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Standard Practice for
Rating-Scale Measures Relevant to the Electronic Health
Record1

This standard is issued under the fixed designation E2171; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This standard addresses the identification of data ele-
ments from the EHR definitions in Practice E1384 that have
ordinal scale value sets and which can be further defined to
have scale-free measurement properties. It is applicable to data
recorded for the Electronic Health Record and its paper
counterparts. It is also applicable to abstracted data from the
patient record that originates from these same data elements. It
is applicable to identifying the location within the EHR where
the observed measurements shall be stored and what is the
meaning of the stored data. It does not address either the uses
or the interpretations of the stored measurements.

2. Referenced Documents

2.1 ASTM Standards:2

E177 Practice for Use of the Terms Precision and Bias in
ASTM Test Methods

E456 Terminology Relating to Quality and Statistics
E691 Practice for Conducting an Interlaboratory Study to

Determine the Precision of a Test Method
E1169 Practice for Conducting Ruggedness Tests
E1384 Practice for Content and Structure of the Electronic

Health Record (EHR)

3. Terminology

3.1 Definitions—Full definitions and discussion of Scale-
Free Measurement Terms are given in Annex A1.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 adaptive measurement—advantage of measurement to

account for missing data.

3.2.2 additivity—rating scale adherence to associativity and
commutability.

3.2.3 bias analysis—investigation of considerations relative
to subject or area of performance.

3.2.4 calibration—process of establishing additivity and
reproducability of a data set.

3.2.5 concatenation—process of measurement uses enumer-
ated physical unit quantities equal to the magnitude of the
measured item.

3.2.6 construct—name of the conceptual domain measured.

3.2.7 convergence—closing of the differences in sequential
measure estimates.

3.2.8 counting—basic activity upon which measurement is
based and utilizes enumeration.

3.2.9 data—observation made in such a way that they lead
to generalization.

3.2.10 data quality/ statistical consistency/ model fit—
establishment of whether the measuring instrument is affected
by the object of measurement.

3.2.11 determinism—measurement model that requires
counts to be sufficient for reproducing the pattern of the
responses over the length of the instrument.

3.2.12 dimensionality—property of having multiple compo-
nents of a measured value.

3.2.13 equality/cocalibration—process of ensuring that dif-
ferent instruments measure the same property.

3.2.14 error—uncertainty of measured properties.

3.2.15 estimation algorithms—mathematical specification
of an observational framework.

3.2.16 incommensurable/commensurable—measure value
of the same quantity does/does not depend upon rating/
responses of the rating construct and does not/does remain
constant.

3.2.17 instrument—sensing device having a defined scale.

3.2.18 intra and inter-laboratory testing—variability testing
using the same setting/measure/operator as opposed to different
setting/measure/operators.

3.2.19 item response/latent trait theory—analytic models
that forego prescriptive parameter separation, sufficiency and
scale and sample free data standards for additional descriptive
parameters.
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3.2.20 items/item-bank—part of survey statements/test
questions for adaptive administration.

3.2.21 levels of measurement—nature of scale of measure-
ment.

3.2.22 logit—scale unit using logarithms of odds ratios.
(P/1−P).

3.2.23 mathematical entities—concepts that can be taught or
learned through what is already known.

3.2.24 measurement—determining in units the value of a
property in a scale having magnitude (that is, ratio or differ-
ence).

3.2.25 metaphor in measurement—suspension of disbelief
of some areas or properties in the name of estimating magni-
tude.

3.2.26 metric—measure of a property in defined units.

3.2.27 missing data—use of uncalibrated data in instru-
ments with varying numbers of items.

3.2.28 multi-faceted measurement—use of measurement
models that have more than two basic parameters.

3.2.29 ordinal data—one scale for measurement.

3.2.30 population—universe of elements relevant to mea-
surement of a particular construct.

3.2.31 probabilistic conjoint measurement—framework for
demonstrating data quality, statistical consistency, and model
fit of non-deterministic measures with a stable order of facets.

3.2.32 quantification—cocalibration of different constructs
with respect to the same property (variable) in a common
metric.

3.2.33 Rasch analysis measurement and models—analytic
model specifying the observational framework and data quality
measures for quantification.

3.2.34 raw score—sum of ratings or count of direct re-
sponses in a given measurement event.

3.2.35 reliability—ratio of variation to error or signal to
noise.

3.2.36 repeatability—variability of measurements in a
single setting by a single operator using the same measuring
instrument.

3.2.37 reproducibility—variability of measurements in dif-
ferent settings.

3.2.38 root mean square error—mathematical algorithm for
determining the variation due to error of the estimates.

3.2.39 sample—subset of measured population.

3.2.40 sample size—magnitude of the measured population.

3.2.41 scale-free/scale-dependent—measures not affected
by the instrument employed as opposed to measures that are so
affected.

3.2.42 separability theorem/parameter separation—ability
of measures to be independent of the instrument selected and
ability of the instrument’s item calibrations to be independent
of the sample measured.

3.2.43 software—packages of machine code used for data
analysis.

3.2.44 specific objectivity—data satisfying the separability
theorem.

3.2.45 standardized—common conventions for instruments,
reference measurement material, scales and units of measure
for a measurement process.

3.2.46 suffıciency—statistics that extract all available infor-
mation from the data.

3.2.47 targeting—lack of floor an/or ceiling effects in mea-
surement.

3.2.48 transparency—ability to “look through” raw scores
to the composite ratings producing that score (see also suffı-
ciency).

3.2.49 unit of measurement—common conventions for the
appropriate smallest basic measures for a given construct.

3.2.50 validity/construct/content—both content and con-
struct must make sound theoretical sense to be considered
valid.

3.2.51 variable—attribute of the property being measured.

4. Significance and Use

4.1 The simplicity and practicality of Rasch’s probabilistic
scale-free measurement models have brought within reach
universal metrics for educational and psychological tests, and
for rating scale-based instruments in general. There are at least
3 implications to the application of Rasch’s models to the
health-related calibration of universal metrics for each of the
variables relevant to the Electronic Health Record (EHR) that
are typically measured using rating scale instruments.

4.1.1 First, establishing a single metric standard with a
defined range and unit will arrest the burgeoning proliferation
of new scale-dependent metrics.

4.1.2 Second, the communication of the information per-
taining to patient status represented by these measures
(physical, cognitive, and psychosocial health status, quality of
life, satisfaction with services, etc.) will be simplified.

4.1.3 Third, common standards of data quality will be used
to evaluate and improve instrument performance. The vast
majority of test and survey data quality is currently almost
completely unknown, and when quality is evaluated, it is via
many different methods that are often insufficient to the task,
misapplied, misinterpreted, or even contradictory in their aims.

4.1.4 Fourth, currently unavailable economic benefits will
accrue from the implementation of measurement methods
based on quality-assessed data and widely accepted reference
standard metrics. The potential magnitude of these benefits can
be seen in an assessment of 12 different metrological improve-
ment studies conducted by the National Science and Technol-
ogy Council (Subcommittee on Research, 1996). The average
return on investment associated with these twelve studies was
147 %. Is there any reason to suppose that similar instrument
improvement efforts in the psychosocial sciences will result in
markedly lower returns?

4.2 Until now, it has been assumed that the Practice E1384
would necessarily have to stipulate fields for the EHR that
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would contain summary scores from commonly used func-
tional assessment, health status, quality of life, and satisfaction
instruments. This is because standards for rating scale instru-
ments to date have been entirely content-based. Those who
have sought “gold” or criterion standards that would command
universal respect and relevance have been stymied by the
impossibility of identifying content (survey questions and
rating categories) capable of satisfying all users’ needs. Com-
munication of patient statistics between managers and
clinicians, or payors and providers, may require one kind of
information; between providers and referral sources, other
kinds; between providers and accreditors, yet another; among
clinicians themselves, still another; and even more kinds of
information may be required for research applications.

4.2.1 For instance, payors may want to know outcome
information that tells them what percentage of patients dis-
charged can function independently at home. A hospital
manager, referral source, or accreditor might want to know
more detail, such as percentages of patients discharged who
can dress, bathe, walk, and eat independently. Clinicians will
want to know still more detail about amounts of independence,
such as whether there are safety issues, needs for assistive
devices, or specific areas in which functionality could be
improved. Researchers may seek even more detail yet, as they
evaluate differences in outcomes across treatment programs,
diagnostic groups, facilities, levels of care, etc.

4.2.1.1 Members of each of these groups have, at some
time, felt that their particular information needs have not been
met by the tools designed and developed by members of
another group. Despite the fact that the information provided
by these different tools appears in many different forms and at
different levels of detail, to the extent that they can be shown
to measure the same thing, they can do so in the same metric.
This is the primary result of the introduction of Rasch’s
probabilistic scale-free measurement models. The different
purposes guiding the design of the instruments will still
continue to impact the two fundamental statistics associated
with every measure: the error and model fit. More general, and
also less well-designed instruments, will measure with more
error than those that make more detailed and consistent
distinctions. Data consistency is the key to scale-free measure-
ment.

4.3 The remainder of this document (1) identifies, in Section
5, the fields in the current Practice E1384 targeted for change
from a scale-dependent to a scale-free measurement orienta-
tion; (2) lists referenced ASTM documents; (3) defines scale-
free measurement terms, often contrasting them with their
scale-dependent counterparts; (4) addresses the significance
and use of scale-free measures in the context of the EHR; (5)
lists, in Annex A2, scientific publications documenting relevant
instrument calibrations; (6) briefly presents some basic opera-
tional considerations; (7) lists minimum and comprehensive
arrays of EHR database fields; and (8) lists, in Annex A3, the
references made in presentation of the measurement theory,
estimation methods, etc.

4.4 Publications of calibration studies referencing this prac-
tice and the associated standard practice should require:

4.4.1 The use of measures, not scores, in all capture of data
from the EHR for statistical comparisons;

4.4.2 The reporting of both the traditional reliability statis-
tics (Cronbach’s alpha or the KR20) and the additive, linear
separation statistics (Wright & Masters, 1982), along with their
error and variation components, for both the measures and the
calibrations;

4.4.3 A qualitative elaboration of the variable defined by the
order of the survey questions or test items on the measurement
continuum, preferably in association with a figure displaying
the variable;

4.4.4 Reporting of means and standard deviations for each
of the three essential measurement statistics, the measure, the
error, and the model fit;

4.4.5 Statement of the full text of at least a significant
sample of the questions included on the instrument;

4.4.6 Specification of the mathematical model employed,
with a justification for its use;

4.4.7 Specification of the error estimation and model fit
estimation algorithms employed, with mathematical details and
justification provided when they differ from those routinely
used;

4.4.8 Evaluation of overall model fit, elaborated in a report
on the details of one or more of the least and most consistent
response patterns observed;

4.4.9 Graphical comparison of at least two calibrations of
new instruments from different samples of the same population
to establish the invariance of the item calibration order across
samples;

4.4.10 Graphical comparison of measures produced by at
least two subsets of items on new instruments to establish the
invariance of the person measure order across scales (collec-
tions of items);

4.4.11 Graphical comparison of new instrument calibrations
with the calibrations produced by other instruments intended to
measure the same variable in the same population, to establish
the potential for sample-free equating of the instruments and
establishment of reference standards;

4.4.12 At least a useable prototype of the instrument
employed, with the worksheet laid out to produce informative
quantitative measures (not summed scores) as soon as it is
filled out; and

4.4.13 Graphical presentation of the treatment and control
groups’ measurement distributions, for the purpose of facili-
tating a substantive interpretations of differences’ significance.

5. Applicable Data Elements

5.1 The data elements in Practice E1384 which are affected
by the suggestions for measurement standardization made here
include the following:

PHYSICAL EXAM SEGMENT
09001.16 Patient Health Status Measure Name
09001.17. Patient Health Status Measure Total Value
09001.19. Patient Health Status Measure Element Name (M)
90001.19.01 Patient Health Status Measure Element Value

ENCOUNTER RECEIPT SUBSEGMENT
14001.A154. Patient Receipt Health Status Measure Name
14001.A156. Patient Receipt Health Status Measure Total Value
14001.A160. Patient Receipt Health Status Measure Element

Name (M)
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14001.A160.01. Patient Receipt Health Status Measure
Element Value

ENCOUNTER DISPOSITION SUBSEGMENT
14001.F067. Patient Disposition Health Status Measure Name
14001.F068. Patient Disposition Health Status Measure Total Value
14001.F069. Patient Disposition Health Status Measure

Element Name
14001.F069.01. Patient Disposition Health Status Measure

Element Value

5.1.1 The reason why the 09001.16.—09001.19.1. data
elements are present is to allow capture of one-time uses of the
measuring instrument that are not clearly related to an admis-
sion or discharge assessment. The encounter receipt and
disposition subsegments enable capture of health status at the
beginning and end of major encounters. The core health status
rating scale variables that must be addressed include physical
function, cognitive function, psychosocial function, quality of
life, and satisfaction with services. Each of these five variables
will require a bare minimum of two indicators per assessment:
a measure and an error. Both of these numbers can be obtained
from specially-designed paper-and-pencil worksheets for cali-
brated instruments (for example, survey forms). As the assess-
ments are increasingly performed with, and recorded directly
into, handheld computers, the computer can be used to calcu-
late and store one or more data quality indicators along with the
measure and error.

5.1.2 All of these statistics will be stored for each assess-
ment of each variable (data element instance).

5.1.3 Disease-specific measures of functional health status
will also be required. There are many such survey measure-
ment instruments in circulation but few have yet been studied
using scale-free methods. Diseases for which such instruments
exist include alcohol abuse, asthma, cancer, diabetes, drug
abuse, heart disease, hypertension, obesity, pain, polio,
tuberculosis, and others.

6. Operational Considerations

6.1 The key to implementing universal metrics for rating
scale measures will be a means of documenting, monitoring,
and maintaining scale calibrations in a public forum. Many
industries, including the health care industry, already have such
systems in place. Instruments for measuring height, weight,
temperature, blood pressure, vision, the chemistry of body
fluids, etc. are designed and manufactured to measure in a
particular unit within a particular range of error. There is no
obvious reason why the design and manufacture of rating scale
measurement systems should be less standardized than those of
any other kind of measurement system, and there are many
obvious reasons why they should be just as standardized.
ASTM’s experience as a forum in which industry representa-
tives can negotiate the elements of measurement quality
standards and standard measures makes it the natural place to
situate discussions of rating scale measurement system stan-
dards.

7. Dictionary of Health Status Measures

7.1 The minimum recommended subject areas include a
clinical or self-report version of each of the following:

Physical function measure

Physical function error
Physical function data quality index (model fit statistic)
Fine motor skills measure
Fine motor skills error
Fine motor skills data quality index
Cognitive function measure
Cognitive function error
Cognitive function data quality index
Psychosocial function measure
Psychosocial function error
Psychosocial function data quality index
Spiritual well-being measure
Spiritual well-being error
Spiritual well-being data quality index
Quality of life measure
Quality of life error
Quality of life data quality index
Satisfaction with services measure
Satisfaction with services error
Satisfaction with services data quality index

7.2 A comprehensive array of additional subject areas that
could easily be surveyed by computer-adaptive instrument
administration and analysis include:

Physical function measure
Physical function modeled error
Physical function fit-inflated error
Physical function mean square infit (information-weighted model fit)
Physical function standardized infit
Physical function mean square outfit (outlier-sensitive model fit)
Physical function standardized infit
Physical function point biserial correlation

Fine motor skill measure
Fine motor skill modeled error
Fine motor skill fit-inflated error
Fine motor skill mean square infit (information-weighted model fit)
Fine motor skill standardized infit
Fine motor skill mean square outfit (outlier-sensitive model fit)
Fine motor skill standardized infit
Fine motor skill point biserial correlation

Cognitive function measure
Cognitive function modeled error
Cognitive function fit-inflated error
Cognitive function mean square infit (information-weighted model fit)
Cognitive function standardized infit
Cognitive function mean square outfit (outlier-sensitive model fit)
Cognitive function standardized infit
Cognitive function point biserial correlation

Psychosocial function measure
Psychosocial function modeled error
Psychosocial function fit-inflated error
Psychosocial function mean square infit (information-weighted

model fit)
Psychosocial function standardized infit
Psychosocial function mean square outfit (outlier-sensitive model fit)
Psychosocial function standardized infit
Psychosocial function point biserial correlation

Spiritual well-being function measure
Spiritual well-being function modeled error
Spiritual well-being function fit-inflated error
Spiritual well-being function mean square infit (information-weighted

model fit)
Spiritual well-being function standardized infit
Spiritual well-being function mean square outfit (outlier-sensitive

model fit)
Spiritual well-being function standardized infit
Spiritual well-being function point biserial correlation

Quality of life measure
Quality of life modeled error
Quality of life fit-inflated error
Quality of life mean square infit (information-weighted model fit)
Quality of life standardized infit
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Quality of life mean square outfit (outlier-sensitive model fit)
Quality of life standardized infit
Quality of life point biserial correlation

Satisfaction with services measure
Satisfaction with services modeled error
Satisfaction with services fit-inflated error
Satisfaction with services mean square infit (information-weighted

model fit)
Satisfaction with services standardized infit
Satisfaction with services mean square outfit (outlier-sensitive

model fit)
Satisfaction with services standardized infit
Satisfaction with services point biserial correlation

7.3 Data quality interpretation is an art. The statistical
significance of small deviations from the modeled pattern of
responses grows as the number of survey questions adminis-

tered increases. The meaning of numeric data quality indicators
(model fit statistics) is therefore not constant and must be
interpreted in light of various contextual factors that can
include patient comorbidities and the relevance of the survey
questions for the patient in question, in addition to the number
of questions asked. For these reasons, the array of data quality
indicators listed must be made available to trained personnel
for use in determining data quality and its relationship, if any,
to treatment outcomes and the quality of care.

7.4 Similar arrays of subject areas will be required for each
of the disease-specific measures.

ANNEXES

(Mandatory Information)

A1. DEFINITIONS AND DISCUSSION OF SCALE-FREE MEASUREMENT TERMS

A1.1 Adaptive Measurement—Adaptive measurement
(Choppin, 1968, 1974; Wright & Douglas, 1975; Wright &
Bell, 1984; Weiss, 1983; Weiss & Kingsbury, 1984; Lunz, et
al., 1994) is the practical advantage that follows from Rasch
measurement’s capacity to take missing data into account (see
logit). When the quantitative hypothesis (see measurement) is
not falsified and a stable construct is identified, the amount of
the variable measured by individual survey or test questions is
established as constant, within the error of measurement, for
the relevant population. As such, individual questions can be
selected from a precalibrated item bank according to their
quantitative or cultural relevance to the respondent. There is
little quantitative information obtained when there is a large
difference between a person’s likely measure and an item’s
known difficulty because of the high probability that the
response will be correct or mistaken (on tests of ability), or in
an extreme response category (on surveys). The questions that
most productively contribute to a measurement effort are those
for which the probability of response is 50/50. For a person
with a low measure, then, the most quantitatively relevant
questions on a test or survey are those measuring at the low end
of the scale; administration of questions from the middle or
high ranges of the scale (more than 3 logits above the person’s
measure) will not contribute quantitatively useful information.

A1.1.1 Quantitative criteria alone can be used to allow a
computer to automatically select questions with the goal of
obtaining a measure with a particular degree of error in the
fewest possible questions. Existing computer adaptive test
administration software allows the administrator to require
each respondent to answer a minimum number of questions, to
set a maximum error level, or to require a person with a
measure close to a minimum competency level to answer
enough questions to clearly establish that the measure is at least
an error (or more) above or below the cutoff point. Some
questions can be chosen for universal administration, or the

system might be set to allow the user or a rater (therapist,
nurse, physician) to choose questions based on functional,
diagnostic, personal, social, or cultural relevance.

A1.2 Additivity—Additivity (Wright, 1985, 1999), a combi-
nation of the mathematical field properties of commutativity
and associativity, is the mathematical expression of what the
philosopher N. R. Campbell (Campbell, 1920) called concat-
enation. Commutativity requires that the order in which arith-
metical operations are performed on any two numbers not
affect the result. So, a + b must equal b + a. Associativity
requires that the grouping of the numbers not affect the result.
So, if a = b, then a + a = a + b = b + b. The additivity of rating
scale and test data cannot be assumed, but must be required by
specifying particular data structures, and it must be tested by
evaluating the extent to which data meet the specified require-
ments (see data quality, measurement, reproducibility,
suffıciency, and validity) and produce scale-free measures.

A1.3 Bias Analysis—In multifaceted measurement designs,
judges may exhibit inconsistencies in their ratings relative to a
particular area of performance or to a particular person
observed. Bias analysis is the investigation of these inconsis-
tencies. Linacre’s Facets software (Linacre, 1994, p. 54) fits
data to multifaceted models and detects bias by partitioning
response residuals by element (judge-item pairs) and convert-
ing these into logit measures. The size of these logits are
evaluated via statistical tests in order to find systematic patterns
of inconsistency. By specifying elements for investigation,
small but systematic biases can be detected when they might
otherwise be lost within the unavoidable background noise
present in the data. Because the amount of bias is reported as
a measure with a standard error and an associated statistical
significance, the practical implications of retaining or remov-
ing the bias can be evaluated. Finally, the amount of systematic
bias hidden within the random noise in the data can be
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estimated by partitioning the unexplained error variance. This
is revealed by correcting the bias logit standard deviation by its
measurement error to estimate the amount of systematic error
in the error variance. This is accomplished by taking the square
root of the bias logit variance minus its error variance. If a bias
analysis of judges results in a higher estimate of systematic
bias than is indicated by the judges’ root mean square error
(RMSE) estimate, then a few extremely inconsistent judge-
person interactions have probably caused systematic bias to be
overestimated. On the other hand, if the estimate of systematic
bias is lower than the RMSE, then the general consistency of
the judge-person interactions is dampening the appearance of
systematic biases present in the data.

A1.4 Calibration—Calibration is the process of testing and
establishing additivity and reproducibility in a data set by
evaluating its fit to a mathematical model requiring these
features. Calibration is effected by employing any of several
estimation and data quality evaluation methods. Calibrations
are the quantitative scale values of survey questions and
response category steps; the term is also used in reference to
the scale values associated with judges and other parameter
estimates in multifaceted designs.

A1.5 Concatenation (NR Campbell)—In his landmark 1920
work, Physics, The Elements, Campbell defined measurement
as the concatenation of physical unit quantities, as in the laying
of a block of unit size end to end with itself, or in the piling on
of identical unit weights in the pan of a balance beam. In
stressing the physical nature of the units concatenated, Camp-
bell repeated the Pythagorean fallacy of misplaced concrete-
ness and ignored the more productive Platonic approach to the
objects of measurement as ideals. As is documented by Michell
(Michell, 1990), the effect of Campbell’s popular definition of
measurement on psychology produced lasting deleterious ef-
fects. Largely because of the mistaken notion that quantitative
measurement is the sine qua non of science, psychologists first
put themselves through contortions to find physical unit
quantities that they could base their science on, and then they
redefined measurement in a way that allowed just about any
assignment of numbers to qualify as scientific. In the 1920s, L.
L. Thurstone (1959) came up with a definition of measurement
far closer to the Platonic ideal than Campbell’s, but the
cumbersomeness of his methods allowed Likert’s (1932)
simpler and less rigorous formulation to hold sway. Likert’s
methods also based measurement validity more on the familiar
Pythagorean ground of survey content, meaning that the
simpler method resonated better with established research
mores, though the advantages of rigorous measurement were
not made available (Fisher, 1992, 1994). The end effect was to
remove virtually all criteria for Thurstone’s “crucial experi-
mental test”: evaluating the extent to which instruments are
affected in their measuring functions by the objects of mea-
surement. With the introduction of Rasch measurement, rela-
tively simple, flexible, and easily applied criteria for imple-
menting Thurstone’s test are available.

A1.6 Construct—A construct is a conceptual domain
measured, such as reading ability, physical disability, or
customer satisfaction. A construct is a vaguer and more general
concept than the concept of the variable is. Construct validity
is the most fundamental kind of validity because it asks
whether the thing measured is the thing that was supposed to
have been measured (Cherryholmes, 1988). Construct validity
requires internally consistent data (Messick, 1975, 1981) and
so depends on demonstrated statistical sufficiency and the
resulting parameter separation as indicating that the question
and answer interactions represented in the data are evidence
that a single conversational object has dominated all of the
exchanges.

A1.7 Convergence—This term has two closely related uses.
First, the Newton-Raphson method of iteratively using each
parameter to improve the estimation of the other(s) leads to
convergence when the differences between subsequent esti-
mates for each parameter decrease. Second, convergence of the
estimates is made possible only to the extent that differences
between the observed and modeled ratings also steadily de-
crease as iteration progresses (see separability theorem, data
quality, statistical consistency, and model fit). Rasch measure-
ment software frequently allows for specification of maximum
numbers of iterations and convergence criteria, such as the
maximum tolerable logit change from iteration to iteration, and
the maximum tolerable difference between observed and ex-
pected ratings.

A1.8 Counting—Counting is the basic activity that measure-
ment depends on. For the purposes of measurement, different
things are fictitiously considered to be the same and are
counted. No measure is ever truly objective and absolutely
factual since it is always accompanied by some amount of
error. Measures and counts are fictions that we heuristically use
to guide us through the world. It is often said that the value of
dramatic fiction in poetry, novels, the theatre, music, and art is
that truths that speak of and to all of us can be said aloud in a
public forum without incriminating any of us as individuals,
and even though the events presented never happened exactly
as portrayed. It may be that the human value of scientific
fictions is not much different, qualitatively or quantitatively,
from the human value of artistic fictions (Fisher, 1994, 1995).
Counted correct answers or steps taken on a rating scale across
several items are ordinal, raw scores, cannot be assumed to
function as sufficient statistics, and must not be confused with
measures.

A1.9 Data—Data are observations that are made in such a
way as to lead to generalization. Scientific data may be either
qualitative or quantitative. Ordinal data are a sufficient and
necessary basis for quantification, which is inherently ratio
and/or interval. Ordinal data are often comprised of counts of
correct responses or of steps taken on a rating scale over
multiple items (see counting and raw scores). Data never fit a
model perfectly, but that fact should not lead to the use of
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models that make it impossible to achieve generality. Data
structures are described by statistical models, but are pre-
scribed by measurement models. Thus, statistical models are fit
to data; when the model fails, it is replaced by another. In
contrast, data are fit to measurement models. When the data fail
to support generalization, they should be removed from the
present instrument calibration effort, and explanations for the
failure should be sought in the texts of the questions asked, in
the response options offered, in the questioning and data entry
processes, and in the possible identification of individual or
groups of respondents who may have identifiable reasons for
producing data of a different consistency.

A1.10 Data Quality, Statistical Consistency, and Model
Fit—All three of these are interrelated and depend extensively
on what Thurstone (1959, p. 228) called the “crucial experi-
mental test” that establishes whether an instrument is affected
in its measuring function by the object of measurement. Rasch
realized a less cumbersome way of implementing Thurstone’s
crucial experiment when he saw that Fisher’s (1922) “formal-
ization of sufficiency nails down the ... conditions that a model
must fulfill in order for it to yield an objective basis for
inference” (Rasch, personal communication recorded in
Wright, 1980, p. xii). Poor data quality, statistical
inconsistency, and inadequate model fit all follow from a
failure to pass the crucial experimental test, since the condi-
tions of sufficiency will not have been met.

A1.10.1 When raw scores function as sufficient statistics,
the probability of success on an item consistently increases as
a person’s score increases, given a set test length, no matter
which item is addressed, and, conversely, the probability that
an item will be succeeded on increases as its score increases,
given a set sample size, no matter which person is involved.
When items from a test or survey fall into a stable hierarchy
that persists across respondents, and when the respondents
similarly take up a stable order over the items, the data are
statistically consistent and likely to fit the specified model. A
Rasch model is a mathematical statement of the requirement
that raw scores function as sufficient statistics.

A1.10.2 With the worst quality data, convergence will not
be achieved, since insufficient raw scores will not support the
formulation of expectations the data can live up to. Complete
lack of convergence is relatively rare. More commonly, local
disturbances in the measurement process do not prevent
convergence, but inflate one or more model fit statistics to a
statistically significant level for some respondent(s) or item(s).
These disturbances can result from data entry errors, ambigu-
ous questions, respondent inattention, mistaken response op-
tion coding, or the administration of items irrelevant to
particular respondents because of their (the items’) content,
extreme difficulty, or extreme easiness.

A1.10.3 Commonly employed model fit statistics include
information-weighted and outlier-sensitive variance ratios. The
information-weighted fit statistic, referred to as infit, is the ratio
of the observed information variance to the model-expected
variance; that is, each squared residual difference between
expected and observed responses is weighted by the model-
expected variance before being divided by it. The outlier-

sensitive fit statistic, referred to as outfit, is the ratio of the sum
of the squared residuals to the sample size. When data fit a
model, these statistics approximate a mean square distribution,
with an expected value of 1.0. For more on evaluating data
quality, including methods for calculating fit statistics, see
Wright and Stone (1979), Wright and Masters (1982, pp.
99-101), or Smith (2000).

A1.11 Determinism and Probability—Deterministic mea-
surement models, such as that proposed by Guttman (Guttman,
1950), require all counts to be perfectly sufficient for repro-
ducing the pattern of responses over the length of the instru-
ment.3 Just as a measure of eight centimeters requires that the
object measured be as long as the distance from the origin to
the eighth centimeter mark on a meter stick, so do deterministic
models require that all abilities and attitudes perfectly conform
to the items’ difficulty hierarchy. The practical result of this
over-rigid requirement is that much data, even most of the data
in a study, are deemed unscalable (Wilson, 1989). Rasch’s
models for measurement are sometimes described as probabi-
listic Guttman models (Andrich, 1985; Brink, 1972) because of
the two approaches’ common focus on reproducibility and
sufficiency. Although Rasch’s models retain Guttman’s focus
on tests of reproducibility/sufficiency, their probabilistic struc-
ture makes them much more practical for use in the measure-
ment of human abilities and attitudes than Guttman’s deter-
ministic model.

A1.12 Dimensionality—In so far as measurement is inher-
ently a matter of repeating a single unit amount along a linear
dimension, it is uni-dimensional. In so far as measurement is
always associated with some degree of error, it is always
multi-dimensional. Whether the unavoidable amounts of multi-
dimensionality always present in data are enough to subvert the
practical utility of the measuring device is not a question that
any statistic can answer. The gross limit of unidimensionality
can be seen in a signal to noise, or variation to error, ratio (see
reliability). When the measurement effort has not resulted in
any separation of those measured along a continuum of more
and less, then the error is likely to be greater than the variation,
and a number line we can count on for consistent indications of
amount has not been drawn out. Similarly, if variation in raw
scores has been produced, but the scores are so statistically
inconsistent that error overwhelms that variation, then no
single dimension has been delineated here, either. On the other
hand, when a standard deviation of the linear logits is two or
more times the error, a number line can be drawn between each
statistically distinct stratum and can be relied upon to provide
stable quantities. See data quality.

A1.13 Equating, Cocalibration—There are two basic meth-
ods by which instruments can be equated, or cocalibrated, so
that they measure in the same quantitative unit (Wright &

3 Guttman’s sense of reproducibility was apparently invented without influence
from Fisher’s notion of sufficiency, as Guttman makes no reference to Fisher.
Reproducibility in Guttman’s sense is more closely related to the ASTM sense of
repeatability than it is to the ASTM sense of reproducibility; see Terminology E456
and Practice E691 for further details on the contrast between repeatability and
reproducibility.
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Stone, 1979; Masters, 1984). The method by which existing,
separately developed instruments are most commonly equated
is through their application to a common sample. The item
calibrations from the joint administration are compared to their
prior, independent calibrations on (usually larger) samples. If
the common and separate calibrations correlate highly (0.85 or
higher), the next step is to anchor the items at the common
sample calibration’s provisional values and use these anchored
values to produce a separate measure from each instrument on
each person in the common sample. These measures should
then also produce a high correlation coefficient (0.85 or
higher), and should be examined graphically to establish that
the instruments produce the same measure (Altman & Bland,
1986; Bland and Altman, 1986; Masters, 1984).

A1.13.1 When an existing instrument is changed via the
addition, deletion, or modification of items, enough items need
to be retained from one version to the next to support equating.
If new and old items are administered together in a pilot study,
the resulting analysis is the same as the common sample
equating. If old items are dropped in favor of new ones, the
remaining items form the basis for a common item equating. In
this case, the separate samples are combined as if they were
one, and the new, old, and common items are analyzed
together. This approach is also the basis of item bank building.

A1.13.2 These equating methods will be an important part
of interlaboratory instrument testing, as they establish different
instruments’ relative reliabilities and validities in a common
framework.

A1.14 Error—Measurement is never perfectly precise. Be-
cause measures are always accompanied by error, they should
never be stated simply as numbers, but should always be
expressed as estimates bounded by a stated range of error.
Similarly, because the observational data (rating scale or test
scores) from which measures are estimated are never perfectly
consistent, and would be suspect even if they were, measures
should always be accompanied by model fit statistics (see data
quality). The amount of error associated with a measure is most
directly a function of the number of questions asked and the
number of rating scale points offered as observational distinc-
tions. Wright and Masters (Wright & Masters, 1982: 66-68)
estimate measurement error in the PROX (normal approxi-
mate) procedure using the following formula:

SE~br! 5 =X @mL/~r~mL 2 r!!# (A1.1)
where SE(br) is the standard error SE for person b with score

r; X is a test spread expansion factor that is used to remove the
effect of the dispersion of the particular items employed from
the person measures and errors; and mL is the maximum score
possible given the length of the test. Conversely, item calibra-
tion error is estimated in the PROX context as:

SE~di! 5 =Y @mN/~Si~mN 2 Si!!# (A1.2)
where SE(di) is the standard error SE for item d with score

i; Y is a sample spread expansion factor that is used to remove
the effect of the dispersion of the particular sample responding
from the item calibrations and errors; Si is the score S for item
i; and mN is the maximum score possible given the number of
persons responding. Wright and Stone (1982, p. 89) also offer

equations for estimating asymptotic standard errors in the
context of an unconditional maximum likelihood procedure
that does not require the assumption of a normal distribution.

A1.14.1 The fundamental relationship employed in estimat-
ing error is that of the observed and maximum possible raw
scores. Given raw scores functioning as sufficient statistics, the
lowest error of measurement is achieved when about half the
questions asked are answered correctly (or when the probabil-
ity of response in either of two adjacent rating categories is
50-50). As the observed score approaches the minimum or
maximum extreme, the error goes up.

A1.14.2 Error can be inflated in some software programs
(WINSTEPS, FACETS) to include the additional uncertainty
introduced by unmodelled variation (statistical inconsistency).

A1.15 Estimation Algorithms—Where a Rasch model is a
mathematical specification of an observational framework
through which an intention to measure will be realized or
defeated, any one of several estimation methods could con-
ceivably be adapted to effect application of any particular
model (Masters & Wright, 1984; Wright & Masters, 1982).
These estimation algorithms include PROX (Cohen, 1979;
Wright & Stone, 1979), a simple algebraic method of calcu-
lating approximate estimates that requires normal distributions
of persons and items; PAIR (Rasch, 1980, pp. 171-172;
Choppin, 1968; Wright & Masters, 1982), another simple
method that estimates parameters via evaluations of pairs of
items; FCON (or simply CON) (Andersen, 1973), a fully
conditional algorithm that is extremely resource-intensive; and
UCON (Wright & Panchapakesan, 1969; Wright & Masters,
1982), an unconditional method presenting a practical balance
between simplicity and accuracy.

A1.16 Incommensurable, Commensurable—For the ancient
Greeks, the incommensurability of the hypotenuse of a right
isosceles triangle with the two other sides was a mathematical
catastrophe of the first order. One legend holds that Pythagoras
committed suicide upon learning of this discovery. Another
version has a member of the cult killed for threatening to
release the secret. The problem is that no degree of measure-
ment precision will provide a rational number solution to the
Pythagorean theorem for a right isosceles triangle, in which the
square of the length of the hypotenuse is equal to the sum of the
squares of the other two sides. Because the Pythagoreans and
Sophists held to the notion that the objects of geometry were
the figures actually drawn, the irrationality, and, hence,
undrawability, of the length of this line segment threatened the
basic principles of their mathematical thinking and logic.

A1.16.1 Plato solved the problem by redefining the objects
of mathematics as ideals (see concatenation, validity), requir-
ing that the results of any analysis be produced using only the
compass and straightedge, and be reproducible, within some
range of error, by trained person using any particular drawn
figure. By redefining the objects of geometry as ideals only
approximated by inherently error-prone concrete figures, the
previously incommensurable line segments were transformed
into commensurable measures.
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A1.16.2 Copernicus, Kepler, and Galileo extended Plato’s
mathematization of world-measurement (geo-metry) to the
heavens. Rasch’s models for measurement effect basically the
same Platonic shift with regard to the psychosocial world,
restricting the instruments of the human sciences to those that
allow the ideality of the objects of discourse to show them-
selves. Plato redefined the point as an indivisible line, a circle
as a curve equally distant at all points from its center, and a line
as an indivisible plane. Galileo based his theory of gravity on
the behavior of objects on a frictionless plane. Extending this
line of thinking, Rasch has similarly prompted us to redefine
the variables of the human sciences mathematically. Most
popular test and survey measurement methods focus on scale
content, in Pythagorean fashion, resulting in incommensurable
measures. Methods based on Rasch’s separability theorem, in
contrast, test the hypothesis that a variable is quantitative in the
full mathematical sense of the term, so that a person’s
functional status or mathematics ability measure does not
depend on ratings on or responses to a particular set of
questions, but remains constant, within a range of error, no
matter what particular questions were administered.

A1.17 Instrument—Typically connoting a particular collec-
tion of rating scale or test items, which may or may not address
a common construct, this term is best used to refer to a sample
of items addressing a common construct. These samples may
be items collected together under a single brand name, or they
may be selected via self-, rater-, or computer-adaptive mea-
surement strategies from a larger bank of items. Different
brands of instruments shown to address a common construct
are still separate instruments, but a bank of items assembled for
tailored administration and measuring a single construct in a
common metric may also be called an instrument, even if no
two persons measured respond to a common set of questions.

A1.18 Inter- and Intra-laboratory Testing—Following the
Practice E691 Standard Practice, intra-laboratory testing fo-
cuses on ruggedness testing and establishing repeatability, “the
variability between independent test results obtained within a
single laboratory in the shortest practical period of time by a
single operator with a specific set of test apparatus using test
specimens (or test units) taken at random from a single quantity
of homogenous material obtained and prepared for the ILS
[Inter-Laboratory Study]” (Practice E691, p. 4; also see Prac-
tice E177, Terminology E456, Practice E1169, and Wernimont,
1978). Inter-laboratory testing focuses on establishing
reproducibility, “the variability between single test results
obtained in different laboratories, each of which has applied the
test method to test specimens (or test units) taken at random
from a single quantity of homogenous material obtained or
prepared for the ILS” (Practice E691, p. 4). This document’s
companion Standard Practice for Conducting a Study to
Determine the Precision of Test and Rating Scale Measures
adapts the Practice E691 terminology and practice to the
metrological needs of psychosocial measurement.

A1.19 Item Response Theory and Latent Trait Theory—
Because of similarities with work in the areas of Item Response
Theory (IRT) and Latent Trait Theory (LTT), Rasch’s measure-

ment theory is sometimes incorporated under these headings.
No mention of these theories is found in Rasch’s work. Wright,
the student of Rasch’s who has probably done the most to
simplify, expand, and provide access to Rasch’s work, details
the reasons for distinguishing Rasch measurement from IRT
(Wright, 1984); supplementary background supporting
Wright’s position is provided by Fisher (Fisher, 1994). In short,
IRT is willing to forego the Rasch models’ data-prescriptive
parameter separation, sufficiency, and consequent capacity for
supporting scale- and sample-free uniform data standards, such
as those created and maintained in the form of traceable
metrological reference standard metrics. IRT favors other
models incorporating additional parameters that better describe
some data, but achieve the superior description by sacrificing
parameter separation. Thus, the area of theoretical work
relevant to Rasch’s models is measurement theory’s principles
of mathematical invariance, and metrological precision and
bias.

A1.20 Items, Item Banking—Survey statements and test
questions are commonly referred to as items in the psychomet-
ric literature. Item banking is a process of building up a pool of
equated questions for adaptive administration. Hundreds or
thousands of items relevant to a given construct might be
equated via a series of linked common samples. The equating
of existing instruments intended to measure a common variable
is an exercise in item banking.

A1.21 Levels of Measurement (Nominal, Ordinal, Interval,
Ratio)—The division of measurement into levels by S. S.
Stevens (Stevens, 1946) has played a major role in stalling
advances in quantitative research in the human sciences for
more than 50 years (Duncan, 1984; Michell, 1990, 1997, 1999,
2000). By considering qualitative nominal and ordinal obser-
vations as levels of quantification, the word “measurement”
became so vague and diluted that almost any data could be
considered a solution to a measurement problem. Michell
reminds us that the classical notion of measurement as the
repetition of a unit quantity demands that the quantitative status
of a variable be treated as an hypothesis and tested empirically.
Though aspects of the classical approach to measurement
remained alive in the areas of measurement theory represented
in the works of Thurstone, Guttman, Loevinger, Luce & Tukey,
Krantz, et al., Rasch, Wright, and others, this technically
challenging literature has done little to change the research
behaviors of most social scientists. Only interval and ratio
measures are both quantitative and mathematical, and so only
they should be called measures.

A1.22 Logit—The logit is the log odds unit, and has a long
history of use in mathematics, statistics, and measurement. The
log is the natural logarithm, or the number x for which ex is a
number greater than zero and e is the number that the function
(1+1/n)n converges on as n increases. Logarithms occupy an
important place in just about every area of pure or applied
mathematics, as well as in the arts and sciences. The natural
logarithm is often applied in statistics as a “two-stretch
transformation,” so called because of the way it stretches both
tails of a distribution away from the center. The importance of
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this transformation for rating scale- or test-based measurement
is that it linearizes ordinal data, making the unit amount in the
tails equivalent to that in the center of the distribution. The
nonlinearity of ordinal data is well documented (Merbitz, et al,
1989; Silverstein, et al., 1989; Stucki, et al., 1996; Wright &
Linacre, 1989) and can be demonstrated with data from
virtually any survey or test (Wright & Masters, 1982). Table
A1.2 shows some logits and proportions. Notice that the logit
difference between adjacent proportions increases as the ex-
tremes of the range are approached from the middle.

A1.22.1 Another important aspect of the logit concerns its
odds component. The computation of the odds is based on the
proportion P that the raw score sum is in relation to the
maximum possible score given the particular items
administered, and the number of partial credit or rating scale
points available. Because information on the number of items
and on which items is included in the calculation of the odds,
the raw score metric’s dependence on the particular items
administered can be removed as a factor in scale calibration.
Logits can be calculated by taking the natural logarithm of the
ratio P/(1−P) (Cohen, 1979; Wright & Stone, 1979; Linacre,
1999).

A1.23 Mathematical Entities and Mathematical Thinking—
The ancient Greek category of ta mathemata, the
mathematical, included anything that could be taught and
learned, and which was learned through what is already known
(Heidegger, 1967). The Romans translated ta mathemata as
curriculum, losing much of the breadth and depth of the Greek
term. Recovering and redeploying the Greek sense of math-
ematical thinking enables us to understand better how the
mathematization of nature came about.

A1.24 Measurement—Measurement is the counting of a
constant unit value repeated along a continuum of more and
less. The amount expressed by the unit value is arbitrary, but
must be invariant, 66 % of the time within a range of error,
95 % of the time within two errors. Whether the variable of
interest is quantitative, that is, whether it exists in a form that
can be meaningfully and usefully expressed as a unit amount
bounded by error, is an hypothesis that must be tested by
gathering data and examining them for the ordered and additive

structures characteristic of quantities (Michell, 1990, 1997,
1999, 2000). Failure to falsify the quantitative hypothesis does
not mean that it will not be falsified by other data at some other
time; confirmation of the hypothesis is always provisional
(Popper, 1965). Successful falsification of the quantitative
hypothesis does not doom study of the variable to non-
scientific status; science involves qualitative research of many
kinds before and during quantitative research (Kuhn, 1961,
1972).

A1.25 Metaphor in Measurement—Counting is not the re-
duction of things that are not the same to things defined as the
same; it is rather a metaphorical suspension of disbelief in the
possibility of sameness in the name of a productive application
(Ballard, 1978). Science does not, therefore, eliminate meta-
phor from its discourse (Black, 1962; Hesse, 1972; Kuhn,
1979; Gerhart & Russell, 1984; Rothbart, 1997; Hallyn 2000;
Maasen & Weingart 2001), since metaphor permeates all
linguistic concept formation (Ricoeur, 1977; Ortony, 1979;
Gadamer, 1989; Lakoff & Johnson, 1980; Tracy, 1981, 1985).
In fact, measurement is fundamentally metaphorical in its
capacity to structure new analogies, such that the scale value
(calibration) of item A is to the scale value of item B as the
measure of person C is to that of person D (A:B::C:D), or
A:C::B:D, etc. (Fisher, 1988, 1989, 1995, 1997, 2000).

A1.26 Metric—A metric is a sequence of unit amounts of
arbitrary size and range. Unit size can be established according
to any meaningful difference in the variable of interest. For
instance, an early definition for a yard of length was set, in the
thirteenth century, as the length of King Henry I’s outstretched
arm, from the tip of his nose to the tip of his thumb. In the
metric system, temperature is defined by the difference be-
tween the freezing and boiling points of water; the former is set
at zero, the latter at 100, and the difference is evenly divided,
based on the rate at which a substance such as mercury expands
in an enclosed volume. Similar meaningful metrics are sug-
gested below for the variables of interest for the CPR record.

TABLE A1.1 Sample Data that Display the Conjoint Order Needed
for Fit to a Rasch Model

Items

Easy or Agreeable to Hard or Disagreeable

Persons 1 2 3 4 5 6 7 8 9 10
Person
Scores

Luc 1 0 1 0 0 0 0 0 0 0 2
Jean 0 1 1 1 0 0 0 0 0 0 3
Kevan 1 1 0 0 1 0 0 0 0 0 3
Laura 1 1 1 0 1 0 0 0 0 0 4
Alissa 1 1 1 1 0 1 0 0 0 0 5
Kevan 1 1 1 1 0 1 1 1 0 0 7
Nathan 1 1 1 1 1 1 0 0 1 0 7
Julia 1 1 1 1 1 1 1 0 1 0 8
Eleonore1 1 1 1 1 1 1 1 0 1 9
Margaux1 1 1 1 1 1 1 1 1 0 9
Item
Scores

9 9 9 7 6 6 4 3 3 1

TABLE A1.2 Logits from Proportions

Proportions Logits

0.01 -4.60
0.05 -2.94
0.10 -2.20
0.15 -1.73
0.20 -1.39
0.25 -1.10
0.30 -0.85
0.35 -0.62
0.40 -0.41
0.45 -0.20
0.50 0.00
0.55 0.20
0.60 0.41
0.65 0.62
0.70 0.85
0.75 1.10
0.80 1.39
0.85 1.73
0.90 2.20
0.95 2.94
0.99 4.60
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A1.27 Missing Data—One of the ways in which the mean-
ing of raw score sums of ordinal data remains inextricably tied
to samples of respondents and items concerns the incommen-
surability of these scores. Varying the items administered
across respondents necessarily changes the meaning of the
counts of correct answers or the sums of ratings, since the
difficulty or agreeability of the questions asked will vary. When
the items are calibrated to stable positions along a ruler, via
tests of the hypothesis that the variable is quantitative, then
measures can be derived from different collections of items by
comparing the relative probabilities of the responses with the
item calibrations, employing any one of several different
estimation algorithms.

A1.28 Multi-faceted Measurement—The simplest measure-
ment designs have only two facets and estimate only two
parameters, one for the persons, abilities, performances, or
objects measured, and the other for the items, or questions
asked. When partial credit is awarded for partially correct
responses, or when a rating or Likert scale is used on a survey,
the item parameters may be estimated for each pair of adjacent
steps from category to category. Additional parameters may be
added to a measurement model as long as the variation within
it is consistent across all the other parameters. For instance,
judges may rate performance quality across several tasks
according to a series of criteria (Linacre, 1989; Linacre, et al.,
1994). See Rasch analysis for more information.

A1.29 Ordinal Data—See Levels of Measurement.

A1.30 Population—A population is the entire universe of a
facet’s elements (persons, items, judges, etc.) relevant to the
measurement of a particular construct. For instance, the popu-
lation of persons with disabilities who could benefit from
rehabilitation treatment defines the relevant disability variable.
Insofar as a hierarchy of physical disability items calibrated on
any sample of persons conform with the hierarchy of items
relevant to a particular population, that sample can be said to
belong to the population. The population defines the variable.
The determination of whether apples and oranges are being
compared is an empirical matter that requires deciding if the
oranges are in fact yellow apples, and the color of the apples is
irrelevant, or if what matters is in fact fruit, which would make
immaterial the mixing of apples and oranges.

A1.31 Probabilistic Conjoint Measurement—Table A1.1
shows fictional data that share a probabilistic conjoint order.
This order would be deterministic and perfectly sufficient, like
a gross, large-unit measure of height or weight, if every
person’s pattern of responses were perfectly reproduced from
the total score. The order is conjoint because each facet has a
stable order across all of the elements of the other. Items 1-3
are the items most likely to be succeeded on or agreed with,
and item 10 is least likely to be succeeded on or agreed with,
no matter whether the person in question has a high or low
score. The person with the lowest score is the one least likely
to succeed or agree on any item, and the persons with the
highest score are most likely to succeed or agree on any item.

A1.31.1 Table A1.1 is a useful framework for demonstrating
the ways in which data quality, statistical consistency, and
model fit are evaluated. Imagine that another item was added,
and that this item differs from the others in that the persons
with the lowest scores are succeeding on, or agreeing with, it,
and the persons with the highest scores are not. In its
implementation of Thurstone’s “crucial experimental test,” a
Rasch model formulates expectations based on the extent to
which a conjoint order holds. These expected ratings are
compared with the observed ratings, producing a residual score
(the left over difference between the expected and observed).
Observed ratings that are much higher or lower.

A1.32 Quantification—Raw scores composed of counts of
rating scale steps or correct answers are not quantitative
measures because they do nothing to indicate how much of the
thing measured a person exhibits. Amounts are constant
differences between points on a number line that any instru-
ment measuring the thing in question will indicate. Length, for
instance, is the same distance between two points, no matter
whether that distance is measured in inches or centimeters.
Rasch measurement makes possible the cocalibration of dif-
ferent instruments intended to measure the same variable,
allowing each of them to express amounts in a common metric.
Comparison of physical disability instruments calibrated on
separate samples of widely varying sizes shows that, even
under these somewhat haphazard conditions, amounts of physi-
cal disability remain remarkably constant across instruments
and samples (Fisher, 1997). The point is to determine the extent
to which quantities are mathematical, a pairing more often
assumed than demonstrated.

A1.33 Rasch Analysis, Measurement, and Models—Rasch
models specify the observational framework and data quality
necessary for quantification. What is meant by the expression
“the Rasch model” is not any particular model, of which there
are many, but rather the feature of parameter separation around
which Rasch models are designed (Masters & Wright, 1984).
Parameter separation is so fundamental to quantification that
the need to associate measurement models requiring it with a
particular person’s name ought soon be seen as a sad accident
of history, and the descriptive appellation “Rasch” dropped.

A1.33.1 Rasch’s models for measurement are typically
two-faceted, with parameters prescribing the structure of data
pertaining to the persons measured and the items measuring;
more recently developed multi-faceted models (Linacre, 1989)
are more complex, with less widely-available software.

nlogS Pni

Pni21
D 5 Bn 2 Di (A1.3)

The simplest models are for binary data, such as counts of
right and wrong test answers, asserting that the logit measure
(the natural logarithm of the odds that person n correctly
answers item i) is equal to the difference between the ability B
of person n and the difficulty D of item I. Exam proctoring is
generally aimed at making sure that no external factors enter
into the question and answer process to exert unwanted
influences on the test results. Little or nothing, however, is
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usually done to check the empirical evidence that such was the
case. Rasch models are tools for making such checks.

A1.33.2 In response to criticism of multiple-choice testing,
the above model was expanded to specify the conditions in
which a question’s set of response options might themselves be
scaled, so that some credit is obtained by the examinee for
choosing answers that are partly, but not entirely, correct, but
not entirely wrong, either. These models are known as partial
credit models (Masters, 1982; Wright & Masters, 1984).

nlogS Pnij

Pnij21
D 5 Bn 2 Dij (A1.4)

Here, the extra difficulty associated with taking j steps across
item i’s response options is estimated as part of the item’s
difficulty D. Because multiple choice tests rarely employ the
same set of response options across items, each item has its
own particular step parameter estimates. Another application
for this model became apparent when it was realized that some
surveys and assessments might employ items addressing a
common construct, but which have different numbers of rating
scale points, or different definitions for a common number of
rating options. In these cases, items can be grouped together so
that a common rating scale model, is applied to items with the
same rating structure.

nlogS Pnik

Pnik21
D 5 Bn 2 Di 2 Jk (A1.5)

Here the difficulty of taking step k on rating scale J is not
associated with an individual item, but is estimated across
items sharing the same rating options.

A1.33.3 This extension of the binary model via the subtrac-
tion of a third parameter suggests that further facets might be
modeled into the measurement process (Linacre, 1989), such as
the extra difficulty posed by harsh judges or other uncontrol-
lable environmental factors influencing the measurement out-
come. Accordingly, a simple many-faceted Rasch model takes
the form of:

nlogS Pnimk

Pnimk21
D 5 Bn 2 Di 2 Cm 2 Jk (A1.6)

where the only addition to the rating scale model is a
parameter for the difficulty C presented by judge m. Additional
parameters can be added as needed, as long as consistent linear
relationships hold across all of the facets modeled. For
instance, items might be modeled to apply to several different
tasks. Furthermore, partial credit-like variations to these mod-
els can be added to allow, for instance, each judge to have
individual interpretations of the rating scale. Additional models
test for parameter separation in Poisson count, ranking, paired
comparison, and other kinds of data.

A1.34 Raw Score—A raw score is a sum of ratings made in
response to survey or assessment questions, or a count of
correct responses to test questions. By far the commonest
approaches to educational and psychological measurement
treat raw scores as measures with no evaluation of their
mathematical capacity to support the inferences made. Raw

scores are commonly assumed to be sufficient statistics, and in
fact must be, to be meaningful. Tests of fit to a Rasch model are
no more than tests of sufficiency (Andersen, 1977).

A1.35 Reliability—Table A1.3 shows the relations that hold
among traditional reliability coefficients and the elements of
alternative statistics based on the ratio of variation to error, or
signal to noise.

A1.35.1 The ceiling effect found in the traditional reliability
coefficient, alpha, is overcome in the separation statistic, G,
which is the ratio of the standard deviation to the error. Another
useful indicator of reliability is the number of strata - ranges
along the measurement continuum with centers separated by at
least three errors - delineated. Scales with more strata plainly
present more opportunities for making statistically significant
distinctions than those with fewer strata. Because error terms
are heavily dependent on sample size, instruments with many
items can produce measures with unbelievably low errors, and
items will calibrate with similarly too-low-to-be-true errors
when administered to very large samples. These situations can
result in reliabilities approaching 1.0 and errors less than one
tenth of the logit equivalence of a one-unit change in the raw
score. When this happens, more conservative and realistic
estimates of the error and reliability terms can be made from
the logit equivalence of a one-half unit change in the raw score.
Since the sizes of the error and the raw score-logit relation are
larger at the extremes of the measurement continuing than in
the middle, this variation must be included when revising error
and reliability estimates.

A1.35.2 Alpha is the statistic typically used to represent
reliability. As alpha increases, constant units of variation in the
ratio of variation to error are represented by smaller and
smaller changes in alpha. Because psychosocial measurement
practice rarely focuses on deliberately asking questions that
vary in the amounts of the amounts of the variable they
measure, much research has settled for measurement reliabili-
ties less than .80. General unawareness of the relation of
variation to error hidden within alpha has perhaps contributed
to complacency in this regard. This situation should change as

TABLE A1.3 Reliability Statistics

NOTE 1—See entries concerning Reliability and Root Mean Square
Error for more information.

SD/Error
(SA/SE)

= G
Reliability
G2/(1 +

G2)

StrataA

(4G + 1)/3

% Variation
Not Due to Error/

Due to Error

1/1 1 0.500 1.67 50/50
1.53/1 1.53 0.700B 2.37 60/40

2/1 2 0.800 3.0 67/33
3/1 3 0.900 4.3 75/25
4/1 4 0.941 5.67 80/20
5/1 5 0.962 7.0 83/16
6/1 6 0.973 8.3 86/14
7/1 7 0.980 9.67 88/12
8/1 8 0.985 11.0 89/11
9/1 9 0.988 12.3 90/10
10/1 10 0.990 14.0 91/9

A Ranges in the measurement continuum with centers separated by at least three
error terms; see Wright & Masters, 1982, p. 92.
B Commonly recommended minimum.
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the variation/error relation becomes better known, as construct
theories become increasingly employed in instrument design,
and as the additional statistical power associated with higher
reliability is better appreciated.

A1.35.3 The modeled relationships among measurement
variation, error, and reliability, on the one hand, and the
number of rating scale points and items employed on an
instrument, on the other, is displayed in the following nomo-
graph (see Fig. A1.1, reproduced from Linacre, 1993). This
diagram is a tool that can be used to guide instrument and
experimental designs. The angled line descending from the
desired reliability is traced down until it intersects the horizon-
tal line associated with the expected measurement standard
deviation. The vertical line closest to this point is then traced
straight down to find the expected error of measurement and
the number of items needed to obtain this reliability for designs
utilizing different numbers of response options.

A1.36 Repeatability—See Inter- and Intra-Laboratory
Studies. “The variability between independent test results
obtained within a single laboratory in the shortest practical
period of time by a single operator with a specific set of test
apparatus using test specimens (or test units) taken at random
from a single quantity of homogenous material obtained and
prepared for the ILS [Inter-Laboratory Study]” (Practice E691,
p. 4; also see Practice E177, Terminology E456, Practice
E1169, and Wernimont, 1978).

A1.37 Reproducibility—See Inter- and Intra-Laboratory
Studies. “The variability between single test results obtained in
different laboratories, each of which has applied the test

method to test specimens (or test units) taken at random from
a single quantity of homogenous material obtained or prepared
for the ILS” (Practice E691, p. 4). Not to be confused with
Guttman’s (1950) sense of reproducibility, which has much in
common with Fisher’s sufficiency and Feinstein’s transpar-
ency.

A1.38 Root Mean Square Error (RMSE)—In order to inter-
pret what a quantitative variable is, and to determine the extent
to which a ruler that takes up a single direction has been
calibrated, we need to know whether the questions asked on the
test or survey are spread out along a continuum of more and
less. An efficient method for evaluating the separation of the
items and of the persons along the variable proceeds as follows
(Wright & Masters, 1982). First, determine the amount of
variation in the estimates that is due to error (the mean square
error, MSE):

MSEI 5 (
i51

L

si
2/L (A1.7)

by summing the squared item errors s (calculated as SE in
Error) and dividing by the number of items administered L (for
a fixed-length test or survey). Second, remove the MSE from
the original variance of the item estimates:

SAI
2 5 SDI

2 2 MSEI (A1.8)

producing an adjusted variance SA indicating how much
variation is not due to error. Third, the RMSE is calculated by
taking the square root of the MSE:

SEI 5 =MSEI (A1.9)

FIG. A1.1 Rasch Generalizability Theory Nomograph (Linacre, 1993; see Reliability)

E2171 − 02 (2013)

13

 



and this is used in the further estimation of separation and
reliability.

A1.39 Sample, Sample Size—It is rare for any set of
measures to comprise an entire population, and it concomi-
tantly is rare for any given set of questions to comprise the
entire universe of possible questions. Thus questions and
responses are always samples from potentially infinite uni-
verses. One way of stating the purpose of measurement is that
it aims to provide structural support for generalizations about
populations and future samples from one single historical
sample. In other words, measurement helps us learn how to
predict and manage future measures on the basis of the
repeatable and reproducible consistencies exhibited in past
measures. Examined in fine enough detail, any set of measures
on any variable (length, weight, temperature, volts, etc.) from
any instrument are ephemeral historical events that will never
happen again in exactly the same way, that is, they are never
perfectly repeatable or reproducible. Rasch (1980: 115) points
out that admitting this is the same thing as saying that it is the
parameters in a probability distribution, and not the observed
values, that take the form of natural laws. Thus, his epistemo-
logical concept of “specific objectivity” extends the mathema-
tization of nature to the mathematization of human being.

A1.40 Scale-free, Scale-dependent—Counts of correct an-
swers on a test, or sums of ratings from a survey, are
scale-dependent in that their meaning changes if the number of
questions asked, or the number of responses obtained, varies
across examinees or respondents. Scale-dependence is a char-
acteristic of ordinal data and can be graphically portrayed in
the form of nonlinear plots of person scores from two halves of
the same test, or of item scores from two halves of the
respondent sample. Scale-free versions of these same plots will
be linear. The terms “sample-free” and “scale-free” derive from
Thurstone’s (1926, 1928) requirement of what is basically
metrological repeatability: that instrument functioning not be
affected by the object(s) of measurement, and that an object’s
measure not be affected by the particular instrument employed.
Measures are never fully scale-free, and instrument calibra-
tions are never fully sample-free, since all estimates imply
some degree of error (they are not perfectly precise or accurate)
and the ordinal, pre-mathematical observations from which the
estimates are derived are never perfectly consistent. It is
therefore important to incorporate error and data consistency
statistics into any measurement application.

A1.41 Separability Theorem, Parameter Separation—
Rasch stated the separability theorem (1980: 178; also see
Rasch, 1980: 122, and Rasch, 1977) as follows: “While
estimating the item parameters ε1,…,εk we may eliminate the
parameters ξ1,…,ξn, having, as it were, replaced them by the
observed marginals a1.,…,an. And the other way around: While
estimating ξ1,…,ξn we may eliminate ε1,…,εk. Finally, while
controlling the model we may eliminate both sets of param-
eters.” Parameter separation does not occur without parameter
convergence. That is to say, the instrument’s questions and the
person’s responses must both participate equally in the same
variable, the ability, attitude, performance, or thing measured,

for the measures to be independent of the instrument selected,
and for the instrument’s item calibrations to be independent of
the sample measured. As shown by Wright (1999), Rasch’s
separability theorem is the most efficient and applicable for-
mulation to date of the requirements for measurement. Wright
(1999) connects the separability theorem to a wide selection of
theoretical approaches to measurement. These include Camp-
bell’s (1920) sense of concatenation, Fisher’s (1922) sense of
sufficiency, Thurstone’s (1928) “crucial experimental test” for
invariant instrument functioning, Guttman’s (1944) sense of
reproducibility (which is more similar to metrological repeat-
ability than to metrological reproducibility), and to Luce and
Tukey’s (1964) conjoint additivity.

A1.42 Software—There are a variety of different software
packages capable of constructing fundamental measures and
implementing Rasch models. They include ASCORE (Andrich,
et al., 1990); BIGSTEPS (Wright & Linacre, 1986-96); CON-
QUEST (Wu, et al., 1998), FACETS (Linacre, 1989-96);
IPARM (Smith, 1991); LOGIMO (Kelderman & Steen, 1988);
MATS (Wilson, 1996); MFORMS (Schulz, 1988); MULTI-
LOG (Thissen, 1991); OPLM (Verhelst, 1993); PML
(Gustafsson, 1979); QUEST (Adams & Kboo, 1995); RAS-
CAL (ASC, 1996); RSP (Glas & Ellis, 1995); RUMM
(Andrich, et al. 2000); SCALE (Ludlow, 1992); WINSTEPS
(Wright & Linacre, 1997-2000); and others. The capacity of
these packages to implement different estimation methods and
to specify different Rasch models varies. The best of them offer
a wide variety of analysis control options and extensive tabular
and graphic output. There are few, if any, studies comparing the
results of these packages’ analyses on common data.

A1.43 Specific Objectivity—Specific objectivity (Rasch,
1977; van der Linden, 1994) is achieved when data satisfy
Rasch’s separability theorem. The qualifier specific refers to
the fact that data satisfying the separability theorem are
objective in the sense that they have converged on and
separated from a common object within a frame of reference
defined by the populations of persons and questions involved.
The convergence and separation are never perfect in that they
are always accompanied by error and statistical inconsisten-
cies. When, however, there is more variation in the scale values
than can be accounted for by error and inconsistency (see
reliability), the parameters separate, and specific objectivity is
obtained.

A1.44 Standard, Standardized—These words are almost
always used in reference to a common instrument content, in
the contexts of standardized health surveys and tests of
knowledge or ability. Because the meanings of summed ratings
or counts of right answers depend on a common number of
questions per respondent (and vice-versa), standardized instru-
ments are usually collections of questions deemed relevant to
all members of a particular population. Any time the popula-
tion changes, or the instrument is deemed too long or short, or
too detailed or vague, a new instrument, with its own distinct,
idiosyncratic, arbitrary and incommensurable metric is de-
vised. Hence, we have the recent proliferation of surveys and
assessments in health care.
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A1.44.1 There are, however, alternative methods of stan-
dardization that are oriented toward the construct, not the
content. Construct-oriented standardization produces non-
arbitrary metrics that do not depend on the particular questions
asked for their unit size. For the purposes of the CPR,
standardized health measurement instruments would most
advantageously be defined as those calibrated to measure in
universal, non-arbitrary scale-free metrics. Besides replacing
ordinal, scale-dependent metrics with interval, scale-free met-
rics expressed in a standard, common quantitative language,
the construct-oriented sense of standards in measurement
includes quality standards. Error and data consistency terms
should be estimated for every item calibration and person
measurement. Statistical summaries (means and standard de-
viations) of these quality indicators should then be used as
estimates of overall reliability and validity.

A1.45 Suffıciency—Rasch studied with Ronald Fisher in
London in 1935-6 and came away impressed with the singular
importance of the concept of sufficiency (Wright, 1980: xi-xii;
Andrich, 1979). Sufficient statistics are those that extract all
available information from the data, such that the statistic is
equivalent in subsequent estimations to the original data
(Fisher, 1922). Arnold (Arnold, 1985) and Hall, Wijsman, and
Ghosh (1965) show that “that the set of invariant rules based on
a sufficient statistic is an essentially complete subclass of the
class of invariant rules.” Wright (1980: 193) points out that
estimation is actually the second half of a story that ought to
begin with substantiation of the assumption that the estimators
are sufficient statistics. Or, as Michell (Michell, 1990, 1997,
1999, 2000) puts it, whether or not a variable is quantitative is
an hypothesis that needs to be tested via experimental proce-
dures that put the hypothesis at risk for falsification. Andersen
(1977) details the role of sufficiency in Rasch’s probabilistic
conjoint models of fundamental measurement.

A1.46 Targeting—Targeting is a lack of floor and/or ceiling
effects in measurement. The quantitative relevance of a test or
survey is shown by the extent to which the distributions of item
and person estimates overlap, with few or no perfect extreme
scores. Wright and Stone (1979: 8) show several possible ways
in which targeting affects measures. Two people of different
abilities or attitudes may, depending on the targeting of the
questions asked, (1) be as different as possible, obtaining
minimum and maximum extreme measures; (2) be as alike as
possible, obtaining the same minimum, intermediate, or maxi-
mum measure; or (3) be separated by different responses on
one or more items that enter into the space between them along
the variable. Better targeted tests measure with lower error, and
hence have higher reliability. They are also more interpretable,
since there is no range in the measurement continuum not
associated with specific item content for which respondents in
that range have a 50/50 chance of correctly (or agreeably, etc.)
responding.

A1.47 Transparency—Feinstein (Feinstein, 1984) offers
what appears to be another (in addition to Guttman’s) inde-
pendent invention of Fisher’s notion of sufficiency. The choice
of the word “transparent” to describe this feature of measure-

ment follows from the capacity to “look through” the raw score
to the composite ratings producing it. Feinstein despairs of
making many rating scale instruments transparent as he lacks a
sense of the way conjoint order and probability (see probabi-
listic conjoint measurement) can be used to found an objective
basis for inference, as Rasch has done.

A1.48 Unit of Measurement, Least Observable Difference,
Least Meaningful Difference—Research on metrological refer-
ence standards for the human sciences will focus on refining
units of measurement based on observable differences in
performance, ability, judgement, etc. The smallest differences
that can be observed consistently across performances, criteria,
and/or judges will be important theoretical developments that
may often lead to improved instrumentation. These least
observable differences will not, however, always be
meaningful, in the sense of spanning a quantitative range that
exceeds the range of error.

A1.49 Validity, Construct and Content—Plato restricted the
instruments of geometry to the compass and straightedge in
order to allow the ideality of geometrical figures to dominate
their study. In contrast, the Pythagoreans and Sophists of
Plato’s day held that the actual figures drawn were the object
of study. Plato’s definitions of the point as an indivisible line,
of the line as an indivisible plane, etc. won out in the history of
science because of the parsimonious, elegant, and simple
solutions this mathematical approach offered. Where Plato was
more interested in constructs, the Pythagoreans and Sophists
focused on content.

A1.49.1 Throughout the history of science, however, Plato’s
idealistic sense of objectivity has been routinely misinterpreted
or ignored by philosophers and social scientists in favor of the
Pythagorean/sophistic concrete sense of objectivity (Fisher,
1992, 1994). Michell (1990) documents the history of this
fallacy of misplaced concreteness in 20th century psychologi-
cal measurements and shows how this led to our current sense
that the objectivity of rating scale- and test-based measurement
depends more on content validity than it does on construct
validity. As a result, most psychosocial measurement today
depends on the manipulation of content-dependent, nonlinear
scores.

A1.49.2 The qualitative methods (phenomenology,
hermeneutics, deconstruction, post-structuralism, etc.) that are
increasingly popular in the human sciences are creating the
intellectual context for a shift away from the emphasis on
content validity, toward a greater focus on construct validity
(Cherryholmes, 1988; Fisher, 1994; Woodcock, 1999). Be-
cause reliability and statistical consistency could conceivably
occur by accident from randomly chosen questions and
respondents, the conjoint order of the persons and items must
be required to make sound theoretical sense before it can be
considered valid (Stenner, 1982).

A1.50 Variable—General usage allows any kind of categori-
cal distinction to be considered a variable. With regard to rating
scale- or test-based measures, a variable is something able to
vary along a continuum of more and less that can be counted
on to function as a number line.
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