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Standard Practice for
Within-laboratory Quantitation Estimation (WQE)1

This standard is issued under the fixed designation D7783; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

Note—Balloted information was included and the year date changed on March 28, 2013.

1. Scope

1.1 This practice establishes a uniform standard for com-
puting the within-laboratory quantitation estimate associated
with Z % relative standard deviation (referred to herein as
WQEZ %), and provides guidance concerning the appropriate
use and application.

1.2 WQEZ % is computed to be the lowest concentration for
which a single measurement from the laboratory will have an
estimated Z % relative standard deviation (Z % RSD, based on
within-laboratory standard deviation), where Z is typically an
integer multiple of 10, such as 10, 20, or 30. Z can be less than
10 but not more than 30. The WQE10 % is consistent with the
quantitation approaches of Currie (1)2 and Oppenheimer, et al
(2).

1.3 The fundamental assumption of the WQE is that the
media tested, the concentrations tested, and the protocol
followed in the developing the study data provide a represen-
tative and fair evaluation of the scope and applicability of the
test method, as written. Properly applied, the WQE procedure
ensures that the WQE value has the following properties:

1.3.1 Routinely Achievable WQE Value—The laboratory
should be able to attain the WQE in routine analyses, using the
laboratory‘s standard measurement system(s), at reasonable
cost. This property is needed for a quantitation limit to be
feasible in practical situations. Representative data must be
used in the calculation of the WQE.

1.3.2 Accounting for Routine Sources of Error—The WQE
should realistically include sources of bias and variation that
are common to the measurement process and the measured
materials. These sources include, but are not limited to intrinsic
instrument noise, some typical amount of carryover error,

bottling, preservation, sample handling and storage, analysts,
sample preparation, instruments, and matrix.

1.3.3 Avoidable Sources of Error Excluded—The WQE
should realistically exclude avoidable sources of bias and
variation (that is, those sources that can reasonably be avoided
in routine sample measurements). Avoidable sources would
include, but are not limited to, modifications to the sample,
modifications to the measurement procedure, modifications to
the measurement equipment of the validated method, and gross
and easily discernible transcription errors (provided there was
a way to detect and either correct or eliminate these errors in
routine processing of samples).

1.4 The WQE applies to measurement methods for which
instrument calibration error is minor relative to other sources,
because this practice does not model or account for instrument
calibration error, as is true of quantiation estimates in general.
Therefore, the WQE procedure is appropriate when the domi-
nant source of variation is not instrument calibration, but is
perhaps one or more of the following:

1.4.1 Sample Preparation, and especially when calibration
standards do not go through sample preparation.

1.4.2 Differences in Analysts, and especially when analysts
have little opportunity to affect instrument calibration results
(as is the case with automated calibration).

1.4.3 Differences in Instruments (measurement equipment),
such as differences in manufacturer, model, hardware,
electronics, sampling rate, chemical-processing rate, integra-
tion time, software algorithms, internal signal processing and
thresholds, effective sample volume, and contamination level.

1.5 Data Quality Objectives—For a given method, one
typically would compute the lowest % RSD possible for any
given data set. Thus, if possible, WQE10 % would be computed.
If the data indicated that the method was too noisy, one might
have to compute instead WQE20 %, or possibly WQE30 %. In
any case, a WQE with a higher % RSD level (such as
WQE50 %) would not be considered, though a WQE with RSD
<10 % (such as WQE1 %) would be acceptable. The appropriate
level of % RSD is based on the data-quality objective(s) for a
particular use or uses. This practice allows for calculation of
WQEs with user selected % RSDs less than 30 %.

1 This practice is under the jurisdiction of ASTM Committee D19 on Water and
is the direct responsibility of Subcommittee D19.02 on Quality Systems,
Specification, and Statistics.
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2. Referenced Documents

2.1 ASTM Standards:3

D1129 Terminology Relating to Water
D2777 Practice for Determination of Precision and Bias of

Applicable Test Methods of Committee D19 on Water
D6091 Practice for 99 %/95 % Interlaboratory Detection

Estimate (IDE) for Analytical Methods with Negligible
Calibration Error

D6512 Practice for Interlaboratory Quantitation Estimate
D7510 Practice for Performing Detection and Quantitation

Estimation and Data Assessment Utilizing DQCALC
Software, based on ASTM Practices D6091 and D6512 of
Committee D19 on Water

E1763 Guide for Interpretation and Use of Results from
Interlaboratory Testing of Chemical Analysis Methods

3. Terminology

3.1 Definitions—For definitions of terms used in this
practice, refer to Terminology D1129.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 censored measurement, n—a measurement that is not

reported numerically, but is stated as a “nondetection” or a
less-than (for example, “less than 0.1 ppb”).

3.2.2 quantitation limit (QL) or limit of quantitation (LQ),
n—a numerical value, expressed in physical units or
proportion, intended to represent the lowest level of
quantitation, based on a set of criteria for quantitation.

3.2.2.1 Discussion—The WQE is an example of a QL

3.2.3 Z % within-laboratory quantitation estimate (WQEZ

%), n—(in accordance with Currie (1)) —The lowest concen-
tration for which a single measurement from the examined
laboratory will have an estimated Z % relative standard devia-
tion (Z % RSD, based on the within-laboratory standard
deviation).

4. Summary of Practices

4.1 The WQE procedure provides an estimate of the true
concentration at which a desired level of (relative) precision is
achieved. Whether from analysis of routine quality samples or
from studies undertaken from time to time (or both), the first
step is to acquire data representative of the laboratory perfor-
mance for use in the WQE calculations. Such data must include
concentrations suitable for modeling the precision and bias
over a range of concentrations. Each datum for a method/
matrix/analyte should represent an independent sample where
routine sources of measurement variability occur at typical
levels of influence. Outlying individual measurements should
be eliminated, using an accepted, scientifically-based proce-
dure for outlier identification and a documented, scientific
basis for removal of data from the data set, such as found in
Practice D2777. WQE computations must be based on retained
data (after optional outlier removal) from at least six indepen-
dent measurements at a minimum of five concentrations.

4.2 Retained data are analyzed to identify and fit one of four
proposed standard-deviation models. These models describe
the relationship between the within-laboratory standard devia-
tion of measurements and the true concentration, T. The
identification process involves evaluating the models in order,
from simplest to most complex: constant, straight-line,
exponential, and hybrid (proposed by Rocke and Lorenzato (3)
and Guide E1763. Evaluation includes statistical-significance
testing and residual analysis, and is based on the best judgment
of a qualified chemist and the requirement to utilize the
simplest model that adequately fits the data.

4.3 Once the standard-deviation model has been
determined, it is used to determine the fitting technique for
modeling measured concentration (referred to in this practice
as the mean-recovery model) to true concentration. If standard
deviation is constant, then ordinary least squares is used. If
standard deviation is not constant, the modeled standard-
deviation predictions are used to generate weights for use in the
weighted-least-squares fitting. With either fitting technique, a
straight line is the model that is fitted to the data.

4.4 The liner regression (true versus measured) is evaluated
for statistical significance, for lack of fit, and for residual
patterns.

4.5 These two models (standard-deviation and calibration)
are then used to calculate the WQE values. Either a direct or
interactive algorithm (depending on the model) is used to
compute WQE10 %, the lowest true concentration with esti-
mated RSD = 10 % (Z = 10); WQE20 % (% RSD=20 %=Z); and
WQE 30 % (% RSD=30 %=Z). If needed for particular data-
quality objectives (DQOs), WQEZ % may be computed for
some Z < 10. The particular Z % selected for use should
depend upon the data-quality needs and the realized perfor-
mance. Typically, either 10 % or 20 % is used in
environmental-water testing. The 30 % RSD approaches the
criterion for detection. Z values greater than 30 should not be
used. An RSD of 5 % approximates a level at which at least one
sure significant digit has been achieved.

5. Significance and Use

5.1 Appropriate application of this practice should result in
a WQE achievable by the laboratory in applying the tested
method/matrix/analyte combination to routine sample analysis.
That is, a laboratory should be capable of measuring concen-
trations greater than WQEZ %, with the associated RSD equal
to Z % or less.

5.2 The WQE values may be used to compare the quanti-
tation capability of different methods for analysis of the same
analyte in the same matrix within the same laboratory.

5.3 The WQE procedure should be used to establish the
within-laboratory quantitation capability for any application of
a method in the laboratory where quantitation is important to
data use. The intent of the WQE is not to impose reporting
limits. The intent is to provide a reliable procedure for
establishing the quantitative characteristics of the method (as
implemented in the laboratory for the matrix and analyte) and
thus to provide the laboratory with reliable information char-
acterizing the uncertainty in any data produced. Then the

3 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.
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laboratory may make informed decisions about censoring data
and has the information necessary for providing reliable
estimates of uncertainty with reported data.

6. Procedure

6.1 This procedure is described in stages as follows: Devel-
opment of Data, Data Screening, Modeling Standard
Deviation, Fitting the Recovery Relationship, and Computing
the Quantitation Estimates.

6.2 Development of Data for Input to the Calculations—A
single WQE calculation is performed per analyte, matrix/
medium and method. A minimum of five concentrations must
be used to allow for high-quality estimation of true-verses-
measured concentration, and for modeling the relationship of
standard deviation to true concentration. A minimum of six
values at each concentration are required to provide a high-
quality estimation of the standard-deviation and the recovery
relationships. Additional concentrations (especially additional,
representative, independent samples at each concentration) are
highly encouraged; such inclusion will reduce the uncertainty
in the estimate and better assure that after outlier removal, the
minimum requirements for concentrations and values will be
met. Data for each WQE calculation should come from only
one laboratory, one method, and be for only one analyte in one
matrix/medium. Concentrations may be designed in advance or
data already developed may be used. For multi-laboratory
determinations, see Practice D6091.

6.2.1 Designing Concentrations—Where concentrations are
being selected in advance of the collection of data, the
development of an optimized design should consider many
factors, including:

6.2.1.1 Concentrations of available data, such as routine
quality-control samples.

6.2.1.2 Potential use of the same data to calculate detection
limits and or other control limits.

6.2.1.3 The anticipated or previously determined WQE
(study range should exceed this value by at least a factor of 2).

6.2.1.4 The potential need to eliminate the lowest concen-
tration(s) selected (see zero-concentration discussion above).

6.2.1.5 Where possible, select a WQE study design that has
enough distinct concentrations to assess statistical lack of fit of
the models (see Draper and Smith (4)). Recommended designs
are: (a) The semi-geometric design with five or more true
concentrations, T1, T2, and so forth, such as: 0, WQE0/D2,
WQE0/D, WQE0, D × WQE0, D2 × WQE0, where D is a
number greater or equal to 2 and WQE0 is an initial estimate of
the WQE, (b) equi-spaced design: 0, WQE0/2, WQE0, (3/2) ×
WQE0, 2 × WQE0, (5/2) × WQE0. Other designs with at least
five concentrations—provided the design includes blanks, one
concentration approximates 2 × WQE0, and at least one
nonzero concentration below WQE0—should be adequate.

6.2.2 Considerations for All Concentration Selections:
6.2.2.1 The range of the data, the number of unique

concentrations, and the spacing of the concentration are the
primary decisions for study design, in addition to the number
of replicates at each concentration. The range chosen, exclud-
ing the zero value for purposes of the discussion of range,
should be from below the estimated detection level to above

the WQE of interest (for example, 10 %, 20 %, or 30 %), so as
to allow for performance of calculations without the need for
extrapolation.

6.2.2.2 A single model (one of the four models in this
practice) should describe the behavior of the standard deviation
in this range. The anticipated form of the relationship between
measurement standard deviation and true concentration, if
known, can help in choosing design spacing. Chemistry,
physics, empirical evidence, or informed judgment may make
one model more likely than others. Evaluation of interlabora-
tory method-validation studies may also provide information
about these relationships. If a model of standard deviation is
likely to be one with curvature at lower concentrations (hybrid
or exponential) then a semi-geometric design is favored. If the
likely relationship is constant or straight-line, then equidistant
spacing might be favored.

6.2.2.3 Additional concentrations, beyond the minimum of
five concentrations, is strongly recommended where knowl-
edge of these relationships is unknown. Where more than one
order of magnitude is covered in the range selected (per range
definition in 6.2.2.1), it is recommended that four additional
unique concentrations be added per additional order of mag-
nitude greater than one.

(1) Where ongoing quality-control (QC) information is
available and it indicates that precision is good at the concen-
tration of this quality control measure, (for example, 5 % RSD
or less, at higher concentrations), then establishing the maxi-
mum concentration for the study at or below that concentration
should be considered where the % RSD criterion for the WQE
is higher (for example, a WQE 10 %).

(2) Where ongoing QC demonstrates a high % RSD (for
example, above 30 %), several concentrations at and above the
concentration of the QC sample should be included.

NOTE 1—Where more than five concentrations are available, determi-
nation of the WQE with and without the highest (and potentially the
lowest) concentration(s) included can provide insight into the effects of
the highest concentration(s) on the recovery relationship and the modeling
of standard deviation. Calculation of the WQE values based on the most
appropriate and applicable concentrations, so long as minimums are met,
is allowed.

6.2.2.4 The minimum of six independent values at each
concentration is required by this practice to provide a mini-
mally acceptable data set for calculation of standard deviation
at each concentration. Increasing the number of levels is
desirable where project constraints allow. It is not required that
the same number of replicates be used for each concentration;
however, extreme differences (for example orders of magni-
tude) should be avoided.

6.2.2.5 Known, routine sources of measurement variability,
consistent with those of routine analysis of samples, must have
been in action at the time of the generation of the data to be
used, if the WQE is to be used for characterizing routine
performance. That is, in order for the WQE to represent
routinely achieved quantitation, the data used for WQE calcu-
lation must be generated under routine analytical conditions.
Representative within-laboratory variation can only be seen if
the number of qualified analysts and qualified measurement
systems in the laboratory are represented. The data used and
the more combinations included, the less effect any specific
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bias in these pairings should have on the WQE estimate.
Similarly, sample management (for example, holding time) and
allowed variations in routine sample-processing procedures
must be included. The time period spanned must allow routine,
time-dependent sources of variation to affect the testing. This
consideration should include factors such as the frequency of
calibration of instruments, introduction of newly prepared or
purchased standards, reagents and supplies, and sample-
holding times. Historically, the failure to utilize representative
data in determination of quantitation limits has been a primary
component in over-statements of quality through quantitation-
limit values and should be strictly avoided (that is, garbage in,
garbage out). Ideally, each measurement would be a double-
blind measurement made by a different analyst, using a
different (qualified) measurement system on a different day.
Optimally, data to be used should be either completely blind, or
from known but completely routine, integrated testing (such as
routine quality-control data). In any case, the goal is to
minimize special treatment of the WQE test samples.

6.2.2.6 Where the WQE is meant to represent the best
possible performance, and not routine performance, then opti-
mized conditions for data generation would be appropriate.
Similarly, if the performance of only a single process, instru-
ment system, analyst, etc. is of interest, only the applicable
variables should be included. It is the responsibility of the user
of this practice to assure that the appropriate data are utilized
for the end use(s) of WQE. Where the end use is unknown, the
data generator who is using the WQE needs to disclose the
specific attributes of the data used in the calculation (as well as
the % RSD), and thus of the WQE.

6.2.2.7 Where preexisting, routine-source data (for
example, quality-control data) are used, care must be taken to
assure that: (1) each data point represents a true and indepen-
dent sampling of the population (as well as of the sample
medium being examined, where applicable) and (2) all sample-
processing steps and equipment (for example, bottles,
preservatives, holding, preparation, cleanup) are represented.
Also, “true” concentration levels must either be known (that is,
true “spiked” concentration levels), or knowable, after the fact.
A concentration is considered known if reference standards can
be purchased or constructed, and knowable if an accurate
determination can be made.

6.2.2.8 Transformation of other types of data (such as
laboratory replicates, which under-represent the variability as
compared to independent samples and usually do not have
known true concentrations), using scientifically and statisti-
cally sound approaches is not prohibited by this practice.
However, care must be taken and the validity of these trans-
formations tested. It is also critical that any standards used to
prepare study samples be completely independent of the
standards used to calibrate the instrument.

6.2.2.9 Blank correction should not be performed, unless
the method requires this correction to calculate result values.

6.2.3 True-Concentration Zero (Blank) Data Discussion—
Where possible, it is preferable to include data from samples
with true concentration of zero (for example, blanks).
However, for many methods, it may not be possible to conduct
an unbiased sampling of the zero (blank) concentration

samples, since instruments and software systems routinely
smooth electronic information (raw data) from the detector and
through software settings that censor reported data. Through
these automated processes, many testing instruments return to
the operator a result value of “zero,” when, if these processes
had been turned off, a non-zero numeric result (positive or
negative) would have been produced. These “false-zero” val-
ues adversely affect the use of the zero-concentration data in
statistics and should not be used for WQE studies. Most
chromatography systems (and many other types of computer-
assisted instruments) have instrument set-points (such as (digi-
tal) bunch rate, slope sensitivity, and minimum area counts)
that are operator-controllable. For purposes of this study,
generating as much uncensored low-level data as practical is
important and the presence of these processes as well as the
setting of any operator-controllable setting should be evalu-
ated.

NOTE 2—Qualitative criteria used by the method to identify and
discriminate among analytes are separate criteria, and must be satisfied
according to the method.

6.2.3.1 Once true-concentration-zero measurements have
been generated, and prior to use, it is important to examine and
evaluate these data. A graph of measured concentration by
frequency of occurrence may be helpful. However, unless a
fairly large sample size is represented (for example, n>20), the
distribution may be distorted by the random nature of sampling
alone. As a general rule, if there were no bias, then on average
and over a large sampling, a truly uncensored set of zero-
concentration (blank) data would have a mean of zero with
approximately half of the results being negative values and half
positive, and be Normally distributed. If some positive or
negative bias were present, the percentages would shift.
However, in general the frequency should be higher near the
mean of the values and should decline as the concentrations
move away from the mean, with approximately half of the
non-mean data above and half below the mean.

(1) Blank data are considered suspect if: (1) there is no
variation in these data, (2) there are an inordinate number of
zero values (and no negative values) relative to the frequencies
of positive values (6.2.3 above), (3) if there is a high frequency
of the lowest value in the data set (for example, where
minimum-peak-area rejection has been used) relative to the
frequency of higher concentration values, and few or no lower
values, or (4) a frequency graphic does not begin to approxi-
mate a bell curve (when there are 20 or more samples).

(2) If the distribution of the data is suspect, the literature,
plus instrument-software and equipment manuals, should be
consulted. These documents can provide an understanding of:
(1) the theory of operation of the detection system, (2) the
signal processing, calibration, etc., and (3) other aspects of the
conversion of response to reported values. Judgment will be
needed to determine whether to use some or all of the
true-concentration-zero (blank) data, or to exclude the data
from the calculations. In general, if less than 10 % of the
zero-concentration data are: (1) censored, (2) suspect, or (3)
false-zeros, then these “problem” data should be removed.
Only the remaining blank data are used in the WQE calcula-
tions; there must be at least six replicates. Where the zero
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concentration is excluded or is not possible to obtain, it is
important to include a true concentration as close as possible to
zero in the study design.

(3) Where 75 % or less of the data are censored or
smoothed, and there are at least six remaining values, it is
reasonable to use statistical procedures to simulate the distri-
bution that is missing or smoothed. Software procedures are
commercially available. Additionally, procedures such as log-
normal transformation may be used to accommodate data that
are not normally distributed. The presence of zero-
concentration in the study data and in the WQE is not as critical
as inclusion of such data in the WDE calculations. Therefore,
the decision about inclusion or exclusion of zero-concentration
data in a WQE data set should weigh: (1) the number of other
concentrations available, (2) the range of the other
concentrations, and (3) the risk of extrapolation of the WQE
outside the data-set concentration range against the quality of
the zero-concentration data.

6.2.3.2 True Concentrations Near Zero—As with concen-
tration zero, true concentrations very near to zero may also
have been censored, smoothed, and contain false-zeros. Ex-
amination of these very low concentrations, as above for zero
concentration, is important. The likelihood of occurrence and
the percentage of data affected decreases with increasing
concentration.

6.3 Data Screening, Outlier Identification, and Outlier Re-
moval:

6.3.1 Data that are to be the input to the WQE calculation
should be screened for compliance with this practice’s
conditions, appropriateness for the intended use of the WDE,
obvious errors, and individual outliers. Graphing of the data
(true versus measured) is recommended as an assistive visual
tool. This graphic is available in the DQCALC software.

6.3.2 Outlying individual measurements must be evaluated;
if determined to be erroneous, they should be eliminated using
scientifically-based reasoning. Identification of potential outli-
ers for data evaluation and validation may be accomplished
using statistical procedures, such as the optional one provided
in the DQCALC software, or through visual examination of a
graphical representation of the data. WQE computations must
be based on retained data from at least six independent
measurements at each of at least five concentration levels. The
data removed and the percentage of data removed must be
recorded and retained to document the WQE calculations.

6.4 Modeling Standard Deviation versus True
Concentration—The purpose is to characterize the intralabora-
tory measurement standard deviation (ILSD) as a function of
true concentration, σ = G (T). The relationship is used for two
purposes: (1) to provide weights (if needed) for fitting the
mean-recovery model and (2) to provide the within-laboratory
standard deviation estimates crucial to determining the WQEs.

NOTE 3—See Caulcutt and Boddy (5) for more discussion of standard
deviation modeling and weighted least squares (WLS) in analytical
chemistry.

6.4.1 This practice utilizes four models as potential fits for
the IntraLaboratory Standard Deviation (ILSD) model. The
identification process considers (that is, fits and evaluates) each

model in turn, from simplest to most complex, until a suitable
model is found. See Carroll and Ruppert (6) for further
discussion of standard-deviation modeling. The model order is
as follows:

Model A ~Constant ILSD Model!:□s 5 g1error (1)

where:
g = a fitted constant.

Under Model A, standard deviation does not change with
concentration, resulting in a relative standard deviation that
declines with increasing T.

Model B ~Straight 2 line ILSD Model!:□s 5 g1h 3 T1error (2)

where:
g and h = fitted constants.

Under Model B, standard deviation increases linearly with
concentration, resulting in an asymptotically constant relative
standard deviation as T increases.

Model C ~Hybrid ILSD Model!:□s 5 $g2 1 ~h 3 T!2%1⁄21error

(3)

where:
g and h = fitted constants.

Under Model D, within-laboratory standard deviation in-
creases with concentration in such a way that the relative
standard deviation declines as T increases, approaching an
asymptote of h.

Model D ~Exponential ILSD Model!:□s 5 g 3 exp□$h 3 T%1error

(4)

where:
g and h = fitted constants.

Under Model D, within-laboratory standard deviation in-
creases exponentially with concentration, resulting in a relative
standard deviation that may initially decline as T increases, but
eventually increases as T increases.

6.4.1.1 In all cases, it is assumed that g > 0. A value of g <
0 has no practical interpretation and may indicate that a
different ILSD model should be used. Furthermore, it is
assumed that g is not underestimated by censored data among
measurements of blanks or other low-concentration samples. If
h < 0, it must not be statistically significant, and Model A
should be evaluated.

6.4.2 The ASTM D19 Practice D7510 describes the DQ-
CALC software that can be used to perform the calculations for
each of the four models, as well as the fit of each (this product
can be obtained by contacting ASTM and asking for the
DQCALC adjunct). The software identifies which model
produced the best fit, and allows the user to select either this
model or an alternative model. The software provides various
graphical representations of the data and residuals, and the user
manual provides assistance in using and interpreting the
graphics and calculated values. Evaluation of the fit of each
model to the data (as well as knowledge of chemistry, the
method, and the systems used to generate the data) and
judgment are important when selecting the most appropriate
model. Where a model other than the best fit is chosen, the
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reason for the choice should be scientific and should be
recorded to document the WQE.

6.4.2.1 Users of this practice not using the ASTM D19
DQCALC software can consult Practice D6091, which con-
tains a protocol that provides the full procedural, consensus-
balloted basis for these calculations. It is also recommended
that those not using the software graph the relationship of true
concentration to measurement standard deviation, and visually
verify the appropriateness of each model and of the model
selected for use.

6.5 Fitting the Mean-Recovery Relationship (Measured ver-
sus True Concentration)—Based on the standard-deviation
model selected (constant versus other models), the mean-
recovery concentration is fitted versus true concentration, using
ordinary least squares or weighted least squares, respectively.
The mean-recovery is evaluated for statistical significance and
lack of fit. A graph of mean recovery (along with the “calibra-
tion” line) and a graph of the residuals should also be visually
examined. The ASTM D19 DQCALC software performs these
activities automatically. Alternatively, many off-the-shelf sta-
tistical software packages may also be used.

NOTE 4—Regression coefficients should not be used to assess goodness
of fit.

6.5.1 The mean-recovery regression (true versus measured
concentration) model is a simple straight line,

Model R:□Y 5 a1b T1error (5)

The fitting procedure depends on the standard-deviation-
model selection. If the constant model, Model A, was selected,
then ordinary least squares (OLS) can be used to fit Model R
for mean recovery (see the left column of Table 1, or Caulcutt
and Boddy (5)). If a non-constant standard-deviation model
was selected, then weighted least squares (WLS) should be
used to fit mean recovery. The WLS approximately provides
the minimum-variance unbiased linear estimate of the
coefficients, a and b. The WLS procedure is described in the
IDE Practice D6091.

6.6 Compute the WQE for each Z (%RSD)—Using the
mean-recovery regression line determined above, the most
appropriate model of the relationship of relative standard
deviation to true concentration (also determined above), and
the Z value desired, the user obtains the WQE, which is the true

concentration (corresponding to the measured concentration) at
which the desired % RSD was achieved.

6.6.1 The measured concentration (YQ) at which the de-
sired % RSD was achieved may also be of interest for some
uses. This value is the level at which the required % RSD was
obtained in measured concentration units (that is, the value,
paired with a WQE, that has not been corrected for bias
through the mean-recovery regression). Where the YQ and the
WQE are equal (following application of significant figures
and rounding), there is no bias present at the WQE concentra-
tion.

6.6.2 The WQE is the lowest true concentration at which
(based on the modeling of standard deviation at that concen-
tration and including the required confidence for the sample
size (90% tolerance interval)) the percent relative standard
deviation is achieved at the desired Z. The DQCALC adjunct
software calculates the 10 %, 20 %, and 30 % WQE as the
typical Z values.

6.6.2.1 Fig. 1 provides an example that demonstrates a case
with positive bias (intercept greater than zero) and imperfect
recovery (slope of the calibration not equal to one), thereby
highlighting the advantages of the WDE procedure. More
simplistic quantitation procedures often make inappropriate
assumptions about slope (that is, assume it to be one) and
y-intercept (that is, assume it to be zero at a true concentration
of zero), in addition to assuming that the standard deviation is
constant. Additionally, where the simplest model (constant) for
standard deviation is rejected, the WDE procedure requires that
weighted least squares be used for fitting the recovery model,
thus preventing higher concentrations from having an exces-
sive effect on the resulting curve; most other practices do not
offer this protection.

7. Review, Documentation and Reporting

7.1 The WQE analysis report should include: (1) the iden-
tification of laboratory and (2) identification of analytical
method, analyte(s), matrix (or matrices), sample properties (for
example, volume or mass) and specific method options (if any)
utilized. Where the laboratory uses standard operating proce-
dures (SOPs) to implement methods or method protocols, these
SOPs should be referenced, including the identification of any
revision/version. Documentation of each datum used should be
equivalent to that of reported data (for example, instrument,
analyst, date, etc.). There should be a description of all
data-screening procedures employed, all results obtained, all
individual values omitted from further analysis (that is, outliers
that have been removed), all missing values, and the percent-
age of data utilized in the calculations relative to the initial data
set. Any anomalies encountered should be listed, including and
anomalous calibration or quality control sample results (for
example, data validation qualifiers or flags). The data (statis-
tical) analysis should be included or referenced (for example,
the output file from the DQCALC software) and the WQE
values determined recorded. The selected standard-deviation
model, plus the coefficient estimates for this model and for
mean-recovery model, should also be recorded. Where a
statistical model other than the mathematical best fit has been
chosen, the reasoning should be described.

TABLE 1 Ordinary Least Squares (OLS) and Weighted Least
Squares (WLS) Computations to Estimate Straight-line Model

Coefficients
(Computations shown for convenience and contrast)

OLS WLS
T25 l ⁄n Σ i51

n Ti Tw
25 l ⁄n Σ i51

n wiTi

y5 l ⁄nΣ i51
nyi yw5 l ⁄nΣ i51

n wiyi

STT5Σ i51
nsTi 2 Td2 SwTT5 Σ i51

n wi sTi 2 Td2

STY5Σ i51
n sTi 2 Td syi 2 yd SwTY5Σ i51

n wisTi 2 Td syi 2 yd

slope5 b5 STY ⁄STT slope5 b5 SwTY ⁄SwTT

intercept 5 a5 y2bT intercept 5 a5 yw2bTw
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8. Report

8.1 The analysis report should at a miminum contain:
8.1.1 Identification of laboratory,
8.1.2 Analytical method,
8.1.3 Analyte(s),
8.1.4 Matrix (or matrices),
8.1.5 Sample properties (for example, volume),
8.1.6 Study design,
8.1.7 Analyst, method, and date of testing for each study

sample,
8.1.8 Any anomalies in the study, including QA/QC sample

results,
8.1.9 Data-screening results, individual values and labora-

tories omitted from further analysis, and missing values,
8.1.10 ILSD model selected, and
8.1.11 Coefficient estimates for the ILSD model and mean-

recovery model.

NOTE 5—The DQCALC input and output files provide much of this
documentation.

8.2 The report should be given a second-party review to
verify that:

8.2.1 The data transcription and reporting have been per-
formed correctly,

8.2.2 The analysis of the data and the application of this
standard have been performed correctly, and

8.2.3 The results of the analysis have been used
appropriately, including assessment of assumptions necessary
to compute a WQE.

NOTE 6—Reviewer(s) should be qualified in one or both of the
following areas: (1) applied statistics, and (2) analytical chemistry.

8.3 A statement of the review and the results of the review
should accompany the report.

9. Rationale

9.1 The basic rationale for the WQE is contained in Currie
(1). The WQE is a performance characteristic of an analytical
method, to paraphrase Currie. As with the Within-Laboraotory
Detection Estimate (WDE), the WQE is helpful for the

FIG. 1 Sample Standard Deviations (+) Versus True Concentration, with Straight-Line Fit, Hybrid Model Fit, and Residuals from Straight-
Line Fit (Lower Plot), All in ppb
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planning and use of chemical analyses. The WQE is another
benchmark indicating whether the method can adequately meet
measurement needs.

9.2 The idealized definition of WQEZ % is that it is the
lowest concentration, LQ, that satisfies: T = (100/Z) ϛT (where
ϛT is the actual standard deviation of interlaboratory measure-
ments at concentration T); this definition is equivalent to
satisfying, % RSD = ϛT/T = Z %. In other words, WQEZ % is
the lowest concentration with Z % RSD (assuming such a
concentration exists). If, as is commonly the case, % RSD
declines with increasing true concentration, then the relative
uncertainty of any measurement of a true concentration greater
than the WQE will not exceed 6Z %. The range, 63ϛLQ, is an
approximate prediction or confidence interval very likely to
contain the measurement, which is assumed to be normally
distributed. This assertion is based on critical values from the
normal distribution (or from the student’s t distribution if ϛ is
estimated rather than known). Then, with high confidence, the
relative error of any measurement of a true concentration
greater than the WQE will not exceed 63 · Z %. For example,
a measurement above the WQE10 % (and assumed to have true
concentration above the WQE) could be reported as 6 ppb
(630 %) = 6 (62) ppb, with a high degree of certainty.

9.3 There are several real-world complications to this ide-
alized situation. See Maddalone et al (7), Gibbons (8), and
Coleman et al (9). Some of these complications are listed as
follows:

9.3.1 Analyte recovery is not perfect; the relationship be-
tween measured values of concentrations and true concentra-
tions cannot be assumed to be trivial. There is bias between
true and measured values. Recovery can and should be
modeled. Usually a straight line will suffice.

9.3.2 Variation is introduced by different laboratories,
analysts, models and pieces of equipment; environmental
factors; flexibility/ambiguity in a test method; contamination;
carryover; matrix influence; and other factors. It is intractable
to model these factors individually, but their collective contri-
butions to measurement ILSD can be observed, if these
contributions are part of how a study is designed and con-
ducted.

9.3.3 The standard deviation of measurements is generally
unknown, and may change with true concentration, possibly
because of the physical principle of the test method. To ensure
that a particular % RSD is attained at or above the WQE, there
must be a way to predict the ILSD at different true concentra-
tions. Short of severely restricting the range of concentrations
for a study, prediction is accomplished by an empirical ILSD
model. In all of the respects discussed in 9.1 – 9.3, WQE10 %

is similar to the AML developed by Gibbons et al (10).
However, the AML follows an approximate approach, where
the standard deviation used in the 10ϛ formula is estimated at
a detection critical value, and then is taken to be a constant
(over a trace-level range of concentrations) for the 10ϛ com-
putation. In contrast, WQE10 % follows the “more statistically
and conceptually rigorous” approach described by Gibbons et
al (8), and contained in Currie (1). This greater rigor comes at
the risk of: (a) possibly being unattainable for some methods
(for which only a less strict level of % RSD can be ensured);
(b) having uncertainty that is potentially complex, and depends
both on the model used and on the data.

10. Keywords

10.1 critical limits; matrix effects; precision; quantitation;
quantitation limits

APPENDIXES

(Nonmandatory Information)

X1. GLOSSARY OF KEY SYMBOLS, ACRONYMS, AND LABELS

ϛ—true interlaboratory standard deviation
∆g—one iteration’s change in the estimate of g, the

intercept coefficient in the Hybrid model
∆h—one iteration’s change in the estimate of h, the slope

coefficient in the Hybrid model
a—estimate of the slope in the mean-recovery curve

(straight-line model)
a[prime]n—adjustment factor used to remove bias from the

sample interlaboratory standard deviation
AML—Alternative Minimum Level, a quantitation limit

that is similar to the WQE (and compatible in approach)
b—estimate of the slope in the mean-recovery curve

(straight-line model)
b[prime]—crude estimate of b
c–intermediate variable used in estimating g and h for the

Hybrid model, by nonlinear least squares. Similar to d, p, q, u,
and v

D—difference between T and ((100/Z)·(estimated inter-
laboratory standard deviation)), used for approximate, graphi-
cal determination WQE

d—similar to c
f(T)—the natural log of the current estimate of the inter-

laboratory standard deviation at concentration, T
g—estimate of the intercept in the Hybrid model of

interlaboratory standard deviation
G(T)—the (generic) model of the interlaboratory standard

deviation go—initial estimate of g
IDE—the interlaboratory detection estimate, defined and

described in Practice D6091
ILSD—interlaboratory standard deviation
WQEZ%—interlaboratory quantitation estimate associated

with approximately Z % RSD
j—iteration index used for nonlinear least squares solution

of the coefficients for the Hybrid model for ILSD
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k—index used for different concentrations, Tk, and associ-
ated statistics

LQ—Another designation for the WQE, in accordance
with Currie’s notation

Model A—Constant model for ILSD
Model B—Straight-line model for ILSD; interlaboratory

standard deviation increases with increasing concentration
Model C—Hydrid model for ILSD; combines additive and

multiplicative error, with interlaboratory standard deviation
that increases with increasing concentration, according to the
model proposed by Rocke and Lorenzato

Model R—the straight-line model for the mean-recovery
curve

NLLS—nonlinear least squares, where coefficients in a
nonlinear model are computed to minimize the sum of the
squares of the residuals (that is, the differences between the
predicted and actual values)

OLS—ordinary least squares, a fitting technique for a linear
(that is, additive) model that minimizes the sum of the squares
of the residuals (that is, the differences between predicted and
actual values)

p—similar to c
q—similar to c
qk—kth value in the T2 quadratic component that is or-

thogonal to T
Q—intermediate variable used in ILSD model selection, to

test for statistically significant curvature

QL—quantitation limit (also called practical quantitation
limit, PQL); see LQ

r—the estimated lowest limit of % RSD achievable, based
on study results, for a particular measurement system, matrix,
and analyte

rk(unrelated to r)—the residual associated with Tk from a
precision model fit; defined as the difference in log sample
standard deviation and log estimated (predicted) standard
deviation

RSD—relative standard deviation, that is, the standard
deviation divided by the concentration, (both generally esti-
mated)

s—modeled value of the interlaboratory standard
deviation, including error

sk—sample interlaboratory standard deviation at true
concentration, Tk, adjusted to remove bias

smax—maximum sample ILSD: equal to max \s1, s2, . . .\
T—true concentration
Tk—kth value of true concentration in the study
Tmax—maximum concentration in the study; equal to max

\T1, T2, ...\
WLS—weighted least squares, a modified form of ordinary

least squares. WLS incorporates nonuniform variability in the
data

Y—random variable representing a reported measurement
Z—level of RSD

X2. FITTING THE HYBRID (ROCKE AND LORENZATO (3)) MODEL FOR ANALYTICAL MEASUREMENTS, USING NEW-
TON’S METHOD OF NON-LINEAR LEAST SQUARES (NLLS)

X2.1 The following numerical procedure can be conve-
niently carried out by using computer spreadsheet software:

X2.1.1 Initialize—The index, j, is the step number for
iteration. Set j=0.

X2.1.1.1 Compute the natural log of the sample standard
deviation, lsk, for each true concentration, Tk.

NOTE X2.1—The log transformation standardizes the residuals so that
the sum of squares of logs of relative errors is minimized. Log-relative
errors are preferred to absolute errors, since the latter are almost certainly
unequal in variation.

X2.1.1.2 Compute initial values, g0 and h0, as follows:

g0 = s1(the sample standard deviation for the lowest
concentration, T1; usually T1=0)

h0 = (smax – s1) / (Tmax – T1) if smax > s1, where smax is the
maximum sample standard deviation of measurements,
made at concentration,Tmax. Otherwise, set h0 = 0.

X2.1.1.3 Compute the natural log of the estimated standard
deviation, lssk, for each Tk, using the current estimates, gj and
hj:

lssk 5 f~Tk! (X2.1)

where we define

f~Tk! 5 ln=gj
21hj

2Tk
2

X2.1.1.4 Compute the difference (residual), rk, between the
log sample standard deviation and estimated log standard
deviation for each k:

rk 5 lsk 2 lssk (X2.2)

Note that rk is the natural log of the ratio of the sample
standard deviation to the estimated standard deviation, so rk

represents log-proportional error, and is ideally equal to zero.
X2.1.1.5 Compute fgk, the slope (that is, numerical deriva-

tive) of f(T) with respect to g, for each k:

fgk 5 gj/exp$2 lssk% (X2.3)

X2.1.1.6 Compute fhk, the slope of f(T) with respect to h, for
each Tk:

fhk 5 hj ~Tk!
2/exp$2 lssk% (X2.4)

X2.1.1.7 Compute the following intermediate statistics:
u = ^k (fgk)

2 v =^k(fhk)
2 c = ^k (fgk · fhk)

d = 1/uv–c2 p = ^k (fgk · rk) q =^k (fhk · rk)

X2.1.1.8 Compute the jth step changes to g and h (made to
reduce the sum of squared residuals), and % relative changes:

∆g = d (vp – cq) dg% = 100 |∆g / gj|
∆h = d (uq – cp) dhT% = 100 | ∆h/ hj|Tmax

X2.1.1.9 Compute new g and h estimates:

gj11 5 gj 1∆g (X2.5)
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X2.1.1.10 If dg% < 1 % and dhT% < 1 %, then stop and use
gjh and hjh as the final estimates. Otherwise, increase j by 1, and
go to X2.1.1.3.

X3. THREE WLS APPROXIMATIONS TO BE AVOIDED

X3.1 There are three approximate approaches to WLS
commonly used, but not acceptable for this practice. One
approach uses the reciprocal-squared sample standard
deviations, sk

–2, as weights. Since this practice involves the
explicit evaluation and selection of a standard-deviation model,
the predicted value for sk is probably more precise than a
sample value, and the former value should be used to compute
weights. A second approach omits the blank measurements,
and divides the rest of the measurements by the true concen-
trations. Then, OLS is carried out, using the independent

variable, 1/T, in the following model:

Y/T 5 a ~1/T!1b1error (X3.1)

This approach is not acceptable because it leads to loss of
data and because the weights so generated implicitly assume
that interlaboratory standard deviation is strictly proportional
to true concentration. A proportional relationship cannot hold
for arbitrarily small concentrations. The third approach ex-
ploits the same approximate (but untrue) proportional relation-
ship to obtain mathematically simpler WLS formulas.

X4. EXAMPLE

X4.1 Identify and Fit the ILSD Model—Measurements were
made at each of seven concentrations: Tk = \0.0, 0.50, 1, 2, 4,
8, 12\ ppb.

X4.1.1 The reported measurements are shown in Table
X4.1. These values are also shown in Fig. X4.1. The straight-
line recovery model appears to be plausible for the mean-
recovery model, and the data appear to have measurement
ILSDs that increase with concentration.

X4.1.2 The standard deviations at each true concentration
are computed, adjusted for bias (Table X4.2) and are shown in
Table X4.1.

X4.1.3 A plot of standard deviation versus true concentra-
tion is shown in Fig. 1. The plot provides additional qualitative
evidence of an increase in standard deviation with increasing
concentration.

X4.1.4 A straight-line regression (using OLS) is initially
conducted of the standard deviations (sk) versus Tk. The results
are shown in Table X4.3, and the fit is shown in Fig. 1.

X4.1.5 The slope estimate, h, is statistically significant with
a p-value of 0.0012 < 5 %, so the Constant ILSD model (Model
A) is rejected.

TABLE X4.1 Reported Measurements and Computed Statistics from the Example WQE Study

True Concentration Tk,
ppb

Reported
Measurement

Values, yi

sk = Standard
Deviation
(adjusted)

ln sk [scirc]k = Predicted
Standard Deviation

(Hybrid Model)

WLS Weights:
wk = ([scirc]k )-2

qk, Orthogonal
Component

of (Tk)
2

0
–0.105, 0.263, 0.293,
0.187, 0.106, 0.329,

0.080, 0.524, 0.278, 0.206
0.1729 –1.7549 0.1840 20.54 13.029

0.5
0.354, 0.724, 0.682,
0.327, 0.527, 0.868,

0.730, 0.434, 0.794, 0.642
0.1929 –1.6454 0.1927 26.93 7.453

1
1.241, 0.668, 1.200,
1.370, 1.106, 0.964,

0.949, 1.421, 1.032, 1.134
0.2270 –1.4829 0.2168 21.28 2.376

2
2.174, 2.388, 2.153,
2.366, 2.306, 2.309,

1.663, 2.841, 1.933, 1.809
0.3449 –1.0644 0.2939 11.58 –6.277

4

3.660, 3.734, 3,167,
3.578, 4.278, 3.383,
3.873, 4.479, 3.919,

3.856

0.3995 –0.9175 0.4940 4.10 –17.582

8
6.592, 7.520, 6.822,
7.751, 7.771, 7.296,

8.578, 6.863, 7.840,8.821
0.7521 –0.2849 0.9351 1.14 –16.194

12

9.496, 9.081, 13.942,
10.547, 9.324,
13.148, 10.994,

11.774, 12.320, 13.521

1.8519 0.6162 1.3875 0.52 17.194
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X4.1.6 The reasonableness of the straight-line model
(Model B) is evaluated using the lower plot (in Fig. 1) (that is,
the plot of residuals versus true concentration). There is
subjective appearance of systematic curvature (a roughly
U-shape to the residuals).

X4.1.7 To assess more formally the need for a model with
curvature (Hybrid, Model C) instead of the straight line model
(Model B), a formal test is conducted.

X4.1.7.1 Using OLS, (Tk)
2 is regressed on Tk, producing

residuals, qk, shown in Table X4.1.

X4.1.7.2 Using OLS, sk is regressed on Tk and qk together,
once again producing estimates of coefficients g and h, and
additionally Q, the coefficient of q. The results are shown in
Table X4.4.

X4.1.7.3 From Table X4.4, it can be seen that pQ = 0.0096
< 5 %, and Q = 0.013 > 0, so there is sufficient evidence of
curvature to warrant using the Hybrid Model (Model C).

FIG. X4.1 Reported Concentration Measurement (ppb) Versus True Concentration (ppb); Each Concentration With Weighted Least
Square-Line Fit (above) and (below) Residuals

TABLE X4.2 Bias-Correction Adjustment Factors for Sample
Standard Deviations Based on n Measurements (at a particular

concentration)A

n 2 3 4 5 6 7 8 9 10
a[prime]n 1.2 1.1 1.0 1.064 1.0 1.0 1.036 1.0 1.0

53 28 85 51 42 31 28
AFor each true concentration, Tk, the adjusted value sk = a[prime]ns[prime]k should
be modeled in place of sample standard deviation, s[prime]k. For n > 10, use the
formula, a[prime]n = 1 + [4(n-1)]-1. See Johnson and Kotz (11).

TABLE X4.3 Straight-Line OLS Fit of s on T

Standard Deviation = s = g + hT = 0.06498 + 0.12678 T

Summary of Fit
RSquare 0.896432
RSquare 0.875719
Adj
Root Mean Square Error 0.212178

Parameter Estimates
Term Estimate Standard

Error
t-Ratio Prob > |t|

g 0.064976 0.110288 0.59 0.5814
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X4.1.8 Model C, the Hybrid Model, is used to fit the sample
standard deviation data in Table X4.1, using NLLS solved by
Newton’s-method iteration, as presented in the appendix. The
steps are as follows:

X4.1.8.1 Compute the natural log sample standard
deviation, lsk, for each true concentration, Tk. See Table X4.1.

X4.1.8.2 Let j be the index of iteration, and set j=0.
Compute initial values, g0 and h0, as follows:

g0 5 s1 5 0.173 (X4.1)

h0 5 ~smax 2 s1!/~Tmax 2 T1! 5 0.140 (X4.2)

See Table X4.5.
X4.1.8.3 Compute the natural log of the estimated standard

deviation, lssk, for each k, using the current values of gj and hj

(not shown).
X4.1.8.4 Compute the residuals rk = lsk – lssk for each k (not

shown).
X4.1.8.5 Compute fgk = gj/exp\2 lssk\ for each k (not

shown).
X4.1.8.6 Compute fhk = hj(Tk)2/ exp\2 lssk\ for each k (not

shown).
X4.1.8.7 Compute intermediate statistics: u, v, c, d, p, and q.

See Table X4.5.
X4.1.8.8 Compute the jth-step changes to g and h (see Table

X4.5):
∆g = d (Vp – cq) dg% = 100 |∆g / gj|
∆h = d (Uq – cp) dhT% = 100 |∆ hj|Tmax

X4.1.8.9 Compute the new g and h (see Table X4.5):

gj + 1= gj + ∆g hj + 1= hj + ∆h

X4.1.8.10 Iterate (increase j by 1, and return to X4.1.8.3)
until dg% < 1 % and dhT% < 1 %.

X4.1.8.11 As can be seen in Table X4.5 for j=2, dg%=0.02
% < 1 % and dhT %=0.2 % < 1 %, so convergence is achieved
after the second step of iteration, with g=0.184 and h=0.1146.

X4.1.8.12 As seen in Table X4.1, the coefficients, g and h,
are used to compute a predicted measurement standard
deviation, [scirc]k, at each of the Tk values. The [scirc]k values
are then used to compute weights, wk, also seen in Table X4.1.

X4.1.9 WLS uses the weights, wk, to fit the straight-line
mean-recovery function. The results are shown in Table X4.6.

X4.1.10 Finally, compute WQEZ %. First, the lowest
achievable %RSD is estimated, in accordance with the formula
for the Hybrid Model: Z[prime] = 100h/b = 100 · 0.1146/0.931
= 12, which is rounded up to a whole-number multiple of 10:
Z=20. Hence, WQE20 % can be computed (but not WQE10 %),
as follows:

WQE20 % 5 g/@~b ·20/100!2 2 h2# ~1/2! 5 0.184/@~0.931·20/100!2

2 0.11461/2# 5 1.254 ppb (X4.3)

For comparison purposes, a simple, model-free quantitation
limit equal to five times the sample measurement’s standard
deviation from blank replicates might be 5 · sl = 5 · 0.173 =
0.865 ppb. This estimate would be even lower if an intralabo-
ratory standard deviation were used instead of an interlabora-
tory standard deviation.

X4.1.11 It is also possible to compute WQE30 %, as follows:

WQE30 % 5 g/@~b ·30/100!2 2 h2# ~1/2! (X4.4)

50.184/@~0.931 · 30 ⁄ 100!2 2 0.11462# ~1 ⁄ 2! 5 0.722 ppb

TABLE X4.4 Summary of OLS Fit of s on T and q

Term Estimate SI t Ratio Prob>|t|

g (Intercept) 0.0649765 0.048621 1.34 0.2524
h (slope w.r.t. T) 0.1267813 0.008496 14.92 0.0001

Q (coefficient of q) 0.0129282 0.002774 4.66 0.0096

TABLE X4.5 Summary Statistics from Newton’s Method Fit of Hybrid Model

j g h u v c d p q ∆g ∆h dg% dh T%

0 0.173 0.1400 73.11 176.87 27.77 8.22E–05 0.0634 –4.3765 0.0109 –0.0265 6.3 227
1 0.183 0.1135 74.99 238.43 32.28 5.96E–05 0.0540 0.2681 0.0002 0.0011 0.1 11.5
2 0.184 0.1146 74.47 234.83 32.89 6.10E–05 –0.0016 0.0037 –3E05 2E–05 0.02 0.2
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TABLE X4.6 WLS Straight-Line Fit for Measured Values Versus
True

Measurement = y = 0.19399 + 0.93062T
Measurement = y = a + bT

Summary of Fit
RSqu 0.963246
RSquare Adj 0.962706
Root Mean Square 0.994013
Error

Parameter Estimates

Term Estimate Standard
Error

t Ratio Prob>|t|

a (intercept) 0.1939874 0.038359 5.06 < 0.0001
b (slope) 0.9306236 0.022045 42.22 < 0.0001
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