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Standard Practice for
Characterizing Uncertainty in Air Quality Measurements1

This standard is issued under the fixed designation D7440; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

ε1 NOTE—Editorial corrections were made throughout in July 2015.

1. Scope

1.1 This practice is for assisting developers and users of air
quality methods for sampling concentrations of both airborne
and settled materials in characterizing measurements as to
uncertainty. Where possible, analysis into uncertainty compo-
nents as recommended in the ISO Guide to the Expression of
Uncertainty in Measurement (ISO GUM, (1)2) is suggested.
Aspects of uncertainty estimation particular to air quality
measurement are emphasized. For example, air quality assess-
ment is often complicated by: the difficulty of taking replicate
measurements owing to the large spatio-temporal variation in
concentration values to be measured; systematic error or bias,
both corrected and uncorrected; and the (rare) non-normal
distribution of errors. This practice operates mainly through
example. Background and mathematical development are rel-
egated to appendices for optional reading.

1.2 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:3

D1356 Terminology Relating to Sampling and Analysis of
Atmospheres

D3670 Guide for Determination of Precision and Bias of
Methods of Committee D22

D6246 Practice for Evaluating the Performance of Diffusive
Samplers

D6552 Practice for Controlling and Characterizing Errors in

Weighing Collected Aerosols
2.2 Other International Standards:
ISO GUM Guide to the Expression of Uncertainty in

Measurement, ISO Guide 98, 1995 (See Ref (1), for an
additional measurement uncertainty resource.)4

ISO 7708 Air Quality—Particle Size Fraction Definitions for
Health-Related Sampling4

ISO 15767 Workplace Atmospheres—Controlling and Char-
acterizing Errors in Weighing Collected Aerosol4

ISO 16107 Workplace Atmospheres—Protocol for Evaluat-
ing the Performance of Diffusive Samplers, 20074

EN 482 Workplace Atmospheres—General Requirements
for the Performance of Procedures for the Measurement of
Chemical Agents4

3. Terminology

3.1 Definitions—For definitions of terms used in this
practice, see Terminology D1356.

3.2 Other terms defined as follows are taken from ISO GUM
unless otherwise noted:

3.2.1 accuracy—closeness of agreement between the result
of a measurement and a true value of the measurand.

3.2.2 combined standard uncertainty, uc—standard uncer-
tainty of the result of a measurement when that result is
obtained from the values of a number of other quantities, equal
to the positive square root of a sum of terms, the terms being
the variances or covariances of these other quantities weighted
according to how the measurement result varies with changes
in these quantities.

3.2.2.1 Discussion—As within ISO GUM, the “other quan-
tities” are designated uncertainty components uj from source j.
The component uj is taken as the standard deviation estimate
from source j in the case of a source of random variation.

3.2.3 coverage factor, k—numerical factor used as a multi-
plier of the combined standard uncertainty (uc) in order to
obtain an expanded uncertainty (U).

1 This practice is under the jurisdiction of ASTM Committee D22 on Air Quality
and is the direct responsibility of Subcommittee D22.01 on Quality Control.
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3.2.3.1 Discussion—The factor k depends on the specific
meaning attributed to the expanded uncertainty U. However,
for simplicity this practice adopts the now nearly traditional
coverage factor as the value 2, determining the specific
meaning of the expanded uncertainty U in different circum-
stances. Other coverage factors if needed are then easily
implemented simply by multiplication of the traditional ex-
panded uncertainty U (see 7.1 – 7.4).

3.2.3.2 Discussion—The use of a single coverage factor,
often through approximation, avoids the overly conservative
use of individual component confidence limits rather than root
variance estimates as uncertainty components.

3.2.4 error (of measurement)—result of a measurement
minus a true value of the measurand.

3.2.5 expanded uncertainty, U—quantity defining an inter-
val about the result of a measurement that may be expected to
encompass a large fraction of the distribution of values that
could reasonably be attributed to the measurand.

3.2.5.1 Discussion—This definition has the breadth to en-
compass a wide variety of conceptions.

3.2.5.2 Discussion—The expanded uncertainty U in some
cases is expressed in absolute terms, but sometimes as relative
to the measurement result. What is meant is generally clear
from the context.

3.2.6 influence quantity—quantity that is not the measurand
but that affects the result of the measurement.

3.2.7 measurand—particular quantity subject to measure-
ment.

3.2.8 measurand value—(adapted from ISO GUM), un-
known quantity whose measurement is sought, often called the
true value. Examples are the concentration (mg/m3) of a
substance in the air at a particular time and place, the
time-weighted average of a concentration at a particular
position, or the expected mean concentration estimate as
obtained by a reference method at a specific time and position.

3.2.9 (population) variance (of a random variable)—the
expectation of the square of the centered random variable.

3.2.10 random error—result of a measurement minus the
mean that would result from an infinite number of measure-
ments of the same measurand carried out under the same
(repeatability) conditions of measurement.

3.2.10.1 Discussion—Random error is equal to error minus
systematic error.

3.2.11 (sample) variance—the sum of the squared devia-
tions of observations from their average divided by one less
than the number of observations.

3.2.11.1 Discussion—The sample variance is an unbiased
estimator of the population variance.

3.2.12 standard deviation—positive square root of the vari-
ance.

3.2.13 symmetric accuracy range A—the range symmetric
about (true) measurand values containing 95 % of measure-
ment estimates. A is a specific quantification of accuracy. (2)

ISO 16107

3.2.14 systematic error (bias)—mean that would result from
an infinite number of measurements of the same measurand
carried out under repeatability conditions minus a true value of
the measurand.

3.2.15 Type A evaluation (of uncertainty)—method of evalu-
ation of uncertainty by the statistical analysis of series of
observations.

3.2.16 Type B evaluation (of uncertainty)—method of evalu-
ation of uncertainty by means other than the statistical analysis
of series of observations.

4. Background Information

4.1 Uncertainty in a measurement result can be taken as the
range about an estimate, corrected for bias if known, contain-
ing the true, or mean reference value—in the language of ISO
GUM, the measurand value at given confidence. Uncertainty
accounts not only for variation in a method’s results at
application, but also for incomplete characterization of the
method when evaluated. In accordance with ISO GUM,
uncertainty may often usefully be analyzed into individual
components.

4.2 There are several aspects of uncertainty characterization
specific to air quality measurements. One of these aspects
concerns known, that is, correctible, systematic error or mean
bias of a measurement relative to a true measurand value.
Several measurement methods exist with such bias left uncor-
rected because of policy, tradition, or other reason. Uncertainty
deals only with what is unknown about a measurement, and as
such does not include correctible (known) bias. The magnitude
of the difference between estimate and measurand value is
covered by accuracy as defined qualitatively in ISO GUM,
rather than uncertainty, particularly when the bias is known,
but uncorrected. Such methods require specification of both
uncertainty and as much as is known of the uncorrected bias, or
alternatively the adoption of an accuracy measure.

4.3 Often bias is known to exist, but with unknown value. In
the case where only limits may be placed on the magnitude of
the bias, ISO GUM generally recommends treating the bias as
uniformly distributed within the known limits. Such a distri-
bution refers to independent situations, for example,
calibrations, where bias may arise (see 7.4 and Appendix X2),
rather than variation at the point of method application. Even
though such an equal-likelihood bias distribution may be
unrealistic, nevertheless a standard deviation estimate may be
made that reveals the limits on the bias. If the even-distribution
approximation is clearly invalid for a relevant set of
measurements, the procedure may be adjusted slightly by
adopting an accuracy measure tailored to the assumed limits.

4.4 Another issue concerns the distribution of measure-
ments. ISO GUM deals only with normally distributed first-
order (that is, “small”) variations relative to measurand values.
An example to the contrary is afforded by normally distributed
data confounded by a small number of apparent outliers (3),
which may not detract from the method performance (see
Appendix X4 for details). Another example is the determina-
tion of an aerosol concentration at one location (perhaps at a
worker’s lapel) as an estimate of the concentration at a separate
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point (such as a breathing zone). In this case the variations can
be of the order of the estimate itself and may have the character
of a log-normal distribution.

4.5 The spatial inhomogeneity alluded to in 4.4 relates to
another point regarding the focus of this practice. The spatio-
temporal variations in air quality characteristics are generally
so large (4) as to preclude evaluation of a method during
application through the use of replicate measurements. In this
case, often an initial single method evaluation is undertaken
with the purpose of determining uncertainty present in subse-
quent applications of the method. Confidence in such an
evaluation can be specified and relates to the concept of
prediction-intervals (5) (see 7.2).

4.6 A related subject is measurement system control. The
measurement system must remain in a state of statistical
control if an introductory evaluation is to characterize later
practical applications of the method. Measurement system
control is evaluated using an ongoing quality control program,
testing critical performance aspects for detecting problems
which may develop in the method.

5. Summary of Practice

5.1 The essential idea behind ISO GUM is the analysis to
the fullest extent practical of the elemental sources of what is
unknown in the estimate of a measurand value. This contrasts
with a global or top-down determination of uncertainty, which
could for example be done ideally by comparing replicate
estimates to known measurand values over all conditions
expected in application of the method. Although a global
uncertainty evaluation may sometimes seem inexpensive, there
is a difficulty in covering essential contingencies of the method
application.

5.2 Uncertainty component analysis further has several
specific advantages over global analysis. The results may be
applicable to a variety of situations. For example, an aerosol
sampler might be (globally) evaluated as to particle-size-
dependent error by side-by-side comparison to a reference
sampler in several coal mines. The knowledge obtained may
not be as easily applied for sampler use in iron mines, for
example, as more detailed information on how the sampler
performs over given dust size distributions may be needed.
Furthermore, specific problem areas of a given method may be
pinpointed. The detailed itemization of uncertainty sources
leads to a transparency in covering the essential problems of a
measurement method. Examples of potentially significant un-
certainty components are listed in Table 1.

5.3 Type A and B Uncertainty Components:
5.3.1 Components that have been statistically evaluated

during method application may be classified as Type A. (See
Section 7 for specific examples.)

5.3.2 Some components are often statistically evaluated
during an initial method evaluation, rather than at application.
Also acknowledged is a common situation that components
may not have been characterized in a statistically valid manner
and therefore may require professional judgment for itemizing.
Such components are termed Type B uncertainties. Type B
uncertainties are often associated with unknown systematic

error or bias; however, random variation may also fall into this
category. For example, a common assumption (see, for
example, EN 482) regarding personal sampling in the work-
place is that the relative standard deviation associated with
personal sampling pump variations is <5 % at essentially
100 % confidence.

5.4 Intrinsic versus Environmentally Associated Compo-
nents: Influence Quantities:

5.4.1 Some uncertainties may be intrinsic to a method. For
example, estimates from aerosol samplers may depend criti-
cally on sampler dimensions, which if variable leads to
intersampler estimate variation.

5.4.2 On the other hand, a sampler’s performance may
depend on the environment. For example, suppose a sampler is
sensitive to temperature changes that are impractical to mea-
sure in the field; that is, sampler estimates are not temperature-
corrected. Then measurement of this sensitivity during method
evaluation together with knowledge of the temperature varia-
tion expected for a given field application can be used to
determine the uncertainty associated with this effect.

5.4.3 A quantity such as the temperature is known as an
influence quantity. A common example where influence vari-
ables are important involves diffusive monitors, where wind
velocity, temperature, pressure, and fluctuating workplace
concentrations can affect diffusive monitor uptake rates (Prac-
tice D6246, ISO 16107).

5.4.4 Situations exist for which the distribution of an
influence quantity is unknown. For example, the deviation
between aerosol concentration estimates and samples taken
according to accepted convention (for example, ISO 7708)
generally depend on the aerosol size distribution sampled.
Only limits on the distribution of size distributions (the

TABLE 1 Common Potential Uncertainty Components

Sampling
personal sampling pump flow rate: setting the pump and subsequent drift
sampling rate of diffusive sampler
sampler dimension (aerosol and diffusive sampling)
collection efficiency of a sampler or sampling medium
(also, see (6))

Analytical
aerosol weighing
recovery (for example, chromatographic or spectroscopic methods)
Poisson counting (for example, in XRD methods)
instrument or sensor variation
operator effects giving inter-lab differences (if data from several labs are to

be used)
Sample

sample stability
sample preparation (for example, handling silica quasi-suspensions)
sample loss during transport or storage

Evaluation
calibration material uncertainty
evaluation chamber concentration uncertainty
other bias-correction uncertainty

Environmental Influence Parameters
temperature (inadequacy of correction, if correction is made as with diffusive

samplers)
atmospheric pressure
humidity
aerosol size distribution (if not measured by a given aerosol sampling method)
ambient wind velocity
sampled concentration magnitude itself (for example, sorbent loading)
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influence quantity) may be known. In this case, the ISO GUM
approach is generally to assume a uniform distribution (see
7.4).

5.4.5 On the other hand, the size distribution may be known
to be constant over a set of measurements. In this case, the
constant-distribution assumption leads to an abstract perfor-
mance characterization. Alternatively, a quantity known as the
symmetric accuracy range A (Appendix X1 and Section X4.2)
in the case of unknown, but large limited |bias|, may be used to
establish intervals bracketing the (true) values of measurand
and thus represents the expanded uncertainty.

5.5 Combined and Expanded Uncertainty—The essential
ISO GUM approach then is to obtain estimates uj of the
standard deviation (often designated as s as computed on most
handheld calculators) associated with the jth uncertainty
source. The estimates uj may be designated as uncertainty
components. Then if the sources are independent, that is, if the
variations are uncorrelated, a combined standard uncertainty uc

estimating the net standard deviation may be computed as:

uc 5 Œ(
j

u j
2 (1)

5.5.1 Finally, an expanded uncertaintyU is calculated at
coverage factor k as:

U 5 k ·uc (2)

5.5.2 The purpose of the expanded uncertainty U is to
bracket the unknown measurand value (for example, unknown
mass M) given an estimate m. For example, a coverage factor
could be selected so that:

m 2 U,M,m1U for 95 % of estimates m of measurand value M

(3)

5.5.3 However, this practice suggests use of the nearly
traditional value k = 2, permitting the meaning in terms of
confidence levels to float.

6. Significance and Use

6.1 A primary use intended for this practice is for qualifying
ASTM International Standards as Standard Test Methods. In
the past, a “Precision and Bias” report has been required.
However, recently a statement of uncertainty has become an
acceptable alternative to D3670 – 91: Guide for Determination
of Precision and Bias of Methods of Committee D22. Inclusion
of such a statement with a method description simplifies
comparison of ASTM Test Methods to analogous ISO and
CEN standards, now required to have uncertainty statements.

6.2 Standardizing the characterization of sampling/
analytical method performance is expected to be useful in other
applications as well. For example, performance details are a
necessity for justifying compliance decisions based on experi-
mental air quality assessments (7). Documented uncertainty
can form a basis for specific criteria defining acceptable
sampling/analytical method performance.

6.3 Furthermore, high quality atmospheric measurements
are vital for making decisions as to how hazardous substances
are to be controlled. Valid data are required for drawing
reasonable epidemiological conclusions, for making sound

decisions as to acceptable limits, as well as for determining the
efficacy of a hazard control system.

6.4 Finally, because of developing world-wide acceptance
of ISO GUM for detailing measurements when statistics are
simple, the practice should be useful in comparing ASTM
International Test Methods to others’ published methods. The
codification of statistical procedures may in fact minimize the
difficulty in interpreting a plethora of individual, albeit possi-
bly valid, approaches.

7. Specific Examples
NOTE 1—Some of the above concepts can be illuminated through

example. Application to more complicated situations is then possible.

7.1 Standard Deviation σ Known Exactly:
7.1.1 Suppose the method yields unbiased estimates m in

measuring unknown M so that:

m 5 M1M ·ε (4)

where ε is normally distributed about 0 with known standard
deviation σ, sometimes designated the true relative standard
deviation TRSD. For example, suppose the method has been
evaluated with essentially an infinite number of measurements
of a calibration standard, giving a tight estimate of σ. Then
estimates m are distributed normally about M so that:

M 2 1.960 3 M ·σ,m,M11.960 3 M ·σ at probability 5 95 %

(5)

7.1.2 Thus, to first order in σ, the true value M is bracketed
by:

m 2 1.960 3 m ·σ,M,m11.960 3 m ·σ at probability 5 95 % (6)

7.1.3 Therefore, the (relative) expanded uncertainty U
would be consistent with Eq 3, if the coverage factor k is
chosen as:

k 5 1.960 (7)

as a factor of combined standard uncertainty uc:

uc 5 σ (8)

in other words:

U 5 1.960 3 σ (9)

7.1.4 Eq 7 is consistent with the traditional selection k = 2.

NOTE 2—Although the measurement variation depicted in Eq 4 is very
common in air quality measurements, at decreasing values of M, generally
a constant variation (that is, independent of M) becomes significant,
leading to non-zero limits of quantitation and detection. (See, for example,
ISO 15767 and Practice D6552.)

7.2 Standard Deviation σ Estimated Initially by n Replicates
(Type B Uncertainty):

7.2.1 Almost as simple as 7.1 is the situation in which a
(relative) standard deviation estimate s is obtained through an
initial n measurements of a calibration standard prior to the
method’s multiple subsequent uses without re-evaluation.
Variations of this situation are common in air quality measure-
ment. For example, diffusive samplers may be evaluated
initially by a vendor followed by many applications without
re-evaluation (see ISO 16107 or Practice D6246). Suppose Eq
4-6 still hold, except that that now σ is unknown but is
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estimated by s with υ = n – 1 degrees of freedom. What is
known is that σ is limited by:

σ,~υ/χυ
2

0.05!
1/2s (10)

at 95 % confidence in the evaluation/calibration experiment,
where χυ

2
0.05 is the chi-square 5 % quantile at υ degrees of

freedom (obtainable from statistics tables or programs).
Therefore, at 95 % confidence in the evaluation, the unknown
M is bracketed by:

m 2 1.960~υ/χυ
2

0.05!
1/2 3 m ·s,M,m11.960~υ/χυ

2
0.05!

1/2 3 m ·s

(11)

for greater than 95 % of measurements.
7.2.2 In this case, the combined (relative) uncertainty uc is:

uc 5 s (12)

but if the meaning of Eq 3 is sought, the coverage k factor in
Eq 11 is now:

k 5 1.960~υ/χυ
2

0.05!
1/2 (13)

7.2.3 In Fig. 1 the coverage factor k of Eq 13 is plotted
versus degrees of freedom υ and is seen to approach 1.960 as
υ → ∞ corresponding to 7.1. However, Fig. 1 indicates that
over a wide range of degrees of freedom adopted in practical
method evaluations, k is of the order of 3 in order to achieve
95 % evaluation confidence.

NOTE 3—Specification of an evaluation confidence level together with
coverage probability (both taken here to equal 95 %) relates to the
statistical theory of tolerance or prediction intervals (5).

7.3 Continual Method Evaluation (Type A Uncertainty):

7.3.1 Preferred, though often not practical in air quality
measurements, is an n-measurement calibration giving an
estimate s for σ with υ = n − 1 degrees of freedom every time
a practical method is applied. Then it is possible to show that
the true value M is bracketed by:

m 2 tυ 0.975 3 m ·s,M,m1tυ 0.975 3 m ·s at probability 5 95 %

(14)

where tυ 0.975 is the student-t 97.5 % quantile at υ (also found
in statistical sources).

7.3.2 Therefore the coverage factor k is now given by:

k 5 tυ 0.975 (15)

7.3.3 In Fig. 1 this coverage factor is plotted versus the
number υ of degrees of freedom in the evaluation. As can be
seen from the figure, with continual method evaluation, the
coverage factor is close to 2 over a range of values for υ. In
fact, this is the reason behind the now nearly traditional use of
the value 2 for the coverage factor.

7.3.4 The use of the traditional coverage factor = 2 simply
gives intervals bracketing the unknown measurand with inter-
pretation specific to the measurement circumstances. Of
course, as alluded to in Section 3, if U is actually reported with
the traditional coverage factor 2, then, if needed, an expanded
uncertainty with 95 % evaluation confidence is easily obtained
by multiplication (by about 3/2).

FIG. 1 Comparison of Coverage Factors k for Single Initial Method Evaluation versus Continual Evaluation with υ Degrees of Freedom
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7.4 Uncertainty Characterization of Unknown Bias or Sys-
tematic Error (Type B Uncertainty):

7.4.1 Unknown systematic error or bias in a measurement
may originate in several ways. For example, if a method is not
re-calibrated at each application, then error from the finiteness
of an initial calibration may be present as a non-random
variable in subsequent applications. Even if re-calibrated, bias
may result from repeated use of a reference material or method,
itself with unknown bias. In either case, the uncertainty
component corresponding to uncertain method bias may be
taken as the uncertainty in the bias itself.

7.4.2 Reference Uncertainty—As an example, suppose a
method is repeatedly calibrated by a reference method that is
itself biased, though is negligibly variable (as example). Then
the estimated mass in measuring unknown M may be repre-
sented as:

m 5 M~11∆ ref!1M ·ε (16)

where the standard deviation estimate s for the normally
distributed random variable ε may be obtained from the
calibration experiment, and where ∆ref is the unknown bias of
the reference method. (See Appendix X2 for details on a
similar situation, including finite-calibration bias.)

7.4.2.1 Suppose that all that is known about the reference
bias ∆ref is that it is bounded by a constant positive quantity
∆max, often a matter of judgment, so that:

?∆ ref?,∆max (17)

7.4.2.2 ISO GUM generally suggests handling this situation
by approximating (evaluation to evaluation) ∆ref as uniformly
distributed between 6∆max. Then it is simple to compute an
inter-evaluation variance as:

Var@∆ ref# 5
1
3

∆max
2 (18)

7.4.2.3 ∆max characterizes a shortcoming in the method
evaluation, as does an imperfect initial determination of σ, the
standard deviation of ε (see 7.2). Thus, assuring confidence (for
example, 95 %) in the calibration with the same (prediction or
tolerance) sense as in 7.2, a coverage factor k can be selected
so that an expanded uncertainty given by:

U 5 kŒ1
3

∆max
2 1s2 (19)

brackets the unknown M for a high fraction (for example,
95 %) of measurements (see Appendix X2 for details).

7.4.2.4 In other words, the uncertainty component u ∆ for
the bias is:

u∆ 5Œ1
3

∆max
2 (20)

and again the random uncertainty component urandom is:

urandom 5 s (21)

with combined uncertainty uc given by:

uc 5 =u∆
2 1urandom

2 (22)

and:

U 5 k uc (23)

7.4.3 Finite-Calibration Uncertainty—Similarly to 7.4.2,
correcting bias by a single n-mean estimate mref of a reference
mass Mref (again with estimated corrected standard deviation
s) and then calibrating subsequent application measurements
by a calibration factor Mref/mref leads to an uncertainty com-
ponent un given by:

un 5 s/n1/2 (24)

7.4.3.1 In this case the two components un and urandom are
not independent if urandom is given by Eq 21.

NOTE 4—If an n-measurement calibration is effected at each application
measurement, then the value in Eq 24 still appears as part of the
calibration uncertainty, but now refers to a random rather than systematic
variation.

7.4.4 Large Bias Magnitude of Unknown Sign—There are
examples in air quality measurement where the range of
unknown bias may be large relative to the variable components
of uncertainty. For example, aerosol samplers used for mea-
suring dust concentrations according to one of the international
sampling conventions (ISO 7708), for example, respirable,
thoracic or inhalable, generally differ in particle-size accep-
tance from convention. Therefore, in sampling a particular site
with aerosol of unknown particle size distribution range, an
unknown and sometimes large bias relative to convention is
possible.

7.4.4.1 With large bias magnitude, the ISO GUM approach
of 7.4.2 of combining uncertainty components squared may be
replaced by a linear combination of bias magnitude uncertainty
and variability uncertainty. On the other hand, the usual ISO
GUM approach (with coverage factor k = 2) gives similar
uncertainty values. For an example, see Section X2.3.

7.5 Analysis of a Round Robin Evaluation:
7.5.1 Analysis of a specific round robin evaluation of a

measurement method as applied by several independent labs is
presented here, illustrating features of uncertainty character-
ization. Suppose that the overall method bias magnitude,
though unknown, is likely smaller (as can be decided if
necessary through a student-t test) than correctible by the round
robin itself because of the size of the inter-lab variation and the
small number of labs tested. Appendix X1 indicates that in this
case, the bias uncertainty component can be taken conserva-
tively as the bias estimate itself. Uncertainty components
estimated include uintra characterizing within-lab method
variability, uinter for the variability between labs, and ubias for
overall bias of the labs (averaged together) relative to spiked or
reference values.

7.5.2 Following the ISO GUM principle of analysis of
uncertainty into elemental sources, the value uintra obtained for
the within-lab uncertainty may sometimes then be expressed in
terms of its own individual components as exemplified in (7.1
– 7.4). Often, however, such a breakdown may not be entirely
understood. In this case, a comparison of uintra to an elemental
analysis may yet be useful.

7.5.3 Calculation of the various uncertainty components is
presented informally here, since depiction of the data graphi-
cally leads to intuitive interpretation. More information is
given in Appendix X3 for those interested. The details of the
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round robin are somewhat simplified for illustration, but may
be modified for other designs. For example: a larger number of
labs may take part than considered here, resulting possibly in a
useful method bias correction; variation between labs’ internal
method uncertainty may be significant and characterized; and
uncertainty in reference material may be accounted for.

7.5.4 Assumptions:
7.5.4.1 L (for example, 6) labs take part in the round robin.
7.5.4.2 S (for example, 6) spiked samples are sent to each

lab.
7.5.4.3 The true relative standard deviation σref of the spiked

values is assumed negligible.
7.5.4.4 Similarly, bias in the preparation of the spiked

values is assumed negligible.
7.5.4.5 The six labs are assumed to have similar (within-lab)

variability.
7.5.5 Data and Analysis:
7.5.5.1 Suppose each of L = 6 labs is presented with samples

prepared with spiked amounts of an analyte as shown in Table
2.

7.5.5.2 Measurements from the six labs corresponding to
the six samples are shown in Table 3.

7.5.5.3 The error of each of the measurements in Table 3
relative to the reference values of Table 2 is easily computed
and is depicted in Table 4.

7.5.5.4 The variability within each lab can be estimated with
S – 1 degrees of freedom by computing the estimated variance
(the standard deviation squared) within each row of Table 4.
The result is shown in Table 5.

7.5.5.5 Also shown in Table 5 is the mean, with L × (S – 1)
degrees of freedom, of the six lab variances, whose square root
represents the within-lab uncertainty component uintra.

7.5.5.6 Returning now to Table 4, the bias of each of the
labs relative to reference can be estimated by averaging within
each row. The result is presented in Table 6.

7.5.5.7 The standard deviation, with L – 1 degrees of
freedom, of the six lab values in Table 6 is also shown together
with the lab biases averaged together. These two numbers

represent the interlab uncertainty uinter (neglecting the aver-
aged out intra-lab variation) and bias uncertainty ubias

components, respectively.
7.5.5.8 Finally, the combined (relative) uncertainty uc may

be computed as:

uc 5 =ubias
2 1uinter

2 1uintra
2 5 13.5 % (25)

7.5.5.9 Adopting the traditional coverage factor k = 2
(though 95 % evaluation confidence ⇒ k = 3.4), the expanded
uncertainty U is:

U 5 k ·uc 5 27 % (26)

7.5.5.10 These results may be summarized as in Table 7.

8. Reporting Uncertainty

8.1 The following should appear in reports documenting
method uncertainty. As examples, see ISO 16702 regarding
diffusive sampling or (8) concerning specifically stack moni-
toring.

8.1.1 List of sources corresponding to the uncertainty com-
ponents estimated.

8.1.2 Values of the uncertainty components together with
the number of degrees of freedom involved in their measure-
ment.

8.1.3 Statement of estimate sensitivity to and distribution of
significant influence quantities.

8.1.4 Classification of components in terms of Type A or
Type B uncertainty estimates.

8.1.5 Estimation of bias or a statement of its assumed
negligibility.

8.1.6 Statement as to how bias was minimized if a correc-
tion has been effected.

8.1.7 Value of the combined standard uncertainty uc.
8.1.8 Value of the expanded uncertainty U, together with the

value taken for the coverage factor k.

9. Keywords

9.1 air quality; characterizing uncertainty; measurements

TABLE 2 Spiked Samples (µg)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

1.00 1.00 2.50 2.50 5.00 5.00
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TABLE 3 Mass Measurements (µg) from 6 Participating Labs

Lab Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

1 1.044 1.132 2.785 2.653 5.663 6.057
2 0.932 1.062 2.463 2.659 4.844 5.154
3 0.944 0.904 2.152 2.068 4.369 4.436
4 0.954 0.959 2.370 2.227 4.254 4.901
5 1.298 1.196 2.974 3.168 6.046 5.781
6 1.016 1.063 2.616 2.444 5.105 5.176

TABLE 4 Error (Fractional Discrepancy) of Measurements Relative to Spiked Reference Samples

Lab Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

1 0.044 0.132 0.114 0.061 0.133 0.211
2 –0.068 0.062 –0.015 0.063 –0.031 0.031
3 –0.056 –0.096 –0.139 –0.173 –0.126 –0.113
4 –0.046 –0.041 –0.052 –0.109 –0.149 –0.020
5 0.298 0.196 0.189 0.267 0.209 0.156
6 0.016 0.063 0.047 –0.022 0.021 0.035

TABLE 5 Values of the Variance Within Each Lab and Resulting
Intra-Lab Uncertainty Component

Lab Variance Within Lab

1 0.0036
2 0.0029
3 0.0016
4 0.0024
5 0.0028
6 0.0009

Mean variance within: 0.00235
= → Std. Dev. within: uintra = 0.048

TABLE 6 Mean Lab Error (from Table 4) whose Standard
Deviation Represents the Inter-Lab Uncertainty Component and

whose Mean Overall Bias Gives the Bias Uncertainty Component

Lab Mean Bias for Each Lab

1 0.116
2 0.007
3 –0.117
4 –0.069
5 0.219
6 0.026

Std. Dev. between labs: uinter = 0.123
Mean overall bias: ubias = 0.030

TABLE 7 Measurement Uncertainty Summary

Source
Uncertainty
Component

Degrees
of Freedom

Type

inter-lab variation 12.3% 5 A
intra-lab variation 4.8% 30 A
bias 3.0% ... A
Combined standard uncertainty uc = 13.5 %
Coverage factor k = 2.0
Expanded uncertainty U = 27.0 %
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APPENDIXES

(Nonmandatory Information)

X1. UNCERTAINTY AND THE SYMMETRIC ACCURACY RANGE A

X1.1 Definition

X1.1.1 ISO GUM defines accuracy qualitatively (see Sec-
tion 3) in terms of the closeness between measurement and
(true) measurand value. Accuracy is therefore broader than
uncertainty in that accuracy may reflect a known bias between
measurement and measurand value. In contrast, uncertainty
focuses on what is unknown.

X1.1.2 As intimated within ISO GUM, there is no uniquely
useful way to quantify accuracy. However, several specific
quantifications are in use. One of these, the symmetric accu-
racy range A, is closely tied mathematically to uncertainty, and
has been applied (2) for evaluating candidate workplace
atmospheric concentration measurement methods and for
documenting the uncertainty of methods in their application. A
is defined as the fractional range, symmetric about (for
example) the true mass M, within which 95 % of sampler
measurements m are to be found.

X1.1.3 Explicitly:

M 3 ~1 2 A!,m,M 3 ~11A! for 95 % of measurements m

(X1.1)

X1.1.3.1 This definition implies that the accuracy range
function A must increase with both random effects described by
σm (the true relative standard deviation) and the estimate’s
mean bias, both expressed relative to the (unknown) true value
M. These feature can be seen in Fig. X1.1, where A, in the case
of normally distributed estimates, is plotted as a set of
contours.

X1.1.4 With estimates m approximately normally
distributed, the accuracy range A is accurately given (2) simply
by:

A 5 1.960 3=bias21σm
2 if ?bias? is small ~that is, ?bias?

,σm/1.645! (X1.2)

A 5 ?bias?11.645 3 σm if ?bias? is large (X1.3)

X1.2 Collapse of the Accuracy Measure to the Expanded
Uncertainty U

X1.2.1 If only a (preferably small) unknown measurement
bias exists, then measurement uncertainty may be specified in
terms of the accuracy range confidence limit A95 %, accounting
for method evaluation error. Suppose the confidence limit A95

% << 100 %, then Eq X1.1 can be reexpressed so that for 95 %
of all method validations,

m 2 ~m 3 A95%!,M,m1~m 3 A95%! for.95% of the estimates m

(X1.4)

X1.2.2 Thus, A95 % provides intervals bracketing the true
mass M—with the double confidence sense of a guaranteed-
tolerance prediction interval (5), that is, confidence (95 %) in
the method validation and confidence (also taken here equal to
95 %) in the ultimate application. Therefore from the point of
view of bracketing (Eq 3) the measurand value M, the
expanded uncertainty U (relative to the estimate m) may be
taken to equal:

U 5 A95 % (X1.5)

if 95 % evaluation confidence is required of intervals brack-
eting true measurand values.

X1.3 Applications of the Accuracy Range A Beyond Un-
certainty

X1.3.1 If bias is not corrected, then the accuracy range A
goes beyond what is uncertain. Nevertheless, A still has

FIG. X1.1 Contours of Constant Accuracy Range A versus Bias and (True) Relative Standard Deviation
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applications. It can be used to set up performance criteria for
deciding if a given method can be used without further
correction.

X1.3.2 For example, for a given aerosol assessment
application, there may exist a number of different types of
samplers. With a range of aerosol sizes to be sampled, the
samplers are generally biased relative to each other and to any
ideal sampling convention (ISO 7708). Bias relative to a

sampling convention, in fact, may dominate the errors in the
use of a particular sampler type. Furthermore, correction of this
bias in the mean may be unacceptable because of historical or
other reasons. Use of the function A makes it possible to state
limits on the accuracy of a measurement procedure, even
though one cannot know the actual accuracy if the aerosol size
distribution is not determined.

X2. UNCERTAIN BIAS

X2.1 Details are presented here on determining or setting a
limit of confidence in an initial method calibration with two
independent sources of bias. Suppose a method is calibrated by
a finite comparison to a possibly biased but otherwise accurate
reference-method mass mref in measuring an unknown constant
mass Mcal:

mref 5 Mcal ~11∆ ref! (X2.1)

where the bias magnitude |∆ref| << 1.
X2.1.1 During calibration, the method, biased by unknown

∆raw, yields a number n of uncorrected (raw) estimates mraw so
that:

mraw 5 Mcal~11∆ raw!1Mcal·ε raw (X2.2)

X2.1.2 The random variable εraw is normally distributed
about 0 with unknown variance σraw

2, but is estimated by
sraw

2 (with n − 1 degrees of freedom).

X2.1.3 Therefore, an estimate for ∆raw is given in terms of
the n-sample mean m̄raw by:

est∆ raw 5 ~m̄raw 2 mref!/mref (X2.3)

'∆ raw 2 ∆ ref~11∆ raw!1 ε̄ raw

after expanding in ∆ref (but not in ∆raw, whose magnitude is
not necessarily small relative to 1.0).

X2.1.4 Suppose that all that is known about the reference
method bias ∆ref is that its magnitude is bounded by ∆max, and,
as suggested in 7.4, that ∆ref may be taken as uniformly
distributed (calibration-to-calibration) between its limits. Then
the expected value of ∆ref

2, the (intercalibration) variance σ∆ref

2

of ∆ref, is given by:

σ∆ref

2 5 E@∆ ref
2 # (X2.4)

5
1
3

∆max
2

X2.1.5 Following an initial calibration suppose the method
is applied as in 7.2 without re-calibration, but with bias
partially eliminated by correcting raw measurements using a
factor mref/m̄raw equal to (1 + est∆raw)–1.

X2.1.6 Then in measuring unknown mass M, the corrected
measurement value m is given by:

m 5
M~11∆ raw!1M ·ε raw

1 1est∆ raw

(X2.5)

5M~11∆!1M ·ε

where the corrected bias ∆ and true relative standard
deviation are given by:

∆ 5
∆ raw 2est∆ raw

1 1est∆ raw

(X2.6)

5∆ ref 2 ε̄ raw/~1 1est∆ raw! ~from Eq. X2.3!

[∆ ref1∆n

and:

σ 5
σ raw

1 1est∆ raw

(X2.7)

X2.1.7 Then the small-bias limit (Eq X1.2) for the symmet-
ric accuracy range A is given by:

A2/1.9602 5 ~∆ ref1∆n!21σ2 (X2.8)

with two independent sources of bias, ∆ref and ∆n, the latter
normally distributed with variance σ2/n. Eq X2.4 and Eq X2.6
indicate that A may be estimated from:

Aest
2 /1.9602 5

1
3

∆max
2 1

1
n

s21s2 (X2.9)

5uc
2, the combined standard uncertainty

X2.1.8 Determining a coverage factor k by demanding 95 %
confidence in the calibration then requires a 95 %-confidence
limit A95 %, which may be determined by a chi-square approxi-
mation (similar to the Smith/Satterthwaite/Welch procedure in
Refs 9-8):

υeff

Aest
2

A2 5 υeff

1
3

∆max
2 1S 1

n
11D s2

~∆ ref1∆n!21σ2 (X2.10)

'χυeff

2

X2.1.9 The effective number υeff of degrees of freedom is
calculated by means of propagation of errors by requiring that
the variances of the two lines in Eq X2.10 agree, noting that
both numerator and denominator (requiring estimates of the
kurtoses of ∆ref and ∆n) are variable in this case. The result is:

υeff
21 5 uc

24F 2
45

∆max
4 1

2
3

∆max
2 s21F υ21S 11

1
n D

2

1
1
n2G s4G

(X2.11)

X2.1.10 Finally, A95 % or the expanded uncertainty U is
given by:

U 5 k ·uc (X2.12)
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k 5 1.960·=υeff/χυeff 0.05
2 (X2.13)

X2.2 In the case of continual calibration giving a running
value s with υ degrees of freedom, yet with bias uncertainty
residual from an initial evaluation, again the combined and
expanded uncertainties are given as in Eq 22 and 23, but now
with coverage factor k given in terms of an effective number
υeff of degrees of freedom by:

k 5 tυ 0.975·=υeff/χυeff 0.05
2 (X2.14)

for expressing 95 % confidence in the initial evaluation.
X2.2.1 Note that requiring only mean (rather than 95 %)

confidence in the initial evaluation eliminates the square root
factor from Eq X2.14, resulting in Eq 15.

X2.3 In the case of large bias magnitude, linearity replaces
the root square combination of components (see Appendix X1
and particularly, Eq X1.3) for providing estimates of coverage.
However, for consistency with ISO GUM, the small-|bias|
branch of Eq X1.2 may be taken even in the case of large |bias|,
in which case the expanded uncertainty U proportional to sums
of uncertainty components squared becomes an ordering
parameter, rather than providing intervals quantitatively brack-
eting measurand values in a simple way. An example will show
the slight differences. Suppose as in 7.4.1 the bias ∆ is only
known to be uniformly distributed (for example, assessment
site-to-site) between 6∆max. Suppose the true relative standard
deviation (TRSD) is well-known and small (as example). Then
the symmetric range accuracy is given by:

A = |∆| + 1.645 TRSD
Aest = ∆max ⁄ 2 + 1.645 TRSD
A95 % = 0.95 ∆max + 1.645 TRSD

X2.3.1 Therefore, taking A95 % as the combined uncertainty
U:

U = 0.95 ∆max + 1.645 TRSD
linear in ∆max and TRSD

X2.3.2 This compares to the now common ISO GUM
approach:

uc = [1⁄3 ∆max
2 + TRSD2]1/2

U = k uc

k = 2

X2.3.3 As a specific example, suppose ∆max = 50 % and
TRSD = 7.5 %, then:

U = 59.8 % (linear)
U = 59.6 % (root sum of squares)

X2.3.4 The results are fortuitously close. However, it should
be remembered if necessary that the meaning of the more
rigorous (linear) result is that for 95 % of sites visited, the
expanded uncertainty covers true values of the aerosol concen-
tration at greater than 95 % of measurements, whereas the rote
use of k = 2 does not have any specific meaning in this case.

NOTE X2.1—With U so large as in this example, the expansion leading
(for example) from Eq 5 to Eq 6 does not converge very well, and
asymmetric intervals about true measurand values may be more useful in
the case that A95 % is known well:

M × (1 – A95 %) < m < M × (1 + A95 %)

⇐

m / (1 + A95 %) < M < m / (1 – A95 %)

X3. EXAMPLE: ROUND-ROBIN UNCERTAINTY ANALYSIS

X3.1 Model

X3.1.1 Mathematical details are given here for slightly
more general conditions than given in (7.5). Assume that
estimated and unknown reference (that is, spiked) masses m
and refm (independent quantities biased relative to nominal
spiked values nomm) can be described by the following:

msl / ref msl 5 ~11bias! 1 intraε sl 1 interε l (X3.1)

nommsl / ref msl 5 ~1 2 biasref! 2 refε sl

where the εs are normal, 0-expection value, random vari-
ables with intra- and inter-lab variances σintra

2 (approximated
here as lab-independent), σinter

2, and σref
2 (the latter assumed

known), respectively.

X3.1.2 The quantity bias represents the bias of the candidate
method relative to (unknown) measurand values. All the σs are
total relative standard deviations (TRSDs relative to mea-
surand values). The samples are labeled by s = 1, … , S, and l
= 1, … , L, where L is the number of participating labs. Thus,
the relative discrepancy error between estimates m and nomm
and with variance denoted as σ2 is:

errorsl[~msl 2nommsl! /nommsl (X3.2)

5bias1~biasref 1 refε sl! ·~11bias! 1 intraε sl 1 interε l

retaining only first-order terms, yet allowing arbitrarily large
bias, which may be corrected as below (and always neglecting
Cauchy-distribution-like effects).

X3.1.3 The two unknown variances σintra
2 and σinter

2 are
estimated here for the case that the number of samples S is
large enough and σintra

2 small enough that σintra
2/S can be

neglected relative to the inter-lab variance σintra
2. In this case,

the statistical analysis is very simple to carry out. However, if
this approximation is not valid, then the variances may be
obtained by the method of analysis of variance.

X3.2 Intra-Lab Uncertainty

X3.2.1 Eq X3.2, for each lab l, provides an estimate sl
2 for

σ2 (as calculated on the hand-held calculator):

sl
2 5

1
s 2 1 (

s
~errorsl 2 error.l!

2 (X3.3)

with ~S 2 1! degrees of freedom

[σ ref
2 ~11bias!21sintra l

2

X3.2.2 Averaging over the L labs then gives an estimate
sintra

2:

sintra
2 5 s .

2 2 σ ref
2 ~11bias!2 with L ·~S 2 1! degrees of freedom

(X3.4)
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where a dotted index signifies an index average, and where
bias will be replaced by its estimate below (Eq X3.6).

X3.3 Inter-Lab Uncertainty

X3.3.1 Furthermore, an intra-lab mean error.l focuses in on
the inter-lab variation. Thus, σinter

2 is estimated (neglecting the
averaged-out intra-lab uncertainty as described above) by:

sinter
2 5

1
L 2 1 (

l
~error.l 2 error..!2 with ~L 2 1! degrees of freedom

(X3.5)

X3.4 Bias Estimation

X3.4.1 The bias may be estimated as the mean of error:

biasEst[Mean@error# (X3.6)

5bias1~biasref 1 refε . .! ·~11bias! 1 intraε . . 1 interε .

where dotted indices again signify index averages.

X3.4.2 Only the first term is constant, evaluation to
evaluation, if the reference bias varies.

X3.5 Bias Correction

X3.5.1 Now suppose the number L of labs participating in
the round-robin experiment is so large that a future bias-
corrected mass estimate mCorr, following the single round-
robin evaluation may reasonably be determined by dividing the
raw estimate m by (1 + biasEst). The result, for a lab drawn at
random in estimating unknown mass M, is:

mCorr/M 5 ~11biasCorr!1~ intraε 1 interε!/~11biasEst! (X3.7)

where the corrected but unknown biasCorr may be shown
equal to:

biasCorr 5 ~bias 2 biasEst!/~11biasEst! (X3.8)

'2biasref 2 refε . . 2 ~ intraε . . 1 interε .!/~11biasEst!

where again the dots refer to averages over the (unknown)
round-robin values.

X3.6 The Uncertainty Components

X3.6.1 The inter- and intra-lab uncertainty components can
be immediately read from Eq X3.7 for the corrected mass
estimates:

uinter 5 sinter/~11biasEst! (X3.9)

uintra 5 sintra/~11biasEst!

X3.7 Bias Correction Uncertainty

X3.7.1 As the bias is only known in approximation, the
uncertainty in the bias correction must have an effect on the
method uncertainty. Detailed analysis (5) indicates that the
distribution of biasCorr (Eq 2-8) determines the uncertainty
component ubias and coverage factor k with the sense of
prediction. (See also Appendix X2.)

X3.7.2 The only unknown is the distribution of the first term
biasref in Eq X3.8. Suppose that all that is known of biasref is
that |biasref| < ∆max. Then the variance of biasref (evaluation to
evaluation) is given (see 7.4, Appendix X3) by:

Variance@biasref# 5
1
3

∆max
2 (X3.10)

X3.7.3 Adopting Eq X3.10, the uncertainty component ubias

associated with the bias correction uncertainty is given ap-
proximately (neglecting the averaged intra-lab and reference
uncertainty and assuming that the analytical lab is drawn at
random) by:

ubias
2 5

1
3

∆max
2 1

1
L

uinter
2 (X3.11)

X3.8 The Combined and Expanded Uncertainties

X3.8.1 All the uncertainty components can now be esti-
mated (including a Type B estimate of the sampling pump
uncertainty) and are pooled together to give the combined
standard uncertainty uc:

uc
2 5 uinter

2 1uintra
2 1ubias

2 1upump
2 (X3.12)

X3.8.2 The expanded uncertainty then is U given by:

U 5 k 3 uc (X3.13)

where k may be calculated to provide 95 % confidence in the
round robin as in Appendix X2.

X4. UNDETECTABLE OUTLIERS

X4.1 An example of how to deal with a particular type of
non-normal measurement results along the lines of ISO GUM
is presented here. Suppose a candidate method is evaluated
relative to a well-characterized reference method. Suppose
further that it is found that the candidate method rarely, but
ever-so-often, gives anomalous results or outliers which are
entirely useless as measurement. Otherwise the measurement
results are found to be approximately normally distributed. As
the reference method will not be available during subsequent
practical applications of the candidate method, the outliers
cannot then be detected and eliminated.

X4.2 Nevertheless, a symmetric accuracy range A can still
be constructed giving 95 % coverage, by finding coverage Af at
tighter frequency f of the non-anomalous points than 95 % to
compensate for the existence of the outliers. If r is the outlier
rate, then the fraction of all the points, including outliers,
covered by Af is f × (1 – r). Therefore, if f is determined so that:

f 3 ~1 2 r! 5 95% (X4.1)

then Af gives the 95 %-coverage as the usual symmetric
range accuracy.

X4.2.1 Similar to Eq X4.2, A = Af is determined by:
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A2 5 u2 3 @bias21TRSD2 2 TRSDref
2 # (X4.2)

in terms of estimates bias2, variance TRSD2, confounded
with reference variance TRSDref

2 , hence the final term TRSDref
2 ,

assumed known.

X4.3 However, now u is not 1.960 but is the normal quantile
of 1⁄2 [100 % + f], which, according to Eq X1.1 must equal 1⁄2
[100 % + 95 % ⁄(1− r)] to compensate for the outliers at rate r.
At outlier rate r = 0, uf = 1.960. The value of u at given r can
be read from Fig. X4.1. Naturally, as is evident in the figure,
the outlier rate must be less than 5 % in order to have an overall
accuracy range including outliers to specify coverage at 95 %
confidence. Nevertheless, as intuitive from the figure, the curve
u is so flat, that Af is forgiving of a large uncertainty in the
initial estimate of the anomaly rate r.

X4.4 The 95 %-confidence limit A95 % may be approxi-
mated by:

A95% 5 q 3 Â (X4.3)
where the estimate Â is the function of Eq X4.2 in terms of

estimates biâs, TRŜD, and r̂.
X4.4.1 Outliers are identified as such and an estimated

outlier rate r̂ estimated if their occurrence is unusual assuming
a normal distribution determined from data without the outli-
ers. For example, a point X may be considered an outlier if
Prob(X > 3 std from mean) < 0.001.

X4.4.2 The factor q is chosen to approximate Â2/A2 as
proportional to a chi-square variable with effective degrees of
freedom υeff chosen as with (11-10) to reproduce the variance
of Â2/A2, given the variances of biâs, TRŜD, and r̂. The result,
applying lowest order propagation of errors, is that the factor q
is given by:

q2 5 υeff/χ0.05 υeff

2 (X4.4)

defined in terms of a chi-square 5 %-quantile at effective
number of degrees of freedom υeff :

υeff
21 5 υ21û4TRŜD2

TRŜD212·biâs2

Â4
1υoutlier

21 (X4.5)

υoutlier
21 5 π r̂~1 2 r̂!23 n21û22 Exp@u2# 3 0.952 (X4.6)

X4.4.3 The numerator in Eq X4.5 is simplified if bias is
negligible (or if corrected by means of the evaluation, leading
to:

E@biâs2#'~TRSD2 / n!

X4.4.4 At r = 4 %, u increases by 30 % over 1.960, and
more importantly, the uncertainty in the estimate r̂ when the
number n of data points in the evaluation = 50 (for example)
brings the confidence limit on r close to the wall at r = 5 %,
with the effective number υoutlier of degrees of freedom
dropping to about 4, with marked effect on A95 %. However,
υ

outlier
extremely rapidly increases with decreasing r̂, equaling

about 25 at r̂ = 2 %.

FIG. X4.1 Factor u Giving 95 %-Coverage Symmetric Range Accuracy in Terms of the Outlier Rate
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X4.5 The usual result is obtained then, taking the expanded
uncertainty U = A95 %:

U 5 k uc (X4.7)

uc 5 =biâs21TRŜD2 2 TRSDref
2

k 5 uf@ r̂# 3=υeff/χυeff 0.05
2
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