth-
odology in this section should not be used unless the underly-
ing distribution is normal and stable. For further information
on this topic, see Refs (7, 8, or 9).

6.21.4 Example 1—A certain type of material tensile
strength exhibits a sample mean and standard deviation from a
sample of n = 7 observations of 17,580 and 795 lbs, respec-
tively. This characteristic has historically been shown to be
normally distributed. A two-sided 95 % prediction interval for
the tensile strength of the next observation is calculated from
Eq 26 and Eq 27. For n = 7, use 6 degrees of freedom and a
quantile level of 1 – 0.05 ⁄2 = 0.975. A standard table of Stu-
dent’s t values shows that t0.975 = 2.447. The corresponding
prediction interval is:

17,58062.447 ~795! =111/7
17,58062079.7

The interval is 15,550 to 19,659.7

6.21.5 Example 2—For the data in Example 1, calculate a
90 % lower prediction interval for the next 10 individual
observations. Use Eq 28 with 6 degrees of freedom. The
quantile level for Student’s t is 1 – 0.10 ⁄10 = 0.99. The Stu-
dent’s t value is therefore t0.99 = 3.143. The lower bound for the
next 10 individual observations from this normal distribution
is:

17,580 2 3.14 ~795! =111/7
17,580 2 2671.2

14,908.8

The lower bound is therefore 14,909, rounding to the nearest
unit. The next 10 individual observations are therefore ex-
pected to be at least as large as this with 90 % confidence.

7. Tabular Methods

7.1 Given a set of data, a tabular display called a frequency
distribution may be constructed that summarizes the data in

terms of what values occur and how often. The frequency
distribution consists of several non-overlapping classes or
categories. (The terms “cell” or “bin” are also used.) Each class
has an upper and lower class boundary, and the class width is
defined as the difference between the boundaries for any class
(typically, equal class widths are used). Associated with each
class is a frequency value that gives the count or frequency of
data values in the data set lying within the boundaries of that
class. The frequency for a class divided by the total number of
observations in the data set defines the relative frequency for
that class. Adjacent classes share a common boundary where
the upper boundary of one class is the lower boundary of the
following class. When possible, class boundaries should be
selected so that no data value falls on a boundary. When this is
not possible, values falling on a boundary are placed in the
class with the larger values.

7.2 To construct the frequency distribution one needs to
decide on two quantities: (1) the fixed class width and (2) the
number of classes. Typically, the number of classes in a
frequency distribution should be between 13 and 20, but there
is no limit to the number of classes that may be defined if the
data set is large enough. For data sets of 25 or fewer
observations, a frequency distribution will provide little infor-
mation and is not recommended. There are several rules of
thumb available for determining the number of classes in a
frequency distribution in preparation for constructing a histo-
gram. For example, there is Sturge’s rule, Scott’s rule, and the
rule of Freedman and Diaconis (10). Selection of the number
and width of classes is a matter of judgment. Too many classes
will create a fragmented view with some classes perhaps
empty; too few classes will be too coarse to be of any use.
Conventional guidance would suggest between 13 and 20 cells
for a number of observations of 250 or more; for less than 250
as few as 10 cells may be used.

7.3 Once the number of classes, k, is determined, the class
width may be calculated by dividing the range of the data
values by k. This gives an approximate class width which
should be adjusted to a convenient number.

7.4 It is recommended that cell boundaries be chosen using
one more significant digit than the data have. In this manner,
the problem of deciding which of two adjacent cells to assign
a value when that value is equal to the boundary between the
two cells will be avoided. For example, suppose that the data
values are presented to the nearest tenth of an inch and that a
boundary for two cells exists as 74.8. To which class should an
actual value of 74.8 be assigned? We can prevent such a
question from ever arising by using cell boundaries that have
one more significant digit than the data do (in this case, two
will do). One should set the boundary between such cells as
74.85. Boundaries between sets of other adjacent cells are
similarly adjusted.

7.5 From the core frequency distribution table, a column
corresponding to the relative frequency for a class may be
easily added by dividing the frequency column by the sample
size, n. It is often important to report the cumulative behavior
of the data, and for such requirements, we can construct a
cumulative frequency (CF) column and a cumulative relative
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frequency (CRF) column. The CF column is constructed from
the frequency column by adding the frequencies cumulatively
through the several classes. In this process, the cumulative
frequency for the last class should be equal to the sample size.
The CRF column is equal to the CF column divided by the
sample size n. The CRF for the last class should be 1.

7.6 These ideas are further illustrated in Section 9.

8. Graphical Methods

8.1 Histogram—From the frequency distribution and de-
scriptive statistics for a set of variable data, a number of useful
plots may be constructed that greatly aid in the interpretation of
the data set. The first and most fundamental graph that may be
constructed from the frequency distribution is the frequency or
relative frequency histogram. This chart is a bar graph whose
bars are typically centered on the midpoints of the class
intervals and whose heights are equal to the frequency (or
relative frequency) of the class. The bars should be contiguous
and of equal width.

8.1.1 The principal information to be derived from such a
plot is the estimation of the probability of occurrence between
two values. If a and b are two values of the variable, where
a < b, then the area contained within the bars between a and b
is proportional to the approximate probability that the value of
the variable, X, will be observed between a and b. In theory,
this estimate of probability gets better as the sample size
increases and as the bar width (class width) shrinks in size;
however, any probability estimate will also be a function of the
data quality (resolution) and quantity.

8.1.2 The second purpose for constructing a histogram is to
assess the general shape of the distribution from which the
sample originated. Here the analysis is mostly visual. The
histogram may suggest both questions and answers. For
example, has the data originated from a symmetrical distribu-
tion? Might there be any outliers among our data?

8.2 Ogive or Cumulative Frequency Distribution—Often,
the interest is in approximating the cumulative probability of
occurrence. Using the frequency distribution, a graph con-
structed with the class upper bounds as the abscissa and the
cumulative relative frequency as the ordinate is referred to as
an Ogive plot. Start this plot using the lower class bound for
the leftmost class plotted against 0. The distribution function,
F(x), for the random variable X gives the probability that the
random variable will be less than or equal to x. The Ogive is the
integral of the histogram and graphically approximates the true
distribution function.

8.2.1 An alternative to the Ogive plot is the empirical
distribution function. When the data values are arranged in
increasing numerical order, we have constructed the order
statistics of the sample. Let X(i) be the ith order statistic. The
empirical distribution function is a step function which takes
the value i/n for values from X(i) up to (but not including)
X(i+1). The plot is necessarily less “smooth” than the Ogive. It
is more useful for larger data sets, say n at least 100.

8.3 Boxplot—Another useful plot for depicting distribution
shape is the boxplot or “box and whisker” plot. To construct a
boxplot, we need four numbers from the sample: the minimum,

maximum, 25th, and 75th percentiles. These percentiles will be
denoted as the first and third quartiles (Q1 and Q3). The
median, Q2, may also be calculated and depicted on the graph.
It may also be useful to plot the mean of the data using the
symbol “·” or “+” to visualize whether or not the distribution is
truly symmetrical.

8.3.1 The boxplot is plotted along one axis (either vertical or
horizontal may be used). This axis will be referred to as the
scaled axis. The second axis is typically used to identify groups
when more than one boxplot is to be presented. This axis will
be referred to as the unscaled axis. The boxplot consists of a
central box whose dimension along the unscaled axis may be
any convenient size. The box dimension along the scaled axis
has length equal to the interquartile range, IQR = Q3 – Q1. The
leftmost box edge is anchored at Q1 and the rightmost box
edge is anchored at Q3. With this construction, the box is said
to “contain” the middle 50 % of the data. A line splitting the
box is drawn at the value of the median, Q2. From each side of
the box along the scaled axis (see Fig. 6) construct a line
parallel to the scaled axis. These lines or “whiskers” are
continued to the point of the largest and smallest sample values
that lie within 1.5 times the IQR from the box edges. Thus,
each “whisker” can never exceed 1.5 times the interquartile
range. If all sample values are within 1.5 times the IQR of the
box edges, whiskers will end at the sample max (on the right)
and sample min (on the left).

8.3.2 Any data point exceeding a distance of 1.5 times the
IQR from either side (from Q1 or Q3) is plotted using a point
plotting symbol, and this indicates that the point is a potential
outlier. This rule should be considered as a graphic method to
identify potential outliers and not as an outlier test (consult
Practice E178 for rigorous outlier tests). If the sample origi-
nates from an underlying normal distribution model, the
probability of individual points exceeding the 1.5 IQR rule
may be derived. For modest to large sample size, these
probabilities are large enough that a value outside the 1.5 IQR
range is not necessarily an outlier.

8.3.3 Boxplots are particularly useful when several samples
are to be compared. The several boxplots can be plotted on a
single page using the same scaled axis making for easy
graphical comparison. Fig. 7 is a comparison of eight samples
of bearing failure time for a certain bearing type using eight
different grease formulations. Vertical lines within boxes mark

FIG. 6 Boxplot Construction with Horizontal Axis Equal to the
Scaled Axis
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the median, “+” signs mark the average, and small squares
mark points outside of the 1.5 IQR whisker regions for each
plot.

8.4 Dot Plot—An alternative to the histogram is the dot plot.
In a dot plot, the frequency of a class is plotted as a series of
stacked dots, as opposed to the bars in a histogram. For large
data sets, a single dot may stand for more than one value. The
dot plot is also useful for comparing several sample distribu-
tions and assessing the density of the data relative to the several
classes.

8.5 Quantile-Quantile (Q-Q) and Probability Plots—A
sample quantile is numerically the same as a sample percentile,
but the later is expressed as a percent while the former is
expressed as a fraction between 0 and 1. For example, to say
that the sample 10th percentile is 106 is to say that the sample
quantile of order 0.1 is 106. While the term “percentile” is
typically associated with simple descriptive statistics, the term
“quantile” plays an important role in graphical methods.

8.5.1 A Q-Q plot may be used to show the relationship
between the same quantiles of two samples or to demonstrate
that a sample comes from some assumed distribution. In the
latter case, the plot is called a probability plot. In probability
plotting, we assume some distribution, such as the normal
distribution, and plot the sample quantiles against the theoreti-
cal quantiles from the assumed distribution. The theoretical
quantiles will be a function of the assumed distribution and the
sample size.

8.5.2 Q-Q Plots—For a given sample of size n, each rth

order statistic is a sample quantile of order r/(n + 1), on the
average. Note that the rth order statistic is also the 100r/
(n + 1)th sample percentile. In a quantile-quantile plot, the
quantiles from one sample are plotted against the correspond-
ing quantiles of another sample. With two samples of equal
size, the order statistics from one sample are plotted against the
order statistics of the second sample. If both samples are
exactly the same, then the resulting plot will be straight line
with slope 1 and y-intercept 0. If the mean of one sample
(plotted on the horizontal axis) is shifted to the right, say k
units, but otherwise the samples are exactly the same, the

resulting plot would be a line of slope 1 and y-intercept –k. A
slope less than 1 would indicate that the sample plotted as the
horizontal coordinate has more variability than the sample
plotted as the vertical coordinate. In this manner, fundamental
differences between the two samples may be discerned graphi-
cally.

8.5.3 When the sample sizes are not equal, we use the
smaller sample size to determine the quantiles that are to be
plotted. Let two samples be denoted through the variables X
and Y; further, let the smaller sample size, n, belong to X, and
the larger sample size, m, belong to Y. The n order statistics of
the variable X determine the quantiles to be used. These are
quantiles of orders r/(n + 1) for r = 1, 2, … n. To find the
associated quantiles of the same orders from sample of Y
values use the method outlined in 6.8. Using this method, two
sets of n sample quantiles are determined and may be plotted
in manner described previously.

8.5.4 Probability Plots—To prepare and use a probability
plot, a distribution must be assumed for the variable being
studied. Important cases of distributions that are used for this
purpose include the normal, log-normal, exponential, Weibull,
and extreme value distributions. In most cases, the special
probability paper needed for each distribution is readily avail-
able or construction is available in a wide variety of software
packages. The utility of a probability plot lies in the property
that the sample data will generally plot as a straight line given
that the assumed distribution is true. From this property, use as
an informal and graphic hypothesis test that the sample arose
from the assumed distribution is in frequent use.10 The under-
lying theory will be illustrated using the normal distribution.
Illustrations appear in the section on examples.

8.5.5 Normal Distribution Case—Given a sample of n
observations assumed to come from a normal distribution with
unknown mean and standard deviation (µ and σ), let the
variable be Y and the order statistics be y(1), y(2), … y(n). Plot
the order statistics y(i) against the inverse standard normal
distribution function, Φ-1(p), evaluated at p = i/(n + 1), where
i = 1, 2, 3, …n. This is because i/(n + 1) is the expected fraction
of a population lying below the order statistic y(i) in any sample
of size n. The resulting relationship is:

y
~i!

5 Φ21~i/~n11!!σ1µ (33)

8.5.5.1 There is a linear relationship between y(i) and
z = Φ–1[i/(n + 1)] and this establishes a pairing between the
ordered y and z values. For example, when a sample of n = 5
is used, the z values to use are: –0.967, –0.432, 0, 0.432, and
0.967. Notice that the z values will always be symmetric
because of the symmetry of the normal distribution about the
median. With the five sample values, form the ordered pairs (yi,
zi) and plot these on ordinary coordinate paper. If the normal
distribution assumption is true, the points will plot as an
approximate straight line. The method of least squares may
also be used to fit a line through the paired points. When this
is done, the slope of the line will approximate the standard
deviation. Such a plot is called a normal probability plot.

10 Formal methods for testing the hypothesis that the data arise from the assumed
distribution are available. Such tests include the Anderson-Darling, the Shapiro-
Wilks, and a chi-square test among others.

FIG. 7 Bearing Life Data—Illustration of Sample Comparison Us-
ing Boxplots, Sample Size, n = 30 Each Group
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8.5.5.2 In practice, it is more common to find the cumulative
normal probability on the vertical axis instead of the z values.
With this plot, the normal distribution assumption may be
visually verified and estimates of the cumulative probability
readily obtained. For this practice, special normal probability
paper or widely available software is in use.

8.5.6 Other Distributions—The probability plotting tech-
nique can be extended to several other types of distributions,
most notably the Weibull distribution. In a Weibull probability
plot we use the theory that the cumulative distribution function
F(x) is related to x through F(x) = 1 – exp(x/η)β. Here the
quantities η and β are parameters of the Weibull distribution.
For a given order statistic x(i) associate the mean rank fi (or use
some other rank method). Algebraic manipulation of the
equation for the Weibull distribution function F(x), shows that
ln{–ln(1 – F(x))} = βln(x) – βln(η). In practice the median
rank equation fi = (i – 0.3) ⁄(n + 0.4) is often used to estimate
F(x(i)). When the distribution is Weibull, the variables ln{–l
n(1 – F(x))} and ln(x(i)) will plot as an approximate straight
line. Other distributions may also be used with this technique.

9. Examples

9.1 Example 1—Calculation of descriptive statistics (Table
8).

9.1.1 Mean, variance, and standard deviation calculation.
Refer to Table 9.

9.1.1.1 Table 9 contains columns for X and X2 for the data
in Table 8. These are used to compute the sample mean,
variance, and standard deviation statistics.

9.1.1.2 The mean:

x̄ 5
(
i51

n

xi

n
5

5732
10

5 573.2 (34)

9.1.1.3 The variance:

s2 5

n(
i51

n

xi
2 2 S (

i51

n

xiD 2

n~n 2 1!
(35)

5
10 ~3,285,792! 2 57322

10 ~9!
5 23.29

9.1.1.4 The standard deviation:

s 5 =23.29 5 4.83 (36)

9.1.2 Calculation of Order Statistics, Min, Max, and
Range—The order statistics are the items arranged in increas-
ing magnitude. For example, in Table 9 these are: 568, 570,
570, 570, 572, 572, 572, 576, 578, and 584. The smallest of the
order statistics is the min, in this case, 568; the largest of the
order statistics is the max, in this case, 584. The sample range
is max-min = 584 – 568 = 16.

9.1.3 Calculation of Median and Sample Quartiles:

9.1.3.1 The first quartile is the 25th empirical percentile.
When p = 0.25 and n = 10, r = 2.75. The integer portion of r
is 2 and the fractional portion is 0.75. The 25th empirical
percentile is estimated using the second-order statistic and
75 % of the distance between the second and third order
statistic. This is:

Q1 5 57010.75 ~570 2 570! 5 570 (37)

9.1.3.2 When the sample size is even, as here, the 50th

percentile or median is the mean of the two middle order
statistics. Here this is: (572 + 572)/2 = 572. The third quartile
is the 75th empirical percentile. When p = 0.75 and n = 10,
r = 8.25. The integer portion of r is 8 and the fractional portion
is 0.25. This gives for the 75th percentile the eighth order
statistic plus 25 % of the distance between the eighth and ninth
order statistic. This is:

Q3 5 57610.25 ~578 2 576! 5 577.5 (38)

9.1.3.3 Suppose we want the 90th percentile of the sample.
Then with p = 0.9, we find that r = 9.9. The 90th empirical
percentile is thus equal to the ninth-order statistic and 90 % of
the distance between the ninth and tenth order statistics. This is
578 + 0.9 (584 – 578) = 583.4.

9.1.4 The interquartile range is Q3–Q1.
9.1.5 Five-Number Summary—It is often useful to present

five numbers as a short summary of a set of data. These
numbers are called the five-number summary and include the
min, Q1, Q2, Q3, and max. Note that the five numbers are also
useful in the construction of a box plot.

9.1.6 The sample Z-scores or standardized values are com-
puted using the equation in 6.13. The Z-scores for the data in
Table 8 are shown in Table 10.

9.2 Example 2: Tabular and Graphical Methods:
9.2.1 Table 11 contains 270 observations of transverse

strength in psi of specimens of brick. Note that the data were
recorded to the nearest 10 psi so that any data point has an
uncertainty error11 of at least 65 psi. (Observe that every
number in the table has a 0 as the units’ digit place.) In
constructing a frequency distribution, we should therefore be
advised to round cell boundaries to the nearest 5 psi.

11 The uncertainty considered here is only related to the significant digits of the
reported data and does not include other sources of uncertainty such as measurement
error.

TABLE 8 Breaking Strength in Pounds of Ten Items of 0.104-in.
(0.264-cm) Hard-Drawn Copper Wire

578 570 572 570 576
572 568 570 572 584

TABLE 9 Calculations of the Sample Mean, Variance, and
Standard Deviation

item X X2

1 578 334,084
2 572 327,184
3 570 324,900
4 568 322,624
5 572 327,184
6 570 324,900
7 570 324,900
8 572 327,184
9 576 331,776

10 584 341,056
sum 5732 3,285,792
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9.2.1.1 To determine the number of classes and the class
width to use, we first determine the sample range. The range

may be determined from the sample min and max as
2010 – 270, yielding a span of 1740 psi. It may be desirable in
this case to create a distribution in increments of 100 units.
This would give us 18 classes. Keeping in mind that we shall
like any cell boundary to have a 5 in its units place, start at
some convenient location and add 100 consecutively to create
the cell boundaries through the data. For example if we start
with 255, the boundaries of the first class would be 255 to 355,
the second class 355 to 455, and to forth. In this way, the last
class would be 1955 to 2055.

9.2.1.2 Do not start with the number 250, since this would
give boundaries for the first class of 250 to 350, for the second
class of 350 to 450, and so forth. In this case, we would not be
able to decide on the basis of the boundaries alone to which
class a sample value of 350 belongs. This problem is rectified
when boundaries are constructed having a “5” in the units
place.

9.2.1.3 When this plan is followed, a set of classes and
associated frequencies can easily be determined. Once the
frequency column is determined, other columns that define the
relative frequency, the cumulative frequency, and cumulative
relative frequency are also easily determined. Table 12 con-
tains a frequency distribution for the brick strength data set in
Table 11.

9.2.1.4 Table 12 meets all the requirements for a frequency
distribution: frequencies add up to the sample size, n; relative
frequencies add up to 1; the last cumulative frequency is equal
to the sample size n = 270; and the last cumulative relative
frequency equals 1.

9.2.2 Using the information in the frequency distribution, a
histogram and Ogive curve are easily constructed. To construct
a frequency histogram for this data, use a bin width of 100 and
set the bin left and right boundary according to “lower” and
“upper” columns in Fig. 8. The bars should be made to look
contiguous as shown in Fig. 9.

9.2.2.1 The Ogive is constructed from the cumulative rela-
tive frequency column (CRF) of Table 12. In constructing the
Ogive, plot CRF against the “upper” column values that define
right boundaries for each class. This plot is illustrated in Fig.
10.

TABLE 10 Z-Scores Calculated Using the Data from Table 8

item X z-score

1 578 0.99464
2 572 –0.24866
3 570 –0.66309
4 568 –1.07753
5 572 –0.24866
6 570 –0.66309
7 570 –0.66309
8 572 –0.24866
9 576 0.58021

10 584 2.23794

TABLE 11 Strength of 270 Bricks of a Typical Brand, psiA

860 1320 820 1040 1000
920 1100 1250 1480 1150

1200 830 1100 890 270
850 920 940 1310 1330
920 1070 1630 670 1150

1090 700 910 1170 800
830 880 870 1340 840

1040 1080 1040 980 1240
1510 1060 840 940 1110
740 1230 1020 1060 990

1150 860 1100 840 1060
1000 720 800 1170 970
1140 1080 990 570 790
1030 960 870 800 1040
700 860 660 1180 780
920 1100 1080 980 760
860 990 890 940 910
950 880 970 1000 990

1020 750 1070 920 870
1300 970 800 650 1180
890 1030 1060 1610 1190

1080 970 960 1180 1050
910 1100 870 980 730
870 970 910 830 1030
810 1070 1100 460 860

1010 1190 1180 1080 1100
740 1080 860 1000 810

1070 830 1380 960 1360
1020 1390 830 820 980
1170 920 1120 1170 1160
960 1020 1090 2010 890

1180 740 880 790 1100
800 860 1010 1130 970

1240 1290 870 1260 1050
1020 820 1030 860 850
1030 990 1100 1080 1070
690 1020 890 700 880

1070 820 580 820 1060
820 1180 1350 1180 950

1230 950 900 760 1380
830 1220 1100 1090 1380

1100 1020 1380 1010 1030
830 850 630 710 900

1010 1230 780 1000 1150
860 1150 1400 880 730

1400 850 1010 1010 1240
920 1110 780 780 1190
800 800 1140 940 980

1050 710 890 1010 1120
1070 880 1240 940 860
1130 1330 1260 890 980
1000 1090 1140 970 1110
730 930 900 1150 900

1360 910 890 950 1270
A Source: ASTM Manual on Presentation of Data and Control Chart Analysis (2).

TABLE 12 Frequency Distribution of Brick Strength
Data (Table 11)

lower upper Freq.
Rel.

Freq.
Cume
Freq.

CumeRel.
Freq.

255 355 1 0.0037 1 0.0037
355 455 0 0.0000 1 0.0037
455 555 1 0.0037 2 0.0074
555 655 4 0.0148 6 0.0222
655 755 16 0.0593 22 0.0815
755 855 37 0.1370 59 0.2185
855 955 56 0.2074 115 0.4259
955 1055 55 0.2037 170 0.6296

1055 1155 50 0.1852 220 0.8148
1155 1255 25 0.0926 245 0.9074
1255 1355 11 0.0407 256 0.9482
1355 1455 9 0.0333 265 0.9815
1455 1555 2 0.0074 267 0.9889
1555 1655 2 0.0074 269 0.9963
1655 1755 0 0.0000 269 0.9963
1755 1855 0 0.0000 269 0.9963
1855 1955 0 0.0000 269 0.9963
1955 2055 1 0.0037 270 1.0000
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9.2.3 A box plot for these data would look like Fig. 11.
Notice that there are several points indicated by the triangle
symbol, and this may indicate that these points are potential
outliers since they lay more than 1.5 times the IQR from the
25th (to the left) and the 75th (to the right) percentiles.

9.2.4 Fig. 12 is the normal probability plot for the data in
Table 11. The plot was constructed using the theory outlined in
8.5.3, except here the probability scale is used. It is also
apparent that several outliers may be present.

9.2.5 Fig. 8 is a dot plot of the data in Table 11.

10. Keywords

10.1 boxplot; dot plot; empirical percentile; frequency dis-
tribution; histogram; kurtosis; mean; median; midrange;
Ogive; order statistic; population parameter; prediction; prob-
ability plot; q-q plot; range; sample statistic; skewness; stan-
dard deviation; standard error; variance

FIG. 8 Dot Plot for Table 11 Data

FIG. 9 Frequency Histogram Constructed from
Table 12 Information

FIG. 10 Relative Frequency Ogive Constructed from
Table 12 Information

FIG. 11 Boxplot for Table 11 Data
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FIG. 12 Normal Probability Plot for Table 11 Data
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