
Designation: E1340 − 05 (Reapproved 2010) An American National Standard

Standard Guide for
Rapid Prototyping of Information Systems1

This standard is issued under the fixed designation E1340; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers a rapid prototyping method for
developing information systems that is particularly relevant to
systems for the healthcare sector. Intended readers of this guide
are people who develop information systems, and students and
teachers of system development methods.

1.2 Rapid prototyping is an approach to developing infor-
mation systems which produce a working model more quickly
than conventional approaches. Where conventional methods
concentrate on preparing Requirements and design documents
that describe the needed system, rapid prototyping methods
concentrate on preparing a working prototype. Users and
developers learn the functional requirements and an appropri-
ate system design by interacting with a series of prototypes,
each of which is rapidly produced from a starting framework or
from an earlier version. A prototype can evolve into an
operational system, it can serve as an exact behavioral speci-
fication of an operational system, or it can be used to explore
the feasibility of a new idea or design which can be incorpo-
rated in a larger system. The method is rapid in preparing each
version of the prototype, but the overall time required for
system development may be more or less than the time
required with conventional methods.

1.3 Rapid prototyping is most appropriate when the Re-
quirements or design for a system are not well understood, or
when experimentation is required to explore some aspect of
system behavior. It is not appropriate in hazardous settings, or
when the requirements are well understood.

1.4 The guide recommends use of prototyping tools, but it is
not a standard for the tools themselves. It does not cover
executable specification tools. Transforming a prototype that is
used to clarify Requirements into an operational system is
discussed briefly in Section 8 and in detail in other referenced
standards (see 2.1).

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ANSI Standards:
ANSI/MIL-STD-1815A Ada Programming Language2

ANSI X3.9 Programming Language FORTRAN2

ANSI X3.159 Programming Language C2

ANSI/X11.1 MUMPS Programming Language2

ANSI/IEEE 610.12 Glossary of Software Engineering Ter-
minology2

ANSI/IEEE 770 X3.97 Pascal Programming Language2

ANSI/IEEE 830 Recommended Practice for Software Re-
quirement Specifications3

ANSI/IEEE 1016 Recommended Practice for Software De-
sign Descriptions3

ANSI/IEEE 1058 Standard for Software Project Manage-
ment Plans3

ANSI/IEEE 1059 Guide for Software Verification and Vali-
dation Plans3

ANSI/IEEE 1063 User Documentation for Computer Soft-
ware3

ANSI/IEEE 1074 Software Life Cycle Processes3

2.2 ISO Standards:
IS 12207 Information Technology-Software Life Cycle Pro-

cesses
IS 15288 System Life Cycle Processes
IS 15440 Guide for Life Cycle Processes
IS 11756 MUMPS Programming Language

3. Terminology

3.1 Definitions—
3.1.1 For definitions of terms relating to information sys-

tems, refer to ANDIP4 and ANSI/IEEE 610.12.

1 This guide is under the jurisdiction of ASTM Committee E31 on Healthcare
Informatics and is the direct responsibility of Subcommittee E31.25 on Healthcare
Data Management, Security, Confidentiality, and Privacy.

Current edition approved March 1, 2010. Published August 2010. Originally
approved in 1990. Last previous edition approved in 2005 as E1340–05. DOI:
10.1520/E1340-05R10.

2 Available from American National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036, http://www.ansi.org.

3 Available from Institute of Electrical and Electronics Engineers, Inc. (IEEE),
445 Hoes Ln., P.O. Box 1331, Piscataway, NJ 08854-1331, http://www.ieee.org.

4 American National Dictionary for Information Processing Systems, Informa-
tion Processing Systems Technical Report X3/TR-1-82, Dow Jones-Irwin, Home-
wood, IL.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

1

http://www.astm.org/COMMIT/COMMITTEE/E31.htm
http://www.astm.org/COMMIT/SUBCOMMIT/E3125.htm

3.1.2 fourth generation language, n—a high-level computer
language that incorporates data structures and procedures for a
specific problem domain.

3.1.3 prototype, n—an original or model from which a
system is copied.

3.1.4 prototype, v—to create an original or model.

3.1.5 prototyping, n—the activities that create an original or
model.

3.1.6 rapid prototyping, n—an iterative method for devel-
oping prototypes of components, subsystems, or complete
computerized systems, in which the time between successive
versions of the prototype is short.

3.1.7 RP, n—rapid prototyping.

3.1.8 third generation language, n—a procedural high-level
computer language, such as COBOL, FORTRAN, or Pascal.

4. Significance and Use

4.1 Rapid Prototyping (RP) is a specific Life Cycle Model
used to develop an information system which produces a
working model of the system very quickly. The RP process
shown in Fig. 1 has many similarities, and some differences
from the conventional system (Waterfall Life Cycle Model)
development process shown in Fig. 2. RP replaces the Require-
ments and Design processes of the conventional method with
an iterative process of prototype refinement. Where the phases

of the conventional method produce a set of documents that
describe the system, RP produces a prototype. The prototype is
tested and refined through several iterations, with intense
interaction between system users and developers. RP is an
experimental approach to system development which provides
a learning device, the prototype, for users and developers. A
prototype can be used as a tool for clarifying Requirements for
the operational system, as a means of evaluating a design
approach, or as a developing series of versions of the opera-
tional system. A prototype is sometimes used as an exact
behavioral specification for an operational system which re-
places it. Quality characteristics are often sacrificed during RP
for the sake of rapid development and low cost; robustness,
efficiency, generality, portability, and maintainability are com-
monly ignored but none of these aspects need to be neglected.
However, documentation needed to use the system cannot be
ignored but none of these aspects need to be neglected. A
“Throwaway” prototype is used specifically to define Require-
ments which are used to implement a final system. An
“Evolutionary” prototype is a prototypical system used for
ongoing refinement of Requirements while operational ver-
sions at specific milestones are used in production settings.

4.1.1 Rapid in RP means that the time between successive
versions of the prototype is relatively short. It should be short
enough that (1) both users and developers can remember how
each version relates to the previous one without written notes,

FIG. 1 Rapid Prototyping of An Information System

E1340 − 05 (2010)

2

(2) user requirements do not change significantly while a
version is being developed, (3) the prototyping team will
remain in the project through the RP phase, and (4) total time
to develop the system is acceptable. (Expected project duration
should be stated in the project management planning docu-
ment. See Section 6 and ANSI/IEEE 1058 and ANSI/IEEE
1074.) A few days between versions is adequate and a few
weeks may be acceptable. If the time needed to produce a new
version is longer, then it may be necessary to produce that
version using a conventional system development method with
full documentation of requirements and design (see Appendix
X3).

4.1.2 RP integrates analysis, design and construction, and
defines Requirements during the process. It is especially
appropriate for dealing with problems which are not well
understood or are rapidly changing. The prototype focuses
communication between users and developers.

4.2 For large systems, a RP approach can be used at a high
level to explore the overall system architecture or feasibility. It
can also be used to develop subsystems and components whose
requirements are not fully understood (see Section 11). RP is
especially well suited for developing user-system interfaces.

4.2.1 What to Prototype—The ill-structured system devel-
opment problems that yield best to RP include:

4.2.1.1 Decision support systems in areas where the state of
knowledge changes rapidly, for example, research or clinical
practice,

4.2.1.2 Systems whose users need to access and organize
data in ways not foreseen when the system is created, for
example, strategic decision support and exploration of cogni-
tive processes,

4.2.1.3 Systems that consist entirely of software,
4.2.1.4 Instructional or experimental systems, and
4.2.1.5 User-system interfaces.
4.2.2 Ways to use RP—Three ways that are widely used are

(1) evolutionary, (2) experimental, and (3) build-and-replace.
In evolutionary prototyping, the developers rapidly produce an
initial version as a framework to learn user requirements, and
then satisfy the requirements incrementally through a series of
versions to produce the operational system. In experimental
prototyping, the developers explore the feasibility of selected
capabilities or components with a series of versions that serve
to test concepts and designs. In build-and-replace prototyping,
the developers assemble a series of versions to establish what
the system should do and how it should do it, then the
prototype is used as a behavioral specification for building the
operational system. Build-and-replace is sometimes called
throw-away prototyping, but the prototype should not be
thrown away.

A RAPID PROTOTYPING METHOD

5. Introduction

5.1 The following sections describe a system development
method that uses RP. It is based on, and shares some features
with, the methods described in ANSI/IEEE 1074 and other ISO
and IEEE standards which are listed in 2.1 (See IS 15440).
Instead of producing documents that describe Requirements
(ANSI/IEEE 830, Section 7), or Designs (ANSI/IEEE 1016)
for the required system, this method produces a prototype of
the system and refines it through an iterative process of
analysis, synthesis, and evaluation.

6. Project Definition

6.1 In any system development project, whether done by RP
or conventional means, it is important to have a definition of
what is to be accomplished, when, where, why, by whom, and
for about how much effort. It is also important to identify
everyone who must be satisfied with the results, and especially
everyone who will use the system. These things are determined
in the preliminary discussions and negotiations about a project.
A written statement of them is a Project Management Plan
(PMP, see ANSI/IEEE 1058) document. A Project Management
Plan is an agreement among everyone involved with a project.
Agreement on project goals is essential for project success.

6.2 A Project Management Plan must be in writing. A
written document is concrete and changes to it are explicit and
documented. A written PMP does not drift like a verbal one. As
new people become involved with the project, they can read
the original document and can either become parties to it or
renegotiate it.

FIG. 2 Conventional Development of An Information System

E1340 − 05 (2010)

3

6.3 The PMP document should be brief, and structured
preferably no more than a few pages. If it exceeds several
pages, provide a one page summary.

6.4 The PMP document should state what is to be proto-
typed and it should be specific about the goals of the project. If
a prototype is to be developed to learn the true requirements for
a system, the project definition should say so. If a prototype is
to explore feasibility of a new idea or design, that should be
stated. The PMP document should say whether the prototype is
to evolve into an operational version, or is to be replaced by an
operational version which is to be rebuilt from scratch. If this
is not known at the start of the project, then the PMP should
state the criteria for deciding.

6.5 The PMP document should briefly say what functions
the prototype is to perform. It should clarify and limit the scope
of the project, the prototype, and the system that is to be based
on the prototype.

6.6 Everyone involved with the project should indicate
agreement by signing the PMP document, or the one page
summary of it.

7. Tool Selection

7.1 The PMP and the users’ preliminary statements about
what the system needs to do, guide the developers in selecting
appropriate RP tools. The initial choice is crucial because it
immediately constrains what can be accomplished. By select-
ing the right tools, the developers minimize the time and effort
required for each RP cycle and maximize the likelihood of
success. If the wrong tools are selected, then the project may be
immediately doomed to failure. Most of the tools discussed in
this section are software tools, that is, computer programs, but
the principles also apply to hardware tools.

7.2 Good tools for RP share the following characteristics:
7.2.1 They help produce the prototype quickly,
7.2.2 They allow changes to the prototype to be made

quickly,
7.2.3 They are general enough to permit more than one

solution to most problems,
7.2.4 They encourage developers to try different ap-

proaches,
7.2.5 They are used interactively,
7.2.6 The person using them need not be a highly trained

specialist,
7.2.7 They simulate real time, and
7.2.8 They are available for use now rather than proposed or

promised for future use.

7.3 RP languages:
7.3.1 Many fourth generation languages are appropriate for

RP. A good RP language uses the natural terminology of the
problem domain, and it incorporates enough knowledge about
programming to eliminate most of the need to write proce-
dures. A good RP language should incorporate concepts which
are in general use by the people who are to use it. It should
provide high-level data constructs that are appropriate to the
problem.

7.3.2 The user-system interface for a good RP language
should incorporate features which allow development team

members to use descriptive techniques that they use with
human colleagues, that is, graphic, tabular, and other non-
verbal techniques.

7.3.3 Tools that make the job easy for an inexperienced
person may be tedious for a skilled system engineer. There
should be a terse dialog mode for the experienced user who can
abstract more features than the inexperienced user.

7.3.4 Good languages for RP are usually directly executed
or interpreted in some fashion. The ideal language for an
evolutionary prototype would fit the problem domain, would
have an interpretive processor with good diagnostic facilities,
and would be compilable (for efficiency of the operational
version).

7.3.5 If the prototype is to evolve into the operational
system, then the RP language should have reasonable effi-
ciency. MUMPS (ANSI/X11.1, IS 11756), LISP, Pyton, Ruby,
Perl, Scheme, PHP, and APL are widely used RP languages.
These languages make RP easier than strongly typed languages
like Pascal (ANSI/IEEE 770 X3.97) and Ada (ANSI/MIL-
STD-1815A).

7.3.6 General purpose third generation programming lan-
guages like FORTRAN (ANSI X3.9) and C (ANSI X3.159) are
not appropriate for RP unless powerful libraries can be used to
eliminate the bulk of the programming effort. These languages
may be useful if the prototype is to evolve into an operational
system, but they are not appropriate for RP unless a large body
of code is available and well-suited for reuse in the prototype.
These languages may also be useful in an environment where
the prototype can use several languages, and language selec-
tion is less critical.

7.4 RP is especially useful for developing user-system
interfaces, even when other system functions are developed by
a conventional approach. Mock-ups and simulators are power-
ful tools for exploring how people will use a system to
accomplish their tasks. The interface between a system and its
users can determine whether the system is accepted and
successful. Tools for prototyping user-system interfaces should
allow system developers to describe dialog attributes and style
in plain language. These kinds of tools are useful for RP of
user-system interfaces:

7.4.1 Screen managers, screen layout simulators, and forms
managers, to rapidly produce user displays. These should
incorporate graphics which are appropriate for the problem
domain.

7.4.2 Dialog generator such as a transition diagram inter-
preter. This allows RP of a dialog that involves several different
user displays.5

7.4.3 Dialog recording, to capture the conversation between
user and system for later playback and analysis.

7.4.4 Report generator to rapidly produce printed output.

7.5 There are two kinds of databases in RP—(1) Data used
by the system itself. Development of this database may be one
of the goals of a RP project. (2) Data about the project

5 Wasserman, A. I., and Shewmake, T., “Rapid Prototyping of Interactive
Information Systems,’’ Working Paper from ACM SIGSOFT Workshop on Rapid
Prototyping. ACM Software Engineering Notes, Vol 7, No. 5, December 1982, pp.
171–180.

E1340 − 05 (2010)

4

including past, present and future states of the system design,
that is, the history, current version and plans for the prototype.
Good tools make effective management of both kinds of
databases easier and help configuration management. Capabili-
ties for data updates, retrieval, security, backup, and transaction
logging may be required in database management tools. The
database management tools should allow data structures that
are natural to the problem domain. Data should not be forced
into inappropriate structures because of inappropriate tools.

7.6 Prefabricated components, both hardware and software,
can minimize the effort to produce a prototype. Sets of reusable
modules which are available off the shelf can minimize
software development effort like a good electronic parts
catalog minimizes hardware development effort. It is prefer-
able to build a system out of large hardware and software
components in order to minimize the effort to design, construct,
and test each prototype version.

7.6.1 Reusable software is especially useful, tools like
subroutine libraries and packages of data types and functions.
Analysis, design, and tested code should be reused. Reuse of
components requires careful specification of interfaces.

7.6.2 Skeleton programs, which require only the details to
be filled in, can reduce coding and debugging.

7.7 Software generating tools:
7.7.1 Some software systems (for example, table-driven

code generators) allow different members of a family of
programs to be created by varying parameters or tables. Each
member is an instance of a more general program.

7.7.2 Application or program generators, or automatic pro-
gramming systems are available for a few problem domains.

7.7.3 Computer-aided software engineering (CASE) tools
that can generate source code may be useful for RP. CASE
tools that require manual translation of the software design into
code may be useful in conventional system development which
focuses on design documents, but they are not appropriate for
RP.

7.8 Other useful tools for RP:
7.8.1 Statistical packages with graphics,
7.8.2 Test harnesses, both software and hardware, to simu-

late the operating environment. Test harnesses should be easily
reconfigurable to accommodate changes in the list of system
inputs and outputs.

7.8.3 Tools for creating, editing, and maintaining documen-
tation,

7.8.4 Tools to keep track of time and resources invested in
each version of the prototype, and in each component of the
system,

7.8.5 Graphics tools for drawing flowcharts, data flow
diagrams, state transition diagrams, etc., and

7.8.6 Computer-aided design programs for designing hard-
ware, and producing engineering drawings.

8. The RP Loop

8.1 In RP, developers and users iterate through a series of
analysis—synthesis—evaluation cycles in which the prototype
becomes more and more like the required system. The basic RP
process is shown in Fig. 3. One needs to use the RP loop to

learn it. One can learn about it from a guide like this, but one
must actually do it to learn it. The looping process starts from
the initial definition of, and uses tools selected for, the project
and the system. Analysis, synthesis, and evaluation meld
together in the looping process; while each cycle through the
loop is distinct, activities inside the loop are combined and
integrated. Requirements and system design evolve as the
prototype evolves. Design documentation (see ANSI/IEEE
1016) can be minimized because the prototype itself is the best
representation of the current state of requirements and design.
(However, enough documentation must be maintained to
understand the system.) User documentation evolves as part of
the prototype. When the prototype is close enough to the
required system, iteration stops and the project moves on to the
final design and system assembly phases (Section 9). A
prototype may evolve into an operational system, it may be
used for experiments to learn about the behavior of some
aspect of an operational system, or it may be used as an exact
behavioral specification for an operational system.

8.2 Analysis—The initial analysis leads to selection of
appropriate tools for learning more about the problem and for
developing the required system. In each cycle through the RP
loop, the analysis becomes more and more detailed about some
aspect of users’ needs and required system behavior. In each
cycle, increasing demands are placed on a larger number of
quality factors. What is most important is that users and
developers communicate freely and often, so that they share a
common growing understanding of the requirements and the
system. Analysis in each cycle should be sufficient to synthe-
size the next version of the prototype. The analysis is never
exhaustive and it always leaves some questions to be answered
in the next cycle. The RP process ends when the questions
remaining either already have known answers, or do not need
answers for the system to be successful.

8.3 Synthesis—The first version of the prototype is guided
by the initial analysis and the tools selected. A system
developed by RP should start with an open architecture, that is,
a structure and design style in which things can easily be
added, changed, and removed. Avoid early integration and

FIG. 3 The Rapid Prototyping Loop

E1340 − 05 (2010)

5

optimization; it is difficult to change later. Emphasize flexibil-
ity at the beginning. Structuring the system into subsystems is
part of the iterative process.

8.3.1 Consider a number of options in each cycle and select
one to be refined in preference to the others. Keep track of the
choices and the earlier versions so that they can be recovered
when it becomes necessary to backtrack.

8.3.2 In each RP cycle, analysis leads to synthesis of a
stepwise modification of the open system architecture which
exhibits behavior that can clearly be related to specific require-
ments.

8.3.3 Restructuring is sometimes necessary. If the RP pro-
cess leads to deterioration of the logical modular structure of
the system, affected parts should be redesigned to correct the
problem. When components become obsolete because of
evolution or because of design changes or errors, they should
be thrown away; they should not be repeatedly patched or
mended to make do. When the effort to restructure the system
can be recovered later because the new design works better
than the old one, restructure to correct design problems.

8.4 Construction—Build the newly synthesized version.
New components, concepts, designs, features, or structures are
created quickly, tested immediately, fit into the rest of system,
and tested with working pieces from earlier versions. The
emphasis here is on speed.

8.4.1 Complete versions of the prototype should be deliv-
ered in each cycle. Additions and modifications to earlier
versions are combined with unchanged parts to produce a new
version.

8.4.2 Assuming (1) that the prototype is not pushing the
state of the art in performance, and (2) that the tools and
approach that are selected are capable of providing adequate
performance, leave optimization for later. When the prototype
is finished, components that dominate its performance can be
identified and optimized. These usually amount to a small
percentage of the total components of the system. If perfor-
mance becomes a large enough concern that optimization of
the prototype is necessary, then re-evaluate the approach,
because the prototype is not likely to evolve into a successful
system. Go back and either redefine the project or start again
with different tools or a different approach.

8.5 Documentation serves some of the same functions in a
RP project that it serves in conventional system development
(see IS 12207), but there is less of it and the types are limited.
Documentation communicates with people who are separated
from the original development by time or distance. It tells
people what they need to know (1) to continue developing the
system, (2) to use the system, and (3) to maintain the system.
Some documentation is an integral part of the evolving
prototype. Documentation is a tool which permits other people
to work with the system when the original developers and users
are finished.

8.5.1 Documentation should be prepared in each cycle
through the RP loop. It should be done within the loop because
if it is left to be done later, the probability of its being done at
all is small.

8.5.2 Documentation Requirements :

8.5.2.1 User’s Manual—If the system is to be used with a
user’s manual, that document should evolve as part of the
prototype.

8.5.2.2 On-line Helps and Messages—If the user-system
interface is being prototyped, messages to guide the user and
on-line helps should be prepared and updated in each cycle.

8.5.2.3 System Development Notes, about decisions taken,
options considered and set aside, and things that may have to
be changed, should be prepared and reviewed (see 8.6.3).
Developers should keep notes in a machine-readable journal or
notebook.

8.5.2.4 Engineering Drawings, of hardware components
should be prepared (1) when hardware design is not apparent
by visual inspection, or (2) when components are to be built
outside the project team. A computer-aided design system
should be used to create and uptake engineering drawings.

8.5.2.5 The best documentation to describe software module
designs is in the form of embedded comments at the software
design level where maintenance will be performed. This is
usually the source code but it may be at a higher level if CASE
tools are used to generate and change the source code (see
7.3.3). Development notes (8.5.2.3), graphical representations,
and other documentation may also be needed. Code and
documentation should be reviewed during each cycle (see
8.6.3).

8.5.2.6 As the project proceeds, the prototype itself is the
most important representation of the system design, not a
separate design document. However, enough design documen-
tation should be maintained to understand the system.

8.5.3 Whenever possible, use graphics that communicate
more efficiently than words.

8.5.4 The tools selected for the project should include good
documentation tools. Use software for creating, editing, main-
taining, and distributing documents. Programs that extract or
generate documentation from high-level design languages or
source code are especially useful.

8.5.5 Update the documentation during each cycle. In de-
ciding when to uptake documents, divide them into two
categories: documents related (1) to system use, and (2) to
system design. User documents should be updated before each
evaluation. Design documents should be updated as the proto-
type changes.

8.6 Evaluation—People use the current version of the pro-
totype to assess how well it meets their needs, to identify
problems, and to propose additions or changes. Feedback to the
developers should be immediate. Determine both what is right
about this version, that is, what should be preserved, and what
is wrong with this version, that is, what should be changed.

8.6.1 This part of the RP process is different from anything
in conventional system development. This is the heart of
successful RP, the fundamental strength of the method. Users
interact with the prototype and react to concrete examples of its
behavior. They learn what it can do, and they interact with
developers to propose changes. Experience with actual system
behavior helps users articulate statements of their needs. Users
articulate likes and dislikes, and developers modify the proto-
type to accommodate them.

E1340 − 05 (2010)

6

8.6.2 RP is fundamentally a learning process. From observ-
ing and experiencing reactions to the prototype, developers and
users learn what is needed next. They recognize additional
changes or extensions to make the prototype fit the users’ needs
better. In each cycle, users and developers learn more about
users’ needs, what needs are satisfied by the present version,
how well they are satisfied, and how to accommodate addi-
tional or newly recognized needs.

8.6.3 Review new code, development notes and documen-
tation during each cycle. An appropriate time to review is just
before evaluation begins.

8.6.4 Formal reviews are helpful in some RP projects, and
are one means of formalizing the process of making critical
decisions. They are part of the recognized life cycles for both
software and systems (see IS 15288, IS 12207). Evaluation
reviews could cover:

8.6.4.1 Suitability of the current version for its intended use,
8.6.4.2 Quality of the current version,
8.6.4.3 Adequacy of the current documentation,
8.6.4.4 Potential improvements,
8.6.4.5 Potential generalizations,
8.6.4.6 Ways of restructuring the system to reduce complex-

ity,
8.6.4.7 Directions for the next version, and
8.6.4.8 Whether to generate another version of the prototype

or to move on to implementation.

8.7 There are a number of factors that affect user satisfac-
tion with a prototype.

8.7.1 If the users who work with a prototype represent a
larger population of potential users, then it is necessary to
compensate for their learning curve by adding new people to
the pool of users as the prototype matures.

8.7.1.1 A first-time user of a prototype is at the bottom of
the S-shaped learning curve (Fig. 4), where great effort
produces small improvements in performance. A person who is
struggling to learn may ask for a large number of changes. A
user who sees additional versions of the prototype builds on
earlier experience and learns more about it. A user may stop

asking for changes when the prototype seems just good
enough, because additional changes would require additional
learning effort. The prototype can thus become tailored to one
or a few users’ preference, but not necessarily to the best
performance of the target population.

8.7.1.2 If the developers work with a series of new users,
then they develop the prototype in a way that is appropriate for
people at the bottom of the learning curve. If the prototype is
never used by people who have experience with it, then the
developers never see how experienced people interact with it.

8.7.1.3 If the group of users contains people who are at
different places on the learning curve, then the developers get
a more complete picture of how the learning curve affects user
performance with the prototype.

8.7.2 The performance or functions of a first version proto-
type may lead inexperienced users to unrealistic conclusions
about the eventual results. The limitations and goals of each
prototype version should be discussed with people before they
use it. Expectations need to be managed.

8.7.3 The Hawthorne effect6 is a phenomenon in which any
change in experimental variables appears to improve the
performance of human subjects, because the phenomenon that
is producing the change is not being measured. In the case of
RP, it can cause any change in the prototype to produce an
apparent increase in user satisfaction, whether or not the
change is really helpful. It can be overcome by promoting
straight communication between users and developers, and by
looking only at changes in user performance between versions
of the prototype. Comparisons against performance before the
prototype was introduced should not be considered. If devel-
opers suspect that Hawthorne effect is present, then they can
check for it by presenting different versions of the prototype to
different users in different orders.

8.7.4 The glitter of new toys is related to the Hawthorne
effect, but it affects early versions of the prototype. Users may
be so taken with the prototype that they don’t want anything
changed from the first version, even though the developers
know that it needs to be improved. In order to avoid this effect,
each early version can contain some obvious flaw that users
cannot ignore. This encourages them to propose changes.

8.7.5 After the glitter of new toys wears off, a reverse
Hawthorne effect may appear in which no changes in the
prototype increase user satisfaction. This means that it is time
to stop RP and to move on to the final design and system
assembly phases (Section 9).

8.8 Iterate Rapidly and Cheaply—Optimize time and cost to
produce each new version. The process of cycling through the
RP loop is carried out iteratively, and the prototype should
converge to the operational system. Requirements and designs
are either validated or refuted quickly. They can be changed
quickly to reflect a growing understanding of the system. The
number of iterations depends on available time and funds as
specified in the project definition. Each iteration should bring
the prototype closer to the operational system.

6 Roethlisberger, F. J., and Dickson, W. J., Management and the Worker, Harvard
University Press, Cambridge, MA, 1939.FIG. 4 Typical Learning Curve

E1340 − 05 (2010)

7

9. Implementation Design and System Assembly

9.1 When RP is finished, it may be appropriate to develop a
final design for the operational system and to assemble, install,
and test it. The prototype is sometimes replaced by the
operational system; sometimes the prototype becomes the
operational system.

9.2 When to Keep and When to Replace:
9.2.1 One of the dangers of the RP approach to system

development is that an inadequate prototype can sometimes be
forced into operational service when it should be rebuilt from
scratch. This postpones the immediate cost of rebuilding in
favor of large costs for future maintenance. Before starting a
RP project, everyone involved with it should agree either that
the prototype is to evolve into the operational system or that the
operational version is to be rebuilt from scratch. If this cannot
be decided when the project starts, then the decision criteria
should be stated in the project definition agreement (see 6.4). It
may be appropriate to rebuild only parts of the prototype
instead of the whole system.

9.2.2 Even when the original intent of the project was to
evolve the prototype into an operational system, it may be
appropriate to revise the project definition at some point and to
relabel the prototype as experimental or build-and-replace.
This decision should be taken if it is learned that the system
architecture or RP tools are not right and cannot be made right
without starting again. It is better to change the RP approach
and the project definition to incorporate what is learned, than to
keep plowing ahead toward likely failure of the operational
system.

9.3 When the prototype becomes the operational system,
there is no final design phase because the prototype itself does
not need to be redesigned. The project moves directly into the
system assembly, installation and testing phase, for optimiza-
tion and refinement of the prototype.

9.3.1 Aspects of the system that are neglected for the sake of
rapid cycling through a series of versions of the prototype need
to be brought to an acceptable level. Optimization should have
been left for this phase, so the system should be optimized to
run efficiently. Backups and controls may be needed to make
the system acceptable for operational use.

9.3.2 If the system users include people who were not part
of the RP team, then they need to be trained to use the new
system. Other documents cover training for system users, end
users, supervisors and managers.

9.3.3 If the prototype is to replace an existing system, then
it is necessary to cut over from the existing system to the new
one. This may involve retraining users, converting data files,
revising manual and backup procedures, etc. Even though the
new system was developed by RP, cutover should be accom-
plished with the same detailed planning as in a conventional
system development project and should be included in the PMP
document.

9.3.4 A prototype of the user and system documentation
should evolve along with the prototype of the system itself. At
the end of each analysis—synthesis—evaluation loop, the
documentation should be updated to the current level of the
prototype.

9.3.5 A RP project does not generate the same sort of
documentation as a conventional project. The nature of the
system, the complexity of the development effort, the relation-
ship of users to developers, and the need for system mainte-
nance all influence the quantity and content of project docu-
mentation. Additional effort may be needed at the end of a RP
project to produce documents that would be produced during
the course of conventional system development, particularly
those needed for system maintenance.

9.3.6 Documentation guide ANSI/IEEE 1063 applies to the
operational system, even if it is developed by RP. If a system
developed by RP is to be maintained, then the maintenance
documentation is needed. If the system is to be used by anyone
other than the users with whom it was originally developed,
then the two levels of user documentation are needed. At the
end of the project, go back and finish the needed documenta-
tion that was not completed as part of the prototype.

9.4 Reworking a prototype into a polished well-built system
is easiest if the conceptual structure of the prototype is clear. A
prototype of limited scope should be developed with a view to
its future extension into a complete system. A prototype usually
needs to be scaled up to fit the whole problem domain.

9.4.1 The prototype may be extended by adding secondary
functions that were ignored for the sake of rapid cycling.

9.4.2 Inefficient components of the prototype should be
changed or replaced to yield the required performance effi-
ciency.

9.4.3 One RP strategy is to provide a user-system interface
that is useable only by the development team. If this strategy
has been taken and it is necessary to improve the interface, use
RP to rework it (see 7.4).

9.5 If the system is to be rebuilt from scratch, the prototype
serves as a specification for its behavior. In this case, the
project moves into a design phase for the operational system.
One advantage of RP over conventional system development,
is that a prototype can be a more precise specification than a
written document.

10. Project and System Evaluation

10.1 After the system is operational, both the system and the
project are evaluated, and this involves the process known as
Validation and Verification (see ANSI/IEEE 1059). This evalu-
ation checks the system design against the documented require-
ments and the system behavior against stated requirements as
well as collecting the lessons of the project and makes them
available for future use. In the system evaluation at the end of
a conventional development project, the operational system is
compared against its functional requirements to determine how
well the requirements are met and how much capacity exists
for growth. Because functional requirements are implicit in the
prototype, system evaluation compares what is delivered
against the perceived (but previsouly undocumented) needs of
its users, at least some of whom participated in its develop-
ment.

10.2 A RP project is a learning activity for everyone
involved with it. Project goals may include learning the users’
real requirements, learning whether a new idea or design is

E1340 − 05 (2010)

8

feasible, learning the capabilities of new tools or computers or
systems, learning how to build some component or feature of
a system, or learning how to use RP effectively to develop
computerized systems. The project evaluation needs to crys-
tallize and collect the lessons learned, in a form that is useful
to people other than those who participated in the project.

10.3 The tools selected for a RP project have a profound
effect on its outcome. The project evaluation should include an
evaluation of the tools used, and recommendations about their
future improvement and use.

10.4 If a prototype is used as a specification for building the
operational system, then the system evaluation procedure of
ANSI/IEEE 1059 can be followed with only slight modifica-
tion. The prototype itself provides the functional requirements
against which the operational system is evaluated.

10.5 If a prototype evolves into the operational system, then
the users’ requirements should be determined from interviews
and questionnaires. Evaluators are likely to hear most from
users about aspects of the system that are less than fully
satisfactory. In one respect, this makes evaluation easy because
the users’ comments focus on things that the evaluators should
find. In another respect, however, it makes evaluation difficult
because the evaluators’ attention is directed away from things
that work well, which are usually more important and valuable
than the problems.

10.6 The evaluation report should document the Require-
ments against which the system is evaluated, and the same
requirements should be reused for retrospective and final
evaluation. The prototype should also be saved for reuse in
later evaluations. It should not be thrown away.

11. Rapid Prototyping in Large Projects

11.1 RP can be used to explore system feasibility and
overall system architecture, to develop subsystems or compo-
nents that are not well understood, and to test different designs
of system elements that are critical to success. In a large
project, several RP subprojects may be active at the same time,
with each one proceeding around its own independent RP loop.
Subprojects do not need to be synchronized until the end of the
RP activity, when the implementation design or system assem-
bly phase starts.

12. Keywords

12.1 design; documentation; evaluation; information sys-
tem; Project Management Plan; rapid prototyping; require-
ment; subprojects; system architecture; system design; system
development

APPENDIXES

(Nonmandatory Information)

X1. CONVENTIONAL SYSTEM DEVELOPMENT METHODS

X1.1 The conventional process for developing a computer-
ized system is shown in Fig. 1. It includes the following six
phases:

X1.1.1 Project Definition,

X1.1.2 Functional Requirements,

X1.1.3 Functional Design,

X1.1.4 Implementation Design,

X1.1.5 System Assembly, Installation, and Testing, and

X1.1.6 System Evaluation.
Documentation is an important product of each of the six

phases. It is prepared as an integral part of the project, not as
a separate activity. Documentation carries information about
the requirements to people who design the system, and
additional documentation carries information about the design
to the system builders. Requirements analysis, design, and
implementation are separate activities, which produce docu-
ments that are used in other activities.

X1.2 Conventional methods have been proven to increase
the probability of success in developing computerized systems,
but they have some problems.

X1.2.1 Conventional system development methods expect
that most activities will be done right the first time they are

undertaken. While the conventional method allows for back-
tracking and cycling through the six phases, the cost of
correcting errors and making changes increases as the project
moves farther from defining requirements and closer to the
operational system. It is much more expensive to correct an
error, or to make an enhancement in an operational system than
in a system that is still being designed.

X1.2.2 In conventional system development methods, the
functional requirements, functional design, and implementa-
tion design are produced as written documents which are
passed to the users for comments, changes, and approvals.
These documents provide many opportunities for error or
misunderstanding. Functional requirements are the most criti-
cal and problem-prone area of system development.

X1.2.3 For first-of-a-kind systems, what the system must do
and how it can be produced are not usually understood when
the project starts. Some system development projects are
entirely straightforward, but many projects have elements that
are only partially understood. In custom software development,
systems are usually delivered late and they often prove not to
be what the customer wanted.

X1.2.4 The time period between the early stages of require-
ments analysis and delivery of an operational system is

E1340 − 05 (2010)

9

sometimes long. Users’ needs may change significantly during
the project; sometimes the changes are so significant that the
delivered system is of no use at all.

X1.3 The conventional system development method shares
several important characteristics with the rapid prototyping
method described in this guide.

X1.3.1 Both methods are centered on the needs of the
system users.

X1.3.2 Both methods involve the determination of func-
tional requirements but RP iteratively refines the requirements.

X1.3.3 Both methods involve specifications. RP refines the
specifications in a working model and the conventional method
refines them in written form.

X1.3.4 Both methods involve testing, but RP uses immedi-
ate testing and correction.

X1.3.5 Both methods proceed through several phases. The
functional requirements and functional design phases of the
conventional method are replaced by the RP loop.

X1.3.6 Both methods emphasize documentation. In RP, the
prototype itself is the most important representation of the
design, not a separate design document.

X1.3.7 Both methods can proceed in cycles. The conven-
tional method allows for backtracking and repetition of earlier
phases, while RP is an inherently cyclic process.

X1.3.8 RP may initially sacrifice efficiency and robustness
of the prototype, but it can provide these qualities at a later
stage in the project.

X2. DECIDING TO USE RAPID PROTOTYPING

INTRODUCTION

RP is most effective for solving ill-structured system development problems. A well-structured RP
approach to a difficult or ill-structured problem ensures that the maximum benefit will be achieved and
that, if appropriate, the prototype can evolve into an operational system.

X2.1 Advantages of RP:

X2.1.1 It is natural to build a model and try it. Inexperi-
enced system developers usually fall into some form of
prototyping if they are not taught a conventional system
development method.

X2.1.2 It provides a structure for users and developers to
work together to define requirements and to design, implement,
and test each version of a developing system.

X2.1.3 It provides a framework in which to build the
system.

X2.1.4 It is not necessary to do things right the first time.

X2.1.5 It quickly produces a working model which, in turn,
can produce better understanding of the nature of the system,
better estimates of time and effort to produce an operational
system, quicker validation of design concepts, and faster
testing and revision of the design.

X2.1.6 It leads to better understanding of the functional
requirements because:

X2.1.6.1 Users may not know what they need or want when
the project starts.

X2.1.6.2 Developers may not understand the users’ require-
ments.

X2.1.6.3 If the initial version does not reflect the users’ true
needs, the needs can be accommodated in later versions.

X2.1.6.4 It is not necessary to have full agreement about all
system capabilities at any early stage in the project.

X2.1.6.5 Each version encourages users to think carefully
about needed and desirable characteristics.

X2.1.6.6 The prototype allows users to react to actual
system behavior.

X2.1.6.7 The end product is a more tangible, stable reflec-
tion of requirements.

X2.1.7 It can produce a better user-system interface.

X2.1.8 A prototype can be easily modified.

X2.1.9 It does not require accurate time estimates at the start
of the project.

X2.1.10 It can reduce system cost and produce a better
system from a better defined target.

X2.1.11 The rapid feedback can help inexperienced people
(both developers and users) to learn quickly.

X2.1.12 It uses experienced people effectively.

X2.1.13 It is likely to shorten overall system development
time.

X2.1.14 It is likely to produce an operational system which
is modifiable and testable.

X2.2 Disadvantages of RP:

X2.2.1 It can produce an inefficient system. A prototype
may not reveal how a system will behave when pushed to
extremes of performance (for example, heavily loaded, buffers
exhausted, displays saturated with data) or how it will interact
with other system components.

X2.2.2 It can produce a system that lacks portability or
generality. The prototype system may not be useable outside
the hardware, software, or organizational environment where it
is produced.

X2.2.3 It can produce a system that is not complete.

X2.2.4 It can give users a wrong perception of the opera-
tional system. A prototype does not give users a true picture of
what it is like to live with a system for the long term.

E1340 − 05 (2010)

10

X2.2.5 An RP project may use inappropriate tools or select
an incorrect starting point.

X2.2.6 An RP project may be slow to find an optimum
design.

X2.2.7 RP can make it difficult to maintain a tight develop-
ment schedule.

X2.2.8 Tools needed for RP may be costly.

X2.2.9 A prototype can be forced into serve as an inad-
equate operational system.

X2.3 RP does not automatically solve these problems,
which are pitfalls in both conventional system development
and RP, and which may be aggravated by RP.

X2.3.1 The resulting system may be difficult to maintain.

X2.3.2 The resulting system may not be adequately docu-
mented.

X2.3.3 The resulting system may lack robustness and reli-
ability.

X2.3.4 The resulting system may lack an adequate user-
system interface. The interface may be useable only by the
development team or it may lack full error handling and
recovery.

X2.4 RP should be used under the following conditions:

X2.4.1 A good deal of uncertainty exists about the require-
ments or how to build the system.

X2.4.2 Both the risk and the cost of project failure (direct
monetary costs or time and effort) are low to moderate.
However, RP can be used to explore feasibility of different
designs in high-risk projects.

X2.4.3 The system has a heavy requirement for software.

X2.4.4 The prototype is small enough to be developed by a
team of no more than seven users and developers.

X2.4.5 There is a close working relationship between users
and developers.

X2.4.6 Each RP phase of the project can be completed in no
more than nine months.

X2.5 Avoid RP Under the Following Conditions:

X2.5.1 The project is large. However, RP can be used to
develop the overall architecture and subsystems and compo-
nents of large systems.

X2.5.2 A large data base must be created in the project
before the prototype can be run.

X2.5.3 The risk or cost of failure is high (see X2.4.2).

X2.5.4 Errors can threaten the safety of life or property. For
example, it would not be appropriate to use RP to develop the
process interface for a real-time control system in a hazardous
environment. (It might be appropriate to use RP to develop the
user-system interface for the process, if the prototype was not
connected to the process interface.)

X2.5.5 The system is well-understood, well-defined and
well-specified. Just go ahead and build it in one version.

X3. WHEN PROTOTYPING IS LESS THAN RAPID

X3.1 Rapidin RP means that the time between successive
versions of the prototype is short. It should be short enough
that (1) both users and developers can remember how each
version relates to the previous one, (2) user requirements do
not change significantly while a version is being developed, (3)
user interest is maintained, (4) the prototyping team will
remain in the project through the RP phase, and (5) total time
to develop the system is acceptable. (Expected project duration
should be stated in the project definition. See Section 5.) A few
days between versions is adequate and a few weeks may be
acceptable.

X3.2 If the time needed to produce a new version is long,
then steps should be taken to supplement the memories of
development team members. Arrange for both the previous and
current versions of the prototype to be simultaneously available
for evaluation. This makes it easier to compare features and
behaviors that have changed.

X3.3 If two versions of the prototype cannot be simultane-
ously available for evaluation, then it is necessary to document

what needs to be changed in the next version, how it works in
the current version, and how it is to be changed. Documenta-
tion is less reliable than direct comparison because features that
are not supposed to change may, in fact, change, with no
documentation to describe the previous behavior.

X3.4 Disagreements among members of the development
team about how things worked in earlier versions or how they
were to be changed usually indicate (1) that new versions are
not being developed rapidly enough, (2) that simultaneous
versions should be provided, or (3) that more documentation is
needed for each prototype version.

X3.5 If prototyping does not work well, abandon it and
produce the system using a conventional system development
method with full documentation of requirements and design. It
is better to change the approach and the project definition than
to keep plowing ahead toward likely failure of the project.

E1340 − 05 (2010)

11

X4. RELATED LITERATURE

ACM Software Engineering Notes, (Special Issue on Rapid
Prototyping), Vol 7, No. 5, December 1982.

Agresti, W. W., editor, “New Paradigms for Software De-
velopment,’’ IEEE Computer Society Press, Washington, DC,
1986.

Fisher, G. E., “Application Software Prototyping and Fourth
Generation Languages,’’ NBS Special Publication 500-148,
1987. Available from the Superintendent of Documents, U.S.
Government Printing Office, Washington, DC 20402.

IEEE 1074, Software Life Cycle Processes, Institute of
Electrical and Electronics Engineers, Inc., 345 E. 47th Street,
New York, NY 10017.

Moore, J W. “Software Engineering Standards” IEEE Com-
puter Society Press 1998 Los Alamitos CA 90720.

Naumann, J. D. and Jenkins, A. M., “Prototyping; The New
Paradigm for Systems Development,’’ Management Informa-
tion Systems Quarterly, September 1982, Vol 16, No. 3, pp.
29–44.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/
COPYRIGHT/).

E1340 − 05 (2010)

12

