
Designation: D6708 − 16b An American National Standard

Standard Practice for
Statistical Assessment and Improvement of Expected
Agreement Between Two Test Methods that Purport to
Measure the Same Property of a Material1

This standard is issued under the fixed designation D6708; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This practice covers statistical methodology for assess-
ing the expected agreement between two standard test methods
that purport to measure the same property of a material, and
deciding if a simple linear bias correction can further improve
the expected agreement. It is intended for use with results
collected from an interlaboratory study meeting the require-
ment of Practice D6300 or equivalent (for example, ISO 4259).
The interlaboratory study must be conducted on at least ten
materials that span the intersecting scopes of the test methods,
and results must be obtained from at least six laboratories using
each method.

1.2 The statistical methodology is based on the premise that
a bias correction will not be needed. In the absence of strong
statistical evidence that a bias correction would result in better
agreement between the two methods, a bias correction is not
made. If a bias correction is required, then the parsimony
principle is followed whereby a simple correction is to be
favored over a more complex one.

NOTE 1—Failure to adhere to the parsimony principle generally results
in models that are over-fitted and do not perform well in practice.

1.3 The bias corrections of this practice are limited to a
constant correction, proportional correction or a linear (propor-
tional + constant) correction.

1.4 The bias-correction methods of this practice are method
symmetric, in the sense that equivalent corrections are obtained
regardless of which method is bias-corrected to match the
other.

1.5 A methodology is presented for establishing the 95 %
confidence limit (designated by this practice as the between
methods reproducibility) for the difference between two results
where each result is obtained by a different operator using
different apparatus and each applying one of the two methods

X and Y on identical material, where one of the methods has
been appropriately bias-corrected in accordance with this
practice.

NOTE 2—In earlier versions of this standard practice, the term “cross-
method reproducibility” was used in place of the term “between methods
reproducibility.” The change was made because the “between methods
reproducibility” term is more intuitive and less confusing. It is important
to note that these two terms are synonymous and interchangeable with one
another, especially in cases where the “cross-method reproducibility” term
was subsequently referenced by name in methods where a D6708
assessment was performed, before the change in terminology in this
standard practice was adopted.

NOTE 3—Users are cautioned against applying the between methods
reproducibility as calculated from this practice to materials that are
significantly different in composition from those actually studied, as the
ability of this practice to detect and address sample-specific biases (see
6.8) is dependent on the materials selected for the interlaboratory study.
When sample-specific biases are present, the types and ranges of samples
may need to be expanded significantly from the minimum of ten as
specified in this practice in order to obtain a more comprehensive and
reliable 95 % confidence limits for between methods reproducibility that
adequately cover the range of sample specific biases for different types of
materials.

1.6 This practice is intended for test methods which mea-
sure quantitative (numerical) properties of petroleum or petro-
leum products.

1.7 The statistical methodology outlined in this practice is
also applicable for assessing the expected agreement between
any two test methods that purport to measure the same property
of a material, provided the results are obtained on the same
comparison sample set, the standard error associated with each
test result is known, and the sample set design meets the
requirements of this practice, in particular that the statistical
degree of freedom associated with all standard errors are 30 or
greater.

2. Referenced Documents

2.1 ASTM Standards:2

1 This practice is under the jurisdiction of ASTM Committee D02 on Petroleum
Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcom-
mittee D02.94 on Coordinating Subcommittee on Quality Assurance and Statistics.

Current edition approved June 15, 2016. Published August 2016. Originally
approved in 2001. Last previous edition approved in 2016 as D6708 – 16a. DOI:
10.1520/D6708-16B.

2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

*A Summary of Changes section appears at the end of this standard
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D5580 Test Method for Determination of Benzene, Toluene,
Ethylbenzene, p/m-Xylene, o-Xylene, C9 and Heavier
Aromatics, and Total Aromatics in Finished Gasoline by
Gas Chromatography

D5769 Test Method for Determination of Benzene, Toluene,
and Total Aromatics in Finished Gasolines by Gas
Chromatography/Mass Spectrometry

D6299 Practice for Applying Statistical Quality Assurance
and Control Charting Techniques to Evaluate Analytical
Measurement System Performance

D6300 Practice for Determination of Precision and Bias
Data for Use in Test Methods for Petroleum Products and
Lubricants

D7372 Guide for Analysis and Interpretation of Proficiency
Test Program Results

2.2 ISO Standard:3

ISO 4259 Petroleum Products—Determination and applica-
tion of precision data in relation to methods of test.

3. Terminology

3.1 Definitions:
3.1.1 between ILCP method-averages reproducibility

(R
ILCP_ X̃, ILCP_Y

), n—a quantitative expression of the random error
associated with the difference between the bias-corrected ILCP
average of method X versus the ILCP average of method Y
from a Proficiency Testing program, when the method X has
been assessed versus method Y, and an appropriate bias-
correction has been applied to all method X results in accor-
dance with this practice; it is defined as the 95 % confidence
limit for the difference between two such averages.

3.1.2 between-method bias, n—a quantitative expression for
the mathematical correction that can statistically improve the
degree of agreement between the expected values of two test
methods which purport to measure the same property.

3.1.3 between methods reproducibility (RXY), n—a quantita-
tive expression of the random error associated with the
difference between two results obtained by different operators
using different apparatus and applying the two methods X and
Y, respectively, each obtaining a single result on an identical
test sample, when the methods have been assessed and an
appropriate bias-correction has been applied in accordance
with this practice; it is defined as the 95 % confidence limit for
the difference between two such single and independent
results.

3.1.3.1 Discussion—A statement of between methods repro-
ducibility must include a description of any bias correction
used in accordance with this practice.

3.1.3.2 Discussion—Between methods reproducibility is a
meaningful concept only if there are no statistically observable
sample-specific relative biases between the two methods, or if
such biases vary from one sample to another in such a way that
they may be considered random effects. (see 6.7.)

3.1.4 closeness sum of squares (CSS), n—a statistic used to
quantify the degree of agreement between the results from two
test methods after bias-correction using the methodology of
this practice.

3.1.5 Interlaboratory Crosscheck Program (ILCP),
n—ASTM International Proficiency Test Program sponsored
by Committee D02 on Petroleum Products, Liquid Fuels, and
Lubricants; see ASTM website for current details. D7372

3.1.6 total sum of squares (TSS), n—a statistic used to
quantify the information content from the inter-laboratory
study in terms of total variation of sample means relative to the
standard error of each sample mean.

3.2 Symbols:

X,Y = single X-method and Y-method results,
respectively

Xijk, Yijk = single results from the X-method and
Y-method round robins, respectively

Xi, Yi = means of results on the ith round robin
sample

S = the number of samples in the round robin
LXi, LYi = the numbers of laboratories that returned

results on the ith round robin sample
RX, RY = the reproducibilities of the X- and Y-

methods, respectively
RXi, RYi = the reproducibility of method X and Y,

evaluated at the method X and Y means
of the ith round robin sample, respectively

RILCP_ X̃, ILCP_Y = estimate of between ILCP method-
averages reproducibility

sRXi, sRYi = the reproducibility standard deviations,
evaluated at the method X and Y means
of the i th round robin sample

srXi, srYi = the repeatability standard deviations,
evaluated at the method X and Y means
of the ith round robin sample

sXi, sYi = standard errors of the means ith round
robin sample

X̄, Ȳ = the weighted means of round robins
(across samples)

xi, yi = deviations of the means of the ith round
robin sample results from X̄ and Ȳ, re-
spectively.

TSSX, TSSY = total sums of squares, around X̄ and Ȳ
F = a ratio for comparing variances; not

unique—more than one use
vX, vY = the degrees of freedom for reproducibility

variances from the round robins
wi = weight associated with the difference be-

tween mean results (or corrected mean
results) from the ith round robin sample

CSS = weighted sum of squared differences be-
tween (possibly corrected) mean results
from the round robin

a,b = parameters of a linear correction: Ŷ = a +
bX

t1, t2 = ratios for assessing reductions in sums of
squares

3 Available from American National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036.
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RXY = estimate of between methods reproduc-
ibility

Ŷ = predicted Y-method value for a sample by
applying the bias correction established
from this practice to an actual X-method
result for the same sample

Ŷi = predicted ith round robin sample
Y-method mean, by applying the bias
correction established from this practice
to its corresponding X-method mean

εi = standardized difference between Yi and Ŷi.
LX, LY = harmonic mean numbers of laboratories

submitting results on round robin
samples, by X- and Y- methods, respec-
tively

RX Ŷ = estimate of between methods
reproducibility, computed from an
X-method result only

4. Summary of Practice

4.1 Precisions of the two methods are quantified using
inter-laboratory studies meeting the requirements of Practice
D6300 or equivalent, using at least ten samples in common that
span the intersecting scopes of the methods. The arithmetic
means of the results for each common sample obtained by each
method are calculated. Estimates of the standard errors of these
means are computed.

NOTE 4—For established standard test methods, new precision studies
generally will be required in order to meet the common sample require-
ment.

NOTE 5—Both test methods do not need to be run by the same
laboratory. If they are, care should be taken to ensure the independent test
result requirement of Practice D6300 is met (for example, by double-blind
testing of samples in random order).

4.2 Weighted sums of squares are computed for the total
variation of the mean results across all common samples for
each method. These sums of squares are assessed against the
standard errors of the mean results for each method to ensure
that the samples are sufficiently varied before continuing with
the practice.

4.3 The closeness of agreement of the mean results by each
method is evaluated using appropriate weighted sums of
squared differences. Such sums of squares are computed from
the data first with no bias correction, then with a constant bias
correction, then, when appropriate, with a proportional
correction, and finally with a linear (proportional + constant)
correction.

4.4 The weighted sums of squared differences for the linear
correction is assessed against the total variation in the mean
results for both methods to ensure that there is sufficient
correlation between the two methods.

4.5 The most parsimonious bias correction is selected.

4.6 The weighted sum of squares of differences, after
applying the selected bias correction, is assessed to determine
whether additional unexplained sources of variation remain in
the residual (that is, the individual Yi minus bias-corrected Xi)
data. Any remaining, unexplained variation is attributed to
sample-specific biases (also known as method-material

interactions, or matrix effects). In the absence of sample-
specific biases, the between methods reproducibility is esti-
mated.

4.7 If sample-specific biases are present, the residuals (that
is, the individual Yi minus bias-corrected Xi) are tested for
randomness. If they are found to be consistent with a random-
effects model, then their contribution to the between methods
reproducibility is estimated, and accumulated into an all-
encompassing between methods reproducibility estimate.

4.8 Refer to Fig. 1 for a simplified flow diagram of the
process described in this practice.

5. Significance and Use

5.1 This practice can be used to determine if a constant,
proportional, or linear bias correction can improve the degree
of agreement between two methods that purport to measure the
same property of a material.

5.2 The bias correction developed in this practice can be
applied to a single result (X) obtained from one test method
(method X) to obtain a predicted result (Ŷ) for the other test
method (method Y).

NOTE 6—Users are cautioned to ensure that Ŷ is within the scope of
method Y before its use.

5.3 The between methods reproducibility established by this
practice can be used to construct an interval around Ŷ that
would contain the result of test method Y, if it were conducted,
with about 95 % confidence.

5.4 This practice can be used to guide commercial agree-
ments and product disposition decisions involving test methods
that have been evaluated relative to each other in accordance
with this practice.

5.5 The magnitude of a statistically detectable bias is
directly related to the uncertainties of the statistics from the
experimental study. These uncertainties are related to both the
size of the data set and the precision of the processes being
studied. A large data set, or, highly precise test method(s), or
both, can reduce the uncertainties of experimental statistics to
the point where the “statistically detectable” bias can become
“trivially small,” or be considered of no practical consequence
in the intended use of the test method under study. Therefore,
users of this practice are advised to determine in advance as to
the magnitude of bias correction below which they would
consider it to be unnecessary, or, of no practical concern for the
intended application prior to execution of this practice.

NOTE 7—It should be noted that the determination of this minimum bias
of no practical concern is not a statistical decision, but rather, a subjective
decision that is directly dependent on the application requirements of the
users.

6. Procedure
NOTE 8—For an in-depth statistical discussion of the methodology used

in this section, see Appendix X1. For a worked example, see Appendix
X2.

6.1 Calculate sample means and standard errors from Prac-
tice D6300 results.

6.1.1 The process of applying Practice D6300 to the data
may involve elimination of some results as outliers, and it may

D6708 − 16b

3

 



also involve applying a transformation to the data. For this
practice, compute the mean results from data that have not
been transformed, but with outliers removed in accordance
with Practice D6300. The precision estimates from Practice
D6300 are used to estimate the standard errors of these means.

6.1.2 Compute the means as follows:
6.1.2.1 Let X ijk represent the kth result on the ith common

material by the jth lab in the round robin for method X.
Similarly for Yijk. (The ith material is the same for both round
robins, but the jth lab in one round robin is not necessarily the
same lab as the jth lab in the other round robin.) Let nXij be the
number of results on the ith material from the jth X-method lab,
after removing outliers that is, the number of results in cell (i,j
). Let LXi be the number of laboratories in the X-method round

robin that have at least one result on the ith material remaining
in the data set, after removal of outliers. Let S be the total
number of materials common to both round robins.

6.1.2.2 The mean X-method result for the ith material is:

Xi 5
1

Lxi
(

j

(
k

Xijk

nXij

(1)

where, Xi is the average of the cell averages on the ith

material by method X.

6.1.2.3 Similarly, the mean Y-method result for the ith

material is:

FIG. 1 Simplified Flow Diagram for this Practice
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Yi 5
1

LYi
(

j

(
k

Yijk

nYij

(2)

6.1.3 The standard errors (standard deviations of the means
of the results) are computed as follows:

6.1.3.1 If sRXi is the estimated reproducibility standard
deviation from the X-method round robin, and srXi is the
estimated repeatibility standard deviation, then an estimate of
the standard error for X i is given by:

sXi 5Œ 1
LXi

F sRXi
2 2 srXi

2 S 1 2
1

LXi
(

j

1
nXij

D G (3)

NOTE 9—Since repeatability and reproducibility may vary with X, even
if the LXi were the same for all materials and the nXij were the same for all
laboratories and all materials, the {sXi} might still differ from one material
to the next.

6.1.3.2 sYi, the estimated standard error for Yi, is given by an
analogous formula.

6.2 Calculate the total variation sum of squares for each
method, and determine whether the samples can be distin-
guished from each other by both methods.

6.2.1 The total sums of squares (TSS) are given by:

TSSx 5 (
i
S Xi 2 X̄

sXi
D 2

and TSSy 5 (
i
S Yi 2 Ȳ

sYi
D 2

(4)

where:

X̄ 5
(

i
S Xi

sXi
2 D

(
i
S 1

sXi
2 D and Ȳ 5

(
i
S Yi

sYi
2 D

(
i
S 1

sYi
2 D (5)

are weighted averages of all Xi’s and Yi’s respectively.

6.2.2 Compare F = TSSX/(S-1) to the 95th percentile of
Fisher’s F distribution with (S-1) and vx degrees of freedom for
the numerator and denominator, respectively, where vX is the
degrees of freedom for the reproducibility variance (Practice
D6300, paragraph 8.3.3.3) for the X-method round robin. If F
does not exceed the 95th percentile, then the X-method is not
sufficiently precise to distinguish among the S samples. Do not
proceed with this practice, as meaningful results cannot be
produced.

6.2.3 In a similar manner, compare F = TSSY/(S-1) to the
95th percentile of Fisher’s F distribution, using the degrees of
freedom of the reproducibility variance of the Y-method, vY, in
place of vX. Similarly, do not proceed with this practice if F
does not exceed the 95th percentile.

NOTE 10—If one or both of the conditions of 6.2.2 and 6.2.3 are
satisfied only marginally, it is unlikely that this practice will produce
meaningful results since in 6.4, the quantity (TSSX + TSSY) will be
compared to a closeness sum of squares computed in the next section, to
determine whether the methods are sufficiently correlated. It will be
difficult to meet that correlation requirement if the samples are too similar
to one another.

6.3 Calculate the closeness sum of squares (CSS) statistic
for each of the following classes of bias-correction methodol-
ogy.

6.3.1 Class 0—No bias correction.
6.3.1.1 Compute the weights (wi ) for each sample i:

wi 5
1

sYi
2 1sXi

2 (6)

6.3.1.2 Computes CSS:

CSS0 5 (
i

wi~Xi 2 Yi!
2 (7)

6.3.2 Class 1a—Constant bias correction.
6.3.2.1 Using the weights (wi) from 6.3.1.1, compute the

constant bias correction (a):

a 5 (
i

wi~Yi 2 Xi!

(
i

wi

5
(wiYi

(wi

2
(wiXi

(wi

(8)

6.3.2.2 Compute CSS:

CSS1a 5 (
i

wi~Yi 2 ~Xi1a!!2 (9)

6.3.3 Class 1b—Proportional bias correction.
6.3.3.1 The computations of this subsection (6.3.3) are

appropriate only if both of the following conditions apply: (1)
the measured property assumes only non-negative values, and
(2) a property value of zero has a physical significance (for
example, concentrations of specific constituents). In addition, it
is not mandatory but highly recommended that max(Yi)≥2
min(Yi).

6.3.3.2 The computations involve iterative calculation of the
weights (wi) and the proportional correction (b).

6.3.3.3 Set b = 1.
6.3.3.4 Compute the weights (wi) for each sample i:

wi 5
1

SYi
2 1b2 SXi

2 (10)

6.3.3.5 Calculate b0:

b0 5
(wiXiYi

(wiXi
2 2 (wi

2sXi
2 ~Yi 2 bXi!

2
(11)

6.3.3.6 If |b − b0| > .001 b, replace b with b0 and go back to
6.3.3.4. Otherwise, the iteration can be stopped, as further
iteration will not produce meaningful improvement. Replace b
with b0 and go on to 6.3.3.7.

6.3.3.7 Calculate CSS1b:

CSS1b 5 (wi~Yi 2 bXi!
2 (12)

6.3.4 Class 2—Linear (proportional + constant) bias correc-
tion.

6.3.4.1 This involves iterative calculation of the weights
(wi), the weighted means of Xi’s and Yi’s, and the proportional
term (b).

6.3.4.2 Set b = 1.
6.3.4.3 Compute the weights (wi) for each sample i:

wi 5
1

sYi
2 1b2sXi

2 (13)

6.3.4.4 Calculate the weighted means of {Xi} and {Yi}
respectively:

X̄ 5
(wiXi

(wi

(14)

Ȳ 5
(wiYi

(wi

6.3.4.5 Calculate the deviations from the weighted means:
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xi 5 Xi 2 X̄ (15)

yi 5 Yi 2 Ȳ

6.3.4.6 Calculate b0:

b0 5
(wixiyi

(wixi
2 2 (wi

2sXi
2 ~yi 2 bxi!

2
(16)

6.3.4.7 If |b − b0| > .001 b, replace b with b0 and go back to
6.3.4.3, computing new values for the weights {wi}, X̄, Ȳ, {xi},
{yi}, and b0. Otherwise, the iteration can be stopped, as further
iteration will not produce meaningful improvement. Replace b
with b0 and go to 6.3.4.8.

6.3.4.8 Calculate CSS2 and a:

CSS2 5 (wi~yi 2 bxi!
2 (17)

a 5 Ȳ 2 b X̄ (18)

6.4 Test whether the methods are sufficiently correlated.
6.4.1 Calculate the F-statistic:

F 5
~TSSX1TSSY 2 CSS2!/S

CSS2/~S 2 2!
(19)

6.4.2 Compare F to the 95th percentile of Fisher’s F
distribution with S and S-2 degrees of freedom in the numerator
and denominator, respectively.

6.4.2.1 If F is less than the 95th percentile value, then, this
practice concludes that the methods are too discordant to
permit use of the results from one method to predict those of
the other.

6.4.2.2 If F is greater than the tabled value, proceed to 6.5.

6.5 Conduct tests to select the most parsimonious bias
correction class needed.

6.5.1 The closeness sums of squares for differences from
each class of bias correction are used to select the most
parsimonious bias correction class that can improve the ex-
pected degree of agreement between the Ŷ (the predicted
Y-method result using X-method result) and the actual
Y-method result on the same material. The classes of bias
correction and the associated CSS as calculated earlier are
repeated in the following table.
Bias Correction Class CSS

Class 0–no correction CSS0

Class 1a–constant bias correction CSS1a

Class 1b–proportional bias correction (when appropriate) CSS1b

Class 2–linear (proportional + constant bias correction) CSS2

6.5.2 To determine whether any bias correction (Classes 1a,
1b or 2 above) can significantly improve the expected agree-
ment between the two methods, calculate the following ratio:

F 5
~CSS0 2 CSS2!/2

CSS2/~S 2 2!
(20)

6.5.2.1 Compare F to the upper 95th percentile of the F
distribution with 2 and S-2 degrees of freedom for the
numerator and denominator, respectively.

6.5.2.2 If the calculated F is smaller, conclude that a bias
correction of Class 1a, 1b, or 2 does not sufficiently improve
the expected agreement between the two methods, relative to
Class 0 (no bias correction). Proceed to 6.6.

6.5.2.3 If the calculated F is larger, conclude that a correc-
tion can improve the expected agreement between the two
methods, and continue in 6.5.3.

6.5.3 If the F-value calculated in 6.5.2 is larger than the 95th

percentile of F, compute the following t-ratios:

t1 5ŒCSS0 2 CSS1

CSS2/~S 2 2!
(21)

t2 5ŒCSS1 2 CSS2

CSS2/~S 2 2!

where, CSS1 is the lesser of CSS1a or CSS1b, provided the
latter is appropriate and has been calculated.

6.5.3.1 Compare t2 to the upper 97.5th percentile of the t
distribution with S-2 degrees of freedom.

6.5.3.2 If t2 is larger, conclude that a bias correction of Class
2 (proportional + constant correction) can improve the ex-
pected agreement over that of a single term (constant or
proportional) correction alone (Class 1). Proceed to 6.6.

6.5.3.3 If t2 is smaller than the t-percentile, compare t1 to the
same upper 97.5th percentile of the t distribution with (S-2)
degrees of freedom.

6.5.3.4 If t1 is larger, conclude that a single term bias
correction of Class 1 is preferred to a bias correction of Class
2. Use the constant correction unless CSS1b is appropriate and
is smaller than CSS1a. Proceed to 6.6.

6.5.3.5 If t1 is smaller, then neither t1 nor t2 is statistically
significant. A bias correction of Class 2 is preferred over
single-term (constant or proportional) correction of Class 1.

6.6 Test for existence of sample-specific biases.
6.6.1 Compare the CSS of the bias-correction class selected

in 6.5 to the 95th percentile value of a chi-square distribution
with v degrees of freedom

where:
v = S for Class 0 (-no bias) correction,
v = S − 1 for Class 1a or Class 1b (constant or proportional)

correction
v = S − 2 for Class 2 (linear) correction

6.6.2 If the CSS is smaller than the chi-square percentile, it
is reasonable to conclude that there are no sample-specific
biases, that is, that there are no other sources of variation that
are statistically observable above the measurement error. Per-
form the Anderson-Darling (A-D) assessment on the residuals
as per 6.7.2.2 and 6.7.2.3. If the outcome is not significant at
the 5 % level, calculate the between methods reproducibility
(RXY) as per Eq 22 below. If the A-D assessment is significant,
application of the practice is considered terminated with failure
at this point, as the statistical evidence suggests that a single
between-method reproducibility (RXY) cannot be found that is
applicable to all materials covered by the intersecting scope of
both test methods. It is reasonable to conclude that, at least for
some materials, the test methods are not measuring the same
property.

RXY 5ŒRY
21b2RX

2

2
(22)
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where:
b = the coefficient of the appropriate bias correction. (For

Class 0 and Class 1a bias corrections, b=1.)

6.6.3 If the CSS is larger than the chi-square percentile (see
6.6.1), there is strong evidence that biases between the methods
have not been adequately corrected by the bias-corrections of
6.3. In other words, the relative biases are not consistent across
the S common samples of the round robins. The user may wish
to investigate whether the biases can be attributed to other
observable properties of the samples. Or he or she may wish to
restrict attention to a smaller class of materials for the purpose
of establishing a between methods reproducibility. Such inves-
tigations are beyond the scope of this practice, as the issues
typically are not statistical in nature. This practice does
recommend investigating whether it is reasonable to treat the
sample-specific biases as random effects, as described in 6.7.

6.7 Treatment of Sample-Specific Relative Bias as a Vari-
ance Component:

6.7.1 If the CSS exceeds the 95th percentile value of the
appropriate chi-square distribution (see 6.6.1), there is strong
evidence that sources other than measurement error are con-
tributing towards the variation of the expected agreement
between the two methods. In this practice, these sources are
attributed to sample-specific effects (also known as matrix
effects or method-material interactions). In some cases these
sample-specific effects can be treated as random effects, and
hence can be incorporated as an additional source of variation
into a between methods reproducibility as described in this
section. Note that, even when it is appropriate to treat these
sample-specific effects as random, the additional variation may
cause the between methods reproducibility to be far larger than
the root mean square of the reproducibilities of the methods
(Eq 22).

6.7.2 Examine residuals to assess reasonableness of random
effect assumption.

6.7.2.1 Assess the reasonableness of the assumption that the
sample-specific effects can be treated as random effect by
examination of the distribution of the residuals. While there are
numerous statistical tools available to perform this assessment,
this practice recommends use of the Anderson-Darling normal-
ity test, based on its simplicity and ease of use. It is not the
intent of this practice to exclude other tools for this purpose.

6.7.2.2 Let {Ŷi} be the Y-method values predicted from the
corresponding X-method mean values {Xi}, using the bias-
correction selected in 6.5. The (standardized) residuals {εi} are
given by:

ε i 5 =wi~Yi 2 Ŷ i! (23)

where:
{wi} = the appropriate weights from 6.3.1 – 6.3.4.

6.7.2.3 Calculate the Anderson Darling (AD) statistic on the
residuals {εi}. (Refer to Practice D6299 for guidance on
calculation and interpretation of this statistic.)

6.7.2.4 If the AD statistic is not significant at the 5 %
significance level, conclude that the sample-specific relative
bias may be treated as a variance component. Proceed to 6.7.3.

6.7.2.5 If the AD statistic is significant, there is strong
evidence that the sample-specific effects cannot be treated as
random effects. Application of this practice is considered
terminated at this point, as the statistical evidence suggests that
a single between methods reproducibility (RXY) cannot be
found that is applicable to all materials covered by the
intersecting scope of both test methods. It is reasonable to
conclude that, at least for some materials, the test method are
not measuring the same property. Do NOT proceeed to 6.7.3.

NOTE 11—It is possible that, by restricting the comparison to a narrower
class of materials, a between methods reproducibility can be obtained (for
that narrower class) that does not have sample-specific biases, or, has
sample-specific biases that can be treated as a random effect. However,
individual outlier materials should not be excluded from this study,
after-the-fact, based on the statistics only, without other evidence that they
clearly belong to a separate and identifiable class.

6.7.3 Calculate the between methods reproducibility (RXY)
as follows:

RXY 5!S b2RX
2

2
1

RY
2

2 DS 11
2~1.96!2 ~CSS 2 S1k!S

~S 2 k!(
b2RXi

2 1RYi
2

b2SXi
2 1SYi

2
D (24)

where b and CSS are appropriate to the selected bias-
correction, and k is 0 if the bias-correction is Class 0; k is 1
if the bias correction is Class 1a or Class 1b; or k is 2 if the
bias-correction is Class 2.

NOTE 12—Eq 24 provides an estimate of the magnitude below which
about 95 % of the differences are expected to fall, when one party uses the
bias-corrected X-method while another party uses the Y-method, on
materials similar to the round robin samples. Application of the methods
to materials which are substantially different from these round robin
materials may affect both the average bias and the variance of the random
component. Laboratories which engage in routine substitution of one
method for another are advised to periodically monitor the deviations
between methods, as a regular part of their quality assurance program.

6.8 Construction of a 95 % confidence interval for a single
result from method Y using a single bias-corrected result from
method X, and RXY.

6.8.1 Let Ŷ be a single bias-corrected X-method result. An
interval bounded by Ŷ 6 RX Ŷ can be expected to contain a
single corresponding Y-method result, obtained on the identical
material, with approximately 95 % confidence. Here RX Ŷ is
computed from Eq 22 or Eq 24, as appropriate, with RY

evaluated at Y = Ŷ.

7. Report

7.1 Upon completion of the calculations, it is recommended
that the assessment findings be reported in the Precision and
Bias section of the appropriate test method(s). In the event that
one of the test methods assessed is cited as a referee test
method, with the other test method being an alternative, this
practice recommends the following naming convention, indi-
cating the publication year for method D YYYY by the
addition of suffix “-yy”, and the publication year for method
XXXX by the addition of the suffix “-xx”:

Referee Test Method designation: Test Method D YYYY-yy
Alternative Test Method designation: Test Method D XXXX-xx

7.2 Report assessment findings in the Precision and Bias
section of the appropriate test method, under a subsection titled
“Between-Method Bias,” as follows:
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Degree of Agreement between results by Test Method D XXXX and
Test Method D YYYY-yy—Results on the same materials produced
by Test Method D XXXX and Test Method D YYYY-yy have been
assessed in accordance with procedures outlined in Practice D6708.
The findings are: (report the findings here)

7.2.1 To choose the appropriate findings, see Table 1. (A)
represents passing, and (B) represents failure. Choose one of
the following findings (A1, A2, A3, A4, B1, B2, B3, or B4).

7.2.1.1 If the finding is A1, and RX, estimated with at least
30 degrees of freedom, is less than or equal to 1.2 published RY,
report the following for property range where RX satisfies the
aforementioned requirement.

No bias-correction considered in Practice D6708 can further improve
the agreement between results from Test Method D XXXX and Test
Method D YYYY-yy for the materials studied (reference Research
Report ZZZZ). For applications where Test Method X is used as an
alternative to Test Method Y, results from Test Method D XXXX and
Test Method D YYYY-yy may be considered to be statistically
indistinguishable, for sample types and property ranges listed below.
No sample-specific bias, as defined in Practice D6708, was ob-
served for the materials studied.

Sample types and property range where results from method
D XXXX and DYYYY-yy may be considered to be statistically indis-
tinguishable are: (list applicable sample types and property ranges
here)

7.2.1.2 If the finding is A1, for property range where RX

does not meet the requirement listed above, report the follow-
ing:

No bias-correction considered in Practice D6708 can further improve
the agreement between results from Test Method D XXXX and Test
Method D YYYY-yy for the materials studied (reference Research
Report ZZZZ). No sample-specific bias, as defined in Practice
D6708, was observed for the materials and property range listed
below. (list sample types and property ranges for above findings
here)

Differences between results from Test Method D XXXX and Test
Method D YYYY-yy, for the sample types and property ranges
studied, are expected to exceed the following between methods re-
producibility (RXY ), as defined in Practice D6708, about 5% of the
time. (Report the between methods reproducibility here.)

7.2.1.3 If the finding is A2, report the following:
No bias-correction considered in Practice D6708 can further improve
the agreement between results from Test Method D XXXX and Test
Method D YYYY-yy for the material types and property range listed
below (reference Research Report ZZZZ). Sample-specific bias, as
defined in Practice D6708, was observed for some samples. (list
sample types and property ranges for above findings here)

Differences between results from Test Method D XXXX and Test
Method D YYYY-yy, for the sample types and property ranges studied,
are expected to exceed the following between methods reproducibility
(RXY), as defined in Practice D6708, about 5% of the time. (Report the
between methods reproducibility here.)

As a consequence of sample-specific biases, RXY may exceed the
reproducibility for Test Method D XXXX (RX), or reproducibility for
Test Method D YYYY-yy (RY), or both. Users intending to use Test
Method D XXXX as a predictor of Test Method D YYYY-yy, or vice
versa, are advised to assess the required degree of prediction
agreement relative to the estimated RXY to determine the fitness-for-
use of the prediction.

7.2.1.4 If the finding is A3, and RX estimated with at least 30
degrees of freedom, is less than or equal to 1.2 published RY,
report the following for property range where RX satisfies the
aforementioned requirement:

The degree of agreement between results from Test Method
D XXXX and Test Method D YYYY-yy can be further improved by
applying correction equation C1 as listed below (reference Research
Report ZZZZ). For applications where Test Method X is used as an
alternative to Test Method Y, bias-corrected results from Test Method
D XXXX (as per correction equation C1) and results from Test
Method DYYYY-yy may be considered to be statistically
indistinguishable, for sample types and property ranges listed below.
No sample-specific bias, as defined in Practice D6708, was ob-
served after the bias-correction for the materials studied.

Sample types and property range where bias-corrected results from
method D XXXX and results from method DYYYY-yy may be consid-
ered to be statistically indistinguishable are: (list applicable sample
types and property ranges here)

7.2.1.5 If the finding is A3, for property range where RX

does not meet the requirement listed above, report the follow-
ing:

TABLE 1 Summary of FindingsA

A B C D1 D2 D3 Assessment
Outcome

Is there adequate variation
in the property level of
the sample set relative to
Test Method XXXX and
Test Method YYYY
reproducibilities?

Is there adequate
correlation
between the test results
from Test Method XXXX
and Test Method YYYY?

Will a scaling/bias correction
significantly improve the
agreement between the results
from Test Method XXXX
and Test Method YYYY
over and above their combined
reproducibilities?

Are there sample-
specific biases?

If yes to (D1),
can these biases
be treated as a
random effect?

If no to (D1),
are the residuals
randomly
scattered?

Yes Yes No No N/A Yes Pass (A1)
Yes Yes No No N/A No Fail (B4)
Yes Yes No Yes Yes N/A Pass (A2)
Yes Yes No Yes No N/A Fail (B3)
Yes Yes Yes No N/A Yes Pass (A3)
Yes Yes Yes No N/A No Fail (B4)
Yes Yes Yes Yes Yes N/A Pass (A4)
Yes Yes Yes Yes No N/A Fail (B3)
Yes No N/A N/A N/A N/A Fail (B2)
No N/A N/A N/A N/A N/A Fail (B1)

A Boldfaced type indicates reason for failure.
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The degree of agreement between results from Test Method
D XXXX and Test Method D YYYY-yy, can be further improved by
applying correction equation C1 as listed below (reference Research
Report ZZZZ). No sample-specific bias, as defined in Practice
D6708, was observed after the bias-correction for the materials and
property range listed below.
(list sample types and property ranges for above findings here)

Correction Equation C1:

bias-corrected X = predicted Y = bX + a; b = xxx; a = uuu

where:
X = result obtained by Test Method D XXXX
bias-corrected X = predicted Y
predicted Y = result that would have been obtained by Test Method

D YYYY-yy on the same sample
b,a = parameter estimates for a linear correction as defined

in this practice

Differences between bias-corrected results from Test Method
D XXXX and Test Method D YYYY-yy, for the sample types and
property ranges studied, are expected to exceed the following
between methods reproducibility (RXY), as defined in Practice
D6708, about 5% of the time. (Report the between methods repro-
ducibility here.)

7.2.1.6 If the finding is A4, report the following:
The degree of agreement between results from Test Method
D XXXX and Test Method D YYYY-yy can be further improved by
applying correction equation C1 as listed below (reference Research
Report ZZZZ). Sample-specific bias, as defined in Practice D6708,
was observed for some samples after applying the bias-correction,
for the material types and property range listed below. (list sample
types and property ranges for above findings here)

Correction Equation C1:

bias-corrected X = predicted Y = bX + a; b = xxx; a = uuu

where:
X = result by Test Method D XXXX
bias-corrected X = predicted Y
predicted Y = result that would have been obtained by Test Method

D YYYY-yy on the same sample
b, a = parameter estimates for a linear correction as defined

in this practice

Differences between bias-corrected results from Test Method
D XXXX and Test Method D YYYY-yy, for the sample types and
property ranges studied, are expected to exceed the following
between methods reproducibility (RXY), as defined in Practice
D6708, about 5% of the time. (Report the between methods repro-
ducibility here.)

As a consequence of sample-specific biases, RXY may exceed the
reproducibility for Test Method D XXXX (RX), or the reproducibility
for Test Method D YYYY-yy (RY), or both. Users intending to use
Test Method D XXXX as a predictor of Test Method D YYYY-yy, or
vice versa, are advised to assess the required degree of prediction
agreement relative to the estimated RXY to determine the fitness-for-
use of the prediction.

7.2.1.7 If the finding is B1, report the following:
Test material property differences can not be reliably distinguished
by either Test Method D XXXX, or Test Method D YYYY-yy, or both.

7.2.1.8 If the finding is B2, report the following:
There is an insufficient degree of agreement (correlation) between
Test Method D XXXX and Test Method D YYYY-yy.

7.2.1.9 If the finding is B3, report the following:
There are unpredictable sample-specific biases for some samples.
(Insert additional information regarding the sources of the sample-
specific bias here, if any are known.)

7.2.1.10 If the finding is B4, report the following:
There is unpredictable between methods reproducibility.

8. Validation of Assessment Findings Using Proficiency
Testing (PT) Program Data

8.1 The assessment findings as reported should be validated
using PT data (if available) that are not used for the assessment.
If these data are available on a regular basis, the validation
should also be carried out on a regular basis using the I/EWMA
control chart techniques described in Practice D6299.

8.1.1 The statistical treatment of data from the PT program
should be functionally equivalent to techniques used by ASTM
subcommittee D02.01 National Exchange Group (NEG), or by
ASTM subcommittee D02.CS92.

8.1.2 The TPI Industry (see Practice D7372) for the PT data
used to carry out this validation should be greater than 1.2.

8.1.3 The validation should be performed using the follow-
ing difference statistic D, or other statistically equivalent
techniques. For a single value D, the assessment findings are
considered validated if the absolute value is less than or equal
to 3. For a control chart, the D values are expected to randomly
vary on either side of zero. Sustained values of D on either the
positive or negative side of zero should trigger activities for a
reassessment.

D 5
@ ȳ 2 ~b · x̄ 1 a!#

=SEY
21 SEx̂

2
(25)

where:
ȳ = average of Y method from ILS of the same

material
x̄ = average of X method from ILS of the same

material
b, a = outcome from the bias assessment; for outcome

A1, b = 1, a = 0
SEY = [standard error of ȳ] = 0.36 3RY ⁄ =LY

SEX̂ = [standard error of bias-corrected x̄] =
0.363=b3RX ⁄ =LX

RX, RY = published reproducibility for methods X and Y
LX, LY = number of non-rejected results used to calculate

the ILS average for methods X and Y, where the
ILS protocol is for a single test result to be
reported by each participant.
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APPENDIXES

(Nonmandatory Information)

X1. STATISTICAL BASIS

X1.1 Adequacy of Round Robin Sample Set

X1.1.1 In order to obtain a usable comparison between two
test methods, it is critical that the samples are sufficiently
varied that they can be distinguished from one another (or at
least so that some can be distinguished from some others) using
the test methods in question. The most straight-forward test
involves the total (weighted) sum of squares, which, for the X
measurement is:

TSSX 5 (
i
S Xi 2 X̄

sXi
D 2

(X1.1)

where:

X̄ 5
(

i
S Xi

sXi
2 D

S 1

(
i

sXi
2 D (X1.2)

the mean of the mean X-results weighted by the reciprocal of
the squares of the standard errors {sXi}.

X1.1.2 If the S samples were all the same material, if the
{Xi} were distributed normally, and if the standard errors were
known exactly, then TSSX would have a chi-square distribution
with S-1 degrees of freedom. In practice, the {sXi} are not
known exactly, but our situation approximates one in which
TSSX/(S−1) would have an F distribution, with S-1 degrees of
freedom in the numerator and v degrees of freedom in the
denominator, where v is the degrees of freedom associated with
the reproducibility estimate.

X1.1.3 If the materials were not all the same, then we would
expect TSSX /(S−1) to be larger than an F-distributed variable.
For round robins, hopefully samples will have been selected
with a range of property values, so TSSX/(S−1) will be very
much larger than the 95th percentile of F. If we come even
close to failing this test, or the analogous test using the
Y-method data, then the best course of action would be to start
over with a more variable set of samples.

X1.2 Quantifying the Closeness of Agreement Between
Two Test Methods

X1.2.1 Suppose we use a calibration function, f(X), to
estimate (or predict) the property as measured by a reference
Y-method. For the round robin samples, the mean result by the
reference method, Y, can be compared to f(X) and used to
quantify the closeness of agreement. In classical (weighted)
regression, the weighted residual sum of squares,

(
i

~Yi 2 f~Xi!!
2

sYi
2 (X1.3)

is used as a measure of the closeness of agreement. If
competing calibration functions are under consideration, re-
gression methods – classical least squares – suggest we should

prefer the one with smallest sum of squares (X1.1). But this
overlooks the fact that the {Xi} are not the true values of the
property as measured by the alternative method, but only
estimates of those values, and they also involve random error.
Let {hi} represent the true, unknown values of the property as
measured by the reference method. The { hi} will be estimated
from the data. Both Yi and f(Xi) estimate hi, which is not
known. Yi has variance sYi

2, and f(Xi) has variance approxi-
mately f ’2 (Xi)sXi

2, where f ’(Xi) is the derivative of f at Xi. So
an alternative measure of closeness is

min (
$hi% i

S ~Yi 2 hi!
2

SYi
2 1

~f~Xi! 2 hi!
2

f ’2~Xi!sXi
2 D (X1.4)

X1.2.2 This sum can be minimized term by term. The value
of hi that minimizes the ith term – and the value that is our best
estimate of the true value – is:

ĥ i 5
f ’2 ~Xi!sXi

2 Yi1sYi
2 f~Xi!

sYi
2 1f ’2 ~Xi!sXi

2 (X1.5)

and the minimized sum of squares is:

CSS 5 (
i

~Yi 2 f~Xi!!
2

sYi
2 1f ’2~Xi!sXi

2 (X1.6)

X1.2.3 Compare (Eq X1.4) to (Eq X1.1), and note that the
only difference is that, in place of the variance of Yi in the
denominator of each term, (Eq X1.4) has the variance of
Yi-f(Xi).

X1.3 Properties of the Closeness Metric

X1.3.1 Distributional Properties:
X1.3.1.1 If the {Xi} and {Yi} are independent normal, if the

standard errors are known exactly, if f is linear (so that {f(Xi)}
are normal), and if E[Yi] = E[f(Xi)] for all i, where E[Y]
represents the mean or expected value of distribution of Y, then
CSS has a chi-square distribution. The degrees of freedom
associated with CSS is S, the number of materials (samples)
common to the round robins. This may be seen by the fact that
(Eq X1.2) has 2S terms, but S parameters {hi} are fitted by
least-squares.

X1.3.1.2 When E[Yi], ≠ E[f(Xi)], it may be because the
calibration function, f, is not known exactly. If f belongs to a
specific class of functions – linear functions, for example –
then the unknown parameters of f (for example, a and b if f(X)
= a + b X) may be estimated by minimizing Eq X1.4 with
respect to these parameters. In this case, CSS would be
distributed as chi-square with S – k degrees of freedom.

X1.3.1.3 But if CSS is evaluated using an incorrect calibra-
tion equation, or by minimizing over a class of equations that
does not contain the true calibration equation, or if there are
sample-specific biases that cannot be accounted for by any
calibration function, then CSS can be expected to be larger
than a chi-square variable. The last of these three situations is
worth special consideration. In the event that two or more
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different materials may have the same true value, E[Y], as
measured by one method, but different true values, E[X], as
measured by the other method, then no calibration equation can
completely account for the differences between the two meth-
ods. Such sample-specific biases can be the dominant contribu-
tor to CSS. In fact, it almost certainly will be the dominant
factor when {Xi} and {Yi} are very precise, that is, when the
materials are measured by sufficiently large numbers of labs. In
such cases, note that an hi of Eq X1.3 will approximate neither
E[Yi] nor E[Xi], but instead approximates an average of the
two, an average that is weighted towards the more precise of Yi

and Xi.
X1.3.1.4 When the standard errors are not known, but

approximately proportional to the same standard deviation
estimate, then an F distribution may be a reasonable approxi-
mation to the distribution of CSS/S, or CSS/( S − k), as
appropriate.

X1.3.2 Symmetry in X and Y:
X1.3.2.1 Note that, if f is linear, then (Eq X1.4) is indepen-

dent of which method is considered the reference method. If
instead of predicting Y with f(X), we wish to predict X with f -1

(Y), then f’(Xi)≡b≡1/f−1’(Yi), and Yi − f(Xi)=b (f−1(Yi)−Xi), so b2

cancels from the top and bottom of each term and Eq X1.4 is
unchanged.

X1.3.2.2 This symmetry property is not shared by classical
regression – the slope obtained from regressing Y on X is
always smaller than the reciprocal of the slope from regressing
X on Y. The method developed in this annex is a weighted
version of what is known as regression with errors in both
variables, which is discussed in many texts.4 For non-linear f,
the symmetry is lost. But for smooth f, the two equalities above
are almost still true.

X1.3.3 An Explanation of Eq 24 in 6.7.3 of Practice D6708:
X1.3.3.1 Recall that:

CSS 5 Σ
~Yi 2 Ŷ i!

2

SYi
2 1S

Ŷi

2 (X1.7)

where:
Ŷi = a + bXi,
SYi = the standard error of Yi, and
SŶi = bSXi = the standard error of Ŷi.

Presuming SYi and SŶi
to be known constants, then, in the

absence of sample specific biases, CSS should have a chi-
square distribution, with degrees of freedom depending upon
the number of samples and the number of parameters (a and/or
b) estimated from the data.

X1.3.3.2 The expected value of CSS is just the degrees of
freedom, ν. If CSS is not significantly larger than ν, that is, if
it is less than the 95th percentile of the chi-square distribution,
then we may conclude that there are no sample specific biases.
Otherwise, the amount by which CSS exceeds ν is attributed to
sample specific bias. Some appropriate amount of this differ-
ence has to be added to the square of the between-method
reproducibility.

X1.3.3.3 If E@Yi#5µi and E@ Ŷ i#5η i, then the bias specific to
the ith sample is µi2η i and

E@CSS# 5 Σ
E~Yi 2 Ŷ i!

2

SYi
2 1S

Y
^

i

2 5

5Σ
E~Yi 2 µi 2 Ŷ i 1 η1!

2

12~µi 2 η i!E~Yi 2 µi 2 Ŷ i 1 η i!1~µi 2 η i!
2

SYi
2 1S

Y
^

i

2

(X1.8)

X1.3.3.4 Since E~Yi 2 µi 2 Ŷ i 1 η i!50, we have:

E@CSS# 5 Σ
E~Yi 2 µi 2 Ŷ i 1 η i! 2

SYi
2 1S

Ŷi

2 1Σ
~µi 2 η i!

2

SYi
2 1S

Ŷi

2 5

5ν1Σ
~µi 2 η i!

2

SYi
2 1S

Ŷi

2

(X1.9)
or

Σ
~µi 2 η i!

2

SYi
2 1S

Ŷi

2 5 E@CSS# 2 v (X1.10)

(Eq X1.10 in this case isn’t exact since SŶi5bSXi, and b is
random, so the expectation operator does not push through as
shown. However, it is satisfactory as an approximation.)

X1.3.3.5 The expectation operator above is appropriate
under the assumption that {µi} and {ηi} are fixed constants. If
instead we assume that they are random (that is, they vary from
one material to another in a manner that we may consider to be
random), then Eq X1.10 holds for ~µi 2 η i! replaced by its
conditional expectation given material i, and E[CSS] replaced
by E[CSS | sample materials].

X1.3.3.6 For estimation, we can exchange expectations on

either side of this equation. We can estimate Σ
~µi 2 η i!

2

SYi
2 1S

Ŷi

2 by

CSS2ν (when CSS is significantly larger than ν), and to take it

one step further, this estimates Σ
E@~µi 2 η i!

2#

SYi
2 1S

Ŷi

2 , where now the

expectation is unconditional (that is, E@µi#5E@η i#, and E@~µi

2 η i!
2# depends on the ith material only through its level, E[µi].

X1.3.3.7 In the absence of sample-specific bias, the
between-method reproducibility is just the root mean square of
the reproducibilities of the two methods:

RXY 5ŒR
Ŷ

2

2
1

RY
2

2
5Œb2RX

2

2
1

RY
2

2
(X1.11)

which is Eq 22 of the practice. But when sample specific
biases are present, then the excess variation needs to be ac-
counted for:

RXY 5 Œb2RX
2

2
1

RY
2

2
1~1.96!2E@~µ 2 η!2# (X1.12)

X1.3.3.8 Like RX and RY, E@~µ 2 η!2# may depend on the
level of concentration. There really is not enough information
in a limited data set to allow us to estimate this relationship, so
we need to make some assumptions. It seems reasonable that
E@~µ 2 η!2# should grow in a manner similar to RX

2 or RY
2, or

RX
2 1RY

2, or pRX
2 1qRY

2 for some choice of p and q. Eq 24 of the
practice uses what seems to be a reasonable assumption, that is:

4 Mandel, John, Evaluation and Control of Measurements, Marcel Dekker, 1991,
Sec. 5.5.
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E@~µ 2 η!2# is proportional to R
Ŷ

2
1RY

2'b2RX
2 1RY

2. So E@~µ

2 η!2# varies with level (concentration, etc.) proportionally
with b2RX

2 1RY
2. (Fair to both methods.) E@~µ 2 η!2#5κ~b2 RX

2

1 RY
2!.

X1.3.3.9 Then from Eq X1.12,

RXY 5Œb2RX
2

2
1

RY
2

2
1~1.96!2κ~b2 RX

2 1 RY
2! (X1.13)

From Eq X1.10, CSS2ν is an estimate of:

Σ
E@~µi 2 η i!

2#

b2SXi
2 1SYi

2 5 κΣ
b2RX

2 1RY
2

b2SXi
2 1SYi

2 (X1.14)

so κ can be estimated by:

κ 5
CSS 2 ν

Σ
b2RX

2 1RY
2

b2SXi
2 1SYi

2

(X1.15)

This approximation results in:

RXY 5!S b2RX
2

2
1

RY
2

2 DS 1 1
2~1.96!2~CSS 2 ν!

Σ
b2RX

2 1RY
2

b2SXi
2 1SYi

2
D
(X1.16)

RXY 5!~b2 RX
2 1 RY

2!1
1
2

1
~1.96!2~CSS 2 ν!

Σ
b2RX

2 1RY
2

SYi
2 1S

Ŷi

2 2 (X1.17)

X2. A WORKED EXAMPLE

X2.1 Example Data

X2.1.1 The data in Tables X2.1 and X2.2 are from a round
robin for aromatics in gasoline conducted by seven labs.
Fifteen (S = 15) fuels were tested by two methods. Table X2.1
are the results from Test Method D5580, a gas chromatography
(GC) method, while Table X2.2 contains the results from Test
Method D5769, gas chromatography/mass spectrometry (GC/
MS). No data have been removed as outliers, but some repeat
results are missing for Test Method D5580. For purposes of
this example designate Test Methods D5580 and D5769 as the
X and Y methods, respectively.

NOTE X2.1—Note: All equations referenced are from this standard
except as noted.

X2.1.2 The repeatabilities and reproducibilities were esti-
mated from the round robins in accordance with Practice
D6300. These are shown in Table X2.3. The degrees of
freedom are also from the precision analysis. The standard
deviations associated with repeatability and reproducibility are

obtained by dividing the precision estimates by t .975 =2, where
t.975 is the 97.5th percentile of the t-distribution with the
applicable number of degrees of freedom.

X2.2 Calculation of the Mean Results and Standard Er-
rors

X2.2.1 Both round robins included seven participants, and
all participants measured every sample, so LXi = LYi = 7 for all
i. As an example, for the second sample from method X, X2 is
calculated using (Eq 1) as follows:

X2 5
1
7 S 26.34

1
1

25.88125.94
2

1
25.36125.17

2
1…1

25.4125.36
2 D

(X2.1)

5
1
7 ~26.34125.91125.265125.21125.94126.5125.38! 5 25.79

X2.2.2 Note that this is not the same as the average of the
thirteen X-method results on this sample. The remaining Xi and
Yi are computed in a similar fashion.

TABLE X2.1 Aromatics by Test Method D5580

Fuel

Laboratory 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 23.76 26.34 25.14 22.76 29.10 14.83 19.77 42.61 21.77 19.85 37.40 31.53 16.48 19.26 13.26
24.22 29.16 19.81 12.99

2 24.46 25.88 25.72 22.59 29.08 15.68 19.92 41.89 21.68 19.97 37.38 31.35 16.55 19.48 13.25
24.59 25.94 25.76 22.57 29.07 15.64 19.82 42.10 22.00 20.02 37.09 31.29 16.58 19.63 13.53

3 24.50 25.36 26.28 22.87 29.28 15.71 20.12 42.90 21.93 20.02 38.05 31.63 16.72 19.72 13.50
24.54 25.17 26.26 22.65 29.33 15.76 20.01 42.90 21.91 20.14 38.07 31.80 16.60 19.82 13.54

4 24.74 25.23 25.72 22.82 29.31 15.51 20.35 42.52 22.24 20.32 37.03 31.77 16.50 20.03 13.63
24.90 25.19 25.65 22.68 29.21 15.48 19.99 42.38 22.14 20.01 37.44 31.80 16.45 19.84 13.69

5 24.64 26.01 25.92 22.17 30.50 14.78 19.37 43.71 22.85 20.43 37.80 31.09 16.27 20.85 13.85
24.70 25.87 25.87 22.20 30.69 14.88 19.66 44.00 23.50 20.30 37.84 31.31 16.55 21.01 13.85

6 24.93 26.28 26.07 22.59 30.08 15.91 20.30 43.08 22.24 20.26 38.28 32.60 16.70 19.94 13.67
25.13 26.72 26.08 22.90 30.10 16.16 20.49 43.27 22.56 20.58 38.54 32.72 16.97 19.94 13.89

7 24.37 25.40 25.66 21.93 29.11 15.30 19.33 42.08 21.88 19.79 36.28 30.60 15.87 19.30 12.91
24.36 25.36 25.72 21.97 29.18 15.10 19.32 41.77 21.98 19.71 37.19 30.65 15.91 19.23 12.91

Mean 24.56 25.79 25.78 22.53 29.51 15.40 19.87 42.70 22.17 20.09 37.56 31.55 16.47 19.81 13.46
Standard Er-

ror
0.177 0.181 0.181 0.170 0.193 0.140 0.159 0.234 0.168 0.160 0.219 0.201 0.145 0.159 0.131
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X2.2.3 The standard error of each mean is calculated using
Eq 3. Again for the second sample X-method results, the ni2 are
all equal to 2, except n1,2 = 1, so

1
LXi

(
j

1
nXij

5
4
7

and sXi 5Œ1
7 F .09642 2 0.02902S 3

7 D G =25.79

5 0.181. (X2.2)

X2.2.4 The means and standard errors for each fuel by both
methods are found at the bottoms of their respective tables
(Tables X2.1 and X2.2).

X2.3 Calculate the Total Variation Sum of Squares

X2.3.1 Table X2.4 demonstrates the application of Eq 4 and
5 to obtain the total sum of squares for the Y-method means.
The weighted mean, Ȳ, is found to be 3333.81/186.8 = 17.85.
TSSY = 6564.8. We compare 6564.8/14 = 469 to the 95th

percentile of the F distribution with 14 and 9 degrees of
freedom for the numerator and denominator, respectively. The
F percentile is 3.03. Hence, we conclude TSSY is highly
statistically significant. Similarly, a high degree of significance
is also found for TSSX.

X2.4 Calculate the Closeness Sums of Squares (CSS)

X2.4.1 Class 0—No correction. The first three columns of
Table X2.5 display the computations from Eq 6 and Eq 7. As
shown in the next-to-last line in the table, CSS0 turns out to be
812.46.

X2.4.2 Class 1a—Constant correction. Table X2.5 contains
these computations, also. Note that Ȳi is smaller than X̄i for all
samples, so it is not surprising that CSS1a is quite a bit smaller
than CSS0. a = Ȳ − X̄ = 18.36 − 20.62 = -2.26.

X2.4.3 Class 1b—Proportional correction.
X2.4.3.1 Aromatics concentration having a true zero, and as

max(Yi) = 40.2 > 23.54 = 2 min(Yi ), it is appropriate to also
consider a proportional correction. Table X2.6 shows the
computations for the first two iterations. Starting with b = 1, the
first iteration proceeds using wi’s from Table X2.5. Computing
b0:

b0 5
( wiXiYi

( wiXi
2 2 ( wi

2sXi
2 ~Yi 2 bXi!

2
5

56088.3
62529 2 232.88

5 0.9003

(X2.3)

X2.4.3.2 As |b − b0| = 0.0997 > .001 b, we must iterate as
shown.

X2.4.3.3 From the Second Iteration:

b0 5
( wiXiYi

( wiXi
2 2 ( wi

2sXi
2 ~Yi 2 bXi!

2
5

58685.8
65459.0 2 54.63

5 0.8973

(X2.4)

X2.4.3.4 Again, |b − b0| = 0.0030 > .001 b, so a third
iteration (not shown) is required. From the third iteration, b0 =
0.8972, |b − b0| = 0.0001 < .001 b, and iteration may stop. The
final step, computation of CSS1b = 158.79, is shown in the last
column of Table X2.6.

TABLE X2.2 Aromatics by Test Method D5769

Fuel

Laboratory 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 21.33 21.37 22.21 20.90 26.19 10.88 15.88 38.58 18.66 16.81 33.14 27.87 14.74 17.72 11.78
22.01 21.12 21.99 20.98 25.88 10.93 16.07 38.39 18.41 17.21 33.76 28.39 14.77 17.68 12.12

2 21.70 21.32 22.20 20.79 26.85 11.60 16.26 40.33 19.29 17.41 34.32 29.28 14.99 18.10 12.31
21.79 21.15 22.60 20.69 26.57 11.84 16.25 38.86 18.79 17.28 33.99 28.48 14.86 18.13 12.24

3 24.09 23.36 24.71 22.40 27.99 12.45 17.31 41.40 20.65 19.83 35.18 29.96 16.24 19.81 12.94
24.32 23.57 24.93 22.26 28.08 12.31 17.26 41.36 20.88 18.94 36.35 29.82 16.43 19.42 12.81

4 23.43 22.59 24.15 21.55 27.58 12.23 17.09 41.04 20.14 18.53 35.80 30.28 15.39 18.23 12.52
23.08 22.54 23.99 21.61 27.50 12.36 17.15 41.11 20.37 18.46 35.98 30.12 15.43 18.23 12.59

5 23.63 22.65 24.54 21.26 28.10 12.52 17.49 41.79 20.47 18.73 35.67 30.01 15.74 18.99 12.31
24.33 22.69 24.88 22.36 28.24 12.48 17.26 40.71 20.29 18.31 35.84 30.03 16.03 18.73 12.30

6 22.38 20.43 22.70 20.13 26.34 11.27 15.72 38.89 18.74 17.13 34.29 27.73 14.97 18.56 12.17
22.53 20.40 22.86 20.39 26.44 11.24 15.54 39.13 18.71 17.26 34.74 27.85 15.01 18.59 12.05

7 22.84 21.79 22.90 20.85 27.10 11.33 16.36 40.88 19.50 17.76 34.93 28.80 15.05 17.82 12.01
22.72 21.76 23.32 20.25 26.47 11.33 16.79 40.27 19.42 17.50 34.71 29.11 14.87 17.56 11.99

Mean 22.87 21.91 23.43 21.17 27.10 11.77 16.60 40.20 19.59 17.94 34.91 29.12 15.32 18.40 12.30
Standard Er-

ror
0.345 0.330 0.353 0.319 0.408 0.177 0.250 0.606 0.295 0.270 0.526 0.439 0.231 0.277 0.185

TABLE X2.3 Precision Estimates and Associated Standard DeviationsA

Precision Estimates Degrees of Freedom t (.975) Standard Deviations

rX 5 0.0831 œX
94 1.986

srX 5 0.0296 œX

RX 5 0.2792 œX
28 2.048

sRX 5 0.0964 œX

rY = 0.0292 Y 105 1.983 srY = 0.0104 Y
RY = 0.1292 Y 9 2.262 sRY = 0.0404 Y

A This interlaboratory study did not meet the minimum degrees of freedom requirement (30) as recommended in Practice D6300. The low degrees of freedom for RX and
RY suggest the need for further inter-laboratory standardization, and the latter could be a contributing factor towards the sample-specific biases observed.
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X2.4.4 Class 2—Linear correction.
X2.4.4.1 Tables X2.7 and X2.8 demonstrate two iterations

of the algorithm for fitting the linear model. Starting with b =
1, the first iteration proceeds as in Class 1, shown in Tables
X2.5-X2.7. Computing b0:

b0 5
( wixiyi

( wixi
2 2 ( wi

2 sXi
2 ~yi 2 bxi!

2
5

5069.01
5228.26 2 38.08

5 0.97665

(X2.5)

TABLE X2.4 Total Variation Sum of Squares for Y-Method

i Yi sYi 1/sYi
2 Yi /sYi

2 (Yi – Ȳ) 2/sYi
2

1 22.87 0.345 8.42 192.57 212.48
2 21.91 0.330 9.17 201.01 151.48
3 23.43 0.353 8.02 187.99 249.90
4 21.17 0.319 9.82 208.01 108.70
5 27.10 0.408 6.00 162.54 513.12
6 11.77 0.177 31.80 374.21 1174.31
7 16.60 0.250 15.98 265.27 24.75
8 40.20 0.606 2.73 109.57 1361.51
9 19.59 0.295 11.47 224.77 35.04
10 17.94 0.270 13.68 245.49 0.12
11 34.91 0.526 3.61 126.17 1052.00
12 29.12 0.439 5.19 151.22 660.32
13 15.32 0.231 18.76 287.42 119.47
14 18.40 0.277 13.01 239.38 3.95
15 12.30 0.185 29.13 358.18 897.59

Sum 186.80 3333.81 6564.75
Wt Avg 17.85

TABLE X2.5 CSS0 and CSS 1a

i Yi−Xi wi wi(Yi − Xi )2 wiXi wiYi wi(Yi − Xi−Ȳ + X̄)2

1 −1.69 6.67 19.1 163.8 152.5 2.16
2 −3.88 7.05 106.2 181.7 154.4 18.52
3 −2.36 6.35 35.3 163.7 148.7 0.06
4 −1.36 7.66 14.2 172.6 162.2 6.21
5 −2.42 4.90 28.7 144.6 132.7 0.12
6 −3.63 19.56 257.4 301.2 230.3 36.57
7 −3.27 11.37 121.7 225.9 188.7 11.63
8 −2.51 2.37 14.9 101.3 95.4 0.14
9 −2.58 8.66 57.6 192.0 169.7 0.88
10 −2.15 10.15 46.8 203.8 182.0 0.13
11 −2.65 3.08 21.7 115.7 107.5 0.47
12 −2.42 4.29 25.2 135.5 125.1 0.12
13 −1.15 13.45 17.8 221.6 206.1 16.54
14 −1.41 9.79 19.4 193.9 180.1 7.08
15 −1.17 19.45 26.5 261.9 239.2 23.20

Sum 134.80 CSS0=812.46 2779.2 2474.5 CSS1a = 123.86
Wt Avg 20.62 18.36

TABLE X2.6 Iterating Class 1b

First Iteration Second Iteration Final Step
i wi wiXi Yi wiXi

2 wi
2sXi

2(Yi − bXi)
2 wi wiXi Yi wiXi

2 wi
2sXi

2(Yi − bXi)
2 wi (Yi − bXi)

2

1 6.67 3746.7 4023.7 3.962 6.94 3900.2 4188.5 0.861 4.83
2 7.05 3981.3 4686.7 24.633 7.37 4164.3 4902.1 3.077 11.19
3 6.35 3834.2 4220.1 7.374 6.61 3992.2 4394.0 0.065 0.56
4 7.66 3654.0 3888.7 3.120 7.99 3813.2 4058.0 1.442 7.31
5 4.90 3917.4 4267.2 5.259 5.07 4058.4 4420.8 0.263 1.91
6 19.56 3545.2 4637.9 99.028 21.10 3823.8 5002.3 38.358 88.48
7 11.37 3751.0 4490.2 35.110 12.03 3967.8 4749.7 6.120 18.21
8 2.37 4073.2 4327.1 1.927 2.43 4175.5 4435.8 0.988 8.63
9 8.66 3761.9 4257.1 14.122 9.08 3945.1 4464.4 0.319 0.82
10 10.15 3656.4 4094.1 12.101 10.67 3844.6 4304.9 0.062 0.07
11 3.08 4038.5 4345.3 3.199 3.17 4154.8 4470.3 0.574 4.63
12 4.29 3945.4 4273.9 4.367 4.44 4079.1 4418.6 0.411 2.97
13 13.45 3395.2 3650.3 5.043 14.21 3587.4 3856.9 1.022 4.18
14 9.79 3567.4 3840.7 4.816 10.27 3743.0 4029.7 0.850 4.03
15 19.45 3220.2 3526.1 8.817 20.76 3436.4 3762.9 0.222 0.97

Sum 56088.3 62529.0 232.88 58685.8 65459.0 54.63 CSS1b = 158.79
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X2.4.4.2 As |b − b0| = 0.02335 > .001 b, we must iterate as
shown in Table X2.8.

X2.4.4.3 From the Second Iteration:

b0 5
5121.63

5282.30 2 38.44
5 0.97669 (X2.6)

X2.4.4.4 Now |b − b0| = 0.00004 < .001 b, and iteration may
stop. The final step, computation of CSS2 = 121.03, is shown in
the last column of Table X2.8. Using equation (Eq 18), a =
18.34 − 0.9767 × 20.60 = −1.78.

X2.5 Test Whether the Methods are Sufficiently Corre-
lated

X2.5.1 From Eq 19 compute:

F 5
~TSSX1TSSY 2 CSS2!/S

CSS2/~S 2 2!
(X2.7)

5
~26182.316564.7 2 121.03!/15

121.03/13
5 233.6

X2.5.2 The 95th percentile of the F distribution, with 15 and
13 degrees of freedom, is 2.53. As the computed F is (very
much) larger than 2.53, the methods are sufficiently correlated.

X2.6 Conduct Tests to Select the Most Parsimonious Bias
Correction Class Needed

X2.6.1 From Eq 20 compute:

F 5
~CSS0 2 CSS2!/2

CSS2/~S 2 2!
5

~812.46 2 121.03!/2
121.03/13

5 37.13 (X2.8)

X2.6.2 The 95th percentile of the F distribution, with 2 and
13 degrees of freedom, is 3.81. As the computed F is larger
than 3.81, we conclude that a bias correction (of class yet to be
determined) will significantly improve the expected agreement
between the two methods.

X2.6.3 As CSS1a is smaller than CSS1b, the t-ratios of
equation Eq 21 are:

t1ŒCSS0 2 CSS1a

CSS2/~S 2 2!
5Œ812.46 2 123.86

121.03/13
5 8.60 (X2.9)

and

t2ŒCSS1a 2 CSS2

CSS2/~S 2 2!
5Œ123.86 2 121.03

121.03/13
5 0.55. (X2.10)

X2.6.4 The 97.5th percentile of Student’s t distribution, with
13 degrees of freedom, is 2.16. As t2 is smaller than 2.16, we

TABLE X2.7 First Iteration of Class 2 Model Fitting

i wi wiXi wiYi xi yi wixi yi wixi
2 wi

2sXi
2(yi − bxi)

2

1 6.67 163.8 152.5 3.94 4.51 118.68 103.70 0.45
2 7.05 181.7 154.4 5.17 3.55 129.50 188.61 4.30
3 6.35 163.7 148.7 5.17 5.07 166.28 169.47 0.01
4 7.66 172.6 162.2 1.91 2.82 41.29 28.08 1.37
5 4.90 144.6 132.7 8.90 8.74 380.80 387.73 0.02
6 19.56 301.2 230.3 −5.22 −6.59 672.94 533.28 14.07
7 11.37 225.9 188.7 −0.74 −1.76 14.84 6.29 3.36
8 2.37 101.3 95.4 22.08 21.84 1144.46 1157.30 0.02
9 8.66 192.0 169.7 1.56 1.24 16.66 20.96 0.22
10 10.15 203.8 182.0 −0.53 −0.42 2.24 2.85 0.03
11 3.08 115.7 107.5 16.94 16.55 863.63 884.04 0.07
12 4.29 135.5 125.1 10.93 10.77 505.33 513.04 0.02
13 13.45 221.6 206.1 −4.14 −3.03 169.13 230.94 4.68
14 9.79 193.9 180.1 −0.81 0.04 −0.32 6.43 1.75
15 19.45 261.9 239.2 −7.15 −6.06 843.55 995.54 7.71

Sum
Avg

134.80 2779.21
20.62

2474.55
18.36

5069.01 5228.26 38.08

TABLE X2.8 Second Iteration of Class 2 Model Fitting

i wi wiXi wiYi xi yi wixi yi wixi
2 wi

2sXI
2(yi − bxi)

2 wi (yi − bxi)
2

1 6.73 165.41 154.03 3.96 4.53 120.82 105.61 0.62 2.96
2 7.12 183.68 156.04 5.19 3.57 131.99 191.91 3.76 16.02
3 6.41 165.26 150.15 5.18 5.09 169.03 172.25 0.00 0.00
4 7.74 174.35 163.83 3.120 1.93 42.35 28.88 1.54 6.93
5 4.94 145.82 133.86 8.91 8.76 385.56 392.54 0.00 1.01
6 19.92 306.67 234.42 −5.20 −6.57 681.05 539.39 17.28 44.10
7 11.52 228.98 191.29 −0.73 −1.74 14.55 6.08 3.56 12.18
8 2.39 101.94 95.96 22.10 21.86 1153.15 1166.05 0.02 0.17
9 8.76 194.19 171.60 1.57 1.25 17.28 21.67 0.17 0.70
10 10.27 206.27 184.22 −0.51 −0.40 2.11 2.70 0.03 0.10
11 3.10 116.49 108.27 16.96 16.57 871.36 891.90 0.00 0.00
12 4.33 136.56 126.07 10.95 10.78 511.02 518.79 0.01 0.04
13 13.63 224.51 208.82 −4.13 −3.02 169.67 232.07 4.01 14.00
14 9.90 196.15 182.19 −0.79 0.06 −0.46 6.23 1.72 6.87
15 19.76 265.98 242.90 −7.14 −6.04 852.16 1006.23 5.72 16.95

Sum
Avg

136.51 2812.26
20.60

2503.64
18.34

5121.63 5282.30 38.44 CSS2 = 121.03
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compare t1 to the same percentile, as discussed in 6.5.3.3. t1
exceeds 2.16, so we conclude that a constant bias correction is
preferred to a linear (proportional + constant) bias correction.
The preferred bias correction is to subtract (since a has a
negative sign) 2.26 volume % aromatics from any Test Method
D5580 result, in order to predict a Test Method D5769 result on
the same material. Note that the predicted Test Method D5769
result should be within the scope of D5769 in order for it to be
meaningful.

X2.7 Test for Existence of Sample-Specific Biases

X2.7.1 The CSS of the selected bias correction is 123.86,
with S-1 = 14 degrees of freedom. The 95th percentile value of
the chi-square distribution is 23.68. As the CSS is larger, we
conclude that there are likely sample-specific biases between
the methods.

X2.8 Examine Residuals to Assess Reasonableness of
Random Effect Assumption

X2.8.1 The (standardized) residuals ε i5=wi~ Yi2Ŷ i! , are
shown in Table X2.9. For example, the residual for the first
sample (first in Tables X2.1-X2.8) is =6.67 ~22.872~24.56
22.26!!51.47, which is found in the eleventh row. (The table
has been sorted in order of increasing ε i.) {wi} are taken from
Table X2.5, which is appropriate for the selected bias correc-
tion.

X2.8.2 Anderson-Darling Statistic:
X2.8.2.1 From Eq A1.4 of Practice D6299, the residuals,

{εi}, are again normalized. To avoid a conflict in notation, what
are called wi in that practice are called vi = (εi − ε̄)/sε here and
in Table X2.9, where ε̄ = -.06 is the mean of the {εi}, and sε
=2.97 is the standard deviation. The {pi} are from tables of the
standard normal distribution. From Eq. A1.6 and A1.7 of
Practice D6299,

A2 5 2
(~2i 2 1!@1n~pi!11n~1 2 pn112i!#

n
2 n 5 0.361

(X2.11)

A2* 5 A2S 11
0.75

n
1

2.25
n2 D 5 0.382 (X2.12)

X2.8.2.2 As A2* (0.382) is less than the .05 level critical
value (0.752) for the Anderson Darling statistic, the distribu-
tion of the residuals cannot be distinguished from the normal
distribution.

X2.8.3 Between Methods Reproducibility:

X2.8.3.1 Estimate the between methods reproducibility
(RXY) as follows:

RXY 5!S b2RX
2

2
1

RY
2

2 DS 11
2·1.962 ~CSS 2 S1k!S

~S 2 k!(
b2RXi

2 1RYi
2

b2sXi
2 1sYi

2
D

(X2.13)

(
b2RXi

2 1RYi
2

b2SXi
2 1SYi

2 5
0.2792224.5610.1292222.872

0.177210.3452 1…

1
0.2792213.4610.1292212.32

0.131210.1852

570.801…169.57 5 1059.57

RXY

5ŒS 0.27922X
2

1
0.12922Y2

2 D S 11
2 3 1.962 3 ~123.86 2 1511!15

~15 2 1!1059.57 D
5ŒS 0.27922X

2
1

0.12922Y2

2 D=1.85356

51.36=0.03898X10.008346Y2 5 =0.07225X10.01547Y2

X2.8.3.2 Because of the sample-specific biases (which
could be due to the need for further standardization in one of
the methods as noted earlier), this is 36 % larger than the root
mean squares of the individual reproducibilities.

TABLE X2.9 Residuals

Rank
Original

Sequence No.
Sorted

Residual vi pi

i th Term in
Eq X2.1

1 6 −6.05 −2.01 0.022 −0.45
2 2 −4.30 −1.43 0.077 −1.01
3 7 −3.41 −1.13 0.130 −1.25
4 9 −0.94 −0.30 0.383 −1.21
5 11 −0.69 −0.21 0.416 −1.24
6 8 −0.38 −0.11 0.457 −1.17
7 5 −0.35 −0.10 0.460 −1.23
8 12 −0.34 −0.10 0.462 −1.39
9 3 −0.25 −0.06 0.475 −1054
10 10 0.36 0.14 0.555 −1.52
11 1 1.47 0.51 0.696 −1.26
12 4 2.49 0.86 0.804 −1.08
13 14 2.66 0.91 0.820 −0.56
14 13 4.07 1.39 0.917 −0.30
15 15 4.82 1.64 0.949 −0.14
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SUMMARY OF CHANGES

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6708 – 16a) that may impact the use of this standard. (Approved June 15, 2016.)

(1) Revised subsections 1.7 and 7.1.
(2) Revised Terminology, adding new 3.1.5 and 3.1.1; revised
symbols listing in subsection 3.2.

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6708 – 16) that may impact the use of this standard. (Approved April 1, 2016.)

(1) Revised subsections 7.2.1.1 and 7.2.1.4.

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6708 – 15) that may impact the use of this standard. (Approved Jan. 1, 2016.)

(1) Added new subsection X1.3.3.

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6708 – 13ε1) that may impact the use of this standard. (Approved July 1, 2015.)

(1) Added new subsection 5.5 and Note 7.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned
in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk
of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and
if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards
and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the
responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should
make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,
United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above
address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website
(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/
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