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Standard Guide for
Statistically Evaluating Measurand Alarm Limits when Using
Oil Analysis to Monitor Equipment and Oil for Fitness and
Contamination1

This standard is issued under the fixed designation D7720; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide provides specific requirements to statistically
evaluate measurand alarm thresholds, which are called alarm
limits, as they are applied to data collected from in-service oil
analysis. These alarm limits are typically used for condition
monitoring to produce severity indications relating to states of
machinery wear, oil quality, and system contamination. Alarm
limits distinguish or separate various levels of alarm. Four
levels are common and will be used in this guide, though three
levels or five levels can also be used.

1.2 A basic statistical process control technique described
herein is recommended to evaluate alarm limits when mea-
surand data sets may be characterized as both parametric and in
control. A frequency distribution for this kind of parametric
data set fits a well-behaved two-tail normal distribution having
a “bell” curve appearance. Statistical control limits are calcu-
lated using this technique. These control limits distinguish, at a
chosen level of confidence, signal-to-noise ratio for an in-
control data set from variation that has significant, assignable
causes. The operator can use them to objectively create,
evaluate, and adjust alarm limits.

1.3 A statistical cumulative distribution technique described
herein is also recommended to create, evaluate, and adjust
alarm limits. This particular technique employs a percent
cumulative distribution of sorted data set values. The technique
is based on an actual data set distribution and therefore is not
dependent on a presumed statistical profile. The technique may
be used when the data set is either parametric or
nonparametric, and it may be used if a frequency distribution
appears skewed or has only a single tail. Also, this technique
may be used when the data set includes special cause variation
in addition to common cause variation, although the technique
should be repeated when a special cause changes significantly
or is eliminated. Outputs of this technique are specific mea-

surand values corresponding to selected percentage levels in a
cumulative distribution plot of the sorted data set. These
percent-based measurand values are used to create, evaluate
and adjust alarm limits.

1.4 This guide may be applied to sample data from testing
of in-service lubricating oil samples collected from machinery
(for example, diesel, pumps, gas turbines, industrial turbines,
hydraulics) whether from large fleets or individual industrial
applications.

1.5 This guide may also be applied to sample data from
testing in-service oil samples collected from other equipment
applications where monitoring for wear, oil condition, or
system contamination are important. For example, it may be
applied to data sets from oil filled transformer and circuit
breaker applications.

1.6 Alarm limit evaluating techniques, which are not statis-
tically based are not covered by this guide. Also, the techniques
of this standard may be inconsistent with the following alarm
limit selection techniques: “rate-of-change,” absolute
alarming, multi-parameter alarming, and empirically derived
alarm limits.

1.7 The techniques in this guide deliver outputs that may be
compared with other alarm limit selection techniques. The
techniques in this guide do not preclude or supersede limits that
have been established and validated by an Original Equipment
Manufacturer (OEM) or another responsible party.

1.8 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

1.9 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

1 This guide is under the jurisdiction of ASTM Committee D02 on Petroleum
Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcom-
mittee D02.96.04 on Guidelines for In-Services Lubricants Analysis.
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2. Referenced Documents

2.1 ASTM Standards:2

D445 Test Method for Kinematic Viscosity of Transparent
and Opaque Liquids (and Calculation of Dynamic Viscos-
ity)

D664 Test Method for Acid Number of Petroleum Products
by Potentiometric Titration

D974 Test Method for Acid and Base Number by Color-
Indicator Titration

D2896 Test Method for Base Number of Petroleum Products
by Potentiometric Perchloric Acid Titration

D4378 Practice for In-Service Monitoring of Mineral Tur-
bine Oils for Steam, Gas, and Combined Cycle Turbines

D4928 Test Method for Water in Crude Oils by Coulometric
Karl Fischer Titration

D5185 Test Method for Multielement Determination of
Used and Unused Lubricating Oils and Base Oils by
Inductively Coupled Plasma Atomic Emission Spectrom-
etry (ICP-AES)

D6224 Practice for In-Service Monitoring of Lubricating Oil
for Auxiliary Power Plant Equipment

D6299 Practice for Applying Statistical Quality Assurance
and Control Charting Techniques to Evaluate Analytical
Measurement System Performance

D6304 Test Method for Determination of Water in Petro-
leum Products, Lubricating Oils, and Additives by Cou-
lometric Karl Fischer Titration

D6439 Guide for Cleaning, Flushing, and Purification of
Steam, Gas, and Hydroelectric Turbine Lubrication Sys-
tems

D6595 Test Method for Determination of Wear Metals and
Contaminants in Used Lubricating Oils or Used Hydraulic
Fluids by Rotating Disc Electrode Atomic Emission Spec-
trometry

D6786 Test Method for Particle Count in Mineral Insulating
Oil Using Automatic Optical Particle Counters

D7042 Test Method for Dynamic Viscosity and Density of
Liquids by Stabinger Viscometer (and the Calculation of
Kinematic Viscosity)

D7279 Test Method for Kinematic Viscosity of Transparent
and Opaque Liquids by Automated Houillon Viscometer

D7414 Test Method for Condition Monitoring of Oxidation
in In-Service Petroleum and Hydrocarbon Based Lubri-
cants by Trend Analysis Using Fourier Transform Infrared
(FT-IR) Spectrometry

D7416 Practice for Analysis of In-Service Lubricants Using
a Particular Five-Part (Dielectric Permittivity, Time-
Resolved Dielectric Permittivity with Switching Magnetic
Fields, Laser Particle Counter, Microscopic Debris
Analysis, and Orbital Viscometer) Integrated Tester

D7483 Test Method for Determination of Dynamic Viscosity
and Derived Kinematic Viscosity of Liquids by Oscillat-
ing Piston Viscometer

D7484 Test Method for Evaluation of Automotive Engine
Oils for Valve-Train Wear Performance in Cummins ISB
Medium-Duty Diesel Engine

D7596 Test Method for Automatic Particle Counting and
Particle Shape Classification of Oils Using a Direct
Imaging Integrated Tester

D7647 Test Method for Automatic Particle Counting of
Lubricating and Hydraulic Fluids Using Dilution Tech-
niques to Eliminate the Contribution of Water and Inter-
fering Soft Particles by Light Extinction

D7670 Practice for Processing In-service Fluid Samples for
Particulate Contamination Analysis Using Membrane Fil-
ters

D7684 Guide for Microscopic Characterization of Particles
from In-Service Lubricants

D7685 Practice for In-Line, Full Flow, Inductive Sensor for
Ferromagnetic and Non-ferromagnetic Wear Debris De-
termination and Diagnostics for Aero-Derivative and Air-
craft Gas Turbine Engine Bearings

D7690 Practice for Microscopic Characterization of Par-
ticles from In-Service Lubricants by Analytical Ferrogra-
phy

E2412 Practice for Condition Monitoring of In-Service Lu-
bricants by Trend Analysis Using Fourier Transform
Infrared (FT-IR) Spectrometry

3. Terminology

3.1 Definitions:
3.1.1 alarm, n—means of alerting the operator that a par-

ticular condition exists.

3.1.2 assignable cause, n—factor that contributes to varia-
tion in a process or product output that is feasible to detect and
identify; also called special cause.

3.1.3 boundary lubrication, n—condition in which the fric-
tion and wear between two surfaces in relative motion are
determined by the properties of the surfaces and the properties
of the contacting fluid, other than bulk viscosity.

3.1.3.1 Discussion—Metal to metal contact occurs and the
chemistry of the system is involved. Physically adsorbed or
chemically reacted soft films (usually very thin) support
contact loads. Consequently, some wear is inevitable.

3.1.4 chance cause, n—source of inherent random variation
in a process which is predictable within statistical limits; also
called common cause.

3.1.5 characteristic, n—property of items in a sample or
population which, when measured, counted or otherwise
observed, helps to distinguish between the items.

3.1.6 data set, n—logical collection of data that supports a
user function and could include one or more data tables, files,
or sources.

3.1.6.1 Discussion—Herein a data set is a population of
values for a measurand from within a particular measurand set
and covering an equipment population.

3.1.7 distribution, n— as used in statistics, a set of all the
various values that individual observations may have and the
frequency of their occurrence in the sample or population.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.
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3.1.8 measurand, n—particular quantity subject to measure-
ment.

3.1.8.1 Discussion—In industrial maintenance a measurand
is sometimes called an analysis parameter.

3.1.8.2 Discussion—Each measurand has a unit of measure
and has a designation related to its characteristic measurement.

3.1.9 nonparametric, n—term referring to a statistical tech-
nique in which the probability distribution of the constituent in
the population is unknown or is not restricted to be of a
specified form.

3.1.10 normal distribution, n—frequency distribution char-
acterized by a bell shaped curve and defined by two param-
eters: mean and standard deviation.

3.1.11 outlying observation, n—observation that appears to
deviate markedly in value from other members of the sample
set in which it appears, also called outlier.

3.1.12 parametric, n—term referring to a statistical tech-
nique that assumes the nature of the underlying frequency
distribution is known.

3.1.13 population, n—well defined set (either finite or infi-
nite) of elements.

Statistical Process Control Technique Terms

3.1.14 statistical process control (SPC), n—set of tech-
niques for improving the quality of process output by reducing
variability through the use of one or more control charts and a
corrective action strategy used to bring the process back into a
state of statistical control.

3.1.15 state of statistical control, n—process condition
when only common causes are operating on the process.

3.1.16 center line, n—line on a control chart depicting the
average level of the statistic being monitored.

3.1.17 control limits, n—limits on a control chart that are
used as criteria for signaling the need for action or judging
whether a set of data does or does not indicate a state of
statistical control based on a prescribed degree of risk.

3.1.17.1 Discussion—For example, typical three-sigma lim-
its carry a risk of 0.135 % of being out of control (on one side
of the center line) when the process is actually in control and
the statistic has a normal distribution.

3.1.18 warning limits, n—limits on a control chart that are
two standard errors below and above the center line.

3.1.19 upper control limit, n—maximum value of the con-
trol chart statistic that indicates statistical control.

3.1.20 lower control limit, n—minimum value of the control
chart statistic that indicates statistical control.

Cumulative Distribution Technique Terms

3.1.21 cumulative distribution, n—representation of the to-
tal fraction of the population, expressed as either mass-,
volume-, area-, or number-based, that is greater than or less
than discrete size values.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 alarm limit, n—alarm condition values that delineate
one alarm level from another within a measurand set; also
called alarm threshold.

3.2.1.1 Discussion—When several alarm levels are
designated, then a first alarm limit separates the normal level
from the alert level, and a second alarm limit separates the alert
level from action level. In other words, measurand data values
greater than the first alarm limit and less-than-or-equal-to the
second alarm limit are in the state of the second level alarm.

3.2.1.2 Discussion—An alarm limit, “X”, may be single-
sided such as “greater than X” or “less than –X”; or it may be
double-sided such as “greater than X and less than –X”. Alarm
limit values may represent the same units and scale as the
corresponding measurand data set, or they may be represented
as a proportion such as a percent. Alarm limit values may be
zero-based, or they may be relative to a non-zero reference or
other baseline value.

3.2.1.3 Discussion—Statistical process control is used to
evaluate alarm limits comparing a control limit value with an
alarm limit value. Statistical cumulative distribution is used to
evaluate alarm limits by identifying a cumulative percent
values corresponding with each alarm limit value and compar-
ing those results, for example, percentages of a data set in each
alarm level, with expected percentages of the data set typically
associated with each alarm level.

3.2.2 alarm limit set, n—collection of all the alarm limits
(alarm condition threshold values) that are needed for an
alarm-based analysis of measurands within a measurand set.

3.2.3 critical equipment, n—category for important produc-
tion assets that are not redundant or high value or highly
sensitivity or otherwise essential, also called critical assets or
critical machines.

3.2.4 equipment population, n—well defined set of like
equipment operating under similar conditions, selected and
grouped for condition monitoring purposes; also called ma-
chine population, asset population, and fleet.

3.2.4.1 Discussion—Like equipment may refer to equip-
ment of a particular type that may include make, model,
lubricant in use, and lubrication system. Similar conditions
may include environment, duty-cycle, loading conditions.

3.2.5 measurand set, n—meaningful assemblage of mea-
surands collectively representing characteristic measurements
that reveal modes and causes of failure within an equipment
population.

3.2.5.1 Discussion—In industry, a measurand set is some-
times called an analysis parameter set.

3.2.6 noncritical equipment, n—category for production
assets that are not critical equipment; also called balance of
plant.

3.2.7 optimum sample interval, n—optimum (standard)
sample interval is derived from failure profile data. It is a
fraction of the time between initiation of a critical failure mode
and equipment failure. In general, sample intervals should be
short enough to provide at least two samples prior to failure.
The interval is established for the shortest critical failure mode.
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Alarm Level Terms (in order of severity)

3.2.8 WHITE, adj—favorable level alarm designation show-
ing undamaged or as-new condition having reasonable wear or
expected operational condition.

3.2.8.1 Discussion—Some other terms used for this level of
alarm may include but are not limited to normal, satisfactory,
acceptable, level 1, level A, suitable for continued use and
good.

3.2.8.2 Discussion—WHITE level alarm condition is not
usually accentuated by any special color indication on displays
or reports.

3.2.9 GREEN, adj—favorable alarm level designation
showing acceptable condition and showing a measurable
change in a measurand value compared with WHITE alarm
level.

3.2.9.1 Discussion—Some other terms used for this level of
alarm may include but are not limited to fair, watch list,
monitor, acceptable, level 2, level B and moderate.

3.2.9.2 Discussion—GREEN level alarm condition is com-
monly accentuated by green letters or green highlight or green
background in displays or reports.

3.2.10 YELLOW, adj—intermediate level alarm designation
warning a fault condition is present and will likely need
attention in the future.

3.2.10.1 Discussion—Some other terms used for this level
of alarm may include but are not limited to amber, alert, level
3, level C, low action priority, caution, warning, and abnormal.

3.2.10.2 Discussion—YELLOW level alarm condition is
commonly accentuated by yellow letters or yellow highlight or
yellow background in displays or reports.

3.2.11 RED, adj—high level alarm designation showing
significant deterioration, review other condition information
and consider a possible intervention.

3.2.11.1 Discussion—Some other terms used for this level
of alarm may include but are not limited to extreme, danger,
level 4, level D, unsuitable, actionable, alarm and fault.

3.2.11.2 Discussion—RED alarm condition is commonly
accentuated by red letters or red highlight or red background in
displays or reports.

4. Summary of Guide

4.1 This guide is used to statistically evaluate and adjust
alarm limits for condition monitoring based on representative
measurand data sets from in-service oil sample testing and
analysis. This statistical analysis should be performed periodi-
cally to update alarm levels using historical data available to
the user.

4.2 The user defines an equipment population. The user then
selects an appropriate measurand set representing characteristic
measurements that reveal likely modes and causes of degrada-
tion or failure for the lubricated machinery and for the
lubricants for that equipment population.

4.3 For each alarm based measurand the user must have a
statistically representative data set covering the equipment
population. If the data set follows a parametric statistical
distribution, then the user may apply statistical process control
(SPC) and cumulative distribution techniques to statistically

evaluate alarm limit values. If the data set is nonparametric or
if it includes special cause variation, then the user may apply
cumulative distribution technique to statistically evaluate and
make practical adjustments to existing alarm limit values.

5. Significance and Use

5.1 Alarm limits are used extensively for condition moni-
toring using data from in-service lubricant sample test results.
There are many bases for initially choosing values for these
alarm limits. There are many questions that should be ad-
dressed. These include:

Are those limits right or wrong?
Are there too many false positive or false negative results?
Are they practical?

5.2 This guide teaches statistical techniques for evaluating
whether alarm limits are meaningful and if they are reasonable
for flagging problems requiring immediate or future action.

5.3 This guide is intended to increase the consistency,
usefulness, and dependability of condition based action recom-
mendations by providing machinery maintenance and monitor-
ing personnel with a meaningful and practical way to evaluate
alarm limits to aid the interpretation of monitoring machinery
and oil condition as well as lubricant system contamination
data.

6. Assumptions and Limitations

6.1 The assumptions below define the ideal conditions and
limitations for alarm limits from a data set representing an
equipment population. It is understood that ideal conditions are
not often met and that actual conditions may impact the
accuracy or sensitivity of the alarm limits. Assumption and
conditions include:

6.1.1 Caution should be used for data sets with too few
members.

6.1.1.1 For SPC techniques using a normal distribution,
caution should be used for data sets with fewer than 30
members. Tentative limits can be set from as little as 10
samples although the quality of the limits will improve with
larger populations. Larger populations (for example, in the
hundreds) can provide best alarm limits. However, the data
needs to be representative of the equipment population.

6.1.1.2 For cumulative distribution techniques regardless of
the form of distribution, caution should be used for data sets
with fewer than 100 members. Tentative limits can be set from
as little as 50 samples although the quality of the limits will
improve with larger populations. Larger populations (for
example, 1000 plus) can provide best alarm limits. However
the data needs to be representative of the equipment popula-
tion.

6.1.2 The machinery process is a closed loop system
whereby test measurements are only affected by operations,
maintenance or the onset of a failure mode.

6.1.3 An equipment population or fleet is a population of
like machines that would be expected to be maintained
according to the same protocol. The machines in the equipment
population operated in a similar environment, under a similar
duty cycle and load conditions to include use of similar fluids
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and capacities. Where machinery is maintained as such, it
remains part of the same population, regardless of age.

6.1.4 An optimum sample interval has been established
accounting for the likely or expected failure modes and at least
two samples will be available between failure mode initiation
and its terminal phase.

6.1.5 The data set should represent historical measurements
covering at least one overhaul interval or in the case of a large
fleet, should cover all operational phases from new to overhaul.

6.1.6 Each established measurand is free from interference.

6.2 The following comments only apply to parametric data
for which the data set fits a normal distribution:

6.2.1 The population satisfies a normal distribution in ac-
cordance with Practice D6299 Anderson-Darling (A-D) statis-
tic which is used to objectively test for normality as described
in Subsection A1.4 of Practice D6299, or in accordance with an
equivalent test for normality.

6.2.2 Most WHITE and GREEN level alarm data are
expected to fall within two standard deviations of the mean or
represent about 94 % of all samples taken.

6.2.3 Abnormal sample data are expected to fall outside two
standard deviations of the mean and represent about 6 % of all
samples taken. These data are expected to exceed a YELLOW
level alarm and unacceptable performance or an indication of
a degrading condition is expected.

6.3 When using cumulative distribution technique for para-
metric data, alarm limits may be set at points that do not
coincide with standard deviations.

6.4 Careful consideration should be given to the grouping of
a population. Improved accuracy to the alarm values and limits
being generated can be obtained by dividing a larger group of
less similar equipment/machinery into smaller more similar
ones.

6.5 Alarm limits that are deemed to be practical must be
tested at a minimum using the data set from which they were
derived to demonstrate that the functional conclusions are
verifiably correct.

6.6 Other statistical methods beyond those stated within this
guide may also provide reliable and useful alarm limits. This
guide is limited to those discussed in Section 7 as they can be
readily applied without extensive statistical training. This
guide does not intend to preclude the use of other statistical
models.

6.7 Alarm limits may be or may have been developed by
OEMs based upon experience, or in house data, or both. These
recommendations may be based upon current information or
they may have been generated by a company that no longer
manufactures the equipment.

6.7.1 For the case of limits based upon current data, these
limits can have great value for product support and mainte-
nance. This guide should be considered when variations in
usage and maintenance may occur. The user who wishes to
depart from OEM suggested alarm limits should consider
contact and discussions with the OEM when deviations from
their defined limits are made.

6.7.2 For the case of limits based upon old data or from a
company that no longer produces or supports the product,
changes in lubricants or maintenance practices may have an
effect on the OEMs limits provided. These limits may be used
as a starting point for limits as discussed in 7.2.2. The
techniques stated within this guide would be expected to aid
the quality and accuracy of these limits.

7. Procedure

7.1 In-service lubricant sample analysis is commonly used
for condition monitoring of lubricant characteristics, lubricat-
ing system contamination, and equipment wear. Samples are
periodically and consistently collected from designated sample
points on equipment and are analyzed either by an off-site
laboratory, by an on-site laboratory, by on-site test kits or by
in-line sensors.

7.1.1 Analyses typically involves multiple tests that produce
several measurands (also called analysis parameters) which
have been intentionally selected to report and measure charac-
teristics covering the intended range of conditions to be
monitored. The group of tests (for example, test profile) is
intended to target selected characteristics associated with the
asset or equipment type being monitored and produce a list of
measurands called a measurand set (also called analysis
parameter set). It is common to have three alarm limits
between four alarm levels associated with each alarm-based
measurand. Alarm limits may be upper or lower or upper and
lower depending on the nature of each measurand. The
combination of all the alarm limits for a complete measurand
set is called an alarm limit set.

7.1.2 It is not necessary for every measurand to have alarm
limits. Measurand and data values that are not alarm-based
have other uses such as supporting, correlating, or validity
checking.

7.1.3 Measurand based alarm limits serve as an intermediate
contribution in a process for condition monitoring. Work orders
and maintenance actions are based on a review of all data from
a measurand set, on historical data and on other information for
a measurement point.

7.1.4 This procedure outlines two techniques to statistically
evaluate alarm limits applied to data from in-service lubricant
analysis condition monitoring: a statistical process control
technique and a cumulative distribution technique. Both of
these techniques depend on statistical information from mul-
tiple data sets where each data set corresponds to a measurand.
And the combination of multiple data sets covers all the
alarm-based measurands within a measurand set.

7.2 Equipment Population—There are many types of equip-
ment in a condition monitoring database. A particular type of
equipment is selected for an equipment population that in-
cludes a large number of similar equipment items having the
same lubricant and operating under similar conditions. A list of
all measurands from a lubricant sample test profile selected for
an equipment population results in a measurand set represent-
ing characteristic measurements selected to reveal likely modes
and causes of degradation or failure for the lubricated machin-
ery and for the lubricants.
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7.2.1 For each measurand for which the user wishes to
evaluate alarm limits, the user produces a data set covering the
equipment population. If the data set follows a parametric
statistical distribution, then the user may apply statistical
process control and cumulative distribution techniques to
statistically evaluate alarm limit values. If the data set is
nonparametric or if it includes special cause variation, then the
user may apply cumulative distribution technique to statisti-
cally evaluate and make practical adjustments to existing alarm
limit values.

7.2.2 Statistical analysis suggested in this guide is most
effective using large sets of measured data values (≥30) for
each alarm-based measurand. Historical data is necessary for
statistical analysis. Thus, this guide is typically used to
evaluate and adjust alarm limits. If sufficient historical data is
not available, alarm limits for similar or related equipment can
be used as a starting point until limits can be generated for the
specific equipment. Other get-started alarm limits may be
based on sources such as original equipment manufacturers,
lubricant suppliers, industry expert consultants. However, these
alarm limits should be migrated toward statistically based
alarm limits as data becomes available.

7.2.3 The user of this guide will need access to a historical
database containing the following information:

7.2.3.1 Equipment information for lubricated machinery
and other equipment,

7.2.3.2 Lubricant identity for the lubricant used in each
lubricant compartment,

7.2.3.3 An equipment population listing a set of like equip-
ment based on similarity of equipment information and lubri-
cant identity,

7.2.3.4 Failure modes and causes for common problems
within the equipment population,

7.2.3.5 A measurand set listing in-service sample test mea-
surands which can identify modes and causes, and

7.2.3.6 Preferably not less than 30 historical measurand data
values within the data set used with each measurand for
statistical evaluation of alarm limits.

7.2.4 As mentioned earlier, the user studies detail equipment
information to designate an equipment population made up of
similar equipment, using same lubricant, and operating under
similar load, operation, and environmental conditions. Within
an equipment population it is possible to have the same type of
equipment that is both critical equipment, such as important
production assets that are not redundant or high value or highly
sensitivity or otherwise essential, as well as noncritical
equipment, such as balance of plant equipment and redundant

assets. Statistical analysis of data from an equipment popula-
tion including both critical and noncritical equipment is likely
to be applied more conservatively when statistical results are
used for evaluating or adjusting alarm limits for critical
equipment as compared with noncritical equipment.

7.2.5 This guide works best with a segregated, well-behaved
population of identical equipment so that common cause
variation in measurand data values will be small and failure
modes will be readily observable in the data.

7.2.6 It is recognized that for a laboratory with hundreds or
even thousands of equipment variations, it may be time
consuming to create, use, and manage dozens or hundreds of
different alarm limit sets. Therefore practical application of this
guide may require compromise trade-offs when selecting
specific equipment for inclusion in a statistical equipment
population. The limitation in the quality of alarm limits
generated in this fashion should be recognized.

7.2.7 It is common practice for users to designate equipment
in categories such as pumps, motors, compressors, gearboxes,
steam turbines, gas turbines, diesel engines, etc. Further
dividing these down by make and model is desirable, particu-
larly for fleets. Still further dividing groupings down by speed,
duty cycle, and load will yield the best alarms.

7.2.8 If a user groups equipment from too many different
equipment types or operational functions, then it becomes
difficult to assure that resulting alarm limits are relevant and
statistically accurate. If there are too few pieces of equipment
in the population then variation of measured data within each
population becomes too broad causing some problems not to
get alarmed, while others are prematurely flagged.

7.3 Modes and Causes—For each equipment population, the
user creates or selects an appropriate measurand set, which,
includes a list of measurands covering many of the commonly
experienced failure modes and root causes (“modes and
causes”) of component and lubricant. To demonstrate this
point, an exemplary discussion is provided in the following
paragraphs about how to create a measurand set that covers a
few commonly experienced modes and causes of undesirable
wear conditions such as abrasive wear, premature fatigue wear,
corrosive wear, and abnormal wear resulting from boundary
lubrication. The discussion further suggests measurands to
identify the condition of the equipment and lubricant used in
the associated equipment population. Table 1 is provided as a
generic example of how to create a measurand set based on the
discussion in the following paragraphs. Measurand sets and the
logic behind them vary depending on equipment and lubricant

TABLE 1 Generic Example

How to create a measurand set for an equipment population?

First, choose test of modes and causes. Here are examples: Then, a measurand set will list measurands specified by your
preferred methods, guides, and practices:

Particle counting D6786, D7647, D7416, D7596
Ferrous density D7416, other
Water-in-oil D4928, D6304, D6439, D7416, E2412
Lubricant chemistry D664, D974, D2896, D7414, D7416, D7484
Elemental Fe, Pb, Si, Ba, and Na D5185, D6595
Lubricant viscosity D445, D7042, D7279, D7416, D7483
Wear debris analysis D7670, D7416, D7684, D7690, D7685
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modes and causes of failure. There is more discussion on
measurand data set distribution forms in 7.9 – 7.12 for typical
measurand data sets referenced in Table 1. Additional ex-
amples for selecting tests and therefore measurands to make up
a measurand set may be found in Practice D4378 and D6224
where various test options are specified for turbine oils and
auxiliary power equipment.

7.3.1 Abrasive Wear3—Hard particle contamination of a
lubrication system is a cause of abnormal abrasive wear in
mechanical systems. Excessive abrasive wear is frequently
caused by elevated dust contamination. Particle counting and
measurement of the element, silicon, are two techniques to
reveal a root cause for abrasive wear. Ferrous density measure-
ment and wear debris analysis (atomic emission spectroscopy,
ferrography) are two of many techniques to monitor wear such
as abrasive wear. There are many other in-service lubricant
sample tests one may perform to monitor cause and presence of
abrasive wear.

7.3.2 Fatigue Wear3—Long-term dynamic loading of load
bearing surfaces is a principal cause of fatigue wear in
tribology. Excessive or premature fatigue wear is frequently
caused by elevated dynamic loading. Other condition monitor-
ing means such as vibration analysis are often used to ascertain
information about root causes relating to elevated dynamic
loading such as imbalance, resonance, or misalignment. Three
of many different in-service lubricant sample measurements
capable of detecting the onset and progression of fatigue wear
include ferrous density, wear debris analysis, and elemental
metals analysis.

7.3.3 Corrosive Wear3—Corrosive fluid contamination of
lubrication systems is a principal cause of corrosive wear in
tribology. Excessive corrosive wear is frequently caused by
elevated water-in-oil or by contamination with another corro-
sive liquid or gas such as water based coolant or a corrosive
process material. Three of many in-service lubricant sample
measurements capable of detecting corrosive fluids contami-
nating a lubricating system are these: water-in-oil, elemental
analysis for detecting a coolant additive such as sodium (Na)
and for detecting corrosive wear such as iron (Fe) and lead
(Pb), and relative permittivity or acid number or base number
indicating the lubricant has either gained acidity or lost
alkalinity. For this discussion we will include one or more
measurands appropriate for measuring water-in-oil, acid
number, base number, or elemental Na, Fe, and Pb.

7.3.4 Wear Due to Boundary Lubrication Failure3—
Boundary lubrication wear is the result of transferring at least
a portion of bearing load between moving surfaces though
metal to metal contact when the fluid film is not fully
supporting load. Anti-wear (AW) and extreme pressure (EP)
additives are often used to combat effects of friction and wear
under boundary lubrication conditions. AW and EP additives
may be physically adsorbed or chemically reacted soft films
(usually very thin) that help support contact loads.
Nonetheless, under boundary lubrication some wear is inevi-
table. Excessive wear in boundary lubrication regimes often

results from inadequate lubrication conditions such as (A)
lubricant supply is insufficient, (B) mechanical loading is too
high, (C) machine speed is too slow, or (D) lubricant viscosity
too low. Measurands from particle counting, microscopic wear
debris analysis, elemental analysis, and viscosity are a few
examples of tests capable of detecting this failure.

7.3.5 Lubricant Degradation3—Lubricants are susceptible
to chemical degradation from prolonged elevated temperature
and exposure to oxygen sources such as moisture or aeration.
There are various in-service lubricant sample tests one may use
to verify identity and state of degradation for a lubricant. Often
these will include tests for viscosity changes (such as a
kinematic viscosity testing) and tests for significant chemical
changes in lubricant chemistry (such as Fourier Transform
Infrared, relative permittivity, acid number, or base number).
Measurands from selected tests are included in the measurand
set.

7.3.6 Lubricant Mixing—Mixing or misapplication is an-
other common problem that should be detected and corrected.

7.4 Alarm Levels—An alarm is a means of alerting the
operator that a particular condition exists. An example of four
distinct levels of alarm states is provided with this guide. They
are WHITE, GREEN, YELLOW, and RED. Fewer or more
distinct levels may be used. Additional nomenclature for these
levels is provided in Section 3.

7.4.1 Alarm limits are the values representing greater-than
or less-than thresholds between these levels of alarm.

7.5 Statistical Process Control (Spc) Techniques for Evalu-
ating Alarm Limits:

7.5.1 SPC is used to evaluate alarm limits for a measurand
data set population that fit a statistically normal distribution.
Calculate the standard deviation for the data population. Fig. 1
graphically represents a parametric, normal distribution.

7.5.1.1 SPC “One-Sigma Limits”—68.27 % of data set
values will fall within one standard deviation of the population
mean. Sample data within less than or equal to one standard
deviation of the center line (for example, approximately equal
to statistical mean) may be comparable to a WHITE alarm
level.

7.5.1.2 SPC “Two-Sigma Limits” or “Warning Limits”—
94.45 % of samples will fall within two standard deviation of
the population mean. Sample data greater than one standard
deviation away from the center line and less than or equal to
two standard deviations away may be comparable with a
GREEN alarm level.

7.5.1.3 SPC “Three-Sigma Limits” or “Control Limits”—
99.73 % of samples will fall within three standard deviation of
the population mean. Abnormal to failure conditions are
suggested by measurand data greater than a second and less
than or equal to a third standard deviation away from the center
line may be comparable with a RED alarm level.

7.5.1.4 SPC “Four-Sigma Variance”—99.99 % of samples
will fall within four standard deviation of the population mean.
Assignable or special cause variance is often suggested for data
exceeding three standard deviations from the population mean.

7.5.1.5 Outlier values identified using accepted statistical
techniques should be removed from the data set populations as
outliers. Once removed, the statistics should be reevaluated.

3 Toms, Larry A., and Allison M. Toms, Machinery Oil Analysis - Methods,
Automation and Benefits, 3rd edition, STLE, Park Ridge, IL, 2008.
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7.5.2 The appearance of a low-flattened pattern in the
frequency distribution generally indicates that the measurand is
not sensitive to the failure mode. The appearance of a multi-
modal pattern in the frequency distribution generally indicates
that the measurand is not unique to the failure mode, that is,
there is more than one failure mode identified by the mea-
surand. In the above situations, the measurand cannot be used
alone to identify the fault.

7.5.3 When the sample population has abnormally high
incidences of data indicating significant failures, then these
results will raise the mean and standard deviation values which
will generate higher alarm limits. These higher limits are
evident by a frequency distribution that has a distinct curve at
the high end. To overcome this effect, sample data with greater
than the average plus-or-minus 6 standard deviations should be
culled from the population. The recalculated mean and stan-
dard deviation on the remaining data set should provide
improved alarm limits. If there are no values over 6 standard
deviations, the equipment, maintenance practice, etc. should be
reviewed to determine the cause of the failures.

7.5.4 Using the average and standard deviation data for each
measurand data set, calculate a series of tentative alarm limits
based on 7.5.1 – 7.5.3.

7.5.5 The alarm limits listed herein are illustrative examples
of how the standard deviation may be used. Some users may
want earlier warning for difficult to maintain, critical or high

cost components. Keep in mind that policy for setting alarm
levels is typically a high level management decision.

7.5.6 Background Information on SPC:
7.5.6.1 SPC uses various statistical methodologies to im-

prove the quality of a process by reducing the variability of one
or more of its outputs, for example, a quality characteristic of
a product or service. A certain amount of variability will exist
in all process outputs regardless of how well the process is
designed or maintained. A process operating with only this
inherent variability is said to be in a state of statistical control,
with its output variability subject only to chance, or common
causes.

7.5.6.2 Process upsets, said to be due to assignable, or
special causes, are manifested by changes in the output level,
such as a spike, shift, trend, or by changes in the variability of
an output. When special cause variation is eliminated, process
variability is reduced to its inherent variability, and control
charts then function as a process monitor. Further reduction in
variation would require modification of the process itself.

7.5.6.3 The use of three standard errors (for example,
standard deviations) for control limits (so-called “three-sigma
limits”) was chosen by Shewhart,4 and therefore are also

4 Shewhart, W. A., Economic Control of Quality of Manufactured Product, D.
Van Nostrand Company, Inc., 1931.

FIG. 1 SPC Parametric, Normal Distribution
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known as Shewhart Limits. Shewhart chose these limits to
balance the two risks of: (1) failing to signal the presence of a
special cause when one occurs, and (2) occurrence of an
out-of-control signal when the process is actually in a state of
statistical control (a false alarm).

7.5.6.4 Special cause variation may also be indicated by
certain nonrandom patterns of the plotted subgroup statistic, as
detected by using the so-called Western Electric Rules.5 Herein
a subgroup statistic is a subset of a data set such as data related
to a particular piece of equipment or to a specific lubricant or
a particular root cause affecting a portion of the data set
population. To implement these rules, additional limits are
shown on the chart at 6 two standard errors (“two-sigma
limits” or “warning limits”) and at 6 one standard error
(“one-sigma limits”).

7.5.6.5 Western Electric Rules—The following points are
occasionally used to reveal potential indications of a statistical
shift away from control:

(1) one value falls outside either control limit,
(2) two out of three consecutive values fall outside the

warning limits on the same side,
(3) four out of five consecutive values fall outside the

6one-sigma limits on the same side, and
(4) eight consecutive values either fall above or fall below

the center line.
7.5.6.6 Other Western Electric rules indicate less common

situations of nonrandom behavior:
(1) Six consecutive values in a row are steadily increasing

or decreasing (trend),
(2) Fifteen consecutive values are all within the 6one-

sigma limits on either side of the center line,
(3) Fourteen consecutive values are alternating up and

down, and
(4) Eight consecutive values are outside the 6one-sigma

limits.
7.5.6.7 These rules should be used judiciously since they

will increase the risk of a false alarm, in which the control chart
indicates lack of statistical control when only common causes
are operating. The effect of using each of the rules, and groups
of these rules, on false alarm incidence is discussed by Champ
and Woodall.6

7.5.7 From the candidate data sets representing machine
sample data histories, assemble a population containing the
relevant condition data. For best performance select all avail-
able data. For large machinery fleets, select data from ten (10)
or more consecutive samples from each machine in the
equipment population. More consecutive samples would be
expected to improve the initial quality of the alarm limits being
set and a higher number should be considered when the alarm
limits are applied to critical equipment rather than noncritical
equipment.

7.5.8 Do not selectively pick through the data or randomly
pick samples from the data for a data set. Selectively picked
sample data values may introduce a user bias. Randomly

picked data from a measurand data set for a large fleet do not
always reflect the failure modes under consideration and may
generate unreliable alarm limits.

7.5.9 Tentative alarm limits can be set with a data popula-
tion as small as 10 as stated. In cases where all of the identified
failure modes and causes are not represented, lower quality
alarm limits will result. These alarm limits can be manually
adjusted upward through experience with similar machinery. In
cases where failure modes and causes are over represented,
higher alarm limits will result. These alarm limits can be
manually adjusted downward through experience with similar
machinery. In all cases, alarm limits should be continually
reviewed and updated either through statistics or experience as
more sample data and more failure modes and causes are
encountered.

7.5.10 Practical alarm limits may be determined by statisti-
cal analysis of monitored machinery and lubricant. Historical
and trendable condition monitoring data populations can be
described in parametric and nonparametric forms. These data
set populations are not time dependant although best results are
obtained when consecutive sample data sets are used.

7.5.11 Parametric data can be described as data which
satisfies a normal distribution. Three tests can be used to
determine if the data is parametric: (1) mean and median values
for the data population are approximately the same, (2) a
frequency distribution plot of the data population is bell
shaped, and (3) the distribution has two tails. When a clear
skew or bi-modal shape exists, the data distribution is
nonparametric, and it is not a normal distribution.

7.5.12 Degraded conditions that are not yet at a failure
condition may also exist. For this case, remediating action is
not always required and continued operation may still be
reasonable. These conditions however generally still progress
to a failure. Alarm levels are used to document these occur-
rences and produce organizational sensitivity for these condi-
tions.

7.6 Cumulative Distribution Technique—A statistical cumu-
lative distribution technique is also recommended to evaluate
alarm limits. This particular technique employs a percent
cumulative distribution of sorted data set values. The technique
is based on an actual data set distribution and therefore is not
dependent on a presumed statistical profile. The technique may
be used when the data set is either parametric or
nonparametric, and it may be used if a frequency distribution
appears skewed or has only a single tail. Also, this technique
may be used when the data set includes special cause variation
in addition to common cause variation, although the technique
should be repeated when the identified special cause variation
either changes significantly or is eliminated. Outputs of the
cumulative distribution technique include specific measurand
data values corresponding to selected percentage levels in
cumulative distribution plot of the sorted data set. These
percent-based measurand data values are used to evaluate and
adjust alarm limits. Users should study available information
and discern if any data should be removed from the data set
population as outlying observations (also called outliers).

5 Western Electric Company, Inc., Statistical Quality Control Handbook, The
Mack Printing Company, Easton, PA, 1956.

6 Champ, C. W., and Woodall, W. H., “Exact Results for Shewhart Control Charts
with Supplementary Runs Rules,” Technometrics, Vol. 29, No. 4, pp. 393–399.
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7.7 Users of this guide sometimes prefer an option to view
sorted data represented on a logarithmic abscissa axis, depend-
ing on the nature of measurand data values in response to
progressive degradation of a measured characteristic.

7.8 Cumulative distribution users will begin to recognize
aspects of a data set distribution such as those summarized in
Figs. 2-5.

7.9 An example cumulative distribution for a data set
having normal frequency distribution with bell shape and two
tails is shown in Fig. 2. Sample viscosity measurements often
fit this form. Shearing of a viscosity improver within the oil or
fuel dilution contaminating the oil may cause the viscosity to
decrease. Oxidation or soot accumulation may cause a viscos-
ity increase. A review of the sample data population being
considered will indicate if nonparametric data set is present.

7.9.1 Outer-bound arrows in Fig. 2, mark off segments of
the data set population for comparison with measurand alarm
levels. These arrows mark off 99 % and 1 % measurand values
which have been selected for example, for a user for compari-
son with YELLOW-to-RED alarm limits for a user who desires
to mark off limits confining 98 % of the data set. This approach
focuses attention on 2 % of the measurements, it is consistent
with capabilities of available limited maintenance resources, it
draws attention to data that is frequently associated with
assignable or special cause variation, and when this approach is
repeated season-after-season together with root-cause elimina-
tion it is likely to reduce variance over time.

7.9.2 Inner-bound arrows in Fig. 2 mark off segments of the
data set population for comparison with GREEN-to-YELLOW
alarm limits. Actual percentages are chosen based on experi-

ence. For this example, limits corresponding to measurand
values at 95 % and 5 % of the data set have been chosen.

7.9.3 Cumulative distribution techniques applied to actual
measurand data values may generate preferred percentages to
denote WHITE-to-GREEN alarm limits. The operator selects
these limits considering personal experience, published statis-
tical repeatability and reproducibility precision associated with
the test method, and other variances associated with good-as-
new or WHITE alarm level. These comments regarding use of
cumulative distribution techniques to evaluate alarm limits
around a WHITE alarm level apply to all four of the following
examples discussed below and represented in Figs. 2-5.

7.10 An example cumulative distribution for a data set
having a zero-based reference, and a skewed continuous
frequency distribution is shown in Fig. 3. Examples of this type
of measurand data sets are commonly observed when measur-
ing characteristics that arise when a lubricant is in-service, but
are not actually parts of the lubricant such as measurand data
sets monitoring contamination and wear characteristics. Initial
measured value are often low (often zero) and then increase as
the condition progresses. This characteristic measurand and
others intended to assist a user when deciding to change oil are
well suited for cumulative distribution technique because the
data is progressively changing (for example, increasing) from
oil change to oil change and between oil top-offs. For these
measurands data values do not consistently hover about a
statistical mean value. This diagram also represents other
measurands such as acid number (AN), oxidation, and relative
permittivity (for example, dielectric constant) for equipment

FIG. 2 Double-Tail Cumulative Distribution with Continuous Data
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applications where data follows a sawtooth trend, sharply
dropping to near-zero after each oil change and then increasing
over time.

FIG. 3 Zero-Based Reference, Single-Tail Cumulative Distribution with Continuous Data

FIG. 4 High-Reference, Single-Tail Cumulative Distribution with Continuous Data
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7.10.1 In the Fig. 3 example, an arrow marks off 98 %
selected by an operator for comparison with a YELLOW-to-
RED alarm limit and another arrow marks off 90 % selected by
an operator for comparison with a GREEN-to-YELLOW alarm
limit.

7.11 An example cumulative distribution for a data set
having a high-reference skewed continuous frequency distri-
bution is shown in Fig. 4. An example of this type of
measurand data set is base number (BN). BN values start high
and decrease due to oxidation and acid by-products that deplete
the additives. This characteristic measurand and others used for
determining when to change oil are well suited for cumulative
distribution technique because the data are progressively
changing (for example, decreasing) from oil change to oil
change, and between oil top-offs, so data values do not
consistently hover about a statistical mean value. This type of
data population is usually nonparametric. A review of the data
population being considered will indicate if this type of
nonparametric data set is present.

7.11.1 In the Fig. 4 example, an arrow marks off 98 %
selected by an operator for comparison with a YELLOW-to-
RED alarm limit and another arrow marks off 90 % selected by
an operator for comparison with a GREEN-to-YELLOW alarm
limit.

7.12 An example cumulative distribution for a data set
having a skewed discrete frequency distribution is shown in
Fig. 5. Examples of this type include measurand data sets a
commonly associated with quantized coded measurement val-
ues commonly used for particle counting, as well as severity
levels commonly associated with wear particle analysis. Inte-
ger based code values are discrete and are often configured to
represent exponential, or other nonlinear, data in an easy-to-
interpret quantified structure. This type of data population is

usually nonparametric. A review of the data population being
considered will indicate if this type of nonparametric data set
is present.

7.12.1 In the Fig. 5 example, an arrow marks off 98 %
selected by an operator for comparison with a YELLOW-to-
RED alarm limit and another arrow marks off 90 % selected by
an operator for comparison with a GREEN-to-YELLOW alarm
limit.

7.13 Data Validation:
7.13.1 Perform a reasonableness review based upon expe-

rience and knowledge. Repeat the procedure steps as necessary
to confirm the alarms if the review does not pass this test.

7.13.2 Validate the tentative limits set by either the SPC
standard deviations technique or by the cumulative distribution
technique, and compare these statistics with historical data for
each equipment problem represented in the test population.
Run historical data samples against the newly calculated
alarms and compare results against the following:

7.13.2.1 Compare with original recommendations, if any,
for the sample and look for correlation, agreement and dis-
agreement.

7.13.2.2 Compare with machinery overhaul and teardown
documentation to determine viability and accuracy of the new
alarm limits for specific machinery or fluid problems identified.

7.13.2.3 Compare with documentation of instances where
“no problems were found” to determine if the new alarm
correlates with a false positive or if the new alarm is too
sensitive.

7.13.3 Avoid the trap of requiring a 100 % correlation
between the new alarm performance and previous alarms or
recommendations. Alarm limit selections are based on data
interpretation that includes much more than exceeded alarm
limits. The purpose of this step is to find gross discrepancies.

FIG. 5 Single Tail, Skewed Cumulative Distribution with Discrete Data
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The validation evaluation should show a minimum of false
positives and each one should be readily explainable.

7.13.4 Compare data validation discrepancies to alarms that
can be adjusted using the following additional information.

7.13.4.1 See if there are too many false positive alarms
indicating the alarm values are set too low. This is also a
problem if the alarm values were calculated from a population
where the critical failure modes were not adequately repre-
sented. This can be resolved by increasing the alarm limits,
ensuring all failure modes are represented.

7.13.4.2 Look for failure of equipment in the absence of an
alarm indicating that the alarm limits are set too high, the
sampling interval is too long or the measurement used to
capture the failure mode is inadequate. This can be resolved by
reducing the alarm limit, decreasing the sampling interval or by
using a different measurand to represent the failure mode.

7.13.4.3 Look for failure of equipment in the absence of an
alarm. This situation is a problem if the alarm limits were
calculated from a population where the failure modes were
over represented in comparison to the population used to set
the alarm values. This can be resolved by reducing the alarm
limits or removing some of the most significant failure mea-
surements from the population.

8. Report

8.1 A written report shall be recorded and retained for
reference, comparison, and continuous improvement pro-
cesses. The report must include relevant and meaningful user
notes about the operation or condition of the equipment, or
both. The notes should also include any maintenance pre-
formed on the equipment. The remainder of this section
provides suggestions that may be included in or omitted from
the report as deemed appropriate by the user.

8.2 Equipment Population:
8.2.1 Equipment description. What are defining characteris-

tics for the items are included in this population?
8.2.2 Number of units in population.
8.2.3 Lubricant identity.

8.3 Measurand Set—(also called analysis parameter set).
8.3.1 List of tests and method or practice (if available)

defining the tests used to produce measurands.
8.3.2 List names identifying each measurand and describe

the physical or functional condition monitoring characteristic
that is measured by the measurand. Users may find it helpful to
organize measurands within a measurand set logically and
describe them clearly according to machine wear
characteristics, system contamination characteristics, and fluid
chemistry characteristics.

8.3.3 Unit of measure for each measurand.
8.3.4 Indicate each measurand that is alarm-based.

8.4 Alarm Limit Sets:
8.4.1 Identify and name each alarm limit set for an equip-

ment population. Keep in mind that one measurand set may

have several alarm limit sets. That way some equipment, such
as critical equipment or frequently sampled equipment may
have relatively higher or lower alarms than others in the same
equipment population.

8.4.2 For each alarm limit set list the measurands from the
measurand set that are alarm-based measurands.

8.4.3 Describe behavior for each alarm-based measurand in
the alarm limit set.

8.4.3.1 What is the alarm limit base type? In other words, is
it zero-base (meaning it is an absolute scalar value starting
from zero when “as new”) or reference-base (meaning it is
compared with a reference value typically from an “as new”
measurement) or point base (meaning it is compared with a
statistical mean or median based on prior measurand data from
this same sample point); or is the alarm limit value compared
to some other baseline?

8.4.3.2 What is the alarm limit delta type? In other words, is
the alarm limit expressed in absolute value or in percentage?

8.4.3.3 Are the alarm limits one-sided, one-sided low, or
two-sided? In other words, are the alarm limits up (only high
sided), down (only low sided), or up and down (both high and
low sided)?

8.4.4 What are final alarm limits for each measurand in the
alarm limit set? Alarm limits are typically reported as “greater
than” values. That means that the alarm limit for YELLOW
alarm level is GREEN-to-YELLOW threshold value.

8.5 Notes—Regarding statistical analysis used to evaluate
and adjust alarm limits.

8.5.1 Number of samples included in each data set.
8.5.2 If available and convenient provide graphical plots for

data set populations for each measurand.
8.5.3 When SPC technique is used to evaluate and adjust

alarm limits, report meaningful SPC results such as the
following:

8.5.3.1 Three-sigma limits, also called control limits or
upper and lower control limits.

8.5.3.2 Two-sigma limits, also called warning limits.
8.5.3.3 One-sigma limits.
8.5.3.4 Other SPC findings or possible indications.
8.5.3.5 User notes.
8.5.4 When cumulative distribution technique is used to

evaluate and adjust alarm limits report the following:
8.5.4.1 Measurand data value and corresponding cumulative

distribution percentage value for each alarm limit on each
measurand.

8.5.4.2 Other cumulative distribution findings or possible
indications.

8.5.4.3 User notes.

9. Keywords

9.1 alarm; alarm level; alarm limit; condition monitoring;
control limit; cumulative distribution; equipment population;
measurand; measurand set; nonparametric; oil analysis; para-
metric; SPC; statistical process control
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