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Standard Practice for
Evaluating Test Sensitivity for Rubber Test Methods1

This standard is issued under the fixed designation D6600; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers testing to evaluate chemical
constituents, chemical and physical properties of compounding
materials, and compounded and cured rubbers, which may
frequently be conducted by one or more test methods. When
more than one test method is available, two questions arise:
Which test method has the better (or best) response to or
discrimination for the underlying fundamental property being
evaluated? and Which test method has the least error? These
two characteristics collectively determine one type of technical
merit of test methods that may be designated as test sensitivity.

1.2 Although a comprehensive and detailed treatment, as
given by this practice, is required for a full appreciation of test
sensitivity, a simplified conceptual definition may be given
here. Test sensitivity is the ratio of discrimination power for the
fundamental property evaluated to the measurement error or
uncertainty, expressed as a standard deviation. The greater the
discriminating power and the lower the test error, the better is
the test sensitivity. Borrowing from the terminology in
electronics, this ratio has frequently been called the signal-to-
noise ratio; the signal corresponding to the discrimination
power and the noise corresponding to the test measurement
error. Therefore, this practice describes how test sensitivity,
generically defined as the signal-to-noise ratio, may be evalu-
ated for test methods used in the rubber manufacturing
industry, which measure typical physical and chemical
properties, with exceptions as noted in 1.3.

1.3 This practice does not address the topic of sensitivity for
threshold limits or minimum detection limits (MDL) in such
applications as (1) the effect of intentional variations of
compounding materials on measured compound properties or
(2) the evaluation of low or trace constituent levels. Minimum
detection limits are the subject of separate standards.

1.4 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-

priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

1.5 The content of this practice is as follows:
Section

Scope 1
Referenced Documents 2
Terminology 3
Summary of Practice 4
Significance and Use 5
Measurement Process 6
Development of Test Sensitivity Concepts
(Absolute and Relative Test Sensitivity, Limited and Extended

Range Test Sensitivity, Uniform and Nonuniform Test Sensitivity)

7

Steps in Conducting a Test Sensitivity Evaluation Program 8
Report for Test Sensitivity Evaluation 9
Keywords 10
Annex A1—Background on: Use of Linear Regression Analysis and
Precision of Test Sensitivity Evaluation
Appendix X1—Two Examples of Relative Test Sensitivity Evaluation:

Relative Test Sensitivity: Limited Range—Three Processability
Tests
Relative Test Sensitivity: Extended Range—Compliance versus
Modulus

Appendix X2—Background on: Transformation of Scale and
Derivation of Absolute Sensitivity for a Simple Analytical Test

2. Referenced Documents

2.1 ASTM Standards:2

D4483 Practice for Evaluating Precision for Test Method
Standards in the Rubber and Carbon Black Manufacturing
Industries

3. Terminology

3.1 A number of specialized terms or definitions are re-
quired for this practice. They are defined in a systematic or
sequential order from simple terms to complex terms; the
simple terms may be used in the definition of the more complex
terms. This approach generates the most succinct and unam-
biguous definitions. Therefore, the definitions do not appear in
the usual alphabetical sequence.

3.2 Definitions:
3.2.1 calibration material, CM, n—a material (or other

object) selected to serve as a standard or benchmark reference
material, with a fully documented FP reference value for a test

1 This practice is under the jurisdiction of ASTM Committee D11 on Rubber and
is the direct responsibility of Subcommittee D11.16 on Application of Statistical
Methods.
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method; the calibration material, along with several other
similar materials with documented or FP reference values, may
be used to calibrate a particular test method or may be used to
evaluate test sensitivity.

3.2.1.1 Discussion—A fully documented FP or FP reference
value implies that an equally documented measured property
value may be obtained from a MP = f (FP) relationship.
However, unless f = 1, the numerical values for the MP and the
FP are not equal for any CM.

3.2.2 fundamental property, FP, n—the inherent or basic
property (or constituent) that a test method is intended to
evaluate.

3.2.3 measured property, MP, n—the property that the
measuring instrument responds to; it is related to the FP by a
functional relationship, MP = f (FP), that is known or that may
be readily evaluated by experiment.

3.2.4 reference material, RM, n—a material (or other ob-
ject) selected to serve as a common standard or benchmark for
MP measurements for two or more test methods; the expected
measurement value for each of the test methods, designated as
the reference value, may be known (from other sources) or it
may be unknown.

3.2.5 testing domain, n—the operational conditions under
which a test is conducted; it includes description of the test
sample or specimen preparation, the instrument(s) used
(calibration, adjustments, settings), the selected test
technicians, and the surrounding environment.

3.2.5.1 local testing, n—a testing domain comprised of one
location or laboratory as typically used for quality control and
internal development or evaluation programs.

3.2.5.2 global testing, n—a testing domain that encom-
passes two or more locations or laboratories, domestic or
international, typically used for producer-user testing, product
acceptance, and interlaboratory test programs.

3.2.6 Although a simplified conceptual definition of test
sensitivity was given in the Scope, a more detailed but still
general definition using quantitative terms is helpful for
preliminary discussion.

3.2.6.1 test sensitivity (generic), n—a derived quantity that
indicates the level of technical merit of a test method; it is the
ratio of the test discrimination power or signal, that is the
magnitude of the change in the MP for some unit change in the
related FP of interest, to the noise or standard deviation of the
MP.

3.2.6.2 Discussion—This definition strictly applies to an
absolute sensitivity, see 7.2. The change in the FP may be an
actual measurement unit or a selected FP difference. The
relation between the MP and the FP is of the form MP = f (FP).

4. Summary of Practice

4.1 This practice develops the necessary terminology and
the required concepts for defining and evaluating test sensitiv-
ity for test methods. Sufficient background information is
presented to place the standard on a firm conceptual and
mathematical foundation. This allows for its broad application
across both chemical and physical testing domains. The devel-

opment of this practice draws heavily on the approach and
techniques as given in the referenced literature.3,4

4.2 After the introduction of some general definitions, a
brief review of the measurement process is presented, suc-
ceeded by a development of the basic test sensitivity concepts.
This is followed by defining two test sensitivity classifications,
absolute and relative test sensitivity and two categories, (1) for
a limited measured property range and (2) for an extended
property range evaluation. For an extended property range for
either classification, two types of test sensitivity may exist, (1)
uniform or equal sensitivity across a range of properties or (2)
nonuniform sensitivity which depends on the value of the
measured properties across the selected range.

4.3 Annex A1 is an important part of this practice. It
presents recommendations for using linear regression analysis
for test sensitivity evaluation and recommendations for evalu-
ating the precision of test sensitivity.

4.4 Appendix X1 is also an important adjunct to this
practice. It gives two examples of relative test sensitivity
calculations: (1) for a limited range or spot check program and
(2) for an extended range test sensitivity program with a
dependent (nonuniform) test sensitivity. Appendix X2 gives
background on transformation of scale often needed for ex-
tended range sensitivity and for improved understanding, it
also gives the derivation of the absolute test sensitivity for a
simple analytical chemical test.

5. Significance and Use

5.1 Testing is conducted to make technical decisions on
materials, processes, and products. With the continued growth
in the available test methods for evaluating scientific and
technical properties, a quantitative approach is needed to select
test methods that have high (or highest) quality or technical
merit. The procedures as defined in this practice may be used
for this purpose to make testing as cost effective as possible.

5.2 One index of test method technical merit and implied
sensitivity frequently used in the past has been test method
precision. The precision is usually expressed as some multiple
of the test measurement standard deviation for a defined testing
domain. Although precision is a required quantity for test
sensitivity, it is an incomplete characteristic (only one half of
the necessary information) since it does not consider the
discrimination power for the FP (or constituent) being evalu-
ated.

5.3 Any attempt to evaluate relative test sensitivity for two
different test methods on the basis of test measurement
standard deviation ratios or variance ratios, which lack any
discrimination power information content, constitutes an in-
valid quantitative basis for sensitivity, or technical merit

3 Mandel, J., and Stiehler, R.D., Journal of Research of National Bureau of
Standards, Vol 53, No. 3, September 1954. See also “Precision Measurement and
Calibration—Statistical Concepts and Procedures,” Special Publication 300, Vol 1,
National Bureau of Standards, 1969, pp. 179–155). (The National Bureau of
Standards is now the National Institute for Standards and Technology.)

4 “The Statistical Analysis of Experimental Data,” Chapters 13 and 14, J.
Mandel, Interscience Publishers (John Wiley & Sons), 1964.
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evaluation. Coefficient of variation ratios (which are normal-
ized to the mean) may constitute a valid test sensitivity
evaluation only under the special condition where the two test
methods under comparison are directly proportional or recip-
rocally related to each other. If the relationship between two
test methods is nonlinear or linear with a nonzero intercept, the
coefficient of variation ratios are not equivalent to the true test
sensitivity as defined in this practice. See discussion of
example in X1.1.4. The figure of merit defined by test
sensitivity and its various classifications, categories, and types
as introduced by this practice permits an authentic quantitative
test sensitivity evaluation.

6. Measurement Process

6.1 Brief Outline of the Measurement Process—A measure-
ment process involves three components: (1) a (chemical or
physical) measurement system, (2) a chemical or physical
property to be evaluated, and (3) a procedure or technique for
producing the measured value. The FP to be determined or
evaluated has two associated adjuncts: a measured quantity or
parameter, MP, that can take on a range of numerical values
and a relationship between FP and MP of the general functional
form MP = f (FP). An implicit assumption is that the procedure
or technique must be applicable across a range of material or
system property values.

6.2 The fundamental property may be a defined
characteristic, such as the percentage of some constituent in a
material or it may be defined solely by the measuring process
itself. For this latter situation the measurement and the property
are identical, and MP = FP or f = 1. This is the usual case for
many strictly technological measurement operations or tests,
for example, the modulus of a rubber. The MP = f (FP)
relationship must be monotonic; for every value of MP there
must be a unique single value for FP. The relationship must be
specific for any particular measuring process or test, and, if
there are two different processes or tests for evaluating the FP,
the relationship is generally different for each test.

7. Development of Test Sensitivity Concepts

7.1 Test Domain—The scope of any potential test sensitivity
evaluation program should be established. Is the evaluation for
a limited local testing situation, that is, one laboratory or test
location? Or are the results to be applied on a global basis
across numerous domestic or worldwide laboratories or loca-
tions? If local testing is the issue, the test measurements are
conducted in one laboratory or location. For global testing, an
interlaboratory test program (ITP) must be conducted. Two or
more replicate test sensitivity evaluations are conducted in
each participating laboratory and an overall or average test
sensitivity is obtained across all laboratories. In the context of
an ITP for global evaluation, each replicate sensitivity evalu-
ation is defined as the entire set of operations that is required
to calculate one estimated value for the test sensitivity. For
additional background on the assessment of precision for the
test sensitivity values attained, see A1.2 and also Practice
D4483.

7.2 Test Sensitivity Classification—There are two classifica-
tions for test sensitivity.

7.2.1 Class 1 is absolute test sensitivity, or ATS, where the
word absolute is used in the sense that the measured property
can be related to the FP by a relationship that gives absolute or
direct values for FP from a knowledge of the MP. In evaluating
test sensitivity for this class, two or more CMs are used each
having documented values for the FP.

7.2.2 Class 2 is relative test sensitivity, or RTS, where the
test sensitivity of Test Method 1 is compared to Test Method 2,
on the basis of a ratio, using two or more RMs with different
MP values. This class is used for physical test methods where
no FPs can be evaluated.

7.3 Absolute Test Sensitivity—In this section absolute or
direct test sensitivity is defined in a simplified manner by the
use of Fig. 1.

7.3.1 Development of Absolute Test Sensitivity—Fig. 1 is
concerned with two types of properties: (1) an FP (or single
criterion or constituent), the value of which is established by
the use of a CM and (2) an MP obtained by applying the test
method to the CM. A relationship or functionality exists
between the MP and FP that may be nonlinear. In the
application of a particular test, FP1 corresponds to MP1 and
FP2 corresponds to MP2. Over a selected region of the
relationship, designed by points a and b, the slope, K, of the
illustrated curve is approximated by the relationship K =
∆(MP)/∆(FP). If the test measurement standard deviation for
MP denoted as SMP, is constant over this a to b range, the
absolute test sensitivity designated as ψA is defined by Eq 1.

ψA 5 ? K ?/SMP (1)

The equation indicates that for the selected region of interest,
test sensitivity will increase with the increase of the numerical
(absolute) value of the slope, | K | and sensitivity will increase
the more precise the MP measurement. Thus, ψA may be used
as a criterion of technical merit to select one of a number of test
methods to measure the FP provided that a functional
relationship, MP = f (FP), can be established for each test
method.

7.3.2 Absolute test sensitivity may not be uniform or
constant across a broad range of MP or FP values. It is constant
across a specified range, only if the direct (not transformed)
MP versus FP relationship is linear and the test error SMP is

FIG. 1 Measured Versus Fundamental Property Relationship
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constant. With an assumed monotonic relationship between FP
and MP, absolute test sensitivity, ψA, may be evaluated on the
basis of (1) two or more CMs, (or objects) with different
known FP values or (2) a theoretical relationship between MP
and FP.

7.3.3 Formal Development for ψA—For the completely
general case, a more formal mathematical development for
absolute test sensitivity that does not involve the approxima-
tion of the slope using the deltas, ∆(MP) and (∆FP), can be
given in terms of differentials. When differentials are used, K
= | d[MP]/d[FP] | and K is the tangent to the curve at some
particular point. Appendix X2 outlines the derivation of the
absolute test sensitivity for a simple analytical test on this more
theoretical and formal basis.

7.4 Absolute Test Sensitivity: Empirical Versus
Theoretical—Evaluating absolute test sensitivity requires that a
well-established relationship exist between MP and FP. This
can be obtained in one of two ways.

7.4.1 The empirical evaluation makes use of CMs, each
with a different value for the FP designated as an FP calibration
value; these values being certified by some recognized inde-
pendent procedure or authority. The relationship is experimen-
tally or empirically determined.

7.4.2 The theoretical evaluation is conducted by using the
relationship between the MP and the FP, based on scientific or
theoretical principles, for some measurement system that
permits the calculation of FP calibration values for certain
specified conditions. This will not be addressed by this practice
since this practice is limited to experimental or empirical
techniques as defined in 7.4.1.

7.5 Relative Test Sensitivity—When typical physical test
methods are employed, a relationship between MP and FP
using CMs usually is not feasible or possible. The primary
purpose of most if not all physical test methods is to make
simple relative comparisons on the basis of MP values. Under
these circumstances, it is not possible to evaluate absolute test
sensitivity.

7.5.1 Development of Relative Test Sensitivity—If an abso-
lute test sensitivity cannot be obtained, it is possible to evaluate
the relative sensitivities of two or more test methods. This can
be accomplished without knowledge of the MP = f (FP)
relationship for each test method. The most simple and direct
way to demonstrate how this is possible is to assume that we
have two test methods for which absolute test sensitivities are
known. Fig. 2 illustrates the general relationship between Test
Methods 1 and 2, with properties designated as MP1 and MP2
and the actual measured values of these two properties desig-
nated as MP1 and MP2. Since we know the two absolute test
sensitivities, ψA 1 and ψA 2, we know the values for K1, SMP1

, K2, and SMP2 as given in Eq 2.

ψA 1 5 ? K1 ?/SMP1 and ψA 2 5 ? K2 ?/SMP2 (2)

For test method comparison purposes, we form ratios of ψA

1 to ψA 2, and using the two relationships of Eq 2 we obtain

ψA 1/ψA 2 5 ? K1/K2 ? @SMP1/SMP2# 5 ? Ko ?/@SMP1/SMP2# (3)

The ratio | K1 / K2| which is defined as Ko, is obtained using
numerical (absolute) values for K1 and K2 since positive values
for the ratio are desired.

7.5.2 Fig. 2 illustrates the curvilinear relationship between
MP1 and MP2 with the approximate slope given by ∆(MP1)/
∆(MP2) and the magnitudes of SMP1 and SMP2 indicated by
vertical and horizontal bars. The Ko may be evaluated as
follows:

Ko 5 ? K1/K2 ? 5 @∆~MP1!/∆~FP!#/@∆~MP2!/∆~FP!#5 (4)

?∆~MP1!/∆~MP2!?
since the FP values, although unknown, are common to both

MP1 and MP2 and the absolute value of (∆MP1)/∆(MP2) is
used. Thus Ko may be evaluated without any knowledge of the
FPs; the requirements are (1) the relationship between MP1
and MP2 must be empirically known and (2) the measurements
MP1 and MP2 must be made on the same set of RMs, each of
which has a different fundamental property or FP value that
may or may not be known. On this basis, the relative test
sensitivity, for Test Method 1, or T1, compared to Test Method
2, or T2, designated as, ψR(T1/T2), is defined by Eq 5 as the
ratio of T1 test sensitivity to T2 test sensitivity

ψR ~T1/T2! 5 @∆~MP1!/∆~MP2!#/@SMP1/SMP2#5 (5)

? Ko ?/@SMP1/SMP2#

Unless otherwise needed, the excessive notation burden of
the parenthetical term (T1/T2) is dropped to avoid confusion,
and it is understood that the symbol ψR indicates a comparison
of (numerator) Test Method 1 to (denominator) Test Method 2.

7.5.3 If ψR is above unity, Test Method 1 is more sensitive
then Test Method 2. If ψR is below unity, Test Method 2 is more
sensitive than Test Method 1. Again, the relative test sensitivity
is applicable to a particular intermediate range of MP1 and MP2

values unless the plot of MP1 versus MP2 is linear and the ratio
(SMP1/SMP2) is constant across the experimental range under
study. The relative test sensitivity can be expressed in more
formal mathematical terms by the use of differentials rather
than deltas (∆MP1) and ∆(MP2); (see Appendix X2).

FIG. 2 Measured Property 1 Versus 2 Relationship
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7.6 Test Sensitivity Categories and Types—For each of the
two classes of test sensitivity, there are two sensitivity catego-
ries and for Category 2 there are two types of test sensitivity.

7.6.1 Category 1 is designated as a limited range or spot
check test sensitivity. This is an assessment of absolute test
sensitivity by a procedure that uses two (or perhaps three)
different CMs for the FP values or for an assessment of relative
test sensitivity by the use of two (or three) different RMs. This
is in essence a spot check in a selected MP range.

7.6.2 Category 2 is an extended range test sensitivity, a
more comprehensive evaluation assessment over a substantial
part or all of the entire working range of MP versus FP values
or MP1 versus MP2 values, as customarily used in routine
testing. Evaluating a Category 2 absolute test sensitivity
requires several CMs; the recommended number is 4 to 6, with
several measurements of MP for each established CM value for
the FP. Evaluating a Category 2 relative test sensitivity also
requires several RMs, the recommended number is 4 to 6, with
several measurements of MP for each RM.

7.6.3 Category 2 test sensitivity may or may not be uniform
or constant across a broad range of the MP. Thus there are two
types of sensitivity.

7.6.3.1 Uniform Test Sensitivity (Type 1) is a test sensitivity
that is uniform or constant across the entire experimental range
as investigated. This requires a constant value for the (SMP1/
SMP2) ratio across this range.

7.6.3.2 Nonuniform or Dependent Test Sensitivity (Type 2) is
a test sensitivity that depends on, or is correlated with, the
value of either MP across the experimental range. The ratio,
SMP1/SMP2, can usually be expressed as a linear function of
either MP (used as the x variable) in the MP1 versus MP2
relationship.

8. Steps in Conducting a Test Sensitivity Evaluation
Program

8.1 Initial Decisions—A test sensitivity program requires
decisions on a number of preliminary issues Decisions as
indicated by 8.1.1 – 8.1.4 are required prior to any actual
testing. The subsequent required steps are dependent on what
decisions were made for 8.1.1 – 8.1.4, and these steps are given
on the basis of a local evaluation program in four sections of
this practice. Fig. 3 is an outline diagram that may help in the
decision process. For absolute test sensitivity, 8.2.1 lists the
steps for a spot check and 8.2.2 gives the steps for an extended

FIG. 3 Outline of the Steps in a Test Sensitivity Evaluation Program for a Local Test Domain
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range program. For relative test sensitivity, 8.3.1 is for a spot
check and 8.3.2 for an extended range program. Although there
is some repetition of the instructions for the execution of the
program in these four sections, this arrangement allows the
user of this practice to go directly to the section pertinent to the
requirements for the test sensitivity to be evaluated. Recom-
mendations for a global evaluation program are found in A1.2.

8.1.1 Tests to Be Evaluated—Select the test method(s) to be
evaluated. For most programs, this would be two or more test
methods since even for absolute test sensitivity there is an
implication that a comparison of two or more tests is the goal
of the program. Ensure that the procedure for each test method
is well-established and documented.

8.1.2 Test Domain—The scope of the test sensitivity pro-
gram should be established; local for testing in one laboratory
or test location or global for numerous domestic or worldwide
laboratories or locations.

8.1.3 Class of Test Sensitivity—The test sensitivity classifi-
cation must be selected; Class 1 is an absolute test sensitivity
and Class 2 is a relative test sensitivity.

8.1.4 Category of Test Sensitivity—Select the evaluation
procedure, Category 1 for a limited range or spot check
program or Category 2 for an extended range program. For
Category 2 extended range evaluations for either absolute or
relative test sensitivity, the final evaluated test sensitivity may
not be uniform across the range under study. For reporting test
sensitivity, this requires a tabulation of values for ψA at
selected values of the FP or ψR at selected values for the MP.

8.2 Absolute Test Sensitivity—Follow the steps in accor-
dance with 8.2.1 or 8.2.2 for this classification.

8.2.1 Limited Range or Spot Check—Select the two (or
three) CMs to be used. The difference between the MP values
for the two (or three) CM should be large enough to permit a
good evaluation of the slope K. The FP calibration values for
each CM must be known to an accuracy sufficient for the
purposes of the sensitivity evaluation program. This implies
that the uncertainty region for the (certified) FP calibration
values be one fourth or less of the uncertainty for the MP
values.

8.2.1.1 Replication for MP Measurements—For each cali-
bration material, conduct sufficient replicate MP measurements
to establish a good estimate of the MP average and standard
deviation of the measurement process. The absolute minimum
number of replicates is four; five or six replicates is much
better. For each CM, calculate the standard deviation for the
replicate MP measurements. Calculate the average or pooled
variance across all the CMs used. The square root of this
calculation is defined as SMP.

8.2.1.2 Establish the MP Versus FP Relationship—
Determine the slope or K for each test method under review.
Refer to 7.3.1.

8.2.1.3 Calculate the Absolute Test Sensitivity—For each
test method under consideration, the absolute test sensitivity,
ψA, is obtained from the values for | K | and SMP by the use of
Eq 1. If several test methods are being evaluated, prepare a
table of ψA values for each test method for a review of results.

8.2.2 Extended Range—Select the number of CMs to be
used. For a good extended range evaluation, four or more CMs

are required as a minimum; five or six are better. The selected
CMs should span the range with approximately equal differ-
ences between each successive CM in an ascending value
order. The FP calibration values for each CM must be known
to an accuracy sufficient for the purposes of the sensitivity
evaluation program. This implies that the uncertainty region
for the (certified) FP calibration values be one fourth or less of
the uncertainty for the MP values.

8.2.2.1 Replication for MP Measurements—For each CM,
conduct sufficient replicate MP measurements to establish a
good estimate of the MP average and the standard deviation of
the measurement process. The absolute minimum number of
replicates is four; five or six replicates is much better. Calculate
the variance and standard deviation for each set of replicate MP
measurements on each calibration material.

8.2.2.2 MP Measurement Standard Deviations—Determine
if there is a relationship (linear or otherwise) between the MP
standard deviation for each CM and the MP average, for each
CM. If a statistically significant relationship exists, then ψA is
nonuniform and varies as the level of the MP or FP varies
across the range examined. This variation must be taken into
account in calculating ψA by establishing a regression equation
that relates SMP to MP across the range of values used in the
program. This is of the form SMP = ao + a1(MP), where
intercept ao and slope a1 are evaluated from a regression
analysis assuming linearity as an approximation of the rela-
tionship.

8.2.2.3 If there is no significant relationship between the MP
individual standard deviations (for each CM) and the MP,
calculate the average or pooled variance for the MP across all
the CMs used. The square root of this calculation is defined as
SMP.

8.2.2.4 Establish the MP vs FP Relationship—Generate the
plot of the MP versus the FP and examine its nature, linear or
curvilinear. The ideal outcome is a linear relationship. For
curvilinear relationships, perform transformations (on one or
both variables) to obtain a linear functionality. See Appendix
X2 for recommendations on applicable transformations. Once
a satisfactory linear relationship is found based on visual
examination, conduct a linear regression analysis. For the MP
vs FP relationship, the calculation results are expressed in
terms of the constant or intercept, bo and the slope or linear
regression coefficient, b1, where the subscript 1 may be
replaced by one or more symbols that refer directly to the two
measured properties, MP and FP. Also calculate the correlation
coefficient, R (or R2) and the standard deviation (or standard
error of estimate), Syx, about the fitted line. Follow the
procedure in accordance with A1.1.1 and A1.1.2. For each test
method under review, the MP vs FP slope or regression b
coefficient is equal to K.

8.2.2.5 Calculate the Uniform Absolute Test Sensitivity—If
SMP is invariant or equal across the range of MP values, use the
standard deviation obtained from the pooled variance for the
MP measurements, as the value for SMP. Refer to Eq 1. This
calculation gives the uniform test sensitivity.

8.2.2.6 Calculate the Nonuniform or Dependent Absolute
Test Sensitivity—If the individual MP standard deviations
(across the CMs used) is a function of either property, the
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denominator of Eq 1 varies with the value of MP. This requires
an expression of the form SMP = [ao + a1(MP)] as developed
in 8.2.2.2 where the numerical values as obtained from analysis
are substituted for ao and a1. On this basis ψA is reported as a
dependent absolute test sensitivity and a table of values should
be prepared giving ψA for each of several selected MP values
across the experimental range. If several test methods are being
evaluated, prepare a table of ψA values at some reference value
for each method, such as the middle of the MP range. This
permits a common basis comparative review of the test
sensitivities for all the methods under consideration.

8.3 Relative Test Sensitivity—To evaluate relative test
sensitivity, follow the steps in accordance with 8.3.1 and 8.3.2.

8.3.1 Limited Range or Spot Check—Select the two (or
three) RMs to be used. Although it is not required that a
certified FP value be known for each it is appropriate to know
an approximate value for the MP or FP for each RM. The
difference between the MP values for the two (or three) RMs
should be large enough to permit a reliable evaluation of the
slope or Ko as given in Eq 4.

8.3.1.1 Replication for MP Measurements—For each RM,
conduct sufficient replicate MP measurements, for each of the
test methods under review, to establish a good estimate of the
standard deviation of the measurement process. The absolute
minimum number of replicates is four; five or six replicates is
much better especially for a limited range evaluation. For each
test method, calculate the standard deviation for each set of
replicate MP measurements and calculate the average or
pooled variance across all the RMs used. The square root of the
pooled variance for Test Method 1, or T1, is defined as SMP1

and the square root of the pooled variance for Test Method 2,
or T2, is defined as SMP2.

8.3.1.2 Establish the MP1 Versus MP2 Relationship—
Determine the slope or Ko for each test method under review
using ∆(MP) or delta values as given by Eq 4. This assumes
that only two RMs are being used. If three RMs are used, a
slope may be determined by linear regression analysis assum-
ing that linearity is a good approximation of the MP1 versus
MP2 functionality.

8.3.1.3 Calculate the Relative Test Sensitivity—For each test
method under consideration, ψR is obtained from the values for
| Ko | and the ratio (SMP1/SMP2) by the use of Eq 5. If several
test methods are being evaluated, select one of the test methods
as a reference or standard method and use this as T2 (the
denominator in the T1/T2 ratio) for all relative test sensitivity
calculations. Thus, for the three test methods, that are three ψR

values; ψR (T1/T2), Test Method 1 compared to Test Method 2;
and ψR (T3/T2), Test Method 3 compared to Test Method 2;
and ψR (T2/T2) which by definition is 1.00. The numerical
values for ψR (T1/T2) and ψR (T3/T2) may be compared to
1.00 to determine which of the three test methods has the
highest test sensitivity.

8.3.2 Extended Range—Select the number of RMs to be
used. For a good extended range evaluation, four or more RMs
are required as a minimum; five or six are better. The selected
RMs should span the range with approximately equal differ-

ences between each successive RM in an ascending value
order. Thus approximate values for the MP or FP should be
known for each RM.

8.3.2.1 Replication for MP Measurements—For each RM,
conduct sufficient replicate (MP1, MP2, and so forth) measure-
ments to establish a good estimate of the standard deviation of
the measurement process for all MPs. The absolute minimum
number of replicates is four; five or six replicates is much
better. If more than two test methods are being evaluated, one
test method should be selected as the reference or standard
method and used as a reference for a comparative review of ψR

for all test methods. For each test method, calculate the
variance and standard deviation for each set of replicate MP
measurements on each RM.

8.3.2.2 MP Measurement Standard Deviations—For each
test method, determine if there is a relationship (linear or
otherwise) between the standard deviation (for each RM) and
either or both MPs. This is for general background information.
Next calculate the ratio (SMP1 /SMP2) for each RM and
determine if this ratio is a function of either MP. If a
statistically significant relationship exists, then ψR is nonuni-
form and varies with the level of the MP across the range
examined. Establish a regression equation of the form (SMP1/
SMP2) = ao + a1 (MP), where ao and a1 are evaluated from a
regression analysis assuming linearity as an approximation of
the relationship.

8.3.2.3 Establish the MP1 Versus MP2 Relationship—The
next operation is to establish a relationship between the two
MPs. For this relationship or plot, the x variable should be the
MP with the smaller pooled variance for the MP measurements
across all RM. Select this MP and construct a plot of the other
MP (as y) and the MP with smaller pooled variance (as x ) and
examine its nature, linear or curvilinear. The ideal outcome is
a linear relationship. For curvilinear relationships,
transformations, on one or both variables, may be made to
obtain a linear functionality. See X2.1.3 for recommendations
on applicable transformations.

8.3.2.4 Evaluating Ko—Once a satisfactory linear relation-
ship is found based on visual examination, conduct a linear
regression analysis. For the MP1 versus MP2 relationship, the
calculation results are expressed in terms of the constant or
intercept, bo and the slope or linear regression coefficient, b1,
where the subscript 1 may be replaced by one or more symbols
that refer directly to the two MPs, MP1 and MP2. Also
calculate the correlation coefficient, R (or R2) and the standard
deviation (or standard error of estimate), Sy.x, about the fitted
line. Follow the procedure in accordance with A1.1.1 and
A1.1.2. The slope or Ko of Eq 4 is equal to the regression
coefficient, b1, for each test method under review. Refer to
7.5.1 and 7.5.2.

8.3.2.5 Calculate the Uniform Relative Test Sensitivity—If
(SMP1/SMP2) is invariant (equal) across the range of values, use
the overall average (SMP1/SMP2) obtained from the pooled
variances, to calculate the uniform relative test sensitivity ψR.

8.3.2.6 Calculate the Nonuniform or Dependent Relative
Test Sensitivity—If the ratio (SMP1/SMP2) varies with the value
of either MP, an expression of the form (SMP1/SMP2) = [ao + a1

(MP)], as developed in 8.3.2.2, is required and the term [ao +
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a1 (MP)] must be substituted for the denominator of Eq 5. This
assumes that a linear expression is a good approximation.
Numerical values are used for ao and a1 as obtained from
analysis and the term MP may represent transformed values.
On this basis, ψR is reported as a nonuniform or dependent test
sensitivity and a table of values should be prepared giving ψR

for a number of selected MP values across the experimental
range. If several test methods are being evaluated, prepare a
table of ψR values at some reference value for each test
method, such as the middle of the MP range. This permits a
common basis comparative review of the test sensitivities for
all the methods under consideration.

9. Report for Test Sensitivity Evaluation

9.1 A report of the results for a test sensitivity evaluation
should be prepared. This is required due to the various classes,
categories, and types of test sensitivity that may be under
investigation. Report the following information:

9.1.1 Test method(s) under investigation,
9.1.2 The CMs or RMs used for the program, certified FP

values, and approximate RM values,
9.1.3 The classification, absolute or relative test sensitivity,
9.1.4 The category, limited range (spot check) or extended

range (list the range),
9.1.5 The type of test sensitivity obtained, uniform or

nonuniform (dependent),
9.1.6 Any transformations made,
9.1.7 A tabulation of the one or more uniform or nonuni-

form (dependent) test sensitivities, and
9.1.8 Standard deviation of the test sensitivities, if evalu-

ated.

10. Keywords

10.1 absolute test sensitivity; calibration material; reference
material; relative test sensitivity; signal-to-noise ratio; test
sensitivity

ANNEX

(Mandatory Information)

A1. BACKGROUND ON USE OF LINEAR REGRESSION ANALYSIS AND PRECISION OF TEST SENSITIVITY EVALUATION

A1.1 Linear Regression Analysis: MP Versus FP and MP1
Versus MP2

A1.1.1 This annex applies to an extended range or Category
2 test sensitivity. Once an apparent linear functionality between
MP and FP or MP1 and MP2 has been found (if necessary by
applying transformations), a decision on the goodness of fit for
the particular selected functionality can be made. The recom-
mended procedure is not exact but a first order approximation
that should be suitable for most circumstances.

A1.1.2 For an absolute sensitivity, plot the individual values
of MP used as the y variable versus the FP value for each CM,
and, for a relativity sensitivity, plot the individual values of
MP1 (for each RM) versus the individual values of MP2 (for
each RM), that is, do not use the average values for each RM
as the x or y variable values. Conduct a linear regression
analysis on this individual value x and y database. Evaluate the
slope b1, the intercept bo, the standard error of the estimate,
Syx, and the correlation coefficient, R. Form a ratio of the
variance of the regression estimate (standard error of estimate
squared) to the pooled variance (across all calibration materials
or reference materials) for the MP used as the y variable. For
good fit, these two variances should be approximately equal.
However, if the ratio of these two variances is of the order of
4 or less, the goodness of fit can be considered as acceptable
and the particular functionality adopted as a reasonable ap-
proximation for evaluating the slope K or Ko. If the ratio is
above 4, another better fitting functionality should be found.

A1.1.3 One of the assumptions in classic linear regression
analysis is that each x value is known with zero or very
minimal error compared to the variation in the y variable. The

typical relative test sensitivity evaluation does not conform to
this requirement since both measured properties are subject to
test error. The recommended procedure to address this is to
select for the x variable, the measured property that has the
lowest pooled variance across all the CMs or RMs used in the
program. This produces a minimum error estimate for the
linear regression b coefficient or slope of the MP versus FP or
MP1 versus MP2 relationship.

A1.1.4 Most relative test sensitivity programs are conducted
with one of the measured properties preselected as the basis or
standard for comparison, that is, T2 in the parameter ψR(T1/
T2), which is the MP that corresponds to the x value. If T2 has
a higher pooled variance than T1, the procedure to follow is to
conduct the regression analysis on the basis x = T1 = MP1 and
y = T2 = MP2 and obtain the slope or regression coefficient
designated as b(T2/T1). This coefficient is the inverse of the
coefficient b(T1/T2), and after the analysis has been conducted,
the reciprocal of b(T2/T1) is obtained and used as the best
estimate of b(T1/T2). This operation reduces the perturbing
influence of the x variation on the b coefficient estimate. If the
variance ratio, (T with larger variance/ T with smaller variance)
is not substantially different from unity (of the order of 4 or
less), the difference in the b coefficient estimates is not great.

A1.2 Precision of Test Sensitivity Evaluation

A1.2.1 Test sensitivity is evaluated on the basis of experi-
mentally measured parameters, and the precision of any test
sensitivity estimate depends on the precision of these measure-
ments. For ψA there are two parameters; the slope of MP versus
FP relationship, K, and the standard deviation SMP. For ψR

there are three parameters; the slope of the MP1 versus MP2
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relationship, Ko, and the standard deviations SMP1 and SMP2. It
is possible to relate the uncertainty in ψA and ψR to the
uncertainties in the measured parameters by means of propa-
gation of random error equations. However, this is not ad-
dressed in this practice for two reasons: (1) it adds a measure
of complexity that is beyond the scope of this practice and (2)
it may not yield a true estimate of the real uncertainty in
evaluating ψA and ψR.

A1.2.2 The system-of-causes that generates uncertainty in
either ψA or ψR includes variation in individual set up opera-
tions in addition to the actual test measurement variation as
such. The actual CMs or RMs used, the condition of these
materials, the operators used for the testing, and the ambient
laboratory operating conditions (accuracy of instrument cali-
brations) all contribute to total uncertainty in any ψA and ψR

value. For a reliable estimate of the uncertainty for ψA and ψR,
such components of variation must be included for a realistic
precision program.

A1.2.3 The recommended procedure for evaluating test
sensitivity uncertainty or confidence levels is as follows:

A1.2.3.1 Local Evaluation of Test Sensitivity—For local
absolute or relative test sensitivity, repeat the total evaluation
of either sensitivity a sufficient number of times to obtain a
good estimate of the standard deviation for either test sensi-
tivity. If ψA or ψR can be fully evaluated in one day, conduct at
least four separate complete evaluations (of the total operation)
over a several-day period. This gives a bare minimum degree

of freedom estimate of test sensitivity standard deviation. It is
much preferable to obtain six or more estimates for either
sensitivity.

A1.2.3.2 Use these standard deviation estimates to calculate
confidence intervals or to conduct statistical significance tests
(t-Tests) for the difference (ψA − 1.00) or (ψR − 1.00), since
unity for either ψ implies that there is no difference in the test
sensitivity T1 versus T2. The use of more sophisticated
multiple comparisons, such as the Duncan Range test, can be
employed for comparing several (more than two) ψA or ψR

estimates.
A1.2.3.3 Global Evaluation of Test Sensitivity—For a global

evaluation of test sensitivity, the procedures and protocols as
developed for interlaboratory precision should be followed.
Refer to Practice D4483. One or more experienced staff
members in one laboratory should be selected to organize the
global program. Select a number of laboratories that have good
experience with the test methods. Sufficient quantity of a
homogeneous lot of each RM should be set aside and samples
sent to each participating laboratory. Two individual or sepa-
rate test sensitivity evaluations (all required steps completed)
should be conducted in each laboratory on the basis of this
practice using the supplied RMs. The separate evaluations
should be one week apart. The resulting database can be
analyzed in accordance with the procedures in Practice D4483.
The outcome from such testing will give a global average for
ψA or ψR and a between laboratory uncertainty or confidence
limit on the average values.

APPENDIXES

(Nonmandatory Information)

X1. TWO EXAMPLES OF RELATIVE TEST SENSITIVITY EVALUATIONS

X1.1 Example 1: Relative Test Sensitivity: Limited—
Range Processability Tests

X1.1.1 In this example, a limited range or spot check
relative test sensitivity is evaluated for three different process-
ability tests. The use of more than two tests illustrates the
general procedure for multiple comparisons for relative sensi-
tivity. The data and calculations are given in Table X1.1. The
three processability tests that generate processability numbers
are designated as P1, P2, and P3 and two reference materials
(RM1 and RM2) are used with four replications of the
processability number, (Proc number), R1 to R4 for each RM
and each test. In Part 1 of the table, the average, the variance,
and the standard deviation for the processability numbers are
listed for each reference material and each test. For each test,
the pooled (average) variance and the standard deviation
obtained from the pooled variance as well as the coefficient of
variation in percent are also listed.

X1.1.2 Part 2 of the table lists the calculated parameters and
the relative test sensitivity or ψR values. For each test, the value
of ∆ is given, where ∆ = (Average Proc Number RM2 −
Average Proc number RM1), this corresponds to the ∆MP
values as discussed in this practice. Also listed are the pooled

standard deviation, the ratio of (∆1/∆2) which is equal to Ko
(1,2), where 1 and 2 refer to P1 and P2 and the ratio (∆3/∆2)
which is equal to Ko (3,2), where 3 and 2 refer to P3 and P2,
the ratios S1/ S2 and S2/S3, where S1, S2, and S3 refer to the
(pooled) standard deviations for P1, P2, and P3.

X1.1.3 Using these values, calculations for relative test
sensitivity, give ψR (P1/P2), for P1 relative to P2 and ψR

(P3/P2), for P3 relative to P2. We find that ψR (P1/P2) = 0.96
and ψR (P3/P2) = 1.26. To review all three processability tests
on the same comparative scale, we assign unity to the test
sensitivity value of the reference (or denominator) test, P2,
since ψR (P2/P2) = 1.00. The last column of the Part 2 section
of the table gives the comparative value, CompψR of P1 and P3
versus P2. Processability Tests P1 and P2 are very similar at
0.96 and 1.00; only a 4 % difference between them while P3 is
the most sensitive test; 26 % more sensitive than P2.

X1.1.4 The coefficient of variation values for P1, P2, and P3
(that is 2.06, 1.37, and 1.30) can be used to determine an index
of technical merit for the three processability tests based on
precision alone. For this, technical merit is assumed to be
proportional to the reciprocal of the coefficient of variation,
that is, the higher the coefficient the less the technical merit.
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The reciprocal values are 0.49, 0.73, and 0.77 for P1, P2, and
P3, respectively. When these three reciprocal coefficient of
variation values are put on the same comparison basis as the
Compψ

R
values, this gives 0.67, 1.00, and 1.05 for P1/P2,

P2/P2, and P3/P2. Although these precision technical merit
indexes indicate P3 to be the best and P1 to be the worst
processability test (assuming numerical differences to be sta-
tistically significant) which is the same qualitative ranking as
the CompψR sensitivity values of 0.96, 1.00, and 1.26, the
magnitude of the differences compared to the reference P2 test
are substantially different for P1 and P3. This demonstrates the
inability of the coefficient of variation (and standard deviation
and variance as well) to give a useful quantitative indication of
test sensitivity for this particular test. Refer to 4.3.

X1.1.5 As discussed in this practice, these ψR values are
estimated values that are subject to sampling and inherent test
error variation. The difference in ψR between 0.96 and 1.00 for
P1 and P2 is probably within expected test error and these two
processability tests are probably not statistically significant in
regard to test sensitivity. The difference of 0.26 between P3 and
P2 is probably statistically significant. For definitive statements
on statistical significance for ψR values, sufficient repeat
evaluations of the entire ψR evaluation process on a several day
basis are required to generate a number of estimates (four or
more) to be able to make decisions based on the usual
statistical procedures for differences in mean values.

X1.2 Example 2: Relative Test Sensitivity: Extended
Range—Compliance vs Modulus

X1.2.1 In this example, the relative test sensitivity is as-
sessed for two different physical properties for evaluating
characteristics such as the degree of cure for rubbers. Property
or Test 1 is a compliance test , that is, the deformation of strain
of a test specimen under a fixed or constant force and property
or Test 2 is a modulus test, the stress under a fixed (constant)
extension or strain. The magnitude of ψR is to be evaluated
over a range of values for each test; high compliance corre-
sponds to low modulus and vice versa. Table X1.2 contains the
data as generated by the evaluation program. Six RMs or
rubbers designated as A to F were used with a range of
compliance and modulus values, in deformation and stress
units characteristic of the two tests. For each test and each RM,
four replicates were evaluated, R1 to R4. Part 1 of Table X1.2
gives values for these measurements, as well as the average
and standard deviation for each RM for both properties.

X1.2.2 Plot (a) of Fig. X1.1 illustrates the curvilinear
inverse relationship for compliance versus modulus. For each
RM, all four replicates have been shown in the plot. Since a
linear relationship is required to simplify the ψR evaluation, a
transformation of the compliance and modulus is needed. Part
2 of the table shows the data obtained by a log transformation
of both properties; the average, variance, standard deviation,
and coefficient of variation of the log transformations are
listed. Plot (b) of Fig. X1.1 shows that a reasonably good linear
relationship is obtained for log compliance versus log modulus.
A transformation of the original data values for compliance and
modulus can be made without concern about the potential

influence on the relative sensitivity since it is shown in
Appendix X2 that such a transformation does not alter the
relative sensitivity.

X1.2.3 Part 3 of Table X1.2 illustrates the results of a
sorting operation on the transformed data of Part 2; a sorting
low to high, on the value of RM average for log compliance
and log modulus. This indicates that variance, standard
deviation, and coefficient of variation (among the four repli-
cates for each RM) increases as compliance increases and
conversely the variation decreases as modulus increases. This
dependence of variation on RM average value suggested the
log transformation as discussed in X1.2.2. This behavior will
be subsequently discussed concerning the nonconsistency of
ψR for this measurement system over the range of RM values.

X1.2.4 Table X1.3 lists the log data values for all four
replicates for each of the six RMs in a tabular format that is
convenient for linear regression analysis. This evaluation (as in
most other such evaluations) does not obey the ’zero error in x’
regression assumption since both physical properties are sub-
ject to test error. The Appendix X1 recommended procedure to
address this is to select for the x variable, the measured
property that has the smaller pooled variance across all the
RMs used in the program.

X1.2.5 A review of the pooled variance in Part 2 of Table
X1.2 shows that the pooled variance for log compliance is
0.0000791 and for log modulus is 0.0000253 or a compliance

FIG. X1.1 (a) Compliance Versus Modulus, (b) Log Compliance
Versus Modulus
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to modulus variance ratio of 3,13. Thus modulus should be the
x variable; it had been initially selected for the plots of Fig.
X1.1. Although not strictly required, Part 1 of Table X1.3 is
presented to illustrate the dual regression calculation procedure

as discussed in Annex A1. It gives the results of two sets of
linear regression calculations; No. 1 for log compliance versus
log modulus (as y and x) and No. 2 for log modulus versus log
compliance (as y and x). The regression X coefficients or slopes

TABLE X1.2 Relative Test Sensitivity—Extended Range—Compliance Versus Modulus—Initial Data Review

Part 1 Data as Obtained from Evaluation Program

RM or
rubber

Compliance
Compliance

Average

Compliance
Standard
Deviation

Modulus
Mod

Average

Mod
Standard
DeviationR1 R2 R3 R4 R1 R2 R3 R4

A 8.30 8.25 8.15 8.30 8.25 0.0707 5.45 5.52 5.52 5.53 5.51 0.0370
B 28.55 27.55 29.50 28.15 28.44 0.8189 2.74 2.82 2.72 2.77 2.76 0.0435
C 11.25 11.02 11.35 11.25 11.22 0.1399 4.56 4.64 4.61 4.63 4.61 0.0356
D 14.15 13.95 13.71 13.95 13.94 0.1800 4.12 4.18 4.20 4.17 4.17 0.0340
E 24.65 23,60 24.83 25.10 24.55 0.6566 3.09 3.14 3.06 3.04 3.08 0.0435
F 20.25 19.40 19.27 20.00 19.73 0.4704 3.49 3.55 3.59 3.49 3.53 0.0490

Averaged or
Pooled

17.86 17.30 17.80 17.79 17.69 3.91 3.98 3.95 3.94 3.94

R1, R2, and so forth = Replicates 1, 2, and so forth.
Part 2 Log Data Value Transformation

RM or
Rubber

Log Compliance

Average Variance
Standard
Deviation

Coefficient
of Variation,

%
R1 R2 R3 R4

A 0.919 0.916 0.911 0.919 0.916 0.0000139 0.00373 0.41
B 1.456 1.440 1.470 1.449 1.454 0.0001552 0.01246 0.86
C 1.051 1.042 1.055 1.051 1.050 0.0000294 0.00543 0.52
D 1.151 1.145 1.137 1.145 1.144 0.0000315 0.00561 0.49
E 1.392 1.373 1.395 1.400 1.390 0.0001379 0.01174 0.85
F 1.306 1.288 1.285 1.301 1.295 0.0001062 0.01031 0.80

Averaged or
Pooled

1.212 1.201 1.209 1.211 1.208 0.0000791 0.00821 0.65

RM or
rubber

Log Modulus

Average Variance
Standard
Deviation

Coefficient
of Variation,

%R1 R2 R3 R4
A 0.736 0.742 0.742 0.743 0.741 0.0000086 0.00293 0.39
B 0.438 0.450 0.435 0.442 0.441 0.0000465 0.00682 1.54
C 0.659 0.667 0.664 0.666 0.664 0.0000113 0.00336 0.51
D 0.615 0.621 0.623 0.620 0.620 0.0000126 0.00356 0.57
E 0.490 0.497 0.486 0.483 0.489 0.0000368 0.00607 1.24
F 0.543 0.550 0.555 0.543 0.548 0.0000362 0.00602 1.10

Average or
Pooled

0.580 0.588 0.584 0.583 0.584 0.0000253 0.00479 0.89

Part 3 Log Data Value Transformation—Sorted Values
Log Compliance - Sorted on Average Log Compliance

RM or
Rubber R1 R2 R3 R4 Average Variance

Standard
Variance

Coefficient
of Variation,

%
A 0.919 0.916 0.911 0.919 0.916 0.0000139 0.00373 0.41
C 1.051 1.042 1.055 1.051 1.050 0.0000294 0.00543 0.52
D 1.151 1.145 1.137 1.145 1.144 0.0000315 0.00561 0.49
F 1.306 1.288 1.285 1.301 1.295 0.0001062 0.01031 0.80
E 1.392 1.373 1.395 1.400 1.390 0.0001379 0.01174 0.85
B 1.456 1.440 1.470 1.449 1.454 0.0001552 0.01246 0.86

Average or
Pooled

1.212 1.201 1.209 1.211 1.208 0.0000791 0.00821 0.65

RM or
Rubber

Log Modulus - Sorted on Average Log Modulus

R! R2 R3 R4 Average Variance
Standard
Deviation

Coefficient
of Variation,

%
B 0.438 0.450 0.435 0.442 0.441 0.0000465 0.00682 1.54
E 0.490 0.497 0.486 0.483 0.489 0.0000368 0.00607 1.24
F 0.543 0.550 0.555 0.543 0.548 0.0000362 0.00602 1.10
D 0.615 0.621 0.623 0.620 0.620 0.0000126 0.00356 0.57
C 0.659 0.667 0.664 0.666 0.664 0.0000113 0.00336 0.51
A 0.736 0.742 0.742 0.743 0.741 0.0000086 0.00293 0.39

Average or
Pooled

0.580 0.588 0.584 0.583 0.584 0.0000253 0.00479 0.89
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indicated by b (C/M) for calculation No. 1 and b (M/C) for No.
2 are given in the tabular output where C = compliance and M
= modulus.

X1.2.6 The value for b (C/M) is −1.844, and for the inverse
regression, b (M/C) is −0.540. Since the two b coefficients
stand in an inverse relationship to each other, the reciprocal of
b (M/C) gives a second estimate of b (C/M) and 1/−0.540 =
−1.853. The difference between −1.844 and −1.853 represents
the influence (on the slope estimate) of x variation being
generated by modulus values versus x variation generated by
compliance. Both estimates are reasonably close since the
variance ratio is not very large compared to unity. The better b
coefficient estimate is –1.844 and this is used. The slope or the

b coefficient is equal to d[MP1]/d[MP2] ( or ∆[MP1]/∆[MP2])
as discussed in this practice and therefore is equal to Ko.

X1.2.7 Part 2 of Table X1.3 illustrates the evaluation of the
(SMP1/SMP2) ratio as previously discussed in this practice; this
ratio is indicated in Part 2 as (S1/S2), where S1 is for log
compliance and S2 is for log modulus. The Part 2 tabulation
also lists the averages and standard deviations for log compli-
ance and log modulus and the S1 to S2 ratio for each RM. Fig.
X1.2 plot (a) shows the standard deviation for log compliance
versus log compliance and in plot (b) the standard deviation of
log modulus vs log modulus. These of course show the
opposite slopes as expected. Fig. X1.3 shows that the (S1/S2)
ratio also is a linear function of either log compliance or log

TABLE X1.3 Relative Test Sensitivity (RTS)—Extended Range—Compliance Versus Modulus

Part 1 - Evaluating Ko
RM or Rubber Log Modulus Log Compliance Linear Regression Calculations

A 0.736 0.919
0.742 0.916 Calculation No. 1 Y = log Compliance; X = log Modulus
0.742 0.911
0.743 0.919 Regression Output:

B 0.438 1.456 Constant 2.28
0.450 1.440 Standard Error of Y, Estimate 0.0133
0.435 1.470 R Squared 0.995
0.442 1.449 Number of Observations 24

C 0.659 1.051 Degrees of Freedom 22
0.667 1.042
0.664 1.055 X Coefficient = b(C/M) = −1.844
0.666 1.051 Standard Error of Coefficient 0.026

D 0.615 1.151
0.621 1.145 Calculation Number 2 Y = log Modulus; X = log Compliance
0.623 1.137
0.620 1.145 Regression Output:

E 0.490 1.392 Constant 1.236
0.497 1.373 Standard Error of Y, Estimate 0.0072
0.486 1.395 R Squared 0.995
0.483 1.400 Number of Observations 24

F 0.543 1.306 Degrees of Freedom 22
0.550 1.288
0.555 1.285 X Coefficient = b(M/C) = −0.540
0.543 1.301 Standard Error of Coefficient 0.0077

Pooled 'Within RM’
Variance 0.0000253 0.0000791 Reciprocal b(M ⁄ C) = 1 / −0.540 = −1.853

Standard Deviation 0.00503 0.00889
Therefore Ko = −1.844 = 1.84 (absolute)

Variance Ratio, max/min = 3.13

Part 2 —Evaluating Functionality of Standard Deviation Ratio (S1/S2)

RM or Rubber
log Compliance
Average

Log Compliance
Standard Deviation

log Modulus
Average

log Modulus
Standard Deviation Ratio: S1/S2

Regression Output:
Y = Ratio S1/S2; X = log Mod

A 0.916 0.00373 0.741 0.00293 1.28 Constant 2.76
B 1.454 0.01246 0.441 0.00682 1.83 Standard Error of Y,

Estimate
0.0980

C 1.050 0.00543 0.664 0.00336 1.61 R Squared 0.854
D 1.144 0.00561 0.620 0.00356 1.58 Number of Observance 6
E 1.390 0.01174 0.489 0.00607 1.94 Degrees of Freedom 4
F 1.295 0.01031 0.548 0.00602 1.71 X Coefficient −1.89

Standard Error of Coefficient 0.391
S1 = Standard Deviation (log Compliance) Defining Equation:
S2 = Standard Deviation (log Modulus) Ratio (S1/S2) = 2.76 −1.89 (log Mod)

Part 3 - Evaluating Relative Test Sensitivity, Compliance / Modulus
ψR (C/M) = | Ko | / (S1/S2) = 1.84 / [2.76 − 1.89 (log Modulus)]

Tabulated Values
Log Modulus ψR (C/M)

0.40 0.92
0.50 1.01
0.69 1.13
0.70 1.28
0.80 1.47

D6600 − 00 (2013)

13

 



modulus, again with opposite slopes. To the right of the Table
X1.3, Part 2 tabulation is the output of the linear regression
analysis for (S1/S2) = ao + a1 (log modulus). The slope a1,
designated as “X coefficient” in the printout is −1.89 and ao,
designated as the constant, is 2.76.

X1.2.8 We now turn to evaluating the relative test
sensitivity, ψR (T1/T2), where T1 = compliance and T2 =
modulus or ψR (C/M). This is equal to | Ko | /(S1/S2). We have
seen that the ratio (S1/S2) changes with the level of either
compliance or modulus, and therefore, ψR (C/M) does not have
a fixed or constant value. As previously indicated, it is a
function of log modulus and is given as follows:

ψR ~C/M! 5 ? Ko ?/@2.76 2 1.89 ~logmodulus!# (X1.1)

The enclosed tabulation in Part 3 of Table X1.3 lists values
for ψR (C/M) at selected log modulus values that span the
experimental range for this program. At the lowest log modulus
of 0.40 (high compliance), ψR (C/M) is 0.92 and the modulus

test is slightly more sensitive than the compliance test. As
modulus increases, ψR (C/M) increases above unity and the
compliance test becomes more sensitive than the modulus test.
At the highest log modulus level of 0.80 the compliance test
has a 47 % margin in test sensitivity compared to the modulus
test.

X1.2.9 Again, as in the case of Example 1, for the spot
check relative test sensitivity, any extended range tabulated ψR

(C/M) value in Part 3 is an estimate from one replication of the
entire test sensitivity evaluation, that is, the use of six RMs and
four test measurement replicates for each reference material.
To be able to assign uncertainty or confidence limits on ψR

(C/M), it would be necessary to repeat the entire relative test
sensitivity program a sufficient number of times to be able to
calculate reliable standard deviations for ψR (C/M) values at
selected modulus or compliance levels.

FIG. X1.2 (a) Standard Deviation Log Compliance Versus Log
Compliance, (b) Standard Deviation Log Modulus Versus Log

Modulus

FIG. X1.3 (a) Ratio: Standard Deviation (Log Comp) / Standard
Deviation (Log Modulus) Versus Log Compliance (b) Ratio: Stan-
dard Deviation (Log Comp) / Standard Deviation (Log Modulus)

Versus Log Modulus
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X2. BACKGROUND ON TRANSFORMATION OF SCALE AND DERIVATION OF ABSOLUTE TEST SENSITIVITY FOR A
SIMPLE ANALYTICAL TEST

X2.1 Transformation of Scale

X2.1.1 The operation of transforming the scale for MP
values is important since it may be required to produce a linear
relationship for transformed MP1 versus MP2 or transformed
MP2. A linear relationship simplifies the evaluation of test
sensitivity. This appendix demonstrates that relative test
sensitivity, ψR, is not changed by a transformation of scale. If
two test methods have different relationships given by Eq
X2.1:

MP1 5 f1~FP!; MP2 5 f2~FP! (X2.1)

then ψR is given by Eq X2.2 or (Eq 5 in 7.5.2).

ψR 5 @∆~MP1!/∆~MP2!#/@SMP1/SMP2# 5 ? Ko ?/@SMP1/SMP2#

(X2.2)

X2.1.1.1 For the next step, this can be expressed in more
formal terms by using differentials rather than the deltas as
follows:

ψR ~T1/T2! 5 @d ~MP1! / d ~MP2!#/@SMP1/SMP2# 5 ?Ko?/@SMP1/SMP2#

(X2.3)

The (T1/T2) notation is now included to avoid confusion in
contrasting MP2 versus MP3 behavior as described as follows.

X2.1.2 If MP1 needs to be transformed, indicate this func-
tionality as given by Eq X2.4:

MP3 5 f3~MP1! (X2.4)

X2.1.2.1 Then by definition, the relative test sensitivity of
MP3 to MP2, is given as follows:

ψR~T3/T2! 5 @d~MP3!/d~MP2!#/@SMP3/SMP2# 5 ?Ko?/@SMP3/SMP2#

(X2.5)

X2.1.2.2 Since MP1 is functionality related to MP2, then
MP3 is also related to MP2 and by differentiating Eq X2.4 with
respect to MP2 the following equation is obtained:

d@MP3#/d@MP2# 5 d@f3~MP1!#/d@MP2# (X2.6)

X2.1.2.3 Continuing the development, the right-hand side
of Eq X2.6 can be expressed as follows:

d@ f3~MP1!#/d@MP2# 5 d@f3~MP1!#/d@MP1# @d~MP1!#/d@MP2#

(X2.7)

X2.1.2.4 From the law of propagation of errors, the rela-
tionship between the test error of MP3 and MP1 is given as

SMP3 5 ?d@ f3~MP1!#/d@MP1# ?SMP1 (X2.8)

X2.1.2.5 Introducing Eq X2.7 and Eq X2.8 into Eq X2.5
and using absolute values as indicated we obtain ψR(T3/T2) as
defined by the ratio shown in Eq X2.9:

ψR~T3/T2! 5
?d@f3 ~M P 1!# ⁄d@M P 1#@d ~M P 1!# ⁄d@M P 2#?

?d@f3 ~MP1!#/d@MP1# ~SMP1/SMP2!?
(X2.9)

which simplifies to

ψR~T3/T2! 5 ?d@MP1#/d@MP2# ?/~ SMP1/SMP2 ! (X2.10)

X2.1.2.6 The expression (ratio) as given in Eq X2.10 is the
same as the ratio for the initial expression for the (T1/T2)
comparison as given in Eq X2.3. The transformation of scale
for MP1 (into MP3) has not changed the value of its relative
sensitivity with respect to MP2. By the same reasoning, any
transformation of MP2 will yield behavior equivalent to that
found for MP1. Therefore, relative test sensitivity, ψR, is
invariant with respect to scale transformation of either test
method MP in the comparison.

X2.1.3 Transforming the MPs is usually a trial-and-error
process. Typical transformations to produce linearity for the
MP1 versus MP2 relationship are the use of the logarithm of
either MP1 or MP2, or both, as well as the square root of either
or both. Transformations also tend to reduce the perturbing
influence of any non-normality in the underlying distributions
for the MPs as well as frequently stabilizing or equalizing the
variance across the range of values for the RMs.

X2.2 Deriving Absolute Sensitivity for a Simple Analyti-
cal Test

X2.2.1 In measurement techniques such as those employed
in analytical chemistry, a material or constituent is determined
by evaluating some quantity that hears a direct proportionality
to the constituent. As an example in the classic analysis for
total sulfur in rubber, the sulfur after appropriate chemical
reactions is determined by the amount of precipitated barium
sulfate. The development as given in X2.2 is devoted to a
simple chemical test for the analysis or determination of one
constituent. Under some circumstances, the procedure may
also be applicable to simply physical tests.

X2.2.2 Constituent A, a chemical element in some matrix of
materials, is to be determined by reacting A (in a solution of the
matrix material) with a reagent to generate a carrier compound,
C, where the proportion of A in C is fixed by the stoichiometry
of the chemical reaction. This carrier compound is determined
by weighing after separating it from the solution. The percent-
age of A in the matrix of materials (sample) is designated as A,
%, and given as follows:

A, % 5 @100 WC/WS# @$A%/$C% # (X2.11)

where:
WC = mass of C as measured by the test,
WS = mass of (matrix) sample used in the test,
{A} = equivalent mass of A, in chemical reaction to produce

C, and
{C} = equivalent mass of C.

X2.2.2.1 Eq X2.11 can be rewritten as follows:

A, % 5 100 RM REM (X2.12)

where:
RM = WC / WS, ratio of the measured mass of C to the mass

of the sample, and
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REM = [ {A} ⁄{C} ], ratio of the equivalent mass of A to the
equivalent mass of C.

X2.2.2.2 Based on Eq X2.12, the standard deviation for A,
%, can be expressed as follows:

S~A, %! 5 100 REM S ~RM! (X2.13)

where:
S (A, %) = standard deviation in determining A, %, and
S (RM) = standard deviation for measurement of RM or

(WC/WS).

X2.2.3 Eq X2.13 indicates that the precision for measuring
A, %, is improved when REM is small and the standard
deviation for the measurement of RM (mass ratio carrier
compound C to sample) is small. If Eq X2.12 is rearranged to
give RM in terms of A, %, the following is obtained:

RM 5 @1/100 REM# A, % (X2.14)

X2.2.3.1 Eq X2.14 shows that a plot of RM (y axis) versus
A(%) (x axis) yields a straight line with zero intercept and a
slope of [1/100 REM]. If the slope is designated as K, then 1 /
K = 100 REM and Eq X2.13 can be written as

S ~A~%!! 5 @1/K # S ~RM ! 5 S ~RM !/K (X2.15)

X2.2.3.2 Thus high precision of A(%) is obtained when the
ratio S (RM) / K is small or conversely when K / S (RM) is
large. Since the sensitivity to the constituent being analyzed is
greater the higher the value for K / S (RM), this ratio is defined
as the test sensitivity and is given by Eq X2.16, using absolute
or numerical (sign ignored) values for K

Absolute Test Sensitivity 5 ψA 5 ?K? /S ~RM! (X2.16)

X2.2.3.3 Therefore, although the technical merit of a test
method requires that the MP, in this case RM, has a small
standard deviation, it also requires a high rate of change for RM

with rate or extent of change in A or A(%), that is, it requires
the ability to discriminate or readily detect small changes in A.
The greater this detection capability or discrimination power,
the greater is K. In this appendix, RM is equal to MP and A is
equal to FP, in relation to the terminology used for the main
text of this practice.
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