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Standard Practice for
Setting an Upper Confidence Bound For a Fraction or
Number of Non-Conforming items, or a Rate of Occurrence
for Non-conformities, Using Attribute Data, When There is a
Zero Response in the Sample1

This standard is issued under the fixed designation E2334; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

ε1 NOTE—Section 3 was editorially corrected in August 2013.
ε2 NOTE—Terms were editorially corrected in April 2016.

1. Scope

1.1 This practice presents methodology for the setting of an
upper confidence bound regarding a unknown fraction or
quantity non-conforming, or a rate of occurrence for
nonconformities, in cases where the method of attributes is
used and there is a zero response in a sample. Three cases are
considered.

1.1.1 The sample is selected from a process or a very large
population of discrete items, and the number of non-
conforming items in the sample is zero.

1.1.2 A sample of items is selected at random from a finite
lot of discrete items, and the number of non-conforming items
in the sample is zero.

1.1.3 The sample is a portion of a continuum (time, space,
volume, area etc.) and the number of non-conformities in the
sample is zero.

1.2 Allowance is made for misclassification error in this
standard, but only when misclassification rates are well under-
stood or known and can be approximated numerically.

2. Referenced Documents

2.1 ASTM Standards:2

E141 Practice for Acceptance of Evidence Based on the
Results of Probability Sampling

E456 Terminology Relating to Quality and Statistics
E1402 Guide for Sampling Design
E1994 Practice for Use of Process Oriented AOQL and

LTPD Sampling Plans
E2586 Practice for Calculating and Using Basic Statistics
2.2 ISO Standards:3

ISO 3534-1 Statistics—Vocabulary and Symbols, Part 1:
Probability and General Statistical Terms

ISO 3534-2 Statistics—Vocabulary and Symbols, Part 2:
Statistical Quality Control

NOTE 1—Samples discussed in this standard should meet the require-
ments (or approximately so) of a probability sample as defined in
Terminologies E1402 or E456.

3. Terminology

3.1 Definitions—Unless otherwise noted in this standard, all
terms relating to quality and statistics are defined in Terminol-
ogy E456.

3.1.1 attributes, method of, n—measurement of quality by
the method of attributes consists of noting the presence (or
absence) of some characteristic or attribute in each of the units
in the group under consideration, and counting how many of
the units do (or do not) possess the quality attribute, or how
many such events occur in the unit, group or area.

3.1.2 confidence bound, n—see confidence limit. E2586

3.1.3 confidence coeffıcient, n—see confidence level. E2586

3.1.4 confidence interval, n—an interval estimate [L, U]
with the statistics L and U as limits for the parameter θ and
with confidence level 1 – α, where Pr(L ≤ θ ≤ U) ≥ 1 – α.

E2586
3.1.4.1 Discussion—The confidence level, 1 – α, reflects the

proportion of cases that the confidence interval [L, U] would
contain or cover the true parameter value in a series of repeated
random samples under identical conditions. Once L and U are
given values, the resulting confidence interval either does or
does not contain it. In this sense "confidence" applies not to the

1 This practice is under the jurisdiction of ASTM Committee E11 on Quality and
Statistics and is the direct responsibility of Subcommittee E11.30 on Statistical
Quality Control.
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particular interval but only to the long run proportion of cases
when repeating the procedure many times.

3.1.5 confidence level, n—the value 1-α, of the probability
associated with a confidence interval, often expressed as a
percentage. E2586

3.1.6 confidence limit, n—each of the limits, L and U, of a
confidence interval, or the limit of a one-sided confidence
interval. E2586

3.1.7 item, n—an object or quantity of material on which a
set of observations can be made.

3.1.7.1 Discussion—As used in this standard, “set” denotes
a single variable (the defined attribute). The term “sampling
unit” is also used to denote an “item” (see Practice E141).

3.1.8 non-conforming item, n—an item containing at least
one non-conformity. ISO 3534-2

3.1.8.1 Discussion—The term “defective item” is also used
in this context.

3.1.9 non-conformity, n—the non-fulfillment of a specified
requirement. ISO 3534-2

3.1.9.1 Discussion—The term “defect” is also used in this
context.

3.1.10 population, n—the totality of items or units of
material under consideration. E2586

3.1.11 probability sample, n—a sample in which the sam-
pling units are selected by a chance process such that a
specified probability of selection can be attached to each
possible sample that can be selected. E1402

3.1.12 sample, n—a group of observations or test results
taken from a larger collection of observations or test results,
which serves to provide information that may be used as a basis
for making a decision concerning the larger collection. E2586

3.2 Definitions of Terms Specific to This Standard:
3.2.1 zero response, n—in the method of attributes, the

phrase used to denote that zero non-conforming items or zero
non-conformities were found (observed) in the item(s), unit,
group, or area sampled.

3.3 Symbols:
3.3.1 A—the assurance index, as a percent or a probability

value.

3.3.2 C—confidence coefficient as a percent or as a prob-
ability value.

3.3.3 Cd—the confidence coefficient calculated that a pa-
rameter meets a certain requirement, that is, that p ≤ p0, that D
≤ D0 or that λ ≤ λ0, when there is a zero response in the sample.

3.3.4 D—the number of non-conforming items in a finite
population containing N items.

3.3.5 D0—a specified value of D for which a researcher will
calculate a confidence coefficient for the statement, D ≤ D0,
when there is a zero response in the sample.

3.3.6 Du—the upper confidence bound for the parameter D.

3.3.7 N—the number of items in a finite population.

3.3.8 n—the sample size, that is, the number of items in a
sample.

3.3.9 nR—the sample size required.

3.3.10 p—a process fraction non-conforming.

3.3.11 p0—a specified value of p for which a researcher will
calculate a confidence coefficient, for the statement p ≤ p0,
when there is a zero response in the sample.

3.3.12 pu—the upper confidence bound for the parameter p.

3.3.13 λ—the mean number of non-conformities (or events)
over some area of interest for a Poisson process.

3.3.14 λ0—a specific value of λ for which a researcher will
calculate a confidence coefficient for the statement, λ ≤ λ0,
when there is a zero response in the sample.

3.3.15 λu—the upper confidence bound for the parameter λ.

3.3.16 θ1—the probability of classifying a conforming item
as non-conforming; or of finding a nonconformity where none
exists.

3.3.17 θ2—the probability of classifying a non-conforming
item as conforming; or of failing to find a non-conformity
where one should have been found.

4. Significance and Use

4.1 In Case 1, the sample is selected from a process or a
very large population of interest. The population is essentially
unlimited, and each item either has or has not the defined
attribute. The population (process) has an unknown fraction of
items p (long run average process non-conforming) having the
attribute. The sample is a group of n discrete items selected at
random from the process or population under consideration,
and the attribute is not exhibited in the sample. The objective
is to determine an upper confidence bound, pu, for the unknown
fraction p whereby one can claim that p ≤ pu with some
confidence coefficient (probability) C. The binomial distribu-
tion is the sampling distribution in this case.

4.2 In Case 2, a sample of n items is selected at random
from a finite lot of N items. Like Case 1, each item either has
or has not the defined attribute, and the population has an
unknown number, D, of items having the attribute. The sample
does not exhibit the attribute. The objective is to determine an
upper confidence bound, Du, for the unknown number D,
whereby one can claim that D ≤ Du with some confidence
coefficient (probability) C. The hypergeometric distribution is
the sampling distribution in this case.

4.3 In Case 3, there is a process, but the output is a
continuum, such as area (for example, a roll of paper or other
material, a field of crop), volume (for example, a volume of
liquid or gas), or time (for example, hours, days, quarterly, etc.)
The sample size is defined as that portion of the “continuum”
sampled, and the defined attribute may occur any number of
times over the sampled portion. There is an unknown average
rate of occurrence, λ, for the defined attribute over the sampled
interval of the continuum that is of interest. The sample does
not exhibit the attribute. For a roll of paper this might be
blemishes per 100 ft2; for a volume of liquid, microbes per
cubic litre; for a field of crop, spores per acre; for a time
interval, calls per hour, customers per day or accidents per
quarter. The rate, λ, is proportional to the size of the interval of
interest. Thus, if λ = 12 blemishes per 100 ft2 of paper, this is
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equivalent to 1.2 blemishes per 10 ft2 or 30 blemishes per 250
ft2. It is important to keep in mind the size of the interval in the
analysis and interpretation. The objective is to determine an
upper confidence bound, λu, for the unknown occurrence rate λ,
whereby one can claim that λ ≤ λu with some confidence
coefficient (probability) C. The Poisson distribution is the
sampling distribution in this case.

4.4 A variation on Case 3 is the situation where the sampled
“interval” is really a group of discrete items, and the defined
attribute may occur any number of times within an item. This
might be the case where the continuum is a process producing
discrete items such as metal parts, and the attribute is defined
as a scratch. Any number of scratches could occur on any
single item. In such a case the occurrence rate, λ, might be
defined as scratches per 1000 parts or some similar metric.

4.5 In each case a sample of items or a portion of a
continuum is examined for the presence of a defined attribute,
and the attribute is not observed (that is, a zero response). The
objective is to determine an upper confidence bound for either
an unknown proportion, p (Case 1), an unknown quantity, D
(Case 2), or an unknown rate of occurrence, λ (Case 3). In this
standard, confidence means the probability that the unknown
parameter is not more than the upper bound. More generally,
these methods determine a relationship among sample size,
confidence and the upper confidence bound. They can be used
to determine the sample size required to demonstrate a specific
p, D or λ with some degree of confidence. They can also be
used to determine the degree of confidence achieved in
demonstrating a specified p, D or λ.

4.6 In this standard allowance is made for misclassification
error but only when misclassification rates are well understood
or known, and can be approximated numerically.

4.7 It is possible to impose the language of classical
acceptance sampling theory on this method. Terms such as Lot
Tolerance Percent Defective, Acceptable Quality Level, Con-
sumer Quality Level are not used in this standard. For more
information on these terms, see Practice E1994.

5. Procedure

5.1 When a sample is inspected and a zero response is
exhibited with respect to a defined attribute, we refer to this
event as “all_zeros.” Formulas for calculating the probability
of “all_zeros” in a sample are based on the binomial, the
hypergeometric and the Poisson probability distributions.
When there is the possibility of misclassification error, adjust-
ments to these distributions are used. This practice will clarify
when each distribution is appropriate and how misclassification
error is incorporated. Three basic cases are considered as
described in Section 4. Formulas and examples for each case
are given below. Mathematical notes are given in Appendix
X1.

5.2 In some applications, the measurement method is
known to be fallible to some extent resulting in a significant
misclassification error. If experiments with repeated measure-
ments have established the rates of misclassification, and they
are known to be constant, they should be included in the

calculating formulas. Two misclassification error probabilities
are defined for this practice:

5.2.1 Let θ1 be the probability of reporting a non-
conforming item when the item is really conforming.

5.2.2 Let θ2 be the probability of reporting a conforming
item when the item is really non-conforming.

5.2.3 Almost all applications of this standard require that θ1

be known to be 0 (see 6.1.2).

5.3 Formulas for upper confidence bounds in three cases:
5.3.1 Case 1—The item is a completely discrete object and

the attribute is either present or not within the item. Only one
response is recorded per item (either go or no-go). The sample
items originate from a process and hence the future population
of interest is potentially unlimited in extent so long as the
process remains in statistical control. The item having the
attribute is often referred to as a defective item or a non-
conforming item or unit. The sample consists of n randomly
selected items from the population of interest. The n items are
inspected for the defined attribute. The sampling distribution is
the binomial with parameters p equal to the process (popula-
tion) fraction non-conforming and n the sample size. When
zero non-conforming items are observed in the sample (the
event “all_zeros”), and there are no misclassification errors, the
upper confidence bound, pu, at confidence level C (0 < C <1),
for the population proportion non-conforming is:

pu 5 1 2 =n
1 2 C (1)

5.3.1.1 Table 1 contains the calculated upper confidence

TABLE 1 Upper 100C% Confidence Bound, pu, for the Process
Fraction Non-Conforming, p, When Zero non-conforming Units

appear in a sample of Size, n

n C = 0.90 C = 0.95 C = 0.99
5 0.369043 0.450720 0.601893
10 0.205672 0.258866 0.369043
15 0.142304 0.181036 0.264358
20 0.108749 0.139108 0.205672
30 0.073881 0.095034 0.142304
40 0.055939 0.072158 0.108749
50 0.045007 0.058155 0.087989
60 0.037649 0.048703 0.073881
70 0.032359 0.041893 0.063671
80 0.028372 0.036754 0.055939
90 0.025260 0.032738 0.049881
100 0.022763 0.029513 0.045007
150 0.015233 0.019773 0.030235
175 0.013071 0.016973 0.025972
200 0.011447 0.014867 0.022763
225 0.010182 0.013226 0.020259
250 0.09168 0.011911 0.018252
275 0.008338 0.010834 0.016607
300 0.007646 0.009936 0.015233
350 0.006557 0.008523 0.013071
400 0.005740 0.007461 0.011447
450 0.005104 0.006635 0.010182
500 0.004595 0.005974 0.009168
750 0.003065 0.003986 0.006121
1000 0.002300 0.002991 0.004595
1500 0.001534 0.001995 0.003065
2000 0.001151 0.001497 0.002300
5000 0.000460 0.000599 0.000921
10 000 0.000230 0.000300 0.000460
25 000 0.000092 0.000120 0.000184
50 000 0.000046 0.000060 0.000092
80 000 0.000029 0.000037 0.000058
100 000 0.000023 0.000030 0.000046
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bound for the process fraction non-conforming when x=0
non-conforming items appear in a sample of size n. Confidence
is 100C%. For example, if n=250 objects are sampled and there
are x=0 non-conforming objects in the sample, then the upper
95% confidence bound for the process fraction non-conforming
is approximately 0.01191 or 1.191% non-conforming. Eq 1
was applied.

5.3.1.2 For the case with misclassification errors, when zero
non-conforming items are observed in the sample (all_zeros),
the upper confidence bound, pu, at confidence level C is:

pu 5
1 2 θ1 2 =n

1 2 C

~1 2 θ1 2 θ2!
(2)

5.3.1.3 Eq 2 reduces to Eq 1 when θ1 = θ2 = 0. To find the
minimum sample size required (nR) to state a confidence bound
of pu at confidence C if zero non-conforming items are to be
observed in the sample, solve Eq 2 for n. This is:

nR 5
ln~1 2 C!

ln~~1 2 pu! ~1 2 θ1!1puθ2!
(3)

5.3.1.4 To find the confidence demonstrated (Cd) in the
claim that an unknown fraction non-conforming p is no more
than a specified value, say p0, when zero non-conformances are
observed in a sample of n items solve Eq 2 for C. This is:

Cd 5 1 2 ~~1 2 p0! ~1 2 θ1!1p0θ2!n (4)

5.3.2 Case 2—The item is a completely discrete object and
the attribute is either present or not within the item. Only one
response is recorded per item (either go or no-go). The sample
items originate from a finite lot or population of N items. The
sample consists of n randomly selected items from among the
N, without replacement. The population proportion defective is
p = D/N where the unknown D is the integer number of
non-conforming (defective) items among the N. The sampling
distribution is the hypergeometric with parameters N, D and n.
When zero non-conforming items are observed in the sample
(all_zeros), and there are no misclassification errors, the upper
confidence bound, at confidence level C, for the unknown
number of non-conforming items, D, in the population is found
by solving Eq 5 iteratively for Du.

C 5 1 2 )
i51

n S 1 2
Du

N 2 i11 D (5)

5.3.2.1 For the case with misclassification errors, when zero
non-conforming items are observed in the sample (all_zeros),
the upper confidence bound, Du, at confidence level C is found
by solving Eq 6 iteratively for Du.

C 5 12 (6)

SN 2 Du

n D ~1 2 θ1!n1 (
x51

min~Du, n! SN 2 Du

n 2 x D ~1 2 θ1!n2x SDu

x D θ2
x

SN

n D
5.3.2.2 Eq 5 and 6 must be solved numerically for Du. For

fixed values of C, N, n, θ1 and θ2, we evaluate the right hand
side for Du = 0,1,2 … until we reach a point where the right
side is just greater than or equal to the left side. The smallest
Du for which this is true is the upper bound at confidence level

C. To find a sample size required (for fixed values of Du, C, N,
θ1 and θ2) to make Eq 6 true when zero non-conformances are
to be exhibited in the sample, we evaluate the equation
iteratively for n = 1,2,3, … until the right side is just greater
than or equal to the left side. To determine the confidence
demonstrated (for fixed values of D0, N, n, θ1 and θ2) in the
claim that D ≤ D0, for a specified D0, solve Eq 6 for C and
evaluate the resulting expression, designating C as Cd.

5.3.3 Case 3—There is a process but the output is a
continuum. The sample is that portion of the continuum
observed, and the defined attribute can occur any number of
times over the sample. When the attribute is found we often
refer to it as a “defect” or non-conformity. As such, there is no
integer sample size similar to Cases 1 and 2. It is usual to
define λ to be the rate of generation of non-conformities
(defects) per unit area, volume or time within the continuum.
The sampling distribution is the Poisson with parameter λ.
When zero non-conformities are observed in the sample
(all_zeros), and there are no misclassification errors, the upper
confidence bound, λu, at confidence level C, for the process rate
λ is:

λu 5 2ln~1 2 C! (7)

5.3.3.1 For the case with misclassification errors, when zero
non-conformities are observed in the sample, the upper confi-
dence bound, λu, at confidence level C is:

λu 5
2ln~1 2 C!
1 2 θ1 2 θ2

(8)

5.3.3.2 To determine the confidence demonstrated, Cd, in
the claim that λ ≤ λ0, for some specified λ0, substitute λ0 for λu

in Eq 8 and solve for C, designated it as Cd. This gives:

Cd 5 1 2 e2λ0~12θ12θ2! (9)

5.3.3.3 A related use for the Poisson distribution, in this
context, is as an approximation to the binomial whenever the
sample size, n, is large and the fraction non-conforming, p, is
small. This approximation is very good when n ≥ 100 and np
≤ 10. See Ref (1).4 To use this theory, set npu = λu in Eq 8.
When x = 0, therefore, one has an upper bound, pu, of:

pu 5
2ln~1 2 C!

n~1 2 θ1 2 θ2!
(10)

5.3.3.4 In each of the equations of Section 5, we may set θ1

and/or θ2 equal to zero if that misclassification error parameter
is negligible. We shall see in Section 7 that we often set θ1 =
0, particularly for large sample sizes.

6. Illustrations and Examples

6.1 Case 1 Examples and Illustrations:
6.1.1 An injection-molding machine produces plastic com-

ponents for the automotive industry. The machine may some-
times produce an incomplete part referred to in the trade as a
“short shot.” On a daily basis an inspector will look at a sample
of n = 400 parts from this process for the presence of the “short
shot.” When zero non-conformances are exhibited in the

4 The boldface numbers in parentheses refer to the list of references at the end of
this standard.
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sample, the day’s production is accepted. Determine the 90 %
upper confidence bound for the process fraction non-
conforming for this sampling scheme. Assume misclassifica-
tion errors are negligible. Using Eq 1 we have:

pu 5 1 2=120.9

400
5 0.00574 (11)

6.1.1.1 A sample design question is whether n = 400 is
adequate. Suppose the consumer desires that there be 90 %
confidence in the claim that p = p0 = 0.004. What sample size
will provide this protection? Using Eq 3 with misclassification
error parameters set to 0, we have:

nR 5
ln~1 2 0.9!

ln~1 2 0.004!
'575 (12)

6.1.1.2 A sample of 575 without incidence of a non-
conforming item is sufficient. Suppose next that a total of 500
items have been inspected without incidence of a non-
conforming item. What confidence may we have in the claim
that p ≤ p0 = 0.004? Using Eq 4 with misclassification error
parameters set to 0, we have:

Cd $ 1 2 ~1 2 0.004!500 5 0.8652 (13)

6.1.1.3 There is at least 86.5 % confidence that we meet the
requirement.

6.1.2 Consider the effect of a misclassification error due to
θ1. Suppose for the example in 6.1.1 that θ1 = 0.1 and θ2 = 0.
Using Eq 2 we find that pu = −0.1047. This result indicates the
strange effect of misclassification errors on such calculations.
Since pu is an upper bound for a probability, it must itself be
bounded between 0 and 1. The problem can be understood
mathematically by considering the numerator in Eq 2. For a
specified confidence, C, in order for this numerator to be
greater than 0, we must have that:

θ1,1 2 =n
1 2 C (14)

6.1.2.1 That is, when zero non-conforming items appear in
the sample, the error due to θ1 must always be less than the
upper bound that would result when no misclassification error
is considered. In this example this means that θ1 ≤ 0.00574.
However, for a confidence level of C = 0.9, the sample size
would have to be no larger than n = 21 to consider θ1 = 0.1.

6.1.2.2 On a more practical level, recall that θ1 is the
probability of misclassifying a conforming item as non-
conforming. Even for a modest sample size, we should not
expect to observe zero non-conforming items in the sample
when θ1 = 0.1. Indeed, if the proportion p were really 0, and if
θ1 were really as high as 0.1, the probability that zero
non-conforming items would result in a sample of 400 items
can be shown to be approximately 5E-19, or essentially 0.
Again, using C = 0.9 and p = 0 to begin with, even when n =
50, the probability of zero non-conforming items when θ1 = 0.1
is approximately 0.005, a rare event. Because of these prob-
lems and the rather drastic effect that θ1 has on the case of a
sample containing all conforming items, it is recommended
that θ1 be known equal to 0 in this standard.

6.1.3 Consider the effect of misclassifying a non-
conforming item as a conforming one. Again, suppose for the
example in 6.1.1 that θ1 = 0 and θ2 = 0.1. Using Eq 2 we find

that: pu = 0.00638. Here pu increases by a modest amount from
0.00574, without misclassification error. Now a sample size of
n = 360, but with no misclassification error, would also achieve
approximately pu = 0.00638. Thus, the elimination of misclas-
sification error, in this example, would effectively reduce the
sample size by 40 observations.

6.2 Case 2 Examples and Illustrations:
6.2.1 A lot of N = 5000 items was just received and a sample

of n = 200 indicated zero defective items. At 90 % confidence
what is the upper bound, Du, for the number of non-conforming
items, D, in the lot? Use Eq 5 in a table such as Table 2.

6.2.1.1 From Table 2 it is seen that confidence (C) will be
just slightly more than 0.9 when Du = 57. Thus the upper bound
at 90 % confidence is Du = 57. A table such as Table 2 is easily
created in a spreadsheet type program by programming Eq 5
and evaluating the formula at a range of values of Du.

6.2.2 Packaging is often an important component of a
product, and damaged product is often revealed by the pres-
ence of damaged packaging. In inspecting a shipment of
delicate electronic product containing N = 2000 units, a firm
would like to claim that the lot contains no more than 1 %
damaged items, at 95 % confidence. What sample size would
satisfy this requirement? For example, is n = 100 adequate?
Assume no misclassification error, and let C = 0.95. Set Du =
(0.01)2000 = 20 and use Eq 5 iteratively. Again, a table of
values of C versus n will reveal the sample size.

6.2.2.1 From Table 3 it is seen that Confidence (C) will be
just slightly more than 0.95 when n = 277. The required sample
size is 277. If zero non-conforming items should be the result
in a sample of 277 items, the upper bound of the number of
defective items in the lot (N = 2000) is Du = 20.

6.2.3 Consider a misclassification error of 20 % or θ2 =
0.20, and suppose that under such relaxed measurement
conditions we might choose to increase the sample size to n =
400 from the 277. Would this preserve a confidence of 95 %
that D ≤ Du = 20? Using Eq 6 with N = 2000, n = 400, Du = 20
and θ2 = 0.20 we can solve for C and find that C = 0.970. In fact
as few as n = 347 would make the confidence just above 0.95.
The actual value is C = 0.9502.

6.2.4 Further Considerations, With Finite Lots—Under il-
lustration 6.2.2, suppose the consumer complained that a
quality level of 20 out of 2000 was not good enough and asks
what would happen to the sample size if Du were set at its most
stringent level, 1 out of 2000. Application of Eq 5 reduces to C
= n/N. The confidence is seen to be no larger than the fraction

TABLE 2 Value of C in Eq 5 where N = 5000, n = 200, and Varying
Du

Du C Du C

40 0.805906 51 0.876637
41 0.813733 52 0.881622
42 0.821245 53 0.886407
43 0.828456 54 0.890999
44 0.835377 55 0.895407
45 0.842021 56 0.899637
46 0.848397 57 0.903697
47 0.854518 58 0.907594
48 0.860392 59 0.911333
49 0.866030 60 0.914922
50 0.871442 61 0.918367
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of the sample size relative to the finite lot size. For a confidence
of 95 % and for N = 1000, the sample size would have to be at
least n = 0.95(1000) = 950.

6.2.4.1 Alternatively, if one desires a confidence C that the
population contains 0 defects, anticipating X = 0 defects in the
sample, then one must sample at least n = CN units. From a
practical point of view, any sampling fraction much over
two-thirds of the lot size would lead one to inspect every item.
T. Wright (1990) (2), who concluded that to attain 99 %
confidence the sample size should be at least 99 % of the lot
size, pointed out this result.

6.3 Case 3 Examples and Illustrations:
6.3.1 An extrusion process produces plastic tubing used in

various engines to transfer coolant fluid. An inspector will look
at 100 ft of the product for the presence of blemishes on the
outer surface. The material will be released or accepted
whenever X = 0 blemishes are observed. It is convenient to use
the size of the sample as the base unit for the rate when the
sampled amount is specified. In this illustration, this is the
100-ft length. At 98 % confidence, what is the upper confi-
dence bound for the rate, λ, of blemish generation in 100 ft
lengths of this tubing? Assuming no misclassification error,
using Eq 7 we have:

λ # λu 5 2ln~1 2 0.98! 5 3.9 (15)

6.3.1.1 A consumer may decide that a blemish rate of λ0 =
1 is the largest tolerable rate for 100 foot lengths. What is the
confidence demonstrated that λ ≤ λ0 = 1 when zero blemishes
are observed in 100 foot lengths of tubing. Using Eq 9, and
again assuming no misclassification errors, the answer is:

Cd 5 1 2 e21 5 0.632 (16)

6.3.1.2 This confidence, approximately 63 %, is not accept-
able to the consumer; however, when x = 0 blemishes is
observed on the 100 foot sample, it is not possible to meet the
requirement of λ0 = 1 defect per 100 ft of product with a
confidence of 98 %. To meet the requirement as stated we must
specify a larger sample; that is, a longer tubing length. This is
accomplished by remembering that the rate constant λ is
proportional to the size of the sample. For our requirement, C
= 0.98, and so -ln(1− 0.98) = 3.9. If the size of the new sample
is denoted by s, then the proportion is:

3.9
s ft

5
1

100 ft
→s 5 390 ft (17)

6.3.1.3 One should then look at 390 ft of the product and
find x = 0 blemishes. This would achieve the required confi-
dence of C = 0.98 that λ ≤ λ0 = 1 blemish per hundred ft of
tubing.

6.3.2 Consider a misclassification error rate of θ2 = 20 % in
failing to detect blemishes. Use Eq 8 and the upper bound
becomes λu = −ln(1 − 0.98)/(1 − 0.2) = 4.89 blemishes per 100
ft of tubing length. To meet a requirement of λu = 1, we follow
the same proportional argument as before, we solve:

4.89
s ft

5
1

100 ft
→s 5 489 ft (18)

6.3.2.1 One should look at 489 ft of the product and find x
= 0 blemishes to satisfy the requirement. Note the increase in
the size of the sample (390 to 490 ft) due to the presence of
misclassification error.

6.3.3 Consider a shipment, of U.S. burley tobacco. A test
portion of 200 g was assayed and no disease was found. To
reflect the seriousness of the transmission event it is appropri-
ate to set C = 0.99 and, using Eq 7, assuming no misclassifi-
cation error, the upper bound for λ is λu = 4.6. The inference is
that, although no disease was found in 200 g, the underlying
rate may be as much as 4.6 viable spores per 200 g.

6.3.4 To further illustrate the proportionality between the
size of the unit sampled and the average number of defects, λ,
per unit, suppose a 300 ft length were inspected with x = 0
blemishes found. Assume no misclassification error. At a 90 %
confidence level what is the upper confidence bound on the
mean number of blemishes? For a unit defined as a 300 ft
length λu = −ln(1 − 0.9) = 2.3 blemishes per 300 ft. We can use
this result to find the mean number of blemishes for any
arbitrary unit length. For a 1000 ft unit, λu = 2.3(1000/300) =
7.7 blemishes per 1000 ft of tubing. For a 250 ft unit λu =
2.3(250/300) = 1.9 blemishes per 250 ft of tubing.

6.3.5 We consider a process where the output is a discrete
item but where a defined attribute may occur any number of
times on any item. A sample of n items is selected and zero
occurrences of the defined attribute is observed. We want to
compute λu for this case. Suppose a paper company produces
sheets of paper and is interested in the rate of blemishes that
occurs in batches of 1000 sheets from the process. A sample of
500 sheets is inspected for the presence of blemishes and a zero
response is reported. What is λu for batches of size 1000
sheets?

6.3.5.1 Assuming no misclassification error, and using a
confidence level of 90 %, first compute the upper bound for the
initial sample of 500 sheets using Eq 7. This is λ ≤ λu = −ln(1
− 0.9) = 2.3 blemishes per 500 sheets. For 1000 sheets, using
the proportionality idea, we double this figure. Thus, for 1000
sheets of the paper, λ ≤ λu = 4.6 at 90 % confidence.

6.4 These illustrations clearly show the role of misclassifi-
cation error. Two conclusions may be drawn. First, any
procedure that rests on getting zero non-conforming items (or
nonconformities) in a sequence of observations, such as those
considered in this standard, cannot tolerate the error of calling
a conforming item non-conforming (or mistakenly finding
non-conformances where none exist). This error probability is
θ1. Any time a defect is recorded it should be checked and

TABLE 3 Value of C in Eq 5 where N = 2000, Du = 20, and Varying
n

n C n C

100 0.643314 274 0.948285
125 0.726689 275 0.948884
150 0.791327 276 0.949476
175 0.841265 277 0.950063
200 0.879709 278 0.950642
225 0.909197 279 0.951216
250 0.931731 280 0.951782
275 0.948884 281 0.952343
300 0.961889 282 0.952898
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validated as genuine. Second, there should be some way to
insure that the error of calling a non-conforming item conform-
ing (or of missing non-conformances), θ2, does not get out of
hand, although a moderate error of this type, say θ2 < 20 %, is
not too serious.

6.4.1 Inspectors should be properly trained, and, whenever
possible, one should introduce genuine non-conformances at
random places among the observations and verify that they are
recorded as non-conforming. The inspectors would be advised
of this “salting” and be on heightened alert. This would tend to
keep θ2 minimized. Under these two operating conditions it is
reasonable to assume that if there is any misclassification error
it will be of the kind where θ1 = 0 and θ2 < 0.2.

7. Comments Concerning Confidence and Upper
Confidence Bounds

7.1 Whenever x = 0 events is observed, whether this be a
process, a finite lot or a continuum, there are really a whole set
of confidence coefficients and associated upper bounds that one
could choose. To illustrate, suppose we find x = 0 events in a
sample of n = 50 from a process whose unknown event
probability is p. We might claim that p ≤ 0.0273 with 75 %
confidence or p ≤ 0.0450 with 90 % confidence or p ≤ 0.0582
with 95 % confidence. This is graphically depicted in Fig. 1
where confidence, C, is plotted against the upper confidence
bound, pu, for the process case. Eq 1 was used for Fig. 1. This
is:

pu 5 1 2 ~1 2 C!
1
50 (19)

7.1.1 To see how the sample size affects the relationship
between confidence and the upper bound consider Table 4. This
shows the upper confidence bound as a function of selected
sample sizes and confidence coefficients.

7.2 For a process continuum case, consider observing x = 0
events in a sample of 100 ft of plastic tubing. For the average
number of events per 100 ft of tubing the conclusion could be,
“Not more than 3 defects with a confidence of 95 %.” It could
also be, “Not more than 4.6 defects with 99 % confidence” or
“Not more than 6.9 defects with confidence 99.9 %.” Going the
other way, “Not more than 0.7 defects with 50 % confidence”
or “Not more than 2.3 defects with 90 % confidence.” This is

graphically depicted in Fig. 2 where confidence, C, is plotted
against the upper confidence bound for the average event rate,
λu, for the process continuum case. Relationship Eq 7 was
used. This is:

λu 5 2ln~1 2 C! (20)

7.2.1 There is thus a natural trade-off between the confi-
dence coefficient and the upper confidence bound. For a fixed
sample size (or fixed portion of a continuum), if more
confidence is desired one has to settle for a larger upper
confidence bound; if it is desired to shrink the upper confidence
bound, one shall have to settle for less confidence. In any case,
all of the possible confidence/upper bound pair statements are
part of the conclusion, so that a more complete inference would
assert all of them. It has been suggested that a collection of C
values such as {50 %, 90 %, 95 % and 99 %} be used as a
standard. The four associated bounding values could be called
“the standard boundary” or “confidence set” for a given sample
size. Applying this to the examples in this section leads to the
following “standard boundary.”
Case 1 example: n = 50, process, p # pu

Confidence 50 % 90 % 95 % 99 %
Bound, pu 0.0138 0.0450 0.0582 0.0880

FIG. 1 Confidence Coefficient versus Upper Confidence Bound
for a Process Event probability, p; Sample Size, n = 50; Case 1

TABLE 4 Upper Confidence Bounds for the Process Event
Probability p, at Selected Sample Sizes, n, and Confidence

Coefficients, when X = 0 Events are Observed in the Sample;
Case 1

Confidence

n 0.5 0.75 0.9 0.95 0.99

50 0.0138 0.0273 0.0450 0.0582 0.0880
100 0.0069 0.0138 0.0228 0.0295 0.0450
150 0.0046 0.0092 0.0152 0.0198 0.0302
200 0.0035 0.0069 0.0114 0.0149 0.0228
250 0.0028 0.0055 0.0092 0.0119 0.0183
300 0.0023 0.0046 0.0076 0.0099 0.0152
350 0.0020 0.0040 0.0066 0.0085 0.0131
400 0.0017 0.0035 0.0057 0.0075 0.0114
450 0.0015 0.0031 0.0051 0.0066 0.0102
500 0.0014 0.0028 0.0046 0.0060 0.0092

FIG. 2 Confidence Coefficient versus Upper Confidence Bound
for the Average Number of Events, λ; Case 3

(Process Continuum)
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Case 3 example: process continuum, λ # λu

Confidence 50 % 90 % 95 % 99 %
Bound, λu 0.693 2.30 3.00 4.61

7.2.2 Table 4 illustrates/compares how the “standard bound-
ary” changes as a function of sample size for the process, Case
1 model. Of course in the continuum case, one has to bear in
mind that the upper bound is proportional to the size of the
sampled portion. Some users may prefer the simplicity of a
single bound but they should be aware that the complete
inference is, in fact, the whole boundary set with differing
confidence levels along its extent. Often a customer will
specify the confidence level requirement in advance. C = 90 %
is common in the mechanical component industry; C = 95 % is
common in many other quarters. Still, other industries/
applications will require greater confidence.

7.3 It makes some sense that a higher confidence and a
larger sample size should be expected for situations where
there are grave consequences if even a very small chance exists
of a non-zero response. Conversely, when a small sample size
is being used then one should expect lower levels of confidence
and a higher bound. In the majority of applications the user will
have to assess the possible losses involved if some chance
exists of a non-zero response and set the sample size in
accordance with his/her tolerance for the probability of a
non-zero response.

7.3.1 There may be, however, cases where a certain sample
size is conventional and/or the user wishes to avoid the
complexities of the “standard boundary.” In such cases, the
user may use the so-called “assurance” inference. See Ref (3).
An assurance of A means that there is a confidence A that the
upper confidence bound is no more than 1 − A. For example,
for a process quality scenario, with a sample of n = 250, an
assurance of 98.37 % may be reached. This means that the
confidence coefficient is C = 98.37 % and the upper bound is pu

= 0.0163. For a sample of n = 1000, an assurance of 99.48 %
may be reached. In this case the achieved confidence coeffi-
cient is C = 99.48 % and the upper bound is pu = 0.00524. For
a given sample size, the assurance achieved is fixed. Table 5
shows the sample size required to achieve a specified assurance
where x = 0 events is expected.

7.3.2 In working with the assurance concept, the following
equations may be used. Eq 21 is an algebraic variant of the
definition of assurance as the point at which pu = 1 − C. Eq 22
is Eq 21 solved for n.

An1A 2 1 5 0 (21)

n 5
ln~1 2 A!

ln~A!
(22)

7.3.3 For a given sample size, n, the solution to Eq 21 is the
achieved assurance. For a sample size requirement to achieve
a desired assurance use Eq 22 to solve for the required n. For
example, what assurance can be claimed for a sample of n =
640? Eq 21 is solved iteratively for A. The answer: A =
99.24 %. If the desire is to state an assurance of A = 99.73 %,
the sample size required, using Eq 22, is n = 2188.

8. Keywords

8.1 attribute; confidence coefficient; defect; defective; non-
conforming item; non-conformity; zero response

APPENDIX

(Nonmandatory Information)

X1. MATHEMATICAL MATERIAL

X1.1 The Binomial Distribution

f~x! 5 S n

x D px~1 2 p!n2x, x 5 0,1,2,3, …n (X1.1)

X1.1.1 For the binomial, n is the sample size, p is a fixed
“success” probability and x is the number of observed suc-
cesses among a sample of n trials. The probability function f(x)
is the probability of observing exactly x successes in a sample
of n. In the context of this standard p may be taken as the
unknown fraction nonconforming that a process is generating
and a “success” is defined as a non-conforming item. f(x) is the
probability that a sample of n items contains exactly x
non-conforming items. When x = 0 is observed, we say that the
sample exhibited a “zero-response” or “all_zeros.” The prob-
ability P(all_zeros) is the same thing as f(0). For the binomial
this is:

P~all_zeros! 5 f~0! 5 ~1 2 p!n (X1.2)

X1.1.2 When p is known we can calculate f(0) directly from
Eq X1.2. When p is unknown, we may ask for the largest p that
would make f(0) small, yet still reasonably probable. To find
such a p, set f(0) equal to some probability, say 1 − C, and solve
the equation f(0) = 1 − C for p. Let pu be the value of p so
obtained. Then pu is called the upper confidence bound at
confidence level C. This result is Eq 1.

X1.1.3 Two types of measurement or inspection errors can
be introduced into Eq X1.2. Let θ1 be the probability of
reporting a non-conforming item, when the item is really
conforming; Let θ2 be the probability of reporting a conform-
ing item when the item is really non-conforming. An expres-
sion for P(all_zeros) that incorporates these misclassification
errors may be derived. This is:

TABLE 5 Sample Size (n) for Achieving an Assurance (A%)

A pu n

99.99 0.0001 92099
99.9 0.0010 6904
99.5 0.0050 1057
99 0.0100 458
97 0.0300 115
95 0.0500 58
93 0.0700 37
90 0.1000 22
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P~all_zeros! 5 f~0! 5 ~~1 2 θ1! ~1 2 p!1θ2p!n (X1.3)

X1.1.4 In Eq X1.3 the quantity (1 − θ1)(1 − p) is the
probability of the event: “the item is actually conforming and
it is classified as conforming.” The quantity pθ2 is the prob-
ability of the event: “the item is actually non-conforming and
it is classified as conforming.” These two events are mutually
exclusive; the sum of their probability is the probability of
classifying an item as conforming, whether actually conform-
ing or not. Eq X1.3 is used in the same manner as Eq X1.2. To
find the upper confidence bound, pu, set Eq X1.3 equal to 1 −
C and solve for p. This is Eq 2.

X1.2 The Hypergeometric Distribution

f~x! 5

SD

x D SN 2 D

n 2 x D
SN

n D , x 5 0,1, …min~n ,D! (X1.4)

X1.2.1 For the hypergeometric, there is a lot of N items
containing an unknown number, D, of non-conforming items.
A sample of n items is selected from the lot without replace-
ment and x, the number of non-conforming items is observed.
The probability function f(x) is the probability of exactly x
non-conforming items in the sample of n. Note that x can never
be more than n nor larger than D. When x = 0 is observed, we
say that the sample exhibited a “zero-response” or “all_zeros.”
Here again, P(all_zeros) = f(0). Substituting x = 0 in Eq X1.4
and simplifying algebraically gives the following for f(0).

P~all_zeros! 5 f~0! 5 )
i50

n21 S 1 2
D

N 2 i D (X1.5)

X1.2.2 For known D Eq X1.5 gives the probability of the
zero response result. When D is unknown, set f(0) = 1 − C, for
confidence level C, and solve iteratively for D. This is Eq 5.
This is essentially a search for the largest D just satisfying f(0)
= 1 − C. Such a value, Du, is called the upper confidence bound
for D the number of non-conforming items in the lot.

X1.2.3 Where misclassification errors are concerned the
reader is directed to Ref (4).

X1.3 The Poisson Distribution

f~x! 5
e2λλx

x !
, x 5 0,1,2,3, … (X1.6)

X1.3.1 For the Poisson distribution, the only parameter is λ,
the mean number of non-conformities over an interval (time,
space, volume, area etc.). The parameter λ is proportional to
the size of the interval so long as there is good physical reason
to justify the Poisson model over larger (or smaller) intervals.
The incorporation of the misclassification error parameter θ2,
the probability of missing a nonconformity, may be accom-
plished in the usual way by taking the limit of a binomial
distribution with parameters n and p, as n increases and p
decreases while λ = np remains constant.

X1.3.2 For the misclassification error case, the value of p is
changed to p (1 − θ2). We can use Eq X1.6 and set λ = np(1 -
θ2). As n increases and p decreases and λ = np remains
constant. When x = 0 non-conformities is observed the result
is:

P~all_zeros! 5 f~0! 5 e2λ~12θ2! (X1.7)

X1.3.3 When f(0) = 1 − C, for confidence C, upon solving
for λ, we obtain the upper confidence bound λu of Eq 8.
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