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ε1 NOTE—Editorial corrections were made throughout in April 2015.

1. Scope

1.1 This guide is an introduction to mathematical proce-
dures for correction of interelement (matrix) effects in quanti-
tative X-ray spectrometric analysis.

1.1.1 The procedures described correct only for the interele-
ment effect(s) arising from a homogeneous chemical compo-
sition of the specimen. Effects related to either particle size, or
mineralogical or metallurgical phases in a specimen are not
treated.

1.1.2 These procedures apply to both wavelength and
energy-dispersive X-ray spectrometry where the specimen is
considered to be infinitely thick, flat, and homogeneous with
respect to the depth of penetration of the exciting X-rays (1).2

1.2 This document is not intended to be a comprehensive
treatment of the many different techniques employed to com-
pensate for interelement effects. Consult Refs (2-5) for descrip-
tions of other commonly used techniques such as standard
addition, internal standardization, etc.

2. Referenced Documents

2.1 ASTM Standards:3

E135 Terminology Relating to Analytical Chemistry for
Metals, Ores, and Related Materials

3. Terminology

3.1 For definitions of terms used in this guide, refer to
Terminology E135.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 absorption edge—the maximum wavelength (mini-
mum X-ray photon energy) that can expel an electron from a
given level in an atom of a given element.

3.2.2 analyte—an element in the specimen to be determined
by measurement.

3.2.3 characteristic radiation—X radiation produced by an
element in the specimen as a result of electron transitions
between different atomic shells.

3.2.4 coherent (Rayleigh) scatter—the emission of energy
from a loosely bound electron that has undergone collision
with an incident X-ray photon and has been caused to vibrate.
The vibration is at the same frequency as the incident photon
and the photon loses no energy. (See 3.2.7.)

3.2.5 dead-time—time interval during which the X-ray de-
tection system, after having responded to an incident photon,
cannot respond properly to a successive incident photon.

3.2.6 fluorescence yield—a ratio of the number of photons
of all X-ray lines in a particular series divided by the number
of shell vacancies originally produced.

3.2.7 incoherent (Compton) scatter—the emission of energy
from a loosely bound electron that has undergone collision
with an incident photon and the electron has recoiled under the
impact, carrying away some of the energy of the photon.

3.2.8 influence coeffıcient—designated by α (β, γ, δ and
other Greek letters are also used in certain mathematical
models), a correction factor for converting apparent mass
fractions to actual mass fractions in a specimen. Other terms
commonly used are alpha coefficient and interelement effect
coefficient.

3.2.9 mass absorption coeffıcient—designated by µ, an
atomic property of each element which expresses the X-ray
absorption per unit mass per unit area, cm2/g.

3.2.10 primary absorption—absorption of incident X-rays
by the specimen. The extent of primary absorption depends on
the composition of the specimen and the X-ray source primary
spectral distribution.

3.2.11 primary spectral distribution—the output X-ray
spectral distribution usually from an X-ray tube. The X-ray
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continuum is usually expressed in units of absolute intensity
per unit wavelength per electron per unit solid angle.

3.2.12 relative intensity—the ratio of an analyte X-ray line
intensity measured from the specimen to that of the pure
analyte element. It is sometimes expressed relative to the
analyte element in a multi-component reference material.

3.2.13 secondary absorption—the absorption of the charac-
teristic X radiation produced in the specimen by all elements in
the specimen.

3.2.14 secondary fluorescence (enhancement)—the genera-
tion of X-rays from the analyte caused by characteristic X-rays
from other elements in the sample whose energies are greater
than the absorption edge of the analyte.

3.2.15 X-ray source—an excitation source which produces
X-rays such as an X-ray tube, radioactive isotope, or secondary
target emitter.

4. Significance and Use

4.1 Accuracy in quantitative X-ray spectrometric analysis
depends upon adequate accounting for interelement effects
either through sample preparation or through mathematical
correction procedures, or both. This guide is intended to serve
as an introduction to users of X-ray fluorescence correction
methods. For this reason, only selected mathematical models
for correcting interelement effects are presented. The reader is
referred to several texts for a more comprehensive treatment of
the subject (2-7).

5. Description of Interelement Effects

5.1 Matrix effects in X-ray spectrometry are caused by
absorption and enhancement of X-rays in the specimen. Pri-
mary absorption occurs as the specimen absorbs the X -rays
from the source. The extent of primary absorption depends on
the composition of the specimen, the output energy distribution
of the exciting source, such as an X-ray tube, and the geometry
of the spectrometer. Secondary absorption occurs as the char-
acteristic X radiation produced in the specimen is absorbed by
the elements in the specimen. When matrix elements emit
characteristic X-ray lines that lie on the short-wavelength (high
energy) side of the analyte absorption edge, the analyte can be
excited to emit characteristic radiation in addition to that
excited directly by the X-ray source. This is called secondary
fluorescence or enhancement.

5.2 These effects can be represented as shown in Fig. 1
using binary alloys as examples. When matrix effects are either
negligible or constant, Curve A in Fig. 1 would be obtained.
That is, a plot of analyte relative intensity (corrected for
background, dead-time, etc.) versus analyte mass fraction
would yield a straight line over a wide mass fraction range and
would be independent of the other elements present in the
specimen (Note 1). Linear relationships often exist in thin
specimens, or in cases where the matrix composition is
constant. Low alloy steels, for example, exhibit constant
interelement effects in that the mass fractions of the minor
constituents vary, but the major constituent, iron, remains
relatively constant. In general, Curve B is obtained when the
absorption by the matrix elements in the specimen of either the

primary X-rays or analyte characteristic X-rays, or both, is
greater than the absorption by the analyte alone. This second-
ary absorption effect is often referred to simply as absorption.
The magnitude of the displacement of Curve B from Curve A
in Fig. 1, for example, is typical of the strong absorption of
nickel K-L2,3 (Kα) X-rays in Fe-Ni alloys. Curve C represents
the general case where the matrix elements in the specimen
absorb the primary X-rays or characteristic X-rays, or both, to
a lesser degree than the analyte alone. This type of secondary
absorption is often referred to as negative absorption. The
magnitude of the displacement of Curve C from Curve A in
Fig. 1, for example, is typical of alloys in which the atomic
number of the matrix element (for example, aluminum) is
much lower than the analyte (for example, nickel). Curve D in
Fig. 1 illustrates an enhancement effect as defined previously,
and represents in this case the enhancement of iron K-L2,3 (Kα)
X-rays by nickel K-L2,3 (Kα) X-rays in Fe-Ni binaries.

NOTE 1—The relative intensity rather than absolute intensity of the
analyte will be used in this document for purposes of convenience. It is not
meant to imply that measurement of the pure element is required, unless
under special circumstances as described in 9.1.

6. General Comments Concerning Interelement
Correction Procedures

6.1 Historically, the development of mathematical methods
for correction of interelement effects has evolved into two
approaches, which are currently employed in quantitative
X-ray analysis. When the field of X-ray spectrometric analysis
was new, researchers proposed mathematical expressions,
which required prior knowledge of corrective factors called
influence coefficients or alphas prior to analysis of the speci-
mens. These factors were usually determined experimentally
by regression analysis using reference materials, and for this

Curve A—Linear calibration curve.
Curve B—Absorption of analyte by matrix. For example, RNi versus CNi in
Ni-Fe binary alloys where nickel is the analyte element and iron is the matrix
element.
Curve C—Negative absorption of analyte by matrix. For example, RNi versus
CNi in Ni-Al alloys where nickel is the analyte element and aluminum is the
matrix element.
Curve D—Enhancement of analyte by matrix. For example, RFe versus CFe in
Fe-Ni alloys where iron is the analyte element and nickel is the matrix ele-
ment.

FIG. 1 Interelement Effects in X-Ray Fluorescence Analysis
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reason are typically referred to as empirical or semi-empirical
procedures (see 7.1.3, 7.2, and 7.8). During the late 1960s,
another approach was introduced which involved the calcula-
tion of interelement corrections directly from first principles
expressions such as those given in Section 8. First principles
expressions are derived from basic physical principles and
contain physical constants and parameters, for example, which
include absorption coefficients, fluorescence yields, primary
spectral distributions, and spectrometer geometry. Fundamen-
tal parameters method is a term commonly used to describe
interelement correction procedures based on first principle
equations (see Section 8).

6.2 In recent years, several researchers have proposed
fundamental parameters methods to correct measured X-ray
intensities directly for interelement effects or, alternatively,
proposed mathematical expressions in which influence coeffi-
cients are calculated from first principles (see Sections 7 and
8). Such influence coefficient expressions are referred to as
fundamental influence coefficient methods.

7. Influence Coefficient Correction Procedures

7.1 The Lachance-Traill Equation:
7.1.1 For the purposes of this guide, it is instructive to begin

with one of the simplest, yet fundamental, correction models
within certain limits. Referring to Fig. 1, either Curve B or C
(that is, absorption only) can be represented mathematically by
a hyperbolic expression such as the Lachance-Traill equation
(LT) (8). For a binary specimen containing elements i and j, the
LT equation is:

C i 5 R i ~11α ij
LT C j! (1)

where:
C i = mass fraction of analyte i,
Cj = mass fraction of matrix element j,
Ri = the analyte intensity in the specimen expressed as a

ratio to the pure analyte element, and
αij

LT = the influence coefficient, a constant.

The subscript i denotes the analyte and the subscript j
denotes the matrix element. The subscript in αij

LT denotes the
influence of matrix element j on the analyte i in the binary
specimen. The LT superscript denotes that the influence coef-
ficient is that coefficient in the LT equation. The magnitude of
the displacement of Curves B and C from Curve A is
represented by αij

LT which takes on positive values for B type
curves and negative values for C type curves.

7.1.2 The general form of the LT equation when extended to
multicomponent specimens is:

C i 5 R i ~11( α ij
LT C j! (2)

For a ternary system, for example, containing elements i, j
and k, three equations can be written wherein each of the
elements are considered analytes in turn:

C i 5 R i ~11α ij
LT C j1α ik

LT Ck! (3)

C j 5 R j ~11α ji
LT C i1α jk

LT Ck! (4)

Ck 5 R k ~11αki
LT C i1αkj

LT C j! (5)

Therefore, six alpha coefficients are required to solve for the
mass fractions Ci, Cj, and Ck (see Appendix X1). Once the

influence coefficients are determined, Eq 3-5 can be solved for
the unknown mass fractions with a computer using iterative
techniques (see Appendix X2).

7.1.3 Determination of Influence (Alpha) Coeffıcients from
Regression Analysis—Alpha coefficients can be obtained ex-
perimentally using regression analysis of reference materials in
which the elements to be measured are known and cover a
broad mass fraction range. An example of this method is given
in X1.1.1 of Appendix X1. Eq 1 can be rewritten for a binary
specimen in the form:

~C i/R i! 2 1 5 α ij
R C j (6)

where: αij
R = influence coefficient obtained by regression

analysis. A plot of (Ci/Ri) − 1 versus Cj gives a straight line
with slope αij

R (see Fig. X1.1 of Appendix X1). Note that the
superscript LT is replaced by R because alphas obtained by
regression analysis of multi-component reference materials do
not generally have the same values as αij

LT (as determined from
first principles calculations). This does not present a problem
generally in the results of analysis if the reference materials
bracket each of the analyte elements over the mass fraction
ranges that exist in the specimen(s). Best results are obtained
only when the specimens and reference materials are of the
same type. The weakness of the multiple-regression technique
as applied in X-ray analysis is that the accuracy of the influence
coefficients obtained is not known unless verified, for example,
from first principles calculations. As the number of compo-
nents in a specimen increases, this becomes more of a problem.
Results of analysis should be checked for accuracy by incor-
porating reference materials in the analysis scheme and treating
them as unknown specimens. Comparison of the known values
with those found by analysis should give acceptable
agreement, if the influence coefficients are sufficiently accu-
rate. This test is valid only when reference materials analyzed
as unknowns are not included in the set of reference materials
from which the influence coefficients were obtained.

7.1.4 Determination of Influence Coeffıcients from First
Principles—Influence coefficients can be calculated from fun-
damental parameters expressions (see X1.1.3 of Appendix X1).
This is usually done by arbitrarily considering the composition
of a complex specimen to be made up of the analyte and one
matrix element at a time (for example, a series of binary
elements, or compounds such as oxides). In this way, a series
of influence coefficients are calculated assuming hypothetical
compositions for the binary series of elements or compounds
that comprise the specimen(s). The hypothetical compositions
can be selected at certain well-defined limits. Details of this
procedure are given in 9.3.

7.1.5 Use of Relative Intensities in Correction Methods—As
stated in Note 1, relative intensities are used for purposes of
convenience in most correction methods. This does not mean
that the pure element is required in the analysis unless it is the
only reference material available. In that case, only fundamen-
tal parameters methods would apply. If influence coefficients
are obtained by regression methods from reference materials,
then Ri can be expressed relative to a multi-component
reference material. Eq 6 can be rewritten in the form for
regression analysis as follows:
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~C i/R ' i! 2 1 5 α ij
R ' C j (7)

where:
R' i = analyte intensity in the specimen expressed as a ratio

to a reference material in which the mass fraction of
i is less than 1.0, and

αij
R' = influence coefficient obtained by regression analysis.

The terms R'i and αij
R' can be related to the corresponding

terms in Eq 6 by means of the following:

R ' i k i 5 R i (8)

α ij
R ' 5

α ij
R

k i

(9)

where:
k i = a constant.

7.1.6 Limitations of the Lachance-Traill Equation:
7.1.6.1 For the purposes of this guide, it is convenient to

classify the types of specimens most often analyzed by using
X-ray spectrometric methods into three categories: (1) metals,
(2) pressed minerals or powders, and (3) diluted samples such
as aqueous solutions, fusions with borate salts, and oils. When
a sample is fused in a fixed sample-to-flux ratio to produce a
glass disk, or when a powdered sample is mixed in a fixed
sample-to-binder ratio and pressed to produce a briquette,
physical and chemical differences among materials are corre-
spondingly decreased and the magnitudes of the interelement
effects are reduced and stabilized. Since enhancement effects
are usually negligible in these systems, the LT equation is
sufficiently accurate in many applications for making interele-
ment corrections. It has also been shown that the LT equation
is in agreement with first principles calculations when applied
to fused specimens (that is, at least 1 part sample + 6 parts flux
dilutions or greater). For fused specimens, an equation can be
written according to Lachance (9) as follows:

C i 5 R ' i ~11α ifC f! F 11F α ij

11α if C f
G C j1…G (10)

where:
C i = the analyte mass fraction in the fused specimen,
Cf = the mass fraction of the flux (for example, Li2B4O7),
αif = influence coefficient which describes the absorption

effect of the flux on the analyte i, and
R'i = the relative intensity of the analyte in the fused

specimen to the intensity of the analyte in a fused
reference material.

Various equations have been used in which the alpha
correction defined above is modified by incorporating the effect
of a constant term. For example, the alphas in fused systems
can be modified by including the mass fraction of flux which
remains essentially constant. That is, the term αij/(1 + αif Cf) in
Eq 10 can be referred to as a modified alpha, αij

M. The loss or
gain in mass on fusion can also be included in the alpha terms
(Note 2). Modified alphas have also been used for non-fused
specimens in briquette form, such as minerals, to express the
correction in terms of the metal oxides rather than the metals
themselves.

NOTE 2—Under the action of heat and flux during fusion, the specimen
will either lose or gain mass depending on the relative amounts of volatile
matter and reduced species it contains. Therefore, the terms loss on fusion
(LOF) and gain on fusion (GOF) are used to describe this behavior. It is
common to see the term loss on ignition (LOI) used incorrectly to describe
this behavior.

7.1.6.2 If the influence coefficient in the Lachance-Traill
equation is calculated from first principles as a function of
mass fraction assuming absorption only, it can be shown that
αij

LT is not a constant but varies with matrix mass fraction
depending on the atomic number of each matrix element. This
is illustrated in Table 1, for example, for a selected series of
binary specimens in which iron is the analyte. Note that in
some cases (for example, αFeMg), the influence coefficient is
nearly constant whereas, for others (for example, αFeCo), the
influence coefficient exhibits a wide variation and even
changes sign. In practice, this variation in αij

LT does not present
problems when the specimen composition varies over a rela-
tively small range, and enhancement effects are absent. This

TABLE 1 Alpha Coefficients for Analyte Iron in Binary Systems Computed Using Fundamental Parameters EquationsA

αFej

CFe O(8) Mg(12) Al(13) Si(14) Ca(20) Ti(22) Cr(24) Mn(25) Co(27) Ni(28) Cu(29) Zn(30) As(33) Nb(41) Mo(42) Sn(50)

0.01 −0.841 −0.52 −0.39 −0.25 0.93 1.46 2.08 −0.10 −0.18 −0.44 −0.42 −0.36 −0.13 0.74 0.86 2.10
0.02 − 0.840 − 0.52 − 0.39 − 0.25 0.93 1.46 2.08 − 0.10 − 0.17 − 0.44 − 0.41 − 0.35 − 0.13 0.74 0.86 2.10
0.05 − 0.839 − 0.51 − 0.39 − 0.25 0.93 1.46 2.09 − 0.10 − 0.15 − 0.42 − 0.41 − 0.35 − 0.12 0.74 0.86 2.10
0.10 − 0.838 − 0.51 − 0.39 − 0.25 0.93 1.46 2.09 − 0.10 − 0.14 − 0.40 − 0.39 − 0.34 − 0.12 0.75 0.86 2.10
0.20 − 0.835 − 0.51 − 0.38 − 0.24 0.94 1.47 2.10 − 0.10 − 0.11 − 0.36 − 0.37 − 0.32 − 0.11 0.76 0.87 2.11
0.50 −0.832 −0.50 −0.37 −0.22 0.96 1.50 2.13 −0.10 −0.04 −0.27 −0.31 −0.28 −0.08 0.78 0.90 2.14
0.80 − 0.831 − 0.49 − 0.36 − 0.21 1.01 1.55 2.19 − 0.10 0.00 − 0.20 − 0.25 − 0.24 − 0.05 0.83 0.94 2.20
0.90 − 0.830 − 0.48 − 0.35 − 0.20 1.03 1.58 2.23 −0.10 0.01 − 0.18 − 0.23 − 0.23 − 0.04 0.85 0.96 2.25
0.95 − 0.830 − 0.48 − 0.35 − 0.20 1.05 1.60 2.26 − 0.10 0.02 −0.17 −0.23 −0.22 −0.03 0.86 0.98 2.28
0.98 − 0.830 − 0.48 − 0.35 − 0.20 1.06 1.62 2.29 − 0.10 0.02 − 0.17 − 0.22 − 0.22 − 0.03 0.87 0.98 2.30
0.99 −0.830 −0.48 −0.35 −0.20 1.06 1.62 2.29 − 0.10 0.02 − 0.16 − 0.22 − 0.21 − 0.02 0.87 0.99 2.31

A Data used by permission from G. R. Lachance, Geological Survey of Canada. The values represent the effect of the element listed at the top of each column on the
analyte Fe for each mass fraction of Fe listed in the first column.
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source of error is also minimized to some degree when type
reference materials are used which reasonably bracket the
composition of the specimen(s). However, it should be recog-
nized that for some types of samples, which have a broad range
of concentration, assumption of a constant αij

LT could lead to
inaccurate results. For example, in the cement industry, low
dilutions (for example, typically 1 part sample + 2 parts flux)
have been employed to analyze cement and geological mate-
rials. Low dilutions are used to maximize the analyte intensity
for trace constituents. At such low dilutions, it has been shown
by Moore (10) that a modified form of Eq 1 gives more
accurate results. This modified or exponential form of Eq 1 is
also described in ASTM suggested methods (see E-2 SM
10-20, E-2 SM 10-26, and E-2 SM 10-34).4 In 7.2 – 7.7,
several equations will be described which take into account the
variability in αij

LT with mass fraction, and are fundamentally
more accurate than Eq 1 because they also include correction
for enhancement effects.

7.2 The Rasberry-Heinrich Equation— Rasberry and Hein-
rich (RH) (11) proposed an empirical method to correct for
both strong absorption and strong enhancement effects present
in alloys such as Fe-Ni-Cr. The general expression can be
written as follows:

C i 5 R i F 11(
j

n

A ij C j1(
k

n B ik

~11C i!
·CkG (11)

where:
A ij = a constant used when the significant effect of element

j on i is absorption; in such cases the corresponding Bik

values are zero (and Eq 11 reduces to the Lachance-
Traill equation), and

Bik = a constant used when the predominant effect of ele-
ment k on i is enhancement; then the corresponding Aij

values are zero.

Eq 11 has given good results for analyses of Fe-Ni-Cr
ternary alloys. These authors obtained the coefficients by
regression analysis of data from a series of Fe-Ni, and Fe-Cr,
and Ni-Cr binaries, and a series of Fe-Ni-Cr ternary reference
materials, which covered a broad range of mass fractions from
essentially zero to 0.99. For Fe-Ni binaries, the enhancement

term S that is,
B ik

~11C i!
·CkD gives values for the effect of Ni(k) on

Fe(i) that are in reasonably good agreement with those pre-
dicted from first principles calculations over a broad range of
mass fraction. Further examination by several researchers of
the accuracy of the RH equation for interelement effect
correction in other ferrous as well as non-ferrous binary alloys
reveal wide discrepancies when these coefficients are com-
pared to those obtained from first principles calculations. Even
modification of the enhancement term cannot overcome some
of these limitations, as discussed by Tertian (12). For these
reasons, the RH equation is not considered to be generally
applicable, but it is satisfactory for making corrections in
Fe-Ni-Cr alloys assuming availability of proper reference
materials.

7.3 The Claisse-Quintin Equation:
7.3.1 The Claisse-Quintin equation (CQ) can be described

as an extension of the Lachance-Traill equation to include
enhancement effects and can be written for a binary according
to Refs 13, 14 as follows:

C i 5 R i @11 (
n21

~α ij1α ijj C j! C j# (12)

where αij + αijj Cj = αij
LT . The term αij + αijj Cj allows for

linear variation of αij
LT with composition. According to Claisse

and Quintin (13) and Tertian (14), the interelement effect
correction for ternary and more complex samples is not strictly
equal to a weighted sum of binary corrections. This phenom-
enon is referred to as a third element or cross-effect. For a
ternary, the total correction for the interelement effects of j and
k on the analyte i is given by Claisse and Quintin (13) as:

11~α ij1α ijj C j!C j1~α ik1α ikk Ck! Ck1α ijk C j Ck (13)

The binary correction terms for the effect of j on i and k on
i are (αij + αijj Cj) Cj and (αik + αikk Ck) Ck, respectively. The
higher order term αijk Cj Ck is introduced to correct for the
simultaneous presence of both j and k. The term αijk is called
a cross-product coefficient. Tertian (15) has discussed in detail
the cross-effect and has introduced a term, ε, calculated from
first principles to correct for it. The contribution of the
cross-effect or cross-product term to the total correction is
relatively small, however, compared to the binary coefficient
terms, but it can be significant.

7.3.2 The general form of the Claisse-Quintin equation for a
multicomponent specimen can be written according to Ref 13
as:

C i 5 R i @11(
jfi1

~α ij1α ijj CM! C j1(
j

(
k

α ijk C j C k# (14)

where CM = sum of all elements in the specimen except i.
The binary coefficients, αij and αijj, can be calculated from first
principles, usually at hypothetical compositions of Ci = 0.20
and 0.80, and Cj = 0.80 and 0.20, respectively. The cross-
product coefficient, αijk, is calculated at Ci = 0.30, Cj = 0.35,
and Ck = 0.35.

7.4 The Algorithm of Lachance (COLA):
7.4.1 The comprehensive Lachance algorithm (COLA) pro-

posed by Lachance (16) corrects for both absorption and
enhancement effects over a broad range of mass fraction. The
general form of the COLA expression is given as follows:

C i 5 R i ~11(
j

α ' ij C j1(
j

(
k

α ijk C j Ck! (15)

The coefficient α'ij can be computed from the equation:

α ' ij 5 α11
α2 CM

11α 3 ~1 2 CM!
(16)

where α1, α2, and α3 are constants. The concept of cross-
product coefficients as given by Claisse and Quintin (see Eq
14) is retained and included in Eq 15. The three constants (α1,
α2, and α3) in Eq 16 are calculated from first principles using
hypothetical binary samples. For example, in alloy systems, α1

is the value of the coefficient at the Ci = 1.0 limit (in practice
computed at Ci = 0.999; and Cj = 0.001). The value for α2 is
the range within which α'ij will vary when the concentration of

4 Suggested Methods for Analysis of Metals, Ores, and Related Materials, 9th
ed., ASTM International Headquarters, 100 Barr Harbor Drive, PO Box C700, West
Conshohocken, PA 19428-2959, 1992, pp. 507-573.
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the analyte decreases to the Ci = 0.0 limit (in practice, com-
puted from two binaries where Ci = 0.001 and 0.999; and
Cj = 0.999 and 0.001, respectively). The α3 term expresses the
rate with which α'ij is made to vary hyperbolically within the
two limits stated. In practice, it is generally computed from
three binaries where Ci = 0.001, 0.5, and 0.999; and Cj = 0.999,
0.5, and 0.001, respectively. Since α3 can take on positive,
zero, or negative values, α'ij can be computed for the entire
composition range from Ci = 1.0 down to 0.0. The cross-
product coefficients αijk are calculated at the same levels as in
Eq 14.

7.4.2 For multi-element assay of alloys, all coefficients in
Eq 15 are calculated. For oxide specimens such as cements and
powdered rocks, α3 is very small and in practice is usually
equated to zero. Eq 15 then reduces to the Claisse-Quintin Eq
14. For fused specimens, another simplification can be made
because the mass fraction of the fluxing agent is the major
constituent and can be held relatively constant. In this case α2,
α3, and αijk are very small and in practice are also equated to
zero, so that αij reduces to αij

LT. Hypothetical binary standards
are used to calculate αij

LT where Ci is taken at the mid-range
of the analyte concentration (for example, Ci = 0.5 and
Cj = 0.5) in the specimen.

7.4.3 A significant improvement was obtained using COLA
rather than the CQ equation for the analysis of iron in a series
of Fe-Ni alloys (17). This is believed to be due to the term α3

(1 − Cj) in α'ij in Eq 16 which allows for nonlinear variation in
α'ij with composition rather than a linear variation described by
the CQ relation. For this reason, the COLA equation is more
accurate in alloy analyses than the CQ equation when the
contribution of the α3 (1 − Cj) term becomes significant.

7.5 The Algorithm of Rousseau—The algorithm of Rousseau
(18, 19, 20) is:

C i 5 R i

11(
j

α*ij C j

11(
j

ρ ij C j

(17)

where:
α*

ij = fundamental influence coefficient, which varies with
composition and corrects for absorption, and

ρij = fundamental influence coefficient which varies with
composition and corrects for enhancement.

In this method a first estimate of the composition of the
unknown specimen is calculated using the Claisse-Quintin
relation (Eq 14) and fundamental coefficients (20). The α*

ij and
ρij coefficients are computed from this estimated composition.
A refined estimate of composition is obtained finally by
applying the iterative process to Eq 17. The manner in which
reference materials are used for purposes of calibration in this
and other fundamental coefficient algorithms is discussed in
9.3.

7.6 The Method of de Jongh:
7.6.1 De Jongh’s method (21) is similar to that of Lachance-

Traill but with important differences. A series of equations can
be written wherein the end result is expressed for an n
component system as follows:

C i 5 ~ao1ai I i ! ~11( α ij
dJ C j! (18)

where:
a o = intercept,
ai = slope, and
Ii = net intensity measured in counts per unit time.

The terms ao, ai, and Ii are instrument-dependent parameters
and considered separate from the physical parameters mani-
fested in αij

dj.
7.6.2 For a series of specimens containing n elements in

which the concentrations of each analyte vary over a range, De
Jongh’s method requires that the influence coefficients be
calculated at an average composition for each element (for
example, C̄1, C̄2, ... C̄n where j = 1, 2, 3, ... n) in the specimens.
Both absorption and enhancement effects are treated by this
method. An interesting feature of the method is that one
element can be arbitrarily eliminated from the correction
procedure so there is no need to measure it. For example, in
ferrous alloys, iron is often the major constituent and is usually
determined by difference, and therefore, can be eliminated
from the correction procedure. For details on the mathematical
procedure used to eliminate a component from the analysis,
refer to the original publication.

7.7 Method of Broll & Tertian— The expression of Broll and
Tertian (22, 23) allows for variation of αij

LT in the Lachance-
Traill equation to account for both absorption and enhancement
effects. The term αij

LT in the LT equation is replaced by
effective influence coefficients as follows:

α ij
LT 5 α ij

BT 2 h ij F C i

R i
G (19)

where:
αij

BT = influence coefficient which varies with composition
and corrects for absorption, and

the term hij (Ci/Ri) accounts for enhancement and third
element effects. These so-called effective coefficients are cal-
culated from first-principles expressions.

7.8 Intensity Correction Equation— This empirical
procedure, developed by several researchers (24, 25), is similar
to the general Lachance-Traill equation, except that X-ray
intensity (count rate) is substituted for mass fraction to obtain
the following equation:

R i 5
C i

ko1(kij
I j

(20)

where:
I j = the X-ray intensity corrected for background of the

matrix element j,
ko = a constant for the system, and
kij = influence coefficient, a constant.

This procedure is limited in the sense that it applies to
specimens in which absorption is the predominant interelement
effect and is not severe. That is, the analyte X-ray intensity
varies almost linearly with analyte mass fraction. The constant,
ko, and the coefficients, kij, are determined only from regression
analysis of data from reference materials. However, the coef-
ficients kij should be differentiated from αij

LT. Eq 20 has been
applied successfully in cases where the unknown specimen
composition can be bracketed quite closely with reference
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materials of similar composition. In general, this procedure
applies over a small range of analyte mass fraction and requires
a careful selection of the composition range of reference
materials to obtain good accuracy.

8. First Principle Equations

8.1 The relative intensity from an analyte i for a given X-ray
spectral line in a specimen can be described according to Ref
6 as follows:

R i 5
P i1S i

Po

(21)

where:
P i = the primary fluorescence contribution as a result of the

effect of the incident X-ray beam from the source on
the analyte i,

S i = secondary fluorescence or enhancement effect on ana-
lyte i, and

Po = the primary fluorescence contribution from a pure
specimen of the analyte.

8.2 For the case when the X-ray source is polychromatic
(for example, an X-ray tube), an equation for Pi can be written
as follows:

P i 5 qEiC i *λo

λai F µ i~λ!
Iλdλ

µ
~λ!

1Aµ
~λ i!

G (22)

where:
q = factor that depends on spectrometer geometry,
Ei = excitation factor of element i for a given spectral line

series (K, L, ...),
Ci = concentration of analyte i in specimen, usually ex-

pressed as mass fraction.
µi(λ) = mass absorption coefficient of element i in the

specimen for incident wavelength, λ,
µ(λ) = mass absorption coefficient of the specimen for

incident wavelength, λ,
µ(λi)

= mass absorption coefficient of the specimen for the
characteristic wavelength, λi,

A = geometrical factor = sin θ1/sin θ2,
θ1 = incident angle of primary X radiation,
θ2 = emergence angle (take-off angle) of characteristic

fluorescence radiation measured from the specimen
surface,

Iλdλ = spectral intensity distribution of the primary radia-
tion from the X-ray source,

λo = short-wavelength limit of the primary spectral
distribution, and

λai = the wavelength of the absorption edge of analyte
element i.

8.3 For the pure specimen, Po, Eq 22 takes the form:

Po 5 qEi *λo

λai F µ i~λ!
Iλdλ

µ i~λ!
1Aµ i~λ i!

G (23)

8.4 The total secondary fluorescence contribution (26), Si,
when each characteristic X-ray line j from the specimen can
enhance the analyte i, is:

S i 5 (j S ij (24)

where Sij = sum of the contributions from several j elements
which can enhance i. The expression for Sij is:

S ij 5 1/2 q E iC i *λo

λaj

~E jC j µ i~λ j!! S µ j~λ! Iλdλ
µ

~λ!
1Aµ

~λ i!
D ·L (25)

where:
E j = excitation factor of enhancing element j for a given

spectral line series,
Cj = mass fraction of j in the specimen,
µi(λj) = mass absorption coefficient of analyte i in the

specimen for characteristic wavelength λj from
element j,

λj(λ) = mass absorption coefficient of element j in the
specimen for incident wavelength, λ, and

L 5
ln@11~µ

~λ!
/µ

~λ j!! /sinθ1#
µ

~λ!
/sinθ1

1
ln@11~µ

~λ i!! /~µ
~λ j!! /sinθ 2 #

µ
~λ i!

/sinθ2

(26)

where µ(λj) = mass absorption coefficient of the specimen for
the characteristic wavelength, λj.

8.5 Substitution of Eq 22-26 in Eq 21 gives a first principles
(fundamental parameters) expression from which relative in-
tensities can be calculated.

8.6 With an X-ray tube source from which the primary
radiation is polychromatic, it is necessary to know the spectral
distribution, Iλdλ (intensity versus wavelength), or approxima-
tions must be made. To simplify the integral form of the tube
spectrum, Criss and Birks (27) replaced the integrals in Eq 22,
Eq 23, and Eq 25 with summations over small wavelength
intervals such as 0.2 nm. Gilfrich and Birks (28) measured
spectral distributions from several X-ray tubes (tungsten,
molybdenum, and chromium targets) and tabulated values of
Iλ∆λ, which have been used in several fundamental parameters
expressions. In addition, algorithms have been proposed which
can be used to calculate the spectral output distribution (29, 30,
31).

8.7 Monochromatic Excitation—A relatively simple funda-
mental parameter equation can be derived when the specimen
is irradiated with X radiation of a single energy or wavelength,
λ, (monochromatic excitation) (32). For example, such excita-
tion sources are used in energy-dispersive spectrometers in the
form of secondary target emitters or radioisotopes. In this case,
Eq 21 can be rewritten for monochromatic excitation simply by
replacing the integrals in Eq 22, Eq 23, and Eq 25, and the Iλdλ
terms with the intensity of the incident radiation λ. The relative
intensity for analyte i in a binary specimen containing an
enhancing element j then becomes:

R i 5 C i ~ABS! F 111/2 C jE j µ i~λ j! S µ j~λ!

µ i~λ!
D ·LG (27)

where:
ABS = µ i ~λ!

sinθ21µ i~λ i!
sinθ1

µ
~λ!

sinθ21µ
~λ i!

sinθ 1

9. Computer Programs for Interelement Corrections

9.1 A common approach in fundamental parameters correc-
tion methods consists of the calculation by computer of relative
X-ray intensities from first principles (see Eq 21-26) assuming
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a hypothetical composition for the unknown specimen. These
calculated intensities are compared with measured intensities,
and successive adjustments of the unknown composition are
made using available pure elements, compounds, or multi-
element reference materials until the calculated and measured
intensities are essentially the same. The final adjusted mass
fractions are then assumed to be equal to the actual mass
fractions in the unknown specimen. Relative intensities calcu-
lated from first principles using hypothetical compositions can
also generate fundamental influence coefficients as mentioned
in 7.1.4. A powerful feature of these methods is that even when
pure elements or compounds are the only reference materials
available, analysis of complex specimens is still possible.
However, in practice, the best results are obtained when type
reference materials are used in the analysis procedure.

9.2 The NRLXRF Correction Procedure— NRLXRF, a
widely used fundamental parameters computer program for
quantitative X-ray spectrometry, was developed at the Naval
Research Laboratory by Birks, Gilfrich, and Criss (33). An-
other version of this program, XRF-11, was developed by Criss
(34) for operation with minicomputers, as desktop computers
were called at that time.

9.2.1 With such programs, a multi-element analysis of an
unknown specimen can be performed when pure elements,
chemical compounds, or multi-element reference materials are
available. In this case, the measured intensities (Im) of the
materials with known compositions are used to adjust or
rescale the calculated intensities of the unknown specimen (Iu).
The rescaled, calculated intensities also are adjusted to match
the measured intensities of the specimen in an iterative
procedure. The final output composition for the unknown is
reached when the calculated and measured intensities
converge, that is, they agree within some predetermined limits.
A schematic diagram that illustrates this procedure is shown in
Fig. 2.

9.3 Fundamental Influence Coeffıcient Correction
Procedures—Computer programs have also been developed for
the methods of Claisse-Quintin, De Jongh, Lachance (COLA),
Rousseau, and Broll and Tertian. One example of a computer
program that employs the fundamental influence coefficient
approach is called NBSGSC and is applicable to the analysis of
minerals, both as pressed powders and as fused specimens, and
alloys (35). A schematic diagram of this program is given in

Fig. 3. Reference materials also are used in these procedures.
The calibration step is performed, generally, as follows:

9.3.1 First, a calibration plot of calculated relative intensity
(Ri

S) (that is, corrected for interelement effects) versus the
corresponding measured X-ray intensity is obtained for each
analyte from reference materials. Ideally, this should be a
straight line with a zero intercept. Extrapolation of this straight
line to Ri

S = 1.0 gives the expected measured intensity of the
pure analyte (that is, 100 %).

9.3.2 The measured intensities of the analytes in the speci-
mens are used to obtain the calculated relative intensities of the
analytes (Ri

U) from the above calibration plot.
9.3.3 From these values of Ri

U, the composition of the
unknown specimen is computed (using an influence coefficient
equation) in an iterative loop until some convergence criteria
are met and the final results are obtained.

9.4 SAP3 Computer Program—Nielson and Sanders (36)
developed a rather unique fundamental parameters computer
program (SAP3) by using monochromatic X-ray source exci-
tation in an energy-dispersive X-ray spectrometer. Their ap-
proach makes use of measured incoherent and coherent scat-
tered primary X-rays from the specimen along with
characteristic X-ray intensities. This method is applicable, for
the most part, to the analysis of samples in which the major
constituents are of low atomic number such as botanical and
geological materials. An important feature of this approach is
that additional information about the specimen matrix, such as
the total mass of low atomic number elements in the specimen
(for example, carbon, hydrogen, oxygen and nitrogen) can be
obtained from the intensity of scattered primary X-rays.

9.5 CORSET and QUAN Computer Programs:
9.5.1 Polychromatic Excitation; Use of Equivalent

Wavelengths—As an alternative to using a measured or calcu-
lated X-ray tube spectrum, an approximation can be made
which involves the concept of equivalent wavelengths. In
general, algorithms have been developed which consider only

FIG. 2 NRLXRF Correction Scheme FIG. 3 Schematic Diagram of the NBSGSC Program
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selected regions (wavelengths) of an X-ray tube spectrum
which are most effective in exciting a particular analyte X-ray
line (37), hence, the term equivalent or effective wavelength,
λe. Since, in a multi-component specimen, different wave-
lengths must be selected, corrections based on this approach
must employ a sliding scale of wavelengths. For example, in
situations where characteristic lines from the X-ray tube target
contribute very little to the excitation of the analyte in the
specimen, λe is taken to be equal to two-thirds the energy of the
absorption edge value of the excited analyte(s). Such correc-
tions then work essentially like the monochromatic excitation
model, but where a different λe is used for each analyte in place
of a single monochromatic wavelength. Although pure element
reference materials can be used for analysis of unknown
specimens with this model, it is recommended that reference
materials similar in composition to the unknown be measured
whenever possible for best results.

9.5.2 The main advantage of using this approach, rather
than the more rigorous polychromatic integrated tube spectrum
approach, was that computer programs such as CORSET (38)
and QUAN (39) were developed to perform rapidly and
efficiently in minicomputers (desktop computers) with limited
memory. However, advances in computer technology over-
came this limitation so that the effective wavelength approach
no longer offers any significant advantages in multi-element
analysis over the more rigorous methods that employ an
integrated tube spectrum.

9.6 Monte Carlo Correction Methods— Gardner and Doster
(40) developed Monte Carlo computer programs to determine
and correct for interelement effects. Although this technique is
not widely used in X-ray fluorescence analysis, there appear to
be several advantages in using this approach, especially in
situations where a wide-angle specimen-source-detector geom-
etry is used, or when specimens lack infinite thickness, or when
dealing with heterogeneous (layered) specimens.

10. Conclusion

10.1 In principle, although fundamental parameter methods
do not require the use of reference materials to correct for

interelement effects in specimens, they are, in fact, used in
practice as described in Sections 8 and 9. For best accuracy,
reference materials of the same type as the specimens should
be used in the correction procedure. This will compensate
considerably for uncertainties in the fundamental parameters
(for example, fluorescence yields, mass absorption coefficients,
etc.). Also, differences in specimen volume excited by X-rays
as compared to that in the reference material can lead to bias,
especially when wavelength-dispersive X-ray spectrometers
are used. The use of type standards will eliminate this potential
source of error.

10.2 Even though there has been only limited intercompari-
son of fundamental influence coefficient methods with other
fundamental parameters methods in the literature, comparable
results can be expected when the same reference materials are
used (17).

10.3 To obtain satisfactory results when using empirical or
semi-empirical correction procedures, appropriate reference
materials must be available over the analyte mass fraction
range of interest. As the number of different types of materials
to be analyzed increases and the elemental composition varies
considerably, it becomes less likely that appropriate reference
materials will be available. In such situations, fundamental
parameters correction methods are more attractive and efficient
to use, because these methods are applicable to a wide range of
sample types and only a limited number of type reference
materials are required for good accuracy. It is also possible to
perform analyses when only pure elements or compounds are
available, although the results obtained typically are less
accurate. With increasing availability of computer programs,
fundamental parameters correction procedures became easier
to use. Nevertheless, both empirical and fundamental correc-
tion procedures have roles to play in quantitative X-ray
analysis, and ultimately, the analyst must decide which ap-
proach is best suited for the analytical problem at hand.

11. Keywords

11.1 fundamental parameters; influence coefficients; in-
terelement effects; X-ray fluorescence

APPENDIXES

(Nonmandatory Information)

X1. INFLUENCE COEFFICIENTS

X1.1 This section uses graphical methods for obtaining
influence coefficients in the Lachance-Traill equation for pur-
poses of illustration only. In practice, these coefficients are
calculated using computer programs.

X1.1.1 Regression Method For Obtaining Influence (Alpha)
Coeffıcients from Reference Materials—Consider a series of
binary alloy reference materials consisting of nickel and iron.

Assume nickel is the analyte, i, and iron is the matrix element,
j. For various mass fractions of nickel and iron, the following
relative intensities for nickel were obtained on a commercial
X-ray spectrometer (11).

The Lachance-Traill equation can be applied to the data in
Table X1.1 to correct for the X-ray absorption of the nickel
K-L2,3 (Kα) radiation by iron. Accordingly, Eq 1 is as follows:
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CNi 5 R Ni ~11α NiFeCFe! (X1.1)

and rearranging:

F CNi

RNi
G 2 1 5 αNiFeCFe (X1.2)

A plot of (CNi/RNi) − 1 versus CFe will give a straight line the
slope of which is αNiFe. As shown in Fig. X1.1, the value
obtained for αNiFe is 1.71.

X1.1.2 Solving Simultaneous Equations to Obtain Influence
(Alpha) Coeffıcients:

X1.1.2.1 For more complex systems, simultaneous equa-
tions may be solved to obtain the influence coefficients. This
approach is recommended only if the relative intensities are
calculated from first principles. The procedure can be illus-
trated for a simple system as follows: For example, in the
Fe-Ni-Cr alloy system the Lachance-Traill correction can be
applied in the following form:

CN i 5 RNi ~11αNiCrCCr1αNiFeCFe! (X1.3)

where:
i = analyte, Ni, and
j and k = matrix elements, Fe and Cr, respectively.

X1.1.2.2 The data from two reference materials that will be
used to illustrate this procedure are given in Table X1.2.

Writing two simultaneous equations following the form of
Eq X1.2, αNiCr and αNiFe can be obtained as follows:

1.4532 5 0.2525αNiCr10.6838α NiFe (X1.4)

0.4722 5 0.1688αNiCr10.1501αNiFe (X1.5)

Eliminating the αNiCr term by multiplying Eq X1.4 by
0.2525
0.1688

51.4959 and subtracting it from Eq X1.3 gives αNiFe as

follows:

1.4532 5 0.2525αNiCr10.6838α NiFe (X1.6)

0.7063 5 0.2525αNiCr10.2245α NiFe

0.7468 5 0.4593αNiFe

α NiFe 5 1.63

Substitution of αNiFe = 1.63 in Eq X1.4 and solving for αNiCr

yields αNiCr = 1.34.
X1.1.2.3 Note that the values of αNiFe obtained in X1.1.1

and X1.1.2 differ. This difference is due primarily to the use of
fewer reference materials in the X1.1.2.2 example. It is not
uncommon, however, to see relative differences in alpha
coefficients on the order of 5 % to 10 % in the literature.

X1.1.3 Determination of αij
LT from First Principles—If the

excitation source is monochromatic and enhancement effects
are absent (that is, absorption only), αij can be calculated from
first principles yielding a simple expression involving mass
absorption coefficients and is:

α ij
LT 5 µ j~λo!1A ·µ j~λ i! 2 1 (X1.7)

where:
λ o = monochromatic wavelength of the source,
λi = wavelength of the characteristic line for analyte i,
µj(λo) = mass absorption coefficient of matrix element j for

wavelength λo,
µi(λo) = mass absorption coefficient of analyte element i for

wavelength λo,
µj(λi) = mass absorption coefficient of matrix element j for

wavelength λi,
µi(λi) = mass absorption coefficient of analyte element i for

wavelength λi, and
A = geometric constant that includes the incident and

takeoff angles of the particular spectrometer used
(see 8.2).

NOTE X1.1—Even when the excitation source is not monochromatic
(for example, X-ray tube), it is often useful to approximate the spectral
output distribution of the X-ray source by a single wavelength for each
analyte in the specimen to allow simple calculation of αij. This concept of
a single wavelength most efficient for exciting a particular analyte in the
specimen is referred to as an equivalent or effective wavelength and is
discussed in Ref (37) and 9.5. For multicomponent specimens irradiated
by polychromatic X-rays, influence coefficients can be obtained from first
principles using relative intensities calculated from Eq 21.

TABLE X1.1 XRF Data for Ni and Fe in Binary Fe-Ni Alloys

CNi CFe RNi

0.0329 0.9549 0.0125
0.3599 0.6315 0.1720
0.4820 0.5100 0.2553
0.6552 0.3431 0.4073
0.6931 0.3067 0.4515
0.7711 0.2263 0.5483
0.8964 0.1018 0.7595
0.9322 0.0659 0.8321
0.9516 0.0462 0.8782

FIG. X1.1 Determination of the Alpha Coefficient for the Effect of
Iron on the Analyte Nickel from Fe-Ni Binary Alloys Using the

Lachance-Traill Correction Procedure

TABLE X1.2 XRF Data for Example of Simultaneous Equations

CNi CCr CFe (CNi/RNi) − 1

0.0498 0.2525 0.6838 1.4532
0.6429 0.1688 0.1501 0.4722
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X2. CALCULATION OF THE UNKNOWN SPECIMEN COMPOSITION WHEN THE INFLUENCE
(ALPHA) COEFFICIENTS ARE KNOWN

X2.1 Considering a ternary system composed of elements i,
j , and k, three simultaneous equations can be solved for the
respective mass fractions as follows:

C i 5 R i ~11α ij C j1α ik Ck! (X2.1)

C j 5 R j ~11α ji C i1α jk Ck! (X2.2)

Ck 5 Rk ~11αki C i1αkj C j! (X2.3)

These linear equations can be solved for the unknown mass
fractions when the alpha coefficients have been previously
determined from reference materials or calculated from funda-
mental parameters expressions. Sets of linear equations can be
solved by: (1) elimination, (2) determinants, (3) matrix
inversion, or (4) iteration. Iteration is a more common ap-
proach and involves making successively closer estimates of
each mass fraction.

X2.2 The iterative procedure can be illustrated for the
Fe-Ni-Cr alloy system using the following data:

RNi

0.0549
αNiFe

1.21
αNiCr

0.80

RFe

0.4699

α FeCr

1.46
αFeNi

20.459

RCr

0.3391
αCrFe

20.352

α CrNi

20.370

X2.2.1 For the first iteration, the C’s inside the brackets can
be equated to the R’s. The calculated C’s are then used in the
next iteration to calculate a different set of C’s. The procedure

can be repeated indefinitely; but generally, when a comparison
of results indicates no appreciable change from those of the
preceding iteration, convergence has been met, and the results
from the last iteration may be considered the final mass
fractions. These calculations can be performed by a computer
utilizing, for example, the “DO LOOP” in Fortran language.
The computer program may be written so that when succeeding
iterations produce results that do not differ by more than 0.001
in the mass fraction, the results are printed out as final values.
For example:

X2.2.1.1 First Iteration:

CFe 5 0.4699 @110.0549~20.459!10.3391~1.46!# 5 0.6907

(X2.4)

CNi 5 0.0549 @110.4699~1.21!10.3391~0.80!# 5 0.1010

CCr 5 0.3391 @110.4699~20.352!10.0549~20.370!# 5 0.2761

X2.2.1.2 Second Iteration:

CF e 5 0.4699 @110.1010~20.459!10.2761~1.46!# 5 0.6381

(X2.5)

CNi 5 0.0549 @110.6907~1.21!10.2761~0.80!# 5 0.1132

CCr 5 0.3391 @110.6907~20.352!10.1010~2 .370!# 5 0.2439

X2.2.1.3 Third Iteration gives: CFe = 0.6133, CNi = 0.1081,
CCr = 0.2488, and

X2.2.1.4 Fourth Iteration gives: CFe = 0.6178,
CNi = 0.1067, CCr = 0.2523, etc.
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