
Designation: D7846 − 16 An American National Standard

Standard Practice for
Reporting Uniaxial Strength Data and Estimating Weibull
Distribution Parameters for Advanced Graphites1

This standard is issued under the fixed designation D7846; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This practice covers the reporting of uniaxial strength
data for graphite and the estimation of probability distribution
parameters for both censored and uncensored data. The failure
strength of graphite materials is treated as a continuous random
variable. Typically, a number of test specimens are failed in
accordance with the following standards: Test Methods C565,
C651, C695, C749, Practice C781 or Guide D7775. The load at
which each specimen fails is recorded. The resulting failure
stresses are used to obtain parameter estimates associated with
the underlying population distribution. This practice is limited
to failure strengths that can be characterized by the two-
parameter Weibull distribution. Furthermore, this practice is
restricted to test specimens (primarily tensile and flexural) that
are primarily subjected to uniaxial stress states.

1.2 Measurements of the strength at failure are taken for
various reasons: a comparison of the relative quality of two
materials, the prediction of the probability of failure for a
structure of interest, or to establish limit loads in an applica-
tion. This practice provides a procedure for estimating the
distribution parameters that are needed for estimating load
limits for a particular level of probability of failure.

2. Referenced Documents

2.1 ASTM Standards:2

C565 Test Methods for Tension Testing of Carbon and
Graphite Mechanical Materials

C651 Test Method for Flexural Strength of Manufactured
Carbon and Graphite Articles Using Four-Point Loading at
Room Temperature

C695 Test Method for Compressive Strength of Carbon and
Graphite

C749 Test Method for Tensile Stress-Strain of Carbon and
Graphite

C781 Practice for Testing Graphite and Boronated Graphite
Materials for High-Temperature Gas-Cooled Nuclear Re-
actor Components

D4175 Terminology Relating to Petroleum Products, Liquid
Fuels, and Lubricants

D7775 Guide for Measurements on Small Graphite Speci-
mens

E6 Terminology Relating to Methods of Mechanical Testing
E178 Practice for Dealing With Outlying Observations
E456 Terminology Relating to Quality and Statistics

3. Terminology

3.1 Proper use of the following terms and equations will
alleviate misunderstanding in the presentation of data and in
the calculation of strength distribution parameters.

3.2 Definitions:
3.2.1 estimator, n—a well-defined function that is dependent

on the observations in a sample. The resulting value for a given
sample may be an estimate of a distribution parameter (a point
estimate) associated with the underlying population. The arith-
metic average of a sample is, for example, an estimator of the
distribution mean.

3.2.2 population, n—the totality of valid observations (per-
formed in a manner that is compliant with the appropriate test
standards) about which inferences are made.

3.2.3 population mean, n—the average of all potential
measurements in a given population weighted by their relative
frequencies in the population.

3.2.4 probability density function, n—the function f(x) is a
probability density function for the continuous random variable
X if:

f~x! $ 0 (1)

and

*
2`

`

f~x! dx 5 1 (2)

The probability that the random variable X assumes a
value between a and b is given by:

1 This practice is under the jurisdiction of ASTM Committee D02 on Petroleum
Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcom-
mittee D02.F0 on Manufactured Carbon and Graphite Products.
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Pr~a , X , b! 5 *
a

b

f~x! dx (3)

3.2.5 sample, n—a collection of measurements or observa-
tions taken from a specified population.

3.2.6 skewness, n—a term relating to the asymmetry of a
probability density function. The distribution of failure
strength for graphite is not symmetric with respect to the
maximum value of the distribution function; one tail is longer
than the other.

3.2.7 statistical bias, n—inherent to most estimates, this is a
type of consistent numerical offset in an estimate relative to the
true underlying value. The magnitude of the bias error typically
decreases as the sample size increases.

3.2.8 unbiased estimator, n—an estimator that has been
corrected for statistical bias error.

3.2.9 Weibull distribution, n—the continuous random vari-
able X has a two-parameter Weibull distribution if the prob-
ability density function is given by:

f~x! 5 S m
β D S x

β D □
m21

expF2 S x
β D□

mG x.0 (4)

f~x! 5 0 x # 0 (5)

and the cumulative distribution function is given by:

F~x! 5 1 2 expF2 S x
β D□

mG x.0 (6)

or

F~x! 5 0 x # 0 (7)

where:
m = Weibull modulus (or the shape parameter) (> 0), and
β = scale parameter (> 0).

3.2.9.1 Discussion—The random variable representing uni-
axial tensile strength of graphite will assume only positive
values, and the distribution is asymmetrical about the popula-
tion mean. These characteristics rule out the use of the normal
distribution (as well as others) and favor the use of the Weibull
and similar skewed distributions. If the random variable
representing uniaxial tensile strength of a graphite is charac-
terized by Eq 4, Eq 5, Eq 6, and Eq 7, then the probability that
the tested graphite will fail under an applied uniaxial tensile
stress, σ, is given by the cumulative distribution function:

Pf 5 1 2 expF2 S σ
σθ
D□

mG for σ.0 (8)

and

Pf 5 0 for σ # 0 (9)

where:
Pf = the probability of failure, and
σθ = the Weibull characteristic strength.

3.2.9.2 Discussion—The Weibull characteristic strength de-
pends on the uniaxial test specimen (tensile, compression and
flexural) and may change with specimen geometry. In addition,
the Weibull characteristic strength has units of stress and
should be reported using units of MPa or GPa.

3.3 For definitions of other statistical terms, terms related to
mechanical testing, and terms related to graphite used in this
practice, refer to Terminologies D4175, E6, and E456, or to
appropriate textbooks on statistics (1-5).3

3.4 Nomenclature:

F(x) = cumulative distribution function
f(x) = probability density function
+ = likelihood function
m = Weibull modulus
m̂ = estimate of the Weibull modulus
m̂U = unbiased estimate of the Weibull modulus
N = number of specimens in a sample
Pf = probability of failure
t = intermediate quantity used in calculation of confi-

dence bounds
X = random variable
x = realization of a random variable X
β = Weibull scale parameter
µ̂ = estimate of mean strength
σ = uniaxial tensile stress
σi = maximum stress in the Ith test specimen at failure
σθ = Weibull characteristic strength (associated with a test

specimen)
σ̂θ = estimate of the Weibull characteristic strength

4. Summary of Practice

4.1 This practice provides a procedure to estimate Weibull
distribution parameters from failure data for graphite data
tested in accordance with applicable ASTM test standards. The
procedure consists of computing estimates of the biased
Weibull modulus and Weibull characteristic strength. If
necessary, compute an estimate of the mean strength. If the
sample of failure strength data is uncensored, compute an
unbiased estimate of the Weibull modulus, and compute
confidence bounds for both the estimated Weibull modulus and
the estimated Weibull characteristic strength. Finally, prepare a
graphical representation of the failure data along with a test
report.

5. Significance and Use

5.1 Two- and three-parameter formulations exist for the
Weibull distribution. This practice is restricted to the two-
parameter formulation. An objective of this practice is to obtain
point estimates of the unknown Weibull distribution param-
eters by using well-defined functions that incorporate the
failure data. These functions are referred to as estimators. It is
desirable that an estimator be consistent and efficient. In
addition, the estimator should produce unique, unbiased esti-
mates of the distribution parameters (6). Different types of
estimators exist, including moment estimators, least-squares
estimators, and maximum likelihood estimators. This practice
details the use of maximum likelihood estimators.

5.2 Tensile and flexural specimens are the most commonly
used test configurations for graphite. The observed strength
values depend on specimen size and test geometry. Tensile and

3 The boldface numbers in parentheses refer to the list of references at the end of
this standard.
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flexural test specimen failure data for a nearly isotropic
graphite (7) is depicted in Fig. 1. Since the failure data for a
graphite material can be dependent on the test specimen
geometry, Weibull distribution parameter estimates (m̂, σ̂θ)
shall be computed for a given specimen geometry.

5.3 Many factors affect the estimates of the distribution
parameters. The total number of test specimens plays a
significant role. Initially, the uncertainty associated with pa-
rameter estimates decreases significantly as the number of test
specimens increases. However, a point of diminishing returns
is reached where the cost of performing additional strength
tests may not be justified. This suggests a limit to the number
of test specimens for determining Weibull parameters to obtain
a desired level of confidence associated with a parameter
estimate. The number of specimens needed depends on the
precision required in the resulting parameter estimate or in the
resulting confidence bounds. Details relating to the computa-
tion of confidence bounds (directly related to the precision of
the estimate) are presented in 8.3 and 8.4.

6. Outlying Observations

6.1 Before computing the parameter estimates, the data
should be screened for outlying observations (outliers). Pro-
vided the experimentalist has followed the prescribed experi-
mental procedure, all test results must be included in the
computation of the parameter estimates. Given the experimen-
talist has followed the prescribed experimental procedure, the
data may include apparent outliers. However, apparent outliers
must be retained and treated as any other observation in the
failure sample. In this context, an outlying observation is one
that deviates significantly from other observations in the
sample and is an extreme manifestation of the variability of the
strength due to non-homogeneity of graphite material, or large
disparate flaws, given the prescribed experimental procedure

has been followed. Only where the outlying observation is the
result of a known gross deviation from the prescribed experi-
mental procedure, or a known error in calculating or recording
the numerical value of the data point in question, may the
outlying observation be censored. In such a case, the test report
should record the justification. If a test specimen is deemed
unsuitable either for testing, or fails before the prescribed
experimental procedure has commenced, then this should not
be regarded as a test result. However, the null test should be
fully documented in the test report. The procedures for dealing
with outlying observations are detailed in Practice E178.

7. Maximum Likelihood Parameter Estimators

7.1 The likelihood function for the two-parameter Weibull
distribution of a censored sample is defined by the expression
(8):

+ 5 H Π
i51

r S m̂

σ̂θ
D S σ i

σ̂θ
D □

m̂21

expF2 S σ i

σ̂θ
D□

m̂G J Π
j5r11

N

expF2 S σ j

σ̂θ
D□

m̂G (10)

7.1.1 For graphite material, this expression is applied to a
sample where outlying observations are identified under the
conditions given in Section 6. When Eq 10 is used to estimate
the parameters associated with a strength distribution contain-
ing outliers, then r is the number of data points retained in the
sample, that is, data points not considered outliers, and i is the
associated index in the first product. In this practice, the second
product is carried out for the outlying observations. Therefore
the second product is carried out from (j = r + 1) to N (the total
number of specimens) where j is the index in the second
summation. Accordingly, σi is the maximum stress in the ith
test specimen at failure. The parameter estimates (the Weibull
modulus m̂ and the characteristic strength σ̂θ) are determined

FIG. 1 Failure Strengths for Tensile Test Specimens (left) and Flexural Test Specimens (right) for a Nearly Isotropic Graphite (7)
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by taking the partial derivatives of the logarithm of the
likelihood function with respect to m̂ and σ̂θ then equating the
resulting expressions to zero. Finally, the likelihood function
for the two-parameter Weibull distribution for a sample free of
outlying observations is defined by the expression:

+ 5 Π
i51

N S m̂
σ̂θ
D S σ i

σ̂θ
D □

m̂21

expF2 S σ i

σ̂θ
D□

m̂G (11)

where r was taken equal to N in Eq 10.

7.2 The system of equations obtained by differentiating the
log likelihood function for a censored sample is given by (9):

and

σ̂θ 5 F S Σ
i51

N

~σ i ! m̂ D 1
r G □

1⁄m̂

(13)

where:
r = the total number of observations (N) minus the number

of outlying observations in a censored sample.

7.3 For a censored sample Eq 12 is solved first for m̂.
Subsequently, σ̂θ is computed from Eq 13. Obtaining a closed
form solution of Eq 12 for m̂ is not possible. This expression
must be solved numerically.

7.4 When a sample does not require censoring Eq 11 is used
for the likelihood function. For uncensored data, the parameter
estimates (the Weibull modulus m̂ and the characteristic
strength σ̂θ) are determined by taking the partial derivatives of
the logarithm of the likelihood function given by Eq 11 with
respect to m̂ and σ̂θ then equating the resulting expressions to
zero. The system of equations obtained is given by (9):

and

σ̂θ 5 F S Σ
i51

N

~σ i ! m̂ D 1
N G □

1⁄m̂

(15)

For an uncensored sample Eq 14 is solved first for m̂.
Subsequently σ̂θ is computed from Eq 15. Obtaining a closed
form solution of Eq 14 for m̂ is not possible. This expression
must be solved numerically.

7.5 An objective of this practice is the consistent statistical
representation of strength data. To this end, the following
procedure is the recommended graphical representation of
strength data. Begin by ranking the strength data obtained from
laboratory testing in ascending order, and assign to each a
ranked probability of failure Pf according to the estimator:

Pf ~σ i! 5
i 2 0.5

N
(16)

where:
N = number of specimens, and
i = the ith datum.

Compute the natural logarithm of the ith failure stress, and
the natural logarithm of the natural logarithm of [1/(1 – Pf)]
(that is, the double logarithm of the quantity in brackets),
where Pf is associated with the ith failure stress.

7.6 Create a graph representing the data as shown in Fig. 2.
Plot ln{ln[1/1(1 – Pf)]} as the ordinate, and ln(σ) as the
abscissa. A typical ordinate scale assumes values from +2 to
–6. This approximately corresponds to a range in probability of
failure from 0.25% to 99.9%. The ordinate axis must be labeled
as probability of failure Pf, as depicted in Fig. 2. Similarly, the
abscissa must be labeled as failure stress (flexural, tensile, etc.),
preferably using units of MPa.

7.7 Included on the plot should be a line defined by the
following mathematical expression:

Pf 5 1 2 expF2 S σ
σ̂θ
D □

m̂G (17)

FIG. 2 Failure Strength for the Tensile Test Specimen Geometry Oriented to the Axial Direction of the Billet, End Edge Location (10)
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The slope of the line, which is the estimate of the Weibull
modulus m̂, and the characteristic strength σ̂θ should be
explicitly identified, as shown in Fig. 2. The estimate of the
characteristic strength corresponds to a Pf of 63.2%, or a value
of zero for ln{ln[1/(1 - Pf)]}. A test report (that is, a data sheet)
that contains information regarding the type of material
characterized, the test procedure (preferably designating an
appropriate standard), the number of failed specimens with the
failure load and method of calculating the failure stress, the
maximum likelihood estimates of the Weibull parameters, the
unbiasing factor, and the information that allows the construc-
tion of 90% confidence bounds should be prepared. This data
sheet should accompany the graph to provide a complete
representation of the failure data. Insert a column on the graph
(in any convenient location), or alternatively provide a separate
table that identifies the individual strength values in ascending
order. In addition, the experimentalist should include a separate
sketch of the specimen geometry that includes all pertinent
dimensions. An estimate of mean strength can also be depicted
in the graph. The estimate of mean strength is calculated by
using the arithmetic mean as the estimator:

µ̂ 5 S Σ
i51

N

σ iD S 1
N D (18)

8. Unbiasing Factors and Confidence Bounds

8.1 Sections 8.2 through 8.4 outline methods to correct for
statistical bias errors in the estimated Weibull parameters, and
they outline methods to calculate confidence bounds for the
distribution parameters. The procedures described herein to
correct for statistical bias errors and to compute confidence
bounds are appropriate only for data sets where all failures
originate from an uncensored sample. The statistical bias
associated with the estimate for σ̂θ is minimal, for example,
<0.3% for 20 test specimens, as opposed to >7% bias for m̂
with the same number of specimens. Therefore, this practice
allows the assumption that σ̂θ is an unbiased estimator of the
true population parameter. The parameter estimate of the
Weibull modulus (m̂) generally exhibits statistical bias. The
magnitude of statistical bias depends on the number of speci-
mens in the sample. An unbiased estimate of m shall be
obtained by multiplying m̂ by an unbiasing factor (11). This
procedure is discussed in the following sections. Statistical bias
associated with the maximum likelihood estimators presented
in this practice can be reduced by increasing the sample size.

8.2 An unbiased estimator produces nearly zero statistical
bias between the value of the true parameter and the point
estimate. The amount of deviation can be quantified either as a
percent difference or with unbiasing factors. In keeping with
the accepted practice in the open literature, this standard
quantifies statistical bias through the use of unbiasing factors,
denoted here as UF. Depending on the number of specimens in
a given sample, the point estimate of the Weibull modulus m̂
may exhibit significant statistical bias. An unbiased estimate of
the Weibull modulus (denoted as m̂U) is obtained by multiply-
ing the biased estimate with an appropriate unbiasing factor.
Unbiasing factors for m̂ are listed in Table 1. The example in
section 9.2 demonstrates the use of Table 1 in correcting a
biased estimate of the Weibull modulus. As a final note, this

procedure is not appropriate for censored samples. The theo-
retical approach was developed for uncensored samples.

8.3 Confidence bounds quantify the uncertainty associated
with a point estimate of a population parameter. The size of the
confidence bounds for maximum likelihood estimates of both
Weibull parameters will decrease with increasing sample size.
The values used to construct confidence bounds are based on
percentile distributions obtained by Monte Carlo simulation.
For example, the 90% confidence bound on the Weibull
modulus is obtained from the 5 and 95 percentile distributions
of the ratio of m̂ to the true population value m. For the point
estimate of the Weibull modulus, the normalized values (m̂/m)
necessary to construct the 90% confidence bounds are listed in
Table 2. The example in 9.2 demonstrates the use of Table 2 in
constructing the upper and lower bounds on m̂. The statistical
biased estimate of the Weibull modulus must be used here.

8.3.1 Table 2 has values for up to 120 specimens. Beyond
120 specimens equations have been numerically fitted to the
data in the table. The equations for the bounds are given by:

q0.02 5 20.313101 2
0.3453

N0.5 1N0.0410319 (19)

q0.05 5 20.255704 2
0.277943

N0.5 1N0.0348039 (20)

q0.10 5 20.275117 2
0.0523232

N0.5 1N0.0389672 (21)

q0.90 5 0.9349561
19.343

N2 1
1

N0.327436 2 0.000479117N (22)

q0.95 5 1.03111
30.3502

N2 1
1

N0.330832 2 0.00116078N (23)

q0.98 5 1.132151
47.5464

N2 1
1

N0.332061 2 0.0018067N (24)

TABLE 1 Unbiasing Factors for the Maximum Likelihood
Estimate of the Weibull Modulus (11)

Number of
Specimens,

N

Unbiasing
Factor,

UF

Number of
Specimens,

N

Unbiasing
Factor,

UF

5 0.700 42 0.968
6 0.752 44 0.970
7 0.792 46 0.971
8 0.820 48 0.972
9 0.842 50 0.973
10 0.859 52 0.974
11 0.872 54 0.975
12 0.883 56 0.976
13 0.893 58 0.977
14 0.901 60 0.978
15 0.908 62 0.979
16 0.914 64 0.980
18 0.923 66 0.980
20 0.931 68 0.981
22 0.938 70 0.981
24 0.943 72 0.982
26 0.947 74 0.982
28 0.951 76 0.983
30 0.955 78 0.983
32 0.958 80 0.984
34 0.960 85 0.985
36 0.962 90 0.986
38 0.964 100 0.987
40 0.966 120 0.990
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8.3.2 The R2 value for the fit of these equations with the
table values is 0.999. These equations are not appropriate for
use with censored samples.

8.4 Confidence bounds can be constructed for the estimated
Weibull characteristic strength. However, the percentile distri-
butions needed to construct the bounds do not involve the same
normalized ratios or the same tables as those used for the
Weibull modulus. Define the function:

t 5 m̂ ln~σ̂θ ⁄ σθ! (25)

8.4.1 The 90% confidence bound on the characteristic
strength is obtained from the 5 and 95 percentile distributions
of t. For the point estimate of the characteristic strength, these

percentile distributions are listed in Table 3. The example in
9.2 demonstrates the use of Table 3 in constructing upper and
lower bounds on σ̂θ. The biased estimate of the Weibull
modulus must be used here.

8.4.2 Table 3 has values for up to 120 specimens. Beyond
120 specimens equations have been numerically generated
using the data in the table. The equations for the bounds on the
function t are given by:

t0.02 5 20.134788 2
7.34535

N
2 1.00427N1N1.0009 (26)

t0.05 5 20.148236 2
5.20828

N
2 1.00203N1N1.0005 (27)

TABLE 2 Normalized Upper and Lower Bounds on the Maximum
Likelihood Estimate of the Weibull Modulus (11)

Number of
Specimens

N
q0.02 q0.05 q0.10 q0.90 q0.95 q0.98

5 0.604 0.683 0.766 2.277 2.779 3.518
6 0.623 0.697 0.778 2.03 2.436 3.067
7 0.639 0.709 0.785 1.861 2.183 2.64
8 0.653 0.72 0.792 1.747 2.015 2.377
9 0.665 0.729 0.797 1.665 1.896 2.199
10 0.676 0.738 0.802 1.602 1.807 2.07
11 0.686 0.745 0.807 1.553 1.738 1.972
12 0.695 0.752 0.811 1.513 1.682 1.894
13 0.703 0.759 0.815 1.48 1.636 1.83
14 0.71 0.764 0.819 1.452 1.597 1.777
15 0.716 0.77 0.823 1.427 1.564 1.732
16 0.723 0.775 0.826 1.406 1.535 1.693
17 0.728 0.779 0.829 1.388 1.51 1.66
18 0.734 0.784 0.832 1.371 1.487 1.63
19 0.739 0.788 0.835 1.356 1.467 1.603
20 0.743 0.791 0.838 1.343 1.449 1.579
22 0.752 0.798 0.843 1.32 1.418 1.538
24 0.759 0.805 0.848 1.301 1.392 1.504
26 0.766 0.81 0.852 1.284 1.37 1.475
28 0.772 0.815 0.856 1.269 1.351 1.45
30 0.778 0.82 0.86 1.257 1.334 1.429
32 0.783 0.824 0.863 1.246 1.319 1.409
34 0.788 0.828 0.866 1.236 1.306 1.392
36 0.793 0.832 0.869 1.227 1.294 1.377
38 0.797 0.835 0.872 1.219 1.283 1.363
40 0.801 0.839 0.875 1.211 1.273 1.351
42 0.804 0.842 0.877 1.204 1.265 1.339
44 0.808 0.845 0.88 1.198 1.256 1.329
46 0.811 0.847 0.882 1.192 1.249 1.319
48 0.814 0.85 0.884 1.187 1.242 1.31
50 0.817 0.852 0.886 1.182 1.235 1.301
52 0.82 0.854 0.888 1.177 1.229 1.294
54 0.822 0.857 0.89 1.173 1.224 1.286
56 0.825 0.859 0.891 1.169 1.218 1.28
58 0.827 0.861 0.893 1.165 1.213 1.273
60 0.83 0.863 0.894 1.162 1.208 1.267
62 0.832 0.864 0.896 1.158 1.204 1.262
64 0.834 0.866 0.897 1.155 1.2 1.256
66 0.836 0.868 0.899 1.152 1.196 1.251
68 0.838 0.869 0.9 1.149 1.192 1.246
70 0.84 0.871 0.901 1.146 1.188 1.242
72 0.841 0.872 0.903 1.144 1.185 1.237
74 0.843 0.874 0.904 1.141 1.182 1.233
76 0.845 0.875 0.905 1.139 1.179 1.229
78 0.846 0.876 0.906 1.136 1.176 1.225
80 0.848 0.878 0.907 1.134 1.173 1.222
85 0.852 0.881 0.91 1.129 1.166 1.213
90 0.855 0.883 0.912 1.124 1.16 1.206
95 0.858 0.886 0.914 1.12 1.155 1.199
100 0.861 0.888 0.916 1.116 1.15 1.192
110 0.866 0.893 0.92 1.11 1.141 1.181
120 0.871 0.897 0.923 1.104 1.133 1.171

TABLE 3 Normalized Upper and Lower Bounds on the Function t
— 90% Confidence Interval

Number of
Specimens

N
t0.02 t0.05 t0.10 t0.90 t0.95 t0.98

5 -1.631 -1.247 -0.888 0.772 1.107 1.582
6 -1.396 -1.007 -0.74 0.666 0.939 1.291
7 -1.196 -0.874 -0.652 0.598 0.829 1.12
8 -1.056 -0.784 -0.591 0.547 0.751 1.003
9 -0.954 -0.717 -0.544 0.507 0.691 0.917
10 -0.876 -0.665 -0.507 0.475 0.644 0.851
11 -0.813 -0.622 -0.477 0.448 0.605 0.797
12 -0.762 -0.587 -0.451 0.425 0.572 0.752
13 -0.713 -0.557 -0.429 0.406 0.544 0.714
14 -0.683 -0.532 -0.41 0.389 0.52 0.681
15 -0.651 -0.509 -0.393 0.374 0.499 0.653
16 -0.624 -0.489 -0.379 0.36 0.48 0.627
17 -0.599 -0.471 -0.365 0.348 0.463 0.605
18 -0.578 -0.455 -0.353 0.338 0.447 0.584
19 -0.558 -0.441 -0.342 0.328 0.433 0.566
20 -0.54 -0.428 -0.332 0.318 0.421 0.549
22 -0.509 -0.404 -0.314 0.302 0.398 0.519
24 -0.483 -0.384 -0.299 0.288 0.379 0.494
26 -0.46 -0.367 -0.286 0.276 0.362 0.472
28 -0.441 -0.352 -0.274 0.265 0.347 0.453
30 -0.423 -0.338 -0.264 0.256 0.334 0.435
32 -0.408 -0.326 -0.254 0.247 0.323 0.42
34 -0.394 -0.315 -0.246 0.239 0.312 0.406
36 -0.382 -0.305 -0.238 0.232 0.302 0.393
38 -0.37 -0.296 -0.231 0.226 0.293 0.382
40 -0.36 -0.288 -0.224 0.22 0.285 0.371
42 -0.35 -0.28 -0.218 0.214 0.278 0.361
44 -0.341 -0.273 -0.213 0.209 0.271 0.352
46 -0.333 -0.266 -0.208 0.204 0.264 0.344
48 -0.325 -0.26 -0.203 0.199 0.258 0.336
50 -0.318 -0.254 -0.198 0.195 0.253 0.328
52 -0.312 -0.249 -0.194 0.191 0.247 0.321
54 -0.305 -0.244 -0.19 0.187 0.243 0.315
56 -0.299 -0.239 -0.186 0.184 0.238 0.309
58 -0.294 -0.234 -0.183 0.181 0.233 0.303
60 -0.289 -0.234 -0.179 0.177 0.229 0.297
62 -0.284 -0.226 -0.176 0.174 0.225 0.292
64 -0.279 -0.222 -0.173 0.171 0.221 0.287
66 -0.274 -0.218 -0.17 0.169 0.218 0.282
68 -0.27 -0.215 -0.167 0.166 0.214 0.278
70 -0.266 -0.211 -0.165 0.164 0.211 0.274
72 -0.262 -0.208 -0.162 0.161 0.208 0.269
74 -0.259 -0.205 -0.16 0.159 0.205 0.266
76 -0.255 -0.202 -0.158 0.157 0.202 0.262
78 -0.252 -0.199 -0.155 0.155 0.199 0.258
80 -0.248 -0.197 -0.153 0.153 0.197 0.255
85 -0.241 -0.19 -0.148 0.148 0.19 0.246
90 -0.234 -0.184 -0.144 0.143 0.185 0.239
95 -0.227 -0.179 -0.139 0.139 0.179 0.232
100 -0.221 -0.174 -0.136 0.136 0.175 0.226
110 -0.211 -0.165 -0.129 0.129 0.166 0.215
120 -0.202 -0.158 -0.123 0.123 0.159 0.205
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t0.10 5 20.182162 2
3.45837

N
2 0.997697N1N0.999678 (28)

t0.90 5 0.1113721
1.56654

N
1

1
N0.671389 2 0.000378813N (29)

t0.95 5 0.183271
3.226

N
1

1
N0.825572 2 0.000654297N (30)

t0.98 5 0.2477051
6.06723

N
1

1
N1.67665 2 0.000834172N (31)

8.4.3 The R2 value associated with the fit of the equations
above to the table values is 0.999. Again, this procedure is not
appropriate for censored statistics.

9. Examples

9.1 For the first example, consider the failure data in Table
4. The data is uncensored and represents a tensile test specimen
geometry oriented to the axial direction of the billet, at an edge
location (12). The solution of Eq 14 requires an iterative

numerical scheme. Using a numerical algorithm a parameter
estimate of m̂ = 9.77 was obtained. Subsequent solution of Eq
15 yields a value of σ̂θ = 17.3 MPa. Fig. 3 depicts the
individual failure data and a curve based on the estimated
values of the parameters.

9.2 As an example of computing unbiased estimates of the
Weibull modulus, and bounds on both the Weibull modulus and
the Weibull characteristic strength, consider the uncensored
data presented in 9.1. The sample contained 48 specimens and
the biased estimate of the Weibull modulus was determined to
be m̂ = 9.77. The unbiasing factor corresponding to this sample
size is UF = 0.972, which is obtained from Table 1. Thus, the
unbiased estimate of the Weibull modulus is given as:

m̂U 5 m̂ 3 UF

5 ~9.77!~0.972!

5 9.50 (32)

9.2.1 The upper bound on m̂ for this example is:

m̂ □
upper

5 m̂ 3 q0.05

5 9.77⁄0.850

5 11.49 (33)

where q0.05 is obtained from Table 2 for a sample size of 48
failed specimens. The lower bound is:

m̂ □
lower

5 m̂ 3 q0.95

5 9.77⁄1.242

5 7.87 (34)

where q0.95 is also obtained from Table 2. Similarly, the
upper bound on σ̂θ is:

where t0.05 is obtained from Table 3 for a sample size of 48
failed specimens. The lower bound on σ̂θ is:

where t0.95 is also obtained from Table 3.

10. Keywords

10.1 confidence bounds; graphite; maximum likelihood;
strength; unbiasing factors; Weibull characteristic strength;
Weibull modulus; Weibull scale; Weibull statistics

TABLE 4 Uncensored Failure Strengths—Example 1

Specimen
Number

Strength
σi, MPa

Specimen
Number

Strength
σi, MPa

1 11.1 25 16.6
2 12.4 26 16.9
3 12.6 27 17.0
4 12.9 28 17.1
5 13.7 29 17.1
6 13.8 30 17.1
7 14.2 31 17.3
8 14.5 32 17.4
9 14.6 33 17.6
10 14.7 34 17.6
11 14.7 35 17.7
12 15.0 36 17.8
13 15.6 37 17.8
14 15.7 38 17.9
15 15.9 39 17.9
16 15.9 40 18.1
17 16.0 41 18.2
18 16.0 42 18.4
19 16.0 43 18.5
20 16.4 44 18.6
21 16.4 45 19.2
22 16.4 46 19.6
23 16.6 47 19.8
24 16.6 48 20.5
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SUMMARY OF CHANGES

Subcommittee D02.F0 has identified the location of selected changes to this standard since the last issue
(D7846 – 12) that may impact the use of this standard. (Approved Jan. 1, 2016.)

(1) Revised Section 3, Terminology.

FIG. 3 Example of Failure Stress for Small Tensile Test Specimen Geometry Oriented to the Axial Direction of the Billet,
End Edge Location (12)
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