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Standard Practice for
Determination of the 99 %/95 % Critical Level (WCL) and a
Reliable Detection Estimate (WDE) Based on Within-
laboratory Data1

This standard is issued under the fixed designation D7782; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

Note—Balloted information was included and the year date changed on March 28, 2013.

1. Scope

1.1 This practice provides a procedure for computing a
99 % ⁄95 % Within-laboratory Detection Estimate (WDE) and
the associated critical level/value (WCL). The WDE is the
minimum concentration, with false positives and false negative
appropriately controlled, such that values above these mini-
mums are reliable detections. The WCL is the point at which
only false positives are controlled appropriately. A false posi-
tive is the reporting of an analyte as present when the analyte
is not actually present; false negatives are reports of analyte
absence when the analyte is actually present. This practice is
distinguished from the Interlaboratory Detection Estimate
(IDE) practice in that the IDE Standard utilizes data from
multiple, independent laboratories, while this practice is for use
by a single laboratory. The IDE would be utilized where
interlaboratory issues are of concern (for example, limits for
published methods); this practice (and values derived from it)
are applicable where the results from a single laboratory, single
operator, single instrument, etc. are involved (for example, in
understanding, censoring and reporting data).

1.2 The establishment of a WDE involves determining the
concentration below which the precision and bias of an
analytical procedure indicates insufficient confidence in false-
positive and false-negative control to assert detection of the
analyte in the future analysis of an unknown number of
samples. Most traditional approaches attempt to determine this
detection “limit” by estimating precision at only a single,
arbitrary point. The WDE approach is intended to be a more
technically rigorous replacement for other approaches for
estimating detection limits. The WDE practice addresses a
number of critical issues that are ignored in other approaches.

1.2.1 First, rather than making a single-point estimate of
precision, the WDE protocol requires an estimate of precision

at multiple points in the analytical range, especially in the
range of the expected detection limit. These estimates are then
used to create an appropriate model of the method’s precision.
This approach is a more credible way to determine the point
where relative precision has become too large for reliable
detection. This process requires more data than has been
historically required by single-point approaches or by pro-
cesses for modeling the relationship between standard devia-
tion and concentration.

1.2.2 Second, unlike most other approaches, the WDE
process accounts for analytical bias at the concentrations of
interest. The relationship of true concentration to measured
concentration (that is, the recovery curve) is established and
utilized in converting from as-measured to true concentration.

1.2.3 Third, most traditional approaches to detection limits
only address the issue of false positives. Although false
negatives may not be of concern in some data uses, there are
many uses where understanding and/or control of false nega-
tives is important. Without the false-negative-control
information, data reported with just a critical-level value are
incompletely described and the qualities of data at these levels
incompletely disclosed.

1.2.4 Fourth and last, the WDE standard utilizes a
statistical-tolerance interval in calculations, such that future
measurements may reasonably be expected to be encompassed
by the WDE 90 % of the time. Many older approaches have
used the statistical confidence interval, which is not intended to
encompass individual future measurements, and has been
misunderstood and misapplied. Procedures using the confi-
dence interval cannot provide the stated control when the
detection-limit value is applied to future sample results; such
application is the primary use of these values.

1.3 To summarize, the WDE is computed to be the lowest
true concentration at which there is 90 % confidence that a
single (future) measurement (from the studied laboratory) will
have a true detection probability of at least 95 % and a true
non-detection probability of at least 99 % (when measuring a
blank sample). For the laboratory in the study, the critical value

1 This practice is under the jurisdiction of ASTM Committee D19 on Water and
is the direct responsibility of Subcommittee D19.02 on Quality Systems,
Specification, and Statistics.
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is the true concentration at which, on average, (with approxi-
mately 90 % confidence) will not be exceeded by 99 % of all
measurements of samples with true concentration of zero (that
is, blanks). These values are established by modeling the
precision and establishing the recovery/bias over a range of
concentrations, as well as by using a tolerance interval. The
complexities of the WDE procedure may appear daunting, but
the additional considerations are necessary if meaningfully
estimates of the actual detection capabilities of analytical
methods are to be made. The concepts are tractable by degreed
chemists, and the use of the available ASTM DQCALC
Excel-based software makes the data analysis and limit deter-
minations easy.

1.4 A within-laboratory detection estimate is useful in
characterizing the concentration below which a method, for an
analyte, as implemented in a specific laboratory, does not (with
high confidence) discriminate the presence of the analyte from
that of the absence of an analyte. As such an estimator, the
WDE Standard (and the WDE and WCL values produced
through its application) are useful where a trace-analysis
testing method needs to be used.

2. Referenced Documents

2.1 ASTM Standards:2

D1129 Terminology Relating to Water
D6091 Practice for 99 %/95 % Interlaboratory Detection

Estimate (IDE) for Analytical Methods with Negligible
Calibration Error

D7510 Practice for Performing Detection and Quantitation
Estimation and Data Assessment Utilizing DQCALC
Software, based on ASTM Practices D6091 and D6512 of
Committee D19 on Water

E1763 Guide for Interpretation and Use of Results from
Interlaboratory Testing of Chemical Analysis Methods

3. Terminology

3.1 Definitions—For definitions of terms used in this
practice, refer to Terminology D1129.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 99 % ⁄95 % Within-laboratory Detection Estimate,

n—(99 % ⁄95 % WDE, also denoted LD for Limit of Detection,
analogous to Currie (1)3 The lowest concentration at which
there is 90 % confidence that a single measurement from the
laboratory studied will have a true detection probability of at
least 95 % and a true non-detection probability of at least 99 %.

3.2.2 Probability of False Detection (α), n—The within-
laboratory false-positive probability that a single measurement
of a blank sample will result in a detection; see Fig. 1.

3.2.2.1 Discussion—This probability is often referred to as
the Type-1-error probability; it depends on the analyte, mea-
surement system, analytical method, matrix, analyst, and
measurement (recovery) threshold (measurement critical
value) used to decide whether detection has occurred.

3.2.3 Probability of True Non-detection (1-α), n—The
within-laboratory true-negative probability that a single mea-
surement of a blank sample will result in a non-detection.

3.2.3.1 Discussion—This concept is the complement of the
probability of false detection. (See Fig. 1) This probability also
depends on the analyte, measurement system, analytical
method, matrix, analyst, and response threshold.

3.2.4 Probability of True Detection (1-β or 1-β(T)), n—The
within-laboratory probability that a single measurement of a
sample containing a nonzero analyte concentration, T, will
result in a detection; see Fig. 1.

3.2.4.1 Discussion—This probability: 1) is often referred to
as statistical power or the power of detection, 2) depends
explicitly on the concentration (T), and 3) depends implicitly
on the analyte, measurement system, analytical method,
matrix, analyst, and critical value for detection.

3.2.5 Probability of False Non-detection (β or β(T)), n—The
within-laboratory false-negative probability that a single mea-
surement of a sample containing a nonzero analyte
concentration, T, will result in a non-detection.

3.2.5.1 Discussion—This concept is the complement of the
probability of true detection. (See Fig. 1.) This probability
function: 1) is often referred to as the Type-2-error probability
function, 2) depends explicitly on the concentration (T), and 3)

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

3 The boldface numbers in parentheses refer to a list of references at the end of
this standard.

FIG. 1 Normal Distribution of Zero Concentration (without bias), Low Concentration (near zero) and Simplest Case of Reliable Detection
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depends implicitly on the analyte, measurement system, ana-
lytical method, matrix, analyst, and critical value for detection.

3.2.6 Detection Limit (DL) or Limit of Detection (LD),
n—For the studied laboratory, a numerical value, expressed in
physical units or proportion, intended to represent the lowest
level of reliable detection (that is, a level that can be discrimi-
nated from zero with high probability, while simultaneously
allowing high probability of non-detection when blank samples
are measured).

3.2.7 Censored Measurement, n—A measurement that is not
reported numerically or reported missing, but reported as a
nondetect or a less-than (for example, “less than 0.1 ppb”).

3.2.7.1 Discussion—A non-zero report means that a
measurement-system algorithm determined that the measure-
ment should not be reported numerically because: 1) it was
considered insufficiently precise or insufficiently unbiased, or
2) the identification of the analyte was suspect. A reported
“less-than” may have the same meaning; however, such a
report also implies (perhaps erroneously) that any concentra-
tion greater than or equal to the accompanying value (for
example, 0.1 ppb) can be measured and will be reported
numerically.

3.2.8 100(1-γ) %—Confidence Statistical Tolerance Limit
for 100(1-δ) % of a Population (also known as a One-Sided
Statistical Tolerance Interval), n—A statistically determined
limit that will, with 100(1-γ) % confidence, exceed (or fall
below) 100(1-δ) % of the population (that is, the 100(1-δ) %
quantile). See Hahn and Meeker (2) for further explanation and
tables of values.

3.3 Acronyms:
3.3.1 ILSD—Intralaboratory standard deviation
3.3.2 WCL
3.3.3 WDE
3.3.4 YC
3.3.5 YD

4. Summary of Practice

4.1 Data representative of the laboratory, method, and
media at multiple (at least five) concentrations of the analyte,
covering the range from zero (or near zero) to at or above the
level of expected quantitation, are generated. The fundamental
assumption is that the media tested, the concentrations tested,
and the protocols followed are representative of the written test
method as implemented in the laboratory. The WDE compu-
tations must be based on retained data (after optional outlier
removal) from at least six independent measurements at a
minimum of five concentrations.

4.2 The relationship between the within-laboratory mea-
surement standard deviation and the true concentration is
established by evaluating a series of potentially appropriate
models, from simplest to most complex (that is, constant,
straight-line, hybrid, and exponential). This evaluation of
models includes statistical significance and residual analysis. A
single model (selected by the user, based on statistical best-fit,
visual review of fit and residuals, and judgment) is then used to
predict within-laboratory measurement standard deviation at
any true concentration.

4.3 If the within-laboratory standard deviation is not
constant, weights must be generated for fitting the true versus
measured concentration relationship (that is, the straight-line
relationship between measured concentration and true
concentration, known as the mean-recovery relationship), us-
ing weighted least squares; software such as DQCALC will do
this modeling. For constant standard deviation, ordinary least-
squares is used to fit the mean-recovery relationship. The
true-versus-measured linear fit is evaluated for statistical sig-
nificance and behavior of the residuals.

4.4 The modeled within-laboratory standard deviation at
zero concentration is used to compute YC, the measured
concentration that (with 90% confidence) 99 % of samples
with true concentrations of zero will be less than (that is, less
than the YC). The YD is computed to be the measured
concentration that (with approximately 90 % confidence) will
produce measurements that will exceed YC at least 95 % of the
time; simultaneously when blank samples are measured, YD
will not exceed YC more than 1 % of the time (that is, will not
exceed the reliable detection level, YD). In turn, the WCL and
the WDE are the true concentrations corresponding to YC and
YD, respectively, from the recovery regression.

4.5 While the application of this practice does require the
use of statistics, the complex calculations are performed by the
adjunct software, DQCALC. Practice D6091 provides the
complete mathematical basis for the calculations. Appendix X1
provides an example WDE calculation.

5. Significance and Use

5.1 This practice can be used in a single laboratory for trace
analysis (that is, where: 1) there are concentrations near the
lower limit of the method and 2) the measurements system’s
capability to discriminate analyte presence from analyte ab-
sence is of interest). In these testing situations, a reliable
estimate of the minimum level at which there is confidence that
detection of the analyte by the method represents true presence
of the analyte in the sample is key. Where within-laboratory
detection is important to data use, the WDE procedure should
be used to establish the within-laboratory detection capability
for each unique application of a method.

5.2 When properly applied, the WDE procedure ensures that
the 99 % ⁄95 % WDE has the following properties:

5.2.1 Routinely Achievable Detection—The laboratory is
able to attain detection performance routinely, using studied
measurement systems, without extraordinary effort, and there-
fore at reasonable cost. This property is needed for a detection
limit to be practically useful while scientifically sound. Rep-
resentative equipment and analysts must be included in the
study that generates the data to calculate the WDE.

5.2.2 Inclusion of Routine Sources of Error—If appropriate
data are used in calculation, the WDE practice will realistically
account for sources of variation and bias common to the
measurement process and routine for sample analysis. These
sources include, but are not limited to: 1) intrinsic instrument
noise, 2) some typical amount of carryover error, and 3)
differences in analysts, sample preparation, and instruments
(including signal-processing methods and software versions).
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5.2.3 Exclusion of Avoidable Sources of Error—The WDE
practice excludes avoidable sources of bias and variation, (that
is, those which can reasonably be avoided in routine field
measurements). Avoidable sources would include, but are not
limited to: 1) inappropriate modifications to the method, the
sample, measurement procedure, or measurement equipment,
and 2) gross and easily discernible transcription errors (pro-
vided there was a way to detect and either correct or eliminate
such errors in routine sample testing).

5.2.4 Low Probability of False Detection—Consistent with
a measured concentration threshold (YC), the WCL is a true
concentration that will provide a high probability (estimated at
99 %) of true non-detection (and thus a low estimated prob-
ability of false detection (α) equal to 1 %). Thus, when a
sample with a real concentration of zero is measured, the
probability of not detecting the analyte (that is, the probability
that the measured value of the blank will be less than the WCL)
would be greater than 99 %. To be most useful, this property
must be demonstrated for the particular matrix being used, and
not just for reagent-grade water.

5.2.5 Low Probability of False Non-detection—Where ap-
propriate data have been used for calculations, the WDE
provides a true concentration at which there is a high estimated
probability (at least 95 %) of true detection (and thus a low
estimated probability of false non-detection (β) equal to 5 % at
the WDE), with a simultaneously low estimated probability of
false detection. Thus, when a sample with a true concentration
at the WDE is measured, the probability of detection would be
estimated to be at least 95 %. To be useful, this property must
be demonstrated for the particular matrix being used, and not
just for reagent-grade water.

NOTE 1—The referenced probabilities, α and β, are key parameters for
risk-based assessment of a detection limit.

5.3 When this practice is utilized by a laboratory to develop
these false-positive- and false-negative-control point estimates,
from data representative of routine operations, the laboratory
may confidently claim these levels of false-positive and false-
negative control in the future, so long as the data used remain
representative of that future operation. The laboratory may also
qualify reported data using the appropriate point estimates (for
example YC, YD, WCL, WDE) or censor data below the WCL
as a valid basis for these data-reporting practices.

5.3.1 The WDE Standard does not provide the basis for any
prospective use of the test method by other laboratories for
reliable detection of low-level concentrations, even for the
same analyte and same media (matrix).

5.3.2 The WDE values from a given laboratory may be used
to compare the detection power of different methods for
analysis of the same analyte in the same matrix by that
laboratory.

5.4 The WDE practice applies to measurement methods for
which calibration error (that is, the error in the calibration of
the measurement system) is minor relative to the combined
other sources of variability. Some examples of other sources
and when they may be dominant are:

5.4.1 Sample preparation (dominant especially when cali-
bration standards do not go through sample-preparation steps).

5.4.2 Differences in analysts where a laboratory has more
than one person who may perform each method step.

5.4.3 Instrument differences (measurement equipment),
which could take the form of differences in manufacturer,
model, hardware, electronics, separation columns, sampling
rate, chemical-processing rate, integration time, software
algorithms, internal-signal processing and thresholds, effective
sample volume, and contamination level.

5.5 Reducing calibration error by use of allowable, though
more stringent, calibration procedures (for example, multiple
concentrations, replication, tight calibration-acceptance
criteria, etc.) and through calibration verification (for example,
analysis of a traceable standard from a second, independent
source, calibration diagnostics) can reduce the magnitude of
the calibration error.

5.6 Alternative Data-Quality Objectives—Other values for
α, β, confidence, etc. may be chosen as parameters; however,
this procedure addresses only those stated here in.

5.7 Collectively, the many sources of variation combine to
cause within-laboratory measurements at any true concentra-
tion to be normally distributed. The assumption of normality is
important for some of the statistics used; data normality should
be assessed if there is reason to believe this assumption is not
valid.

5.8 If control of false negatives is not a data-quality
objective, the WCL determined through this procedure pro-
vides a sound criterion for future determination of false-
positive control; in such cases, the laboratory may confidently
claim that true values above the WCL have a statistically
significant difference from like-matrix zero-concentration
samples (for example, from the method blank), but nothing
more.

5.9 Where as-measured values (for example, not corrected
for bias), not true values are of interest, YC and YD may be
used as these as-measured levels of the WCL and WDE.

6. Procedure

6.1 This procedure is described in stages as follows: Devel-
opment of Data, Data Screening, Modeling Standard
Deviation, Fitting the Recovery Relationship, and Computing
the Critical Value and Detection Estimate.

6.2 Development of Data for Input to the Calculations—A
single WDE calculation is performed per analyte, matrix/
media, and method. A minimum of five concentrations must be
used to allow for high-quality estimation of true verses
measured concentration, and for modeling the relationship of
standard deviation to true concentration. A minimum of six
values at each concentration are required in this practice to
provide a high-quality estimation of the standard-deviation and
the recovery relationships. Additional concentrations (and
especially additional, representative, independent samples at
each concentration) are highly encouraged, as they will reduce
the uncertainty in the estimate. Data for each WDE calculation
should come from only one laboratory, one method, and be for
only one analyte in one matrix/medium. Concentrations may
be designed in advance or data already developed may be used.
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6.2.1 Designing Concentrations—Where concentrations are
being selected in advance of the collection of data, the
development of an optimal design should consider many
factors, including:

(1) Concentrations of available data, such as routine
quality-control samples.

(2) Potential use of the same data to calculate quantitation
limits and or other control limits.

(3) The anticipated or previously determined WDE (top of
the range should exceed this value by at least a factor of 2).

(4) The potential need to eliminate the lowest concentra-
tion(s) selected (see zero-concentration discussion above).

6.2.1.1 Where possible, select a WDE study design that has
enough distinct concentrations to assess statistical lack of fit of
the models (see Draper and Smith (3)). Recommended designs
are: (a) The semi-geometric design at five or more true
concentrations, T1, T2, and so forth, such as: 0, WDE0/D2,
WDE0/D, WDE0, D × WDE0, D2 × WDE0, where D is a
number greater or equal to 2 and WDE0 is an initial estimate of
the WDE, (b) equi-spaced design: 0, WDE0/2, WDE0, (3/2) ×
WDE0, 2 × WDE0, (5/2) × WDE0. Other designs with at least
five concentrations should be adequate, provided that the
candidate design includes blanks, at least one concentration
approximately equal to 2 × WDE0, and at least one nonzero
concentration below WDE0.

6.2.2 Considerations for All True Concentration Selections:
6.2.2.1 The range of the data should allow for a single

model (ideally a straight-line model) in true concentration for
mean recovery from zero to the maximum concentration in the
study; also, a single model (one of the four models in this
practice) in true concentration should describe the within-
laboratory measurement standard deviation in the range from
zero to the maximum concentration.

6.2.2.2 The concentration range must be sufficient to enable
statistically significant coefficients to be estimated for the ILSD
and mean-recovery models. The anticipated form of the ILSD
model (that is, the relationship between within-laboratory
measurement standard deviation and true concentration), if
known, can help in choosing a WDE study design. Four ILSD
models are provided herein: constant, straight-line (increasing),
exponential (increasing), and hybrid. Chemistry, physics, em-
pirical evidence, or informed judgment may make one model
more likely than others. Evaluation of multi-laboratory
method-validation studies (such as those produced by ASTM
and EPA) may also provide valuable information.

6.2.2.3 The use of very high concentration data, outside of
the trace range, should be minimized, as such data are more
likely to be subject to a different modeling fit (as in flattening
response at high concentrations) and will influence the WDE/
WCL determinations. The user manual for DQCALC software
provides instructions for evaluation of the software-generated
graphics, which aid in identifying inappropriate high concen-
trations. General considerations include:

(1) For methods where instruments are calibrated over a
broad range (for example, multiple orders of magnitude), the
concentrations selected for the study should never exceed the
range in which linearity of calibration from the lowest calibra-
tion concentration has been demonstrated.

(2) Where on-going quality-control information is avail-
able and it indicates that precision is good at the concentration
of this quality control measure, (for example, 5%RSD or less,
at higher concentrations), then establishing the maximum
concentration for the study at or below that concentration
should be considered.

(3) Where on-going QC demonstrates a high %RSD (for
example, above 30 %), several concentrations at and above the
concentration of the QC sample should be included.

NOTE 2—33%RSD approximates the 99 % confidence of three standard
deviations and is a general approximation of the concentrations at which
detection occurs.

NOTE 3—Where more than five concentrations are available, calcula-
tions with and without the highest concentration(s) included can also
provide insight into the degree of impact the high concentration(s) is
having on the recovery relationship and on the modeling of standard
deviation.

6.2.2.4 To be used in the study, known, routine sources of
measurement variability (consistent with those of routine
analysis of samples) must be in action at the time of the
generation of the data, if the WDE and WCL are to be used for
characterizing routine performance. That is, in order for the
WDE to represent routinely achieved detection, the data used
for WDE calculation must be generated under routine analyti-
cal conditions at trace concentrations. Representative within-
laboratory variation can only be seen if the number of qualified
analysts and qualified measurement systems in the laboratory
are represented. The more data used and the more combina-
tions included, the less effect any specific bias in these pairings
should have on the WDE estimate. Similarly, sample manage-
ment (for example, holding time) and allowed variations in
sample-processing procedures must be included. The time
period spanned must allow for incorporation of routine sources
of variation. This consideration should include factors such as
the frequency of calibration of instruments, introduction of
newly prepared or purchased standards, reagents and supplies,
and sample holding times. Historically, the failure to utilize
representative data in determination of detection limits has
been a primary component of poor-quality detection estimates
and should be strictly avoided (garbage in, garbage out).
Ideally, each measurement would be an unsuspected blind
measurement made by a different analyst using a different
(qualified) measurement system (that is, instrument) on a
different day, in random order. In any case, the goal is to
minimize special treatment of the study samples.

6.2.2.5 Where the WQE is meant to represent the best
possible performance, and not routine performance, then opti-
mized conditions for data generation would be appropriate.
Similarly, if the performance of only a single process, instru-
ment system, analyst, etc. is of interest, only the applicable
variables should be included. It is the responsibility of the user
of this practice to assure that the appropriate data are utilized
for the end use(s) of WDE. Where the end use is unknown, the
data generator who is using it needs to disclose the specific
attributes of the data used in the calculation (as well as the
%RSD), and thus of the WDE.
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6.2.2.6 Where preexisting, routine-source data (for
example, quality-control data) are used, care must be taken to
assure that: 1) each data point represents a true and indepen-
dent sampling of the population (as well as of the sample
medium being examined, where applicable) and 2) all sample-
processing steps and equipment (for example, bottles,
preservatives, holding, preparation, cleanup) are represented.
Also, “true” concentration levels must either be known (that is,
true “spiked” concentration levels), or knowable, after the fact.
A concentration is considered known if reference standards can
be purchased or constructed, and knowable if an accurate
determination can be made.

6.2.2.7 Transformation of other types of data (such as
laboratory replicates, which under-represent the variability as
compared to independent samples and usually do not have
known true concentrations), using scientifically and statisti-
cally sound approaches is not prohibited by this practice.
However, care must be taken and the validity of these trans-
formations tested. It is also critical that any standards used to
prepare study samples be completely independent of the
standards used to calibrate the instrument.

6.2.2.8 Blank correction should not be performed, unless
the method requires this correction to calculate result values.

6.2.3 True-Concentration Zero (Blank) Data Discussion—
Where possible, it is preferable to include data from samples
with true concentration of zero (for example, blanks).
However, for many methods, it may not be possible to conduct
an unbiased sampling of the zero (blank) concentration
samples, since instruments and software systems routinely
smooth electronic information (raw data) from the detector,
and software settings may censor reported data. Through these
automated processes, many testing instruments return to the
operator a result value of “zero,” when, if these processes had
been turned off, a non-zero numeric result (positive or nega-
tive) would have been produced. These “false-zero” values
adversely affect the use of the zero-concentration data in
statistics and should not be used for WQE studies. Most
chromatography systems (and many other types of computer-
assisted instruments) have instrument set-points (such as (digi-
tal) bunch rate, slope sensitivity, and minimum area counts)
that are operator-controllable. For purposes of this study,
generating as much uncensored low-level data as practical is
important; the presence of these processes as well as the setting
of any operator-controllable setting should be evaluated.

NOTE 4—Qualitative criteria used by the method to identify and
discriminate analytes are separate criteria and must be satisfied according
to the method.

6.2.3.1 Once true-concentration zero measurements have
been generated, and prior to use, it is important to examine and
evaluate these data. A graph of measured concentration by
frequency of occurrence may be helpful. However, unless a
fairly large sample size is represented (for example, n>20), the
distribution may be distorted by the random nature of sampling
alone. As a general rule, if there were no bias, then on average
and over a large sampling, a truly uncensored set of zero-
concentration (blank) data would have a mean of zero with
approximately half of the results being negative values and half
positive, and be normally distributed. If some positive or

negative bias were present, the percentages would shift.
However, in general the frequency should be higher near the
mean of the values and should decline as the concentrations
move away from the mean, with approximately half of the
non-mean data above and half below the mean.

6.2.3.2 Blank data are considered suspect if: 1) there is no
variation in these data, 2) there are an inordinate number of
zero values (and no negative values) relative to the frequencies
of positive values (see 6.2.3), 3) if there is a high frequency of
the lowest value in the data set (for example, where minimum-
peak-area rejection has been used) relative to the frequency of
higher concentration values, and few or no lower values, or 4)
a frequency graphic does not begin to approximate a bell curve
(when there are 20 or more samples).

6.2.3.3 If the distribution of the data is suspect, the
literature, plus instrument-software and equipment manuals,
should be consulted. These documents can provide an under-
standing of: 1) the theory of operation of the detection system,
2) the signal processing, calibration, etc., and 3) other aspects
of the conversion of response to reported values. Judgment will
be needed to determine whether to use some or all of the
true-concentration-zero (blank) data, or to exclude the data
from the calculations. In general, if less than 10 % of the
zero-concentration data are: 1) censored, 2) suspect, or 3)
false-zeros, then these “problem” data should be removed.
Only the remaining blank data are used in the WQE calcula-
tions and there must be at least six such data points. Where the
zero concentration is excluded or is not possible to obtain, it is
important to include a true concentration as close as possible to
zero in the study design.

6.2.3.4 Where 75 % or less of the data are censored or
smoothed, and there are at least six remaining values, it is
reasonable to use statistical procedures to simulate the part of
the distribution that is missing or smoothed. Software proce-
dures are commercially available. Additionally, procedures
such as log-normal transformation may be used to accommo-
date data that are not normally distributed. The presence of
zero-concentration in the study data and in the WQE is not as
critical as inclusion of such data in the WDE calculations.
Therefore, the decision about inclusion or exclusion of zero-
concentration data in a WQE data set should weigh the
following against the quality of the zero-concentration data: 1)
the number of other concentrations available, 2) the range of
the other concentrations, and 3) the risk of extrapolation of the
WDE outside the data-set concentration range.

6.2.3.5 True Concentrations Near Zero—As with concen-
tration zero, true concentrations very near to zero may also
have been censored, have been smoothed, and contain false-
zeros. Examination of these very low concentrations, as above
for zero concentration, is important. The likelihood of occur-
rence and the percentage of data affected decreases with
increasing concentration.

6.3 Data Screening, Outlier Identification and Outlier Re-
moval:

6.3.1 Data that are to be the input to the WQE calculation
should be screened for compliance with this practice’s
conditions, appropriateness for the intended use of the WDE,
obvious errors and individual outliers. Graphing of the data
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(true versus measured) is recommended as an assistive visual
tool. This graphic is available in the DQCALC Software.

6.3.2 Outlying individual measurements must be evaluated;
if determined to be erroneous, they should be eliminated using
scientifically-based reasoning. Identification of potential outli-
ers for data evaluation and validation may be accomplished
using statistical procedures, such as the optional one provided
in the DQCALC Software, or through visual examination of a
graphical representation of the data. WQE computations must
be based on retained data from at least six independent
measurements at each of at least five concentration levels. The
data removed and the percentage of data removed must be
recorded and retained to document the WQE calculations.

6.4 Modeling the Relationship between Standard Deviation
and True Concentration—The purpose is to characterize the
intralaboratory measurement standard deviation (ILSD) as a
function of true concentration, σ = G (T). The relationship is
used for two purposes: 1) to provide weights (if needed) for
fitting the mean-recovery model and 2) to provide the within-
laboratory standard-deviation estimates crucial to determining
the WDEs.

NOTE 5—See Caulcutt and Boddy (4) for more discussion of standard-
deviation modeling and weighted least squares (WLS) in analytical
chemistry.

6.4.1 This practice utilizes four models as potential fits for
the IntraLaboratory Standard Deviation (ILSD) model. The
identification process considers (that is, fits and evaluates) each
model in turn, from simplest to most complex, until a suitable
model is found. See Carroll and Ruppert (5) for further
discussion of standard-deviation modeling. The model order is
as follows:

Model A (Constant ILSD Model):

s 5 g1error (1)

where: g is a fitted constant. Under Model A, standard
deviation does not change with concentration, resulting in a
relative standard deviation that declines with increasing T.

Model B (Straight-line ILSD Model):

s 5 g1h 3 T1error (2)

where: g and h are fitted constants. Under Model B, standard
deviation increases linearly with concentration, resulting in an
asymptotically constant relative standard deviation as T in-
creases.

Model C (Hybrid ILSD Model):

s 5 $g21~h 3 T!2% 1/21error (3)

where: g and h are fitted constants. Under Model C,
within-laboratory standard deviation increases with concentra-
tion in such a way that the relative standard deviation declines
as T increases, approaching an asymptote of h.

Model D (Exponential ILSD Model):

s 5 g 3 exp$h 3 T%1error (4)

where: g and h are fitted constants. Under Model D,
within-laboratory standard deviation increases exponentially
with concentration, resulting in a relative standard deviation
that may initially decline as T increases, but eventually
increases as T increases.

6.4.2 In all cases, it is assumed that g > 0. A value of g < 0
has no practical interpretation and may indicate that a different
ILSD model should be used. Furthermore, it is assumed that g
is not underestimated by censored data among measurements
of blanks or other low-concentration samples. If h < 0, it must
not be statistically significant, and Model A should be evalu-
ated.

6.4.3 Practice D7510, describes the DQCALC software that
performs the calculations for each of the four models, as well
as the fit of each. The software identifies which model
produced the best fit, and allows the user to select this model
or to select an alternative model. The software provides various
graphical representations of the data and residuals, and the user
manual provides assistance in using and interpreting the
graphics and calculated values. Evaluation of the fit of each
model to the data (as well as knowledge of chemistry, the
method, and the systems used to generate the data) and
judgment are important when selecting the most appropriate
model. Where a model other than the best fit is chosen, the
reason(s) for the choice should be scientific and should be
recorded to document the WQE.

6.4.4 Users of this practice not using the ASTM D19
DQCALC software will find a procedure that provides the full
procedural, consensus-balloted basis for these calculations. It is
also recommended that those not using the software graph the
relationship of true concentration to measurement standard
deviation, and visually verify the appropriateness of each
model and of the model selected for use.

6.5 Fitting the Mean-Recovery Relationship (Measured ver-
sus True Concentration)—Based on the standard-deviation
model selected (constant versus other models), the mean-
recovery concentration is fitted versus true concentration, using
ordinary least squares or weighted least squares, respectively.
The mean-recovery is evaluated for statistical significance and
lack of fit. A graph of mean recovery (along with the regression
line) and a graph of the residuals should also be visually
examined. The ASTM D19 DQCALC software performs these
activities automatically. Alternatively, many off-the-shelf
statistical-software packages may also be used.

NOTE 6—Regression coefficients should not be used to assess goodness
of fit.

6.5.1 The mean-recovery regression (true versus measured
concentration) model is a simple straight line,

Model R:

Y 5 a1b T1error (5)

6.5.2 The fitting procedure depends on the standard-
deviation-model selection. If the constant model (Model A)
was selected, then ordinary least squares (OLS) can be used to
fit Model R for mean recovery (see the left column of Table 2,
or Caulcutt and Boddy (4)). If a non-constant standard-
deviation model was selected, then WLS should be used to fit
mean recovery; then, the estimates of the coefficients (a and b)
will be approximately the minimum-variance unbiased linear
estimates. The WLS procedure is described in the IDE
standard, Practice D6091.

6.6 Determine the Critical Value and from it the Detection
Estimate Value—By means of the recovery curve and the most
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appropriate model of standard deviation to true concentration,
the level of false-positive control is first established.

6.6.1 YC is determined as the minimum concentration at
which the false positive rate of 1 % (with confidence based on
sample size and tolerance interval; for example, 90 % cover-
age) is achieved. See Fig. 1 and Fig. 2. Alternative criteria for
false-positive rate and “coverage” by the tolerance interval
may also be used, based on alternative data-quality objectives.

6.6.2 It can be seen from the graphical representation that
includes the recovery relationship, Fig. 2, that the critical value
(where there is 99 % control of false-positive values at true-
concentration zero) is the point at which measured
concentration, YC, intersects the recovery curve.
Consequently, WCL (which is in true concentration units) is
established. The modeled standard deviation at true concentra-
tion zero (along with the tolerance interval for 90 % based on
the sample size) are the estimates used to establish YC. WCL
is the true concentration equivalent to YC, as established by the
recovery curve. In Fig. 2, the example demonstrates a case with
positive bias (intercept greater than zero) and imperfect recov-
ery (slope of the calibration not equal to 1).

NOTE 7—This example highlights the advantages of the WDE proce-
dure over more simplistic procedures. More simplistic procedures make
often inappropriate assumptions about slope (that is, assumed to be 1) and
y-intercept (that is, assumed to be zero at true-concentration zero), in
addition to assuming that the standard deviation is constant. Additionally,
where the simplest model (constant) for standard deviation is rejected, this
WDE procedure requires that weighted least squares be used for the
recovery curve, to prevent the higher concentrations from having an
excessive effect on the fitting of the line; most other practices do not
include this requirement.

6.6.3 Figure 2 also shows a horizontal line drawn from YC,
parallel to the x-axis and intersecting a bell-shaped curve. This
line is equivalent to the point LC in Fig. 1 and demonstrates the
relationship of these two figures. (Figure 2 incorporates the
complexity of the recovery relationship, while Fig. 1 does not.
The WDE is then the true concentration at which, based on the
modeling of standard deviation at that concentration and
including the required confidence for the sample size (90 %
tolerance interval), there is control of false negatives to, on
average, 5 %. Alternative criteria for false-positive rate and
“coverage” by the tolerance interval may also be selected,
based on alternative data-quality objectives.

NOTE 8—The ordinate value for WDE (that is, YD) could also be
established, were YD of interest to the user.

6.7 An example (with data, calculations and graphical
representations) is provided in Appendix X1.

7. Review, Documentation, and Reporting

7.1 The WDE analysis report should include the identifica-
tion of laboratory, identification of analytical method,
analyte(s), matrix (or matrices), sample properties (for
example, volume or mass) and specific method options (if any)
utilized. Where the laboratory uses standard operating proce-
dures (SOPs) to implement methods or method protocols, these
SOPs should be referenced, including the identification of any
revision/version. Documentation of each datum used should be
equivalent to that of reported data (for example, instrument,
analyst, date, etc.). There should be a description of all
data-screening procedures employed, all results obtained, all
individual values omitted from further analysis (that is, outliers
that have been removed), all missing values, and the percent-
age of data utilized in the calculations relative to the initial data
set. Any anomalies encountered should be listed, including and
anomalous calibration or quality-control-sample results (for
example, data-validation qualifiers or flags). The data (that is,
statistical) analysis should be included or referenced (for
example, the output file from the DQCALC software) and the
calculated WDE values recorded. Also, the standard-deviation
model selected, and the coefficient estimates for this model and
for the mean-recovery model should be reported. Where a
statistical model other than the mathematical best fit has been
chosen, the reasoning should be described.

8. Report

8.1 The analysis report should, at a minimum, contain:
8.1.1 Identification of laboratory,
8.1.2 Analytical method,
8.1.3 Analyte(s),
8.1.4 Matrix (or matrices),
8.1.5 Sample properties (for example, volume),
8.1.6 Study design,
8.1.7 Analyst, method, and date of testing for each study

sample,
8.1.8 Any anomalies in the study, including QA/QC sample

results,
8.1.9 Data-screening results, individual values and labora-

tories omitted from further analysis, and missing values,
8.1.10 ILSD model selected,
8.1.11 Coefficient estimates for the ILSD model and for the

mean-recovery model.

NOTE 9—The DQCALC input and output files provide much of this
documentation.

8.2 The report should be given a second-party review to
verify that:

8.2.1 The data transcription and reporting have been per-
formed correctly,

8.2.2 The analysis of the data and the application of this
practice have been performed correctly, and

8.2.3 The results of the analysis have been used
appropriately, including assessment of assumptions necessary
to compute a WQE.

FIG. 2 Critical Level and Detection Estimate—Incorporating Con-
cepts of Figure 1 with the Recovery Relationship
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9. Rationale

9.1 The basic rationale for the 99 % ⁄95 % WDE is con-
tained in Currie (1), and is shown in Fig. 1. For a selected test
method, this figure shows single-laboratory variation in mea-
surements of both blank samples and samples at true concen-
tration = T0, assuming perfect recovery. The variation shown is
according to the Normal distribution, with known mean,
insignificant bias, and known within-laboratory standard de-
viation. The critical value, LC*, is used to determine detection.
LC* can be moved to decrease α (which is the probability of a
false detection), but at the price of increasing β (which is the
probability of a false non-detection); the reverse can also be
done. Given an acceptable value for α, a value for LC* can be
found. Given, also, an acceptable value for β, a suitable value
for T0 can be found. T0 is then a single-laboratory detection
limit, at which reliable detection can occur by definition of
acceptable α and β. By following this WDE procedure, these
concepts (that is, LC* and LD) can be implemented in a
scientifically rigorous manner to produce within-laboratory
detection-capability estimates.

9.2 There are several complications to Currie’s theory (and
Fig. 1) in application to real-world analytical testing. See
Maddalone et. al. (6) and see Gibbons (7). Listed below are
common and significant complications, along with remedies
that are provided through use of this practice and development
of WDE/WCLs:

9.2.1 Recovery is rarely perfect. The relationship between
measured values and true concentrations cannot be assumed to
be trivial and needs to be assessed. Where there is a difference
between true and measured values, the difference can and
should be modeled, typically by a straight line. This WDE
standard performs this activity; the DQCALC software pro-
vides coefficients and plots of residuals for user assessment.
The WDE and WCL account for this recovery and are reported
in units of true concentration. Where recovery is perfect,
measured (YC and YD) and true (WCL and WDE, respec-
tively) will coincide.

9.2.2 Variation can be introduced by different analysts,
models, instruments, environmental factors, latitude in a test
method, contamination, carry-over, and other factors. Data
collected at only one point in time (or over a period of time
insufficient to encounter these factors) will under-represent
variability. The collective contributions to measurement
within-laboratory standard deviation can be observed in the
data, if such contributions are included in the method processes
and are allowed to vary during the data-collection time. This
practice provides specific guidance regarding the representa-
tiveness of data used to calculate the WDE.

9.2.3 The within-laboratory standard deviation of measure-
ments is an unknown in nearly all testing procedures. Standard
deviations must be estimated with finite sample sizes, and
statistical tolerance limits must be used to obtain high (stated)
confidence in a distribution-quantile estimate. Most existing
procedures (and all procedures that utilize confidence intervals)
do not address this issue. This practice provides for 90 %
confidence, using the appropriate tolerance (k) factor. The
greater the quantity of data used in the estimate, the less
uncertain the standard deviation (and the lower the tolerance k
factor). This practice’s requirement for quantity of data was
developed by consensus and represents the minimum the task
group found to be advisable. Increasing the size of n is highly
recommended in this practice.

9.2.4 Within-laboratory standard deviation of measurements
may change with true concentration, possibly due to underly-
ing physical principles of the test method, or measurement
system (for example, detector), or both. The simplifying
assumption that standard deviation is constant (or that the
change is insignificant) has been found to be a poor assumption
in many cases, especially at trace levels, and has been a
primary motivation for development of this practice. Also, the
assumption that there is a linear relationship of standard
deviation to concentration frequently has been found to be a
poor assumption, although better than assuming constant
standard deviation when variation does exist. Nevertheless, if
the straight-line model is an inadequate fit, the critical-level
and detection estimates can be affected adversely. In the WDE
procedures, the inclusion of non-linear models (exponential
and hybrid), and the evaluation of the fit of the models relative
to the constant and linear models, is specifically to address this
failing.

9.2.5 If standard deviation is not constant, the use of
ordinary least squares is suspect and will adversely affect any
determinations. This fact is particularly important for detection
estimation, because the modeling of the recovery data (true
versus measured) at the lowest concentrations is critical. Many
procedures do not take recovery bias (true versus measured)
into account at all This failing is serious in many situations.
This practice not only assesses measured-versus-true
concentration, but also assesses standard deviation; where an
assumption of constant standard deviation is not adequate, this
practice uses weighted least squares to fit a linear model to the
recovery data (and thereby better estimate and correct the bias
at the lower concentrations).

10. Keywords

10.1 critical limit; detection; detection limit; false detection;
false non-detection; false positive; matrix effects; statistical
tolerance interval; true detection; true non-detection
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APPENDIX

(Nonmandatory Information)

X1. EXAMPLE (STRAIGHT-LINE ILSD MODEL)

TABLE X1.1 Computations to Estimate Straight-Line Model Coefficients by Means of Least Squares—Ordinary and Weighted
Ordinary Least Squares, OLS Weighted Least Squares, WLS

T̄ 5
1
n o

i51

n

Ti, T̄W 5 o
i51

n

WiTi/o
i51

n

Wi

ȳ 5
1
n o

i51

n

yi ȳW 5 o
i51

n

Wiyi/o
i51

n

Wi

STT 5 o
i51

n

sTi 2 T̄d2
SwTT 5 o

i51

n

Wi sTi 2 T̄d2

STY 5 o
i51

n

sTi 2 T̄dsyi 2 ȳd SwTY 5 o
i51

n

WisTi 2 T̄dsyi 2 ȳd

Slope 5 b 5 STY/STT Slope 5 b 5 SwTY/SwTT

Intercept 5 a 5 ȳ 2 bT̄ Intercept 5 a 5 ȳw 2 bT̄w

X1.1 Identify and Fit the ILSD Model—Ten combinations
of analysts and instruments were involved in a WDE study
where single measurements were made at each of five
concentrations, including blanks: Tk = 0, 0.25, 0.50, 1, 2 ppb.

NOTE X1.1—Considerations prior to calculations are not addressed in
this example.

X1.1.1 The reported measurements are shown in Table
X1.3. These values are also shown in Fig. X1.1. The straight-
line recovery model appears to be plausible, and the data
appear to have within-laboratory measurement standard devia-
tion that increases with concentration. Note that for this

example, high blank measurements and an unusually high
recovery slope are present.

X1.1.2 Within-laboratory sample standard deviations at
each true concentration are computed, and are shown in Table
X1.3.

X1.1.3 A plot of within-laboratory sample standard devia-
tion versus true concentration is shown in Fig. X1.2. There is
increasing qualitative evidence of an increase in standard
deviation with increasing concentration.

X1.1.4 A straight-line regression (OLS) is conducted of the
within-laboratory sample standard deviations, sk, versus Tk.
The results are shown in Table X1.4, and the fit is shown in Fig.
X1.2. The estimates are intercept g = 1.0891 and slope h =
0.95682.

X1.1.5 The p-value associated with the slope estimate, h, is
1.28 % < 5 %, so Model A, the constant ILSD model, is
rejected.

X1.1.6 The residuals from the straight-line within-
laboratory standard deviation fit are computed as follows and
are displayed in Fig. X1.3:

rk 5 sk 2 ~1.08910.957 3 Tk! (X1.1)

X1.1.7 There is no evidence of systematic curvature, so the
analysis proceeds to the next step of the practice.

X1.2 Fit the Mean Recovery Model

X1.2.1 Since the within-laboratory standard deviation has
been shown to be nonconstant with respect to true
concentration, WLS is used to fit the mean recovery model, and
the fitted ILSD model is used explicitly to estimate the ILSD at
arbitrary true concentrations.

TABLE X1.2 90 %-Confidence Upper, One-sided Statistical
Tolerance Limit Factors for Computing the 99 %/95 % WDEA

Number of Observations
Retained,n

99 % Quantile, k1 95 % Quantile,k2

5 4.67 3.40
10 3.53 2.57
15 3.21 2.33
20 3.05 2.21
25 2.95 2.13
30 2.88 2.08
35 2.83 2.04
40 2.79 2.01
45 2.76 1.99
50 2.74 1.97
55 2.71 1.95
60 2.69 1.93
65 2.68 1.92
70 2.66 1.91
75 2.65 1.90
80 2.64 1.89
90 2.62 1.87
100 2.60 1.86
150 2.55 1.82
200 2.51 1.79

AComputed using STINT software (93/12/3 version), by Prof. W. Meeker and J.
Chow of Iowa State University.
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The estimate of intercept, g, and the estimate of slope, h, in
the straight-line ILSD model, are used to predict the ILSD at
each true concentration, Tk. These predicted values, sk’, are
shown in Table X1.3 and are assumed to be closer to the true
ILSDs, σk , than are the sample ILSDs, sk.

X1.2.2 Weights are computed, based on the predicted
ILSDs:

wk 5 ~sk’!22 (X1.2)

They are shown in Table X1.3.

X1.2.3 The WLS is carried out to estimate the coefficients,
a and b, of the straight-line mean recovery relationship:

Model R:

Y 5 a1b 3 T1error (X1.3)

The results of WLS are shown in Fig. X1.4 and in Table
X1.5.

TABLE X1.3 Reported Measurements and Computed Statistics from WDE Study

True
Concentration
Tk, ppb

Reported Measurement,
Yi (ppb), one per
Analyst-Instrument combination

Sample
Standard
Deviation

Predicted
Standard
Deviation

Weights
for WLS

0.0 1.41, 3.94, 2.22, 3.48, 1.96, 0.92, 2.17, 2.36,
4.50, 3.26

1.137 1.089 0.843

0.25 4.10, 3.51, 4.07, 4.34, 4.54, 2.76, 2.03, 4.13,
6.06, 6.47

1.336 1.328 0.567

0.50 3.97, 7.34, 6.41, 6.25, 6.38, 7.64, 4.67, 6.74,
4.38, 6.48

1.255 1.568 0.407

1.0 7.54, 7.68, 8.38, 7.14, 3.12, 10.97, 11.15,
10.44, 9.73, 7.27

2.406 2.046 0.239

2.0 8.20, 13.97, 12.88, 18.31, 16.47, 16.06,
12.56, 14.21, 13.96, 17.37

2.900 3.003 0.111

TABLE X1.4 Results of Straight-Line Fit of sk versus Tk by OLS

Linear Fit
Standard Deviation (Y) = 1.0891 + 0.95682 T
Standard Deviation (Y) = g + h T
Summary of Fit
RSquare 0.904996
RSquare Adj 0.873329
Analysis of Variance
Source df Sum of

Squares
Mean
Square

F Ratio

Model 1 2.2887587 2.28876 28.5778
Linear Fit
Error 3 0.2402664 0.08009 Prob>F
C total 4 2.5290251 0.0128
Parameter Estimates
Term Estimate Standard Error T-Ratio Prob> T
g (intercept) 1.0891019 0.184493 5.90 0.0097
h (slope) 0.9568195 0.178985 5.35 0.0128

TABLE X1.5 Results of WLS Fit of Straight-line Mean Recovery Relationship (Measured Concentration versus True Concentration)

Response: Y-Linear Fit
Y = 2.729549 + 5.8711952 T
Y = a + b T
Summary of Fit
RSquare 0.794662
RSquare Adj 0.790384
Root Mean Square Error 0.982227
Lack of Fit
Source df Sum of

Squares
Mean
Square

F Ratio

Response: Y-Linear Fit
Lack of fit 3 0.26311 0.2601

0.789330
Pure error 45 45.519596 1.01155 Prob>F
Total error 48 46.308925 0.8537
Parameter Estimates
Term Estimate Standard Error T Ratio Prob> T
a (intercept) 2.729549 0.264938 10.30 <0.0001
b (slope) 5.8711952 0.430774 13.63 <0.0001
Analysis of Variance
Source df Sum of Squares Mean Square F Ratio

Model 1 179.21612 179.216 185.7606
Error 48 46.30893 0.965 Prob>F
C total 49 225.52504 <0.0001
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X1.2.4 The fit is evaluated as follows: (1) The overall
p-value is <0.0001 < 5 %; (2) The lack of fit p-value is 0.8537
> 5 %; (3)Fig. X1.5 shows a plot of the residuals versus true
concentration and shows no evidence of systematic curvature.
Therefore, the straight-line mean recovery fit is acceptable.

X1.3 Compute the WDE

X1.3.1 Having obtained acceptable fits of a ILSD model
and a mean recovery model, the WDE can be computed.

X1.3.2 The recovery critical value, YC, is computed and is
shown in Fig. X1.4:

FIG. X1.1 Reported Measurements versus True Concentration, One Measurement/Analyst-Instrument Combination at Each Concentra-
tion (ppb)

FIG. X1.2 Sample Standard Deviation (Y) versus True Concentration (sk versus Tk)

FIG. X1.3 Residuals from Straight-Line Model of Within-laboratory Measurement Standard Deviation versus True Concentration
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YC 5 k1 3 s~0!
^

1a 5 2.74 3 1.08912.73 5 5.71 (X1.4)

where:
k1 = 2.74 = the one-sided statistical tolerance limit for 90 %

confidence of the 99 % quantile, based on the normal
distribution assumption and n=50 observations,

s0 = g = 1.089 is the predicted ILSD at T=0 (blank samples),
and

a = 2.73 = intercept from the mean recovery curve (recall
that this is set much higher than 0 for this example to
clearly distinguish measured values from true values in
the plots and tables, see 10.1.1)

X1.3.3 The true concentration critical value is computed
and is shown in Fig. X1.4:

LC 5 ~YC 2 a!/b 5 ~5.71 2 2.73!/5.87 5 0.51 ppb LC 5 WCL

(X1.5)

where:

b = 5.87 = slope of the recovery curve

X1.3.4 The WDE (also called the LD, in the tradition of
Currie (1)) is computed recursively. An initial value is set as
follows:

LD0 5 LC1k2 3 s~0!
^

⁄b 5 0.5111.97 3 1.089⁄5.87 5 0.874

(X1.6)

where:
k2 = 1.97 = one-sided statistical tolerance interval for 90 %

confidence of the 95 % quantile, based on the normal
distribution assumption and n=50 observations

Then the recursive function is solved, iteratively, as follows:

LD1 5 R21~k1 3 s~0!
^

1k2 3 G~LD0!1a! 5 LC1k2 3 ~g1h

3 LD0!/b 5 0.51111.97 3 ~1.08910.957 3 0.874!/5.87 5 1.154

(X1.7)

FIG. X1.4 Weighted Least Squares Fit of Mean Recovery Relationship, with WDE and Critical Limits

FIG. X1.5 Plot of Residuals from WLS Fit of Straight-line Mean Recovery Relationship versus True Concentration
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LD2 5 0.51111.97 3 ~1.08910.957 3 1.154!/5.87 5 1.245

(X1.8)

etc., until convergence is achieved at about the eighth
iteration, LD7 ≈ LD8 = 1.287. Therefore, WDE = LD = 1.287 ≈
1.3 ppb, as is shown in Fig. X1.5. Note that LD > 2 × LC =
1.02.

X1.4 Based on the data input, there is (approximately) 90 %
confidence that the analyte can be detected at least 95 % of the
time at 1.3 ppb, and simultaneously that blank samples will

result in non-detect no more than 1 % of the time.
NOTE X1.2—In this example the calculated WDE is less than most

calculated standard deviation values in Table X1.3. This is because the
data used in this example reflect high blank values and an unusually high
recovery slope. This example serves to illustrate the utility of the practice
for less than ideal situations.

X1.4.1 Also shown in Fig. X1.4 is the expected measure-
ment value at the WDE concentration:

YD 5 R~LD! 5 a1b 3 LD 5 2.7315.87 3 1.287 5 10.3(X1.9)
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