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Standard Practice for
Interlaboratory Quantitation Estimate1

This standard is issued under the fixed designation D6512; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice establishes a uniform standard for com-
puting the interlaboratory quantitation estimate associated with
Z % relative standard deviation (referred to herein as IQEZ %),
and provides guidance concerning the appropriate use and
application. The calculations involved in this practice can be
performed with DQCALC, Microsoft Excel-based software
available from ASTM.2

1.2 IQEZ % is computed to be the lowest concentration for
which a single measurement from a laboratory selected from
the population of qualified laboratories represented in an
interlaboratory study will have an estimated Z % relative
standard deviation (Z % RSD, based on interlaboratory stan-
dard deviation), where Z is typically an integer multiple of 10,
such as 10, 20, or 30, but Z can be less than 10. The IQE10 %

is consistent with the quantitation approaches of Currie (1)3

and Oppenheimer, et al. (2).

1.3 The fundamental assumption of the collaborative study
is that the media tested, the concentrations tested, and the
protocol followed in the study provide a representative and fair
evaluation of the scope and applicability of the test method as
written. Properly applied, the IQE procedure ensures that the
IQE has the following properties:

1.3.1 Routinely Achievable IQE Value—Most laboratories
are able to attain the IQE quantitation performance in routine
analyses, using a standard measurement system, at reasonable
cost. This property is needed for a quantitation limit to be
feasible in practical situations. Representative laboratories
must be included in the data to calculate the IQE.

1.3.2 Accounting for Routine Sources of Error—The IQE
should realistically include sources of bias and variation that
are common to the measurement process. These sources
include, but are not limited to: intrinsic instrument noise, some

“typical” amount of carryover error; plus differences in
laboratories, analysts, sample preparation, and instruments.

1.3.3 Avoidable Sources of Error Excluded—The IQE
should realistically exclude avoidable sources of bias and
variation; that is, those sources that can reasonably be avoided
in routine field measurements. Avoidable sources would
include, but are not limited to: modifications to the sample;
modifications to the measurement procedure; modifications to
the measurement equipment of the validated method, and gross
and easily discernible transcription errors, provided there was
a way to detect and either correct or eliminate them.

1.4 The IQE applies to measurement methods for which
calibration error is minor relative to other sources, such as
when the dominant source of variation is one of the following:

1.4.1 Sample Preparation, and calibration standards do not
have to go through sample preparation.

1.4.2 Differences in Analysts, and analysts have little oppor-
tunity to affect calibration results (as is the case with automated
calibration).

1.4.3 Differences in Laboratories (for whatever reasons),
perhaps difficult to identify and eliminate.

1.4.4 Differences in Instruments (measurement equipment),
such as differences in manufacturer, model, hardware,
electronics, sampling rate, chemical processing rate, integra-
tion time, software algorithms, internal signal processing and
thresholds, effective sample volume, and contamination level.

1.5 Data Quality Objectives—Typically, one would com-
pute the lowest % RSD possible for any given dataset for a
particular method. Thus, if possible, IQE10 % would be com-
puted. If the data indicated that the method was too noisy, one
might have to compute instead IQE20 %, or possibly IQE30 %.
In any case, an IQE with a higher % RSD level (such as
IQE50 %) would not be considered, though an IQE with RSD
<10 % (such as IQE1 % ) would be acceptable. The appropriate
level of % RSD may depend on the intended use of the IQE.

2. Referenced Documents

2.1 ASTM Standards:4
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D2777 Practice for Determination of Precision and Bias of
Applicable Test Methods of Committee D19 on Water

D6091 Practice for 99 %/95 % Interlaboratory Detection
Estimate (IDE) for Analytical Methods with Negligible
Calibration Error

E1763 Guide for Interpretation and Use of Results from
Interlaboratory Testing of Chemical Analysis Methods

2.2 ASTM Adjuncts:
DQCALC Microsoft Excel-based software for the Interlabo-

ratory Quantitation Estimate (IQE)2

3. Terminology

3.1 Z % Interlaboratory Quantitation Estimate (IQEZ %),
also denoted “ LQ,” for “Limit of Quantitation” in accordance
with Currie (1)—The lowest concentration for which a single
measurement from a laboratory selected from the population of
qualified laboratories represented in an interlaboratory study
will have an estimated Z % relative standard deviation (Z %
RSD, based on interlaboratory standard deviation).

3.2 Definitions of Terms Specific to This Standard:
3.2.1 Censored Measurement—A measurement that is not

reported numerically nor is reported missing, but is stated as a
nondetect or a less-than (for example, “less than 0.1 ppb”).
There are two reasons why the measurement may not be
reported numerically. Either the measurement was considered
insufficiently precise or accurate (these kinds of data should not
be censored), or the identification of the analyte was suspect
(these kinds of data should be censored). See 6.2.3.1. A
reported “less than” may have the same meaning as a non-
reported measurement, but a reported “less than” also implies
(perhaps erroneously) that any concentration greater than or
equal to the accompanying value (for example, 0.1 ppb) can be
measured, and will be reported numerically.

3.2.2 Quantitation Limit (QL) or Limit of Quantitation
(LQ)—A numerical value, expressed in physical units or
proportion, intended to represent the lowest level of reliable
quantitation. The IQE is an example of a QL.

4. Summary of Practice

4.1 Every ASTM Committee D19 test method is evaluated
to determine precision and bias by conducting a collaborative
study, in accordance with Practice D2777. That study, or a
similar collaborative study, can also be used to evaluate the
lowest concentration level of reliable quantitation for a test
method, referred to herein as the interlaboratory quantitation
estimate (IQE). Such a study must include concentrations
suitable for modeling the uncertainty of mean recovery of
interlaboratory measurement, preferably without extrapolation.
The study must also be planned and conducted to allow the
known, routine sources of measurement variability to be
observed at typical levels of influence. After the study is
conducted, outlying laboratories and individual measurements
should be eliminated, using an accepted, scientifically based
procedure for outlier removal, such as found in Practice
D2777. The IQE computations must be based on retained data
from at least six independent laboratories at each concentration
level.

4.2 Retained data are analyzed to identify and fit one of
three proposed interlaboratory standard deviation (ILSD) mod-
els. These models describe the relationship between the inter-
laboratory standard deviation of measurements and the true
concentration, T. The identification process involves evaluating
the models in order, from simplest to most complex: constant,
straight-line, and hybrid (proposed by Rocke and Lorenzato
(3)). Evaluation includes statistical significance and residual
analysis.

4.3 The chosen model is used to predict the standard
deviation of interlaboratory measurements at any true concen-
tration within the study concentration range. If interlaboratory
standard deviations change systematically with respect to the
true concentration (that is, they are NOT constant), the predic-
tions are used to generate weights for fitting the mean-recovery
relationship (the assumed straight-line relationship between
measured concentration and true concentration), using
weighted least squares. (Otherwise, ordinary least squares is
used.) The mean-recovery curve is evaluated for statistical
significance, for lack of fit, and for residual patterns. The ILSD
model is also used to estimate the interlaboratory standard
deviation at concentrations within the concentration range.
Either a direct or interactive algorithm (depending on the
model) is used to compute IQE10 %, the lowest concentration
with estimated RSD = 10 % (Z = 10). If there is no such
concentration, then IQE20 % is computed instead, or IQE30 %, if
necessary. If supported by the data quality objectives (DQOs),
IQEZ % may be computed for some Z < 10.

5. Significance and Use

5.1 Appropriate application of this practice should result in
an IQE achievable by most laboratories properly using the test
method studied. That is, most laboratories should be capable of
measuring concentrations greater than IQEZ % with RSD = Z %
or less. The IQE provides the basis for any prospective use of
the test method by qualified laboratories for reliable quantita-
tion of low-level concentrations of the same analyte as the one
studied in this practice, and same media (matrix).

5.2 The IQE values may be used to compare the quantitation
capability of different methods for analysis of the same analyte
in the same matrix. The IQE is not an indicator of individual
laboratory performance.

5.3 The IQE procedure should be used to establish the
interlaboratory quantitation capability for any application of a
method where interlaboratory quantitation is important to data
use. The intent of the IQE is not to set reporting limits.

6. Procedure

6.1 The following procedure has stages described in the
following paragraphs: 6.2–IQE Study Plan, Design, and Pro-
tocol; 6.3–Conduct the IQE Study, Screen the Data, and
Choose a Model; and 6.4–Compute the IQE. A flowchart of the
procedure is shown in Fig. 1.

6.2 IQE Study Plan, Design, and Protocol:
6.2.1 Choose Analyte, Matrix, and Method—At least one

analyte of interest is selected, typically one for which there is
interest in trace or near-trace levels of concentration, such as
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toxic materials that are controlled and regulated. For each
analyte, an approximate maximum true concentration is
selected, based on these considerations:

6.2.1.1 The anticipated IQE should be exceeded by a factor
of 2 or more,

6.2.1.2 A single model, (ideally a straight-line model in true
concentration, T) should describe mean recovery (that is, mean
measured concentration) for the entire range of concentrations,
from zero to the selected maximum concentration.

NOTE 1—The IQE procedure uses the straight-line model for mean
recovery, thus implicitly assuming that a straight line is adequate. Thus,
the IQE would not be appropriate for cases where this assumption is
unreasonable. For example, it would not hold for cases where there was
systematic bias for most or all laboratories, such as a tendency to report
values that are too high for some portion of the concentration range.

6.2.1.3 A single model in true concentration should describe
the standard deviation of interlaboratory measurements for the
entire range of concentrations, from zero to the selected
maximum concentration.

6.2.1.4 The concentration range must be sufficient to enable
statistically significant coefficients to be estimated for the ILSD
model and mean-recovery model. At least one matrix of
interest is also selected, and an accepted standard analytical
method for those analytes is selected for study. If there is no
possibility of matrix interference, then it may only be neces-
sary to determine a list of acceptable matrices that can be used,
instead of selecting a specific matrix. For example, for a
particular analyte, concentration range, and method, it may be
supposed that reagent waters from different laboratories are

indistinguishable. However, that assumption may not hold for
another analyte or another concentration range.

6.2.2 Choose IQE Study Design—The design should be
based (if possible) on an anticipated ILSD model. Section 7 of
Practice D2777 can be followed for the study design and
protocol. The anticipated form of the ILSD model (the rela-
tionship between interlaboratory measurement standard devia-
tion and true concentration) can help in choosing an IQE study
design. Three models are proposed herein for the relationship
between the interlaboratory standard deviation of measure-
ments and the true concentration: constant, straight-line
(increasing), and hybrid (increasing). See 6.3.3 for details.
Chemistry, physics, empirical evidence, or informed judgment
may make one model more plausible than others. However, it
may not be possible to anticipate the relationship between
standard deviation and true concentration.

6.2.2.1 Select an IQE study design that has enough distinct
concentration levels to assess statistical lack of fit of the
models (see Draper and Smith (4)). Recommended designs are:
(1) the “semi-geometric” design at five or more true
concentrations, {T1, T2, and so forth}, such as: {0, IQE0/4,
IQE0/2, IQE0, 2 × IQE0, 4 × IQE0, 8 × IQE0}, where IQE0 is
an initial estimate of the IQE (such as 10s' where s' is the
interlaboratory measurement standard deviation at a trace-
level, nonzero concentration); (2) equi-spaced design: {0,
IQE0/2, IQE0, (3/2)× IQE0, 2 × IQE0, (5/2) × IQE0, 3 × IQE0};
and (c) any other design with at least five concentrations,
provided that the design includes at least one concentration

FIG. 1 Flowchart of IQE Procedure
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approximately equal to 2 × IQE0, at least one nonzero
concentration below IQE0, and one blank, or unspiked sample.
Preferably, the design will have at least seven concentrations,
including a blank.

6.2.2.2 The study’s concentration levels must either be
known (true concentration levels), or knowable, after the fact.
A concentration is considered known if reference standards can
be purchased or constructed, and knowable if an accurate
determination can be made (for example, the median value
from many laboratories, or results from a recognized
laboratory, such as National Institute of Standards and Tech-
nology (NIST), using a high-accuracy method).

6.2.3 Choose Protocol—The protocol should follow Section
7 of Practice D2777. The protocol should include design run
order and details on when the system is to be purged, have
extra blanks run, and so on. It should take into consideration
possible problems with carryover, study cost (in time and
money), and the time constants of drift of the measurement
system or degradation of the sample.

6.2.3.1 For purposes of the collaborative study, the study
supervisor should provide instructions to participating labora-
tories to disable (if possible) any internal reporting limits or
any other data-censoring thresholds (such as an “instrument
detection limit”) that are used to determine whether a numeri-
cal measurement is to be reported as a number, or as a
nondetect or less-than (that is, the number is censored). If
censoring is unavoidable, the laboratory censoring threshold
must be reported with the study data. However, qualitative
criteria used by the method to identify and discriminate among
analytes are separate criteria, and must be satisfied in accor-
dance with the method.

6.2.4 Choose Allowable Sources of Variation—It is assumed
that, collectively, the many sources of variation will cause
interlaboratory measurements at any true concentration to be
Normally distributed. The number of laboratories providing
usable data must be maximized in order for the study to capture
representative between-laboratory variation adequately. Ordi-
nary within-laboratory variation must be allowed to affect the
measurement process, as happens in routine measurement.
Ideally, there would be many laboratories, and each measure-
ment at each laboratory would be made as a routine
measurement, made by a different analyst using a different
(qualified) measurement system on a different day, in random
order, without the analyst being aware of the true value, or
even that the sample was part of a special study.

6.2.4.1 As emphasized in Practice D2777, maximizing the
number of participating laboratories is often the most important
thing that can be done to guarantee a successful study. The
number of laboratories providing a full set of usable data will
typically fall short of the number of participating laboratories.
A minimum of ten participating laboratories is recommended.

6.2.4.2 To the extent possible, the study should be con-
ducted so as to mimic routine laboratory measurement, par-
ticularly if the method is labor-intensive, as opposed to a highly
automated method. That is, not only should the analysts not be
aware of the true concentrations of these samples, but also they
should not know that they are measuring special, study
samples. These restrictions minimize the risk of extra-care

distortion of data so common in analytical studies. However, it
is recommended that the participating analysts be told to
disable data-censoring limits, because there may or may not be
some low concentrations in the study samples (see 6.2.3.1).

6.2.4.3 For each laboratory, the maximum possible number
of qualified analysts should be involved in the study, since
there are variations that may be allowed by the method, may be
practiced by different analysts, and will be seen in routine
analyses.

6.2.4.4 For each laboratory, the maximum possible number
of qualified measurement systems should be used, since there
are model-to-model and instrument-to-instrument differences
in equipment and maintenance, as will be seen in routine
analyses.

6.2.4.5 For each laboratory, the IQE study should be sched-
uled to span the maximum possible number of days consistent
with holding-time constraints, since day-to-day changes in
analytical laboratory environmental conditions, contamination,
solvent purity, and other factors can affect measurements, and
will be seen in routine analyses.

6.3 Conduct the IQE Study, Screen the Data, and Choose a
Model:

6.3.1 The IQE study should be conducted in accordance
with Section 9 of Practice D2777. Blank correction should not
be performed by the laboratories, unless the method requires
this subtraction in order to perform the test. Each laboratory
should supply method-blank data along with the uncorrected
measurement values, and the study supervisor can determine
whether the reported measurements should be corrected.

6.3.2 The IQE study data should be screened in accordance
with the initial subsections (relating to removing data) of
Section 10 of Practice D2777. (Proceed to Section 6.5 of the
IQE Practice if, for any concentration, more than 10 % of the
retained measurements are nondetects or less-thans.)

6.3.3 Identify and Fit the ILSD Model—The ILSD model
should be identified and its coefficients should be estimated by
using the following procedure. See Draper and Smith (4) and
Caulcutt and Boddy (5) for more discussion of how to model
standard deviations and how to do weighted least squares
(WLS) in analytical chemistry. See Carroll and Ruppert (6) for
further discussion of standard-deviation modeling. The ILSD
model is an attempt to characterize the unknown (or partly
known) relationship (σ = G(T)) between the actual standard
deviation of interlaboratory measurement and true concentra-
tion. The model is used for two purposes: to provide weights
for the WLS regression to fit the mean-recovery model, and to
provide the interlaboratory standard-deviation estimates re-
quired to determine the IQE.

6.3.3.1 Three ILSD models are proposed. The identification
process considers (that is, fits then evaluates) each model in
turn, from simplest to most complex, until a suitable model is
found. Prior knowledge can be combined with empirical results
to influence the selection of a model if a suitable referenced
publication can be cited. The model order is as follows:

(1) Constant Model for the ILSD (Model A):

s 5 g1error (1)
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where:
s = the sample standard deviation for interlaboratory

measurements,
g = estimated constant, and
“error” is included for arithmetic completeness, since the
model will not hold exactly. Interlaboratory standard deviation
does not change with concentration, resulting in a relative
standard deviation that declines with increasing T

(2) Straight-Line Model for the ILSD (Model B):

s 5 g1hT1error (2)
where: g and h = fitted constants. Interlaboratory standard
deviation increases linearly with concentration, resulting in
an asymptotically constant relative standard deviation as T
increases.

(3) Hybrid Model for the ILSD (Model C):

s 5 ~g2 1@hT#2! ~1/2!1error (3)
where the positive square root is taken; g and h are fitted
constants. Interlaboratory standard deviation increases with
concentration, at first slowly, then achieving proportional
increase. This behavior also results in a relative standard
deviation that initially declines as the concentration increases
from zero, then asymptotically approaches a constant level.
The Hybrid Model, the form of which was developed by
Rocke and Lorenzato (3) is so-named because it incorporates
two things: additive error with constant standard deviation
(coefficient g), and multiplicative error with increasing stan-
dard deviation (coefficient h).

NOTE 2—The Hybrid Model used the form of Roche and Lorenzato (3),
but not necessarily the same assumptions for error distribution. The
Hybrid Model is also the same as the General Analytical Error Model of
Guide E1763

In all cases, it is assumed that g > 0 (though this constraint
is irrelevant for the Hybrid Model). A value of g < 0 has no
practical interpretation, and may indicate that a different ILSD
model should be used. Furthermore, it is assumed that g is not
underestimated because of censored data among measurements
of blanks or other low-concentration samples. (Censoring is
addressed in 6.2.3.1, 6.3.2, and 6.5).

If h < 0, then it must be significantly less than zero
(statistically), in which case the Constant Model (Model A)
should be evaluated.

6.3.3.2 ILSD-Model Identification and Fitting Procedure—
See Section 10 for a detailed example, using the Hybrid Model
for the ILSD.

(1) Merge all retained IQE study data (after possible
elimination of some data in accordance with 6.3.2).

(2) For each true concentration, T, compute the adjusted
interlaboratory sample standard deviation, sk, an estimate of the
true underlying interlaboratory measurement standard
deviation, σk. The adjusted interlaboratory sample standard
deviation is the sample standard deviation, sk , multiplied by
the bias-correction factor, a'n, found in Table 1. In this Practice,
all references to computed and fitted values of the interlabo-
ratory sample standard deviation refer to adjusted values.

(3) Plot sk versus Tk.
(4) Using ordinary least squares (OLS, see Caulcutt and

Boddy (5)), regress sk on Tk, temporarily assuming that the
Straight-line Model is valid. The regression provides
coefficients, g and h, in the relationship,

sk 5 g1hTk1error. (4)
Compute residuals,

rk 5 sk 2 ~g1h Tk! (5)
Plot rk versus Tk.

(5) Evaluate the reasonableness of the Constant Model for
the ILSD (Model A) as follows: First, note the p-value
associated with slope estimate, h, from the OLS regression. If
the p-value is less than 5 %, there is statistically significant
slope, and the Constant model should be rejected; proceed to
the next step. Second, examine the plots produced in (3) and
(4). If obvious systematic curvature is present (for example,
quadratic-like behavior), both the Constant Model and the
Straight-line Model should be rejected; proceed to (9). If the
Constant Model is not rejected, proceed to 6.3.4.

(6) The Constant Model (Model A), has been rejected
because of statistically significant slope. Evaluate the reason-
ableness of the Straight-line model for the ILSD (Model B).
Examine the plot produced in (4). If obvious systematic
curvature is present (for example, quadratic-like behavior),
with a minimum that appears to be in the concentration range,
the Straight-line Model should be rejected; proceed to (10). If
the Straight-line Model is not rejected by this examination,
proceed to 6.3.4, or, optionally, conduct a formal test for
curvature, as follows in (8) through (9) (note that the usual and
more general lack-of-fit test is not applicable for this modeling
effort because there are no replicate sample standard
deviations, sk, for any concentration).

(7) Using OLS, regress Tk
2 on Tk, producing fitted coeffi-

cients u and v, used only to compute residuals, qk, which
comprise the orthogonal component of the quadratic term, Tk

2:

qk 5 ~predicted Tk
2! 2 Tk

2 5 ~u1vTk! 2 Tk
2 (6)

(8) Using OLS, regress sk on Tk and qk simultaneously,
producing fitted coefficients g and h (as before), but addition-
ally Q:

sk 5 g1hTk1Qqk1error (7)
The only results of interest are the statistical significance and
the sign of Q. These results collectively indicate the strength
of evidence for curvature.

(9) Note the p-value, pQ, associated with Q. Because qk is
orthogonal to Tk, this p-value indicates the level of statistical
significance of (quadratic) curvature.

NOTE 3—Even though the test for curvature uses a quadratic term, a
quadratic model is not one of the three recommended model choices. If pQ
< 5 % and Q > 0, there is sufficient statistical evidence of curvature in the
relationship between sk and Tk to warrant the use of the Hybrid Model,
Model C (Q > 0 ensures that the increase in sk with respect to Tk is faster
than linear). If these conditions do not hold, then the Straight-line Model
(Model B) is the appropriate model to use. Proceed to 6.3.4

(10) The Hybrid Model for the ILSD (Model C) can be
used if there is evidence of curvature.

TABLE 1 Bias-Correction Adjustment Factors for Sample
Standard Deviations Based on n Measurements (at a particular

concentration)A

n 2 3 4 5 6 7 8 9 10
a'n 1.253 1.128 1.085 1.064 1.051 1.042 1.036 1.031 1.028

A For each true concentration, Tk, the adjusted value sk = a'ns'k should be modeled
in place of sample standard deviation, s'k. For n > 10, use the formula, a'n = 1 +
[4(n−1)]

−1
. See Johnson and Kotz (7).
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(11) To evaluate the reasonableness of the Hybrid Model,
Model C, the model must first be fitted using nonlinear least
squares (NLLS), either by Newton’s-Method iteration (pre-
sented in the appendix), or another NLLS method.

(12) The fit from the Hybrid Model should be evaluated. A
plot of the residuals, in log form, should be constructed: plot rk

versus Tk, where:

rk 5 lnsk 2 lnŝ k, (8)
and ŝk is the predicted value of sk using the model. The plot
should show no systematic behavior (for example, curva-
ture). If the fit satisfies both types of evaluation, go to 6.3.4.
Otherwise, a different (and possibly more complex) model
may be used, such as the exponential model: s = g exp
{hT}·(1 + error). If there are enough true concentrations, a
model with more coefficients could be considered; possibili-
ties include quadratic (strictly increasing with increasing
concentration), or even cubic.

6.3.4 Fit the Mean-Recovery Model—The mean-recovery
model is a simple straight line,

Model R:Y 5 a1b T1error. (9)

The fitting procedure depends on the model selection from
6.3.3. If the constant model, Model A, was selected for ILSD,
then OLS can be used to fit Model R for mean recovery (see the
left column of Table 2, or Caulcutt and Boddy (5)). If a
nonconstant ILSD model was selected, such as the Straight-
line Model (Model B), or the Hybrid Model (Model C), then
weighted least squares (WLS) should be used to fit mean
recovery. The WLS approximately provides the minimum-
variance unbiased linear estimate of the coefficients, a and b.
The WLS procedure is described in 6.3.4.1.

6.3.4.1 Weighted Least Squares Procedure, Using the Inter-
laboratory Standard Deviation (ILSD) Model:

(1) Using the ILSD model and coefficient estimates from
6.3.3, compute the predicted interlaboratory standard
deviation, ŝk, for each true concentration, Tk:

Model B: ŝ k 5 g1h Tk (10)

Model C: ŝ k 5 ~g21@hTk#
2! ~1/2! (11)

(2) Compute weights for WLS:

wk 5 ~ ŝ k!
22. (12)

Note that if WLS is carried out using computer software, the
default setting for weights may be different. For example,
instead of supplying the values, (ŝk)

−2, as weights, the soft-
ware may require the user to supply values (ŝk) or (ŝk)

2 as
weights that are internally transformed by the software.

(3) Carry out WLS computations analogous to OLS com-
putations. See Table 2 or Caulcutt and Boddy (5). The result
will be coefficient estimates, a and b, for the mean-recovery
model, Model R. Appendix II describes three approximate
approaches to WLS commonly practiced, but not acceptable
for this application.

(4) After fitting, the mean-recovery model should be evalu-
ated for reasonableness and lack of fit. This evaluation should
be done by ensuring the following: (1) The fit is statistically
significant (overall p-value < 5 %); (2) The lack-of-fit p-value
(if available; see Caulcutt and Boddy (5) or Draper and Smith
(4)) is not statistically significant (lack-of-fit p-value >5 %); (3)
A plot of the residuals shows no obvious systematic curvature
(for example, quadratic-like behavior). If the mean-recovery
model fails the evaluation, then the study supervisor will have
to determine if only a subset of the data should be analyzed
(perhaps the model fails for the higher concentration(s)), or if
more data are needed.

6.4 Compute the IQE—The IQE is computed using the
ILSD model to estimate the interlaboratory standard deviation,
and using the mean-recovery model to scale the standard
deviation. For any computed IQE to be valid, it must lie within
the range of concentrations used in the study. The general form
of the computation is to find the solution, LQ (within the range
of concentrations used in the study), to the following equation:

T 5 ~100/Z! ·G~T! (13)

where function G(T) is the estimated interlaboratory stan-
dard deviation (in concentration units) of true value, T, and Z
is taken to be 10, 20, or 30, in increasing order. That is, the first
attempt is to compute IQE10 %. If IQE10 % does not exist or is
outside the range of concentrations used in the study, then
IQE20 % is computed, if possible. If IQE20 % does not exist or is
outside the range of concentrations used in the study, then
IQE30 % is computed, if possible. If appropriate for a particular
use, IQEZ % can be computed for any value of Z <10, but Z>30
is not recommended. Thus, the IQE computation depends on
the form of the ILSD model, which is part of function G. The
ratio, Z'=100·h/b, represents the limit of the %RSD achievable.
Therefore the strictest IQE achievable by the analytical method
studied is IQEZ' %. For example, if Z' = 100·0.17/1.0 = 17, then
the strictest IQE achievable would be the IQE20 % (according to
the nearest higher multiple of 10).

6.4.1 ILSD Constant Model (Model A)—In this case, ŝ = g;
hence G(T) = g/b and LQ = (100/Z)·g/b. Thus,

IQEZ % 5 ~100/Z! ·g/b (14)

6.4.2 ILSD “Straight-line” Model (Model B)—In this case,
ŝ = g + hT; hence G(T) = (g + h T)/b. To find the IQE, one
must solve for T: T = (100/Z)·(g + h T)/b. The solution is:

TABLE 2 Ordinary Least Squares (OLS) and Weighted Least
Squares (WLS) Computations to Estimate Straight-line Model

Coefficients
(Computations shown for convenience and contrast)

OLS WLS

T̄ 5
1
n o

i51

n

Ti, T̄ w 5 o
i5 l

n

w iTi/o
i5 l

n

w i

ȳ 5
1
n o

i51

n

yi ȳ w 5 o
i5 l

n

w iyi/o
i5 l

n

w i

STT 5 o
i5 l

n

sTi 2 T̄d2
SwTT 5 o

i51

n

wisTi 2 T̄d2

STY 5 o
i5 l

n

sTi 2 T̄dsyi 2 ȳd SwTY 5 o
i5 l

n

wisTi 2 T̄dsyi 2 ȳd

slope 5 b 5 STY/STT slope 5 b 5 SwTY/SwTT

intercept 5 a 5 ȳ 2 bT̄ intercept 5 a 5 ȳw 2 b T̄ w
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IQEZ % 5 g/~b ·~Z/100! 2 h! . (15)

6.4.3 ILSD Hybrid Model (Model C)—(additive and multi-
plicative error, in accordance with Rocke and Lorenzato (3)).
In this case, ŝ = (g2 + [h·T]2)(1/2); hence G(T) = (g2 +
[h·T]2)(1/2)/b. To find the IQE, one must solve

T 5 ~~100/Z!/b! ~g21@h ·T#2! ~1/2! (16)

This solution is derived by squaring each side of the equation
and solving to get: IQEZ % = g / [(b·Z/100)2 − h2]1/2, where the
positive square root is taken.

6.5 Non-Trivial Amount of Censored Data—More than
10 % of the data for at least one true concentration may have
been reported as nondetects or less-thans. Despite the attempt
in 6.2.3.1 to reduce or eliminate reported nondetects or
less-thans, they may still occur at a level that disrupts the data
analysis presented in 6.3 and 6.4. If there is excessive
censoring, the study supervisor should contact laboratories
with such measurements to see whether the data can be
extracted in uncensored form from data archives. If this effort
is not a sufficient remedy, serious consideration should be
given to augmenting the IQE study with measurements of
samples at new and different concentrations (generally, higher).

7. Data Analysis

7.1 The data analysis for eliminating data is given in Section
10 of Practice D2777.

7.2 The data analysis involved in computing an IQE is
shown by example in Section 10 of this practice.

8. Report

8.1 The analysis report should be structured as in Annex A1.
8.1.1 The report should be given a second-party review to

verify that:
8.1.1.1 The data transcription and reporting have been

performed correctly,
8.1.1.2 The analysis of the data has been performed

correctly, and
8.1.1.3 The results of the analysis have been used

appropriately, including assessment of assumptions necessary
to compute an IQE.

8.1.2 A statement of the review and the results should
accompany the report. Reviewer(s) should be qualified in one
or both of the following areas: (1) applied statistics, and (2)
analytical chemistry.

9. Rationale

9.1 The basic rationale for the IQE is contained in Currie
(1). The IQE is a performance characteristic of an analytical
method, to paraphrase Currie. As with the Interlaboratory
Detection Estimate (IDE) (described in Practice D6091), the
IQE is vital for the planning and use of chemical analyses. The
IQE is another benchmark indicating whether the method can
adequately meet measurement needs.

9.2 The idealized definition of IQEZ % is that it is the lowest
concentration, LQ, that satisfies: T = (100/Z) σΤ (where σT is

the actual standard deviation of interlaboratory measurements
at concentration T), which is equivalent to satisfying, %RSD =
σΤ/T = Z %. In other words, IQEZ % is the lowest concentration
with Z % RSD (assuming such a concentration exists). If, as is
commonly the case, %RSD declines with increasing true
concentration, then the relative uncertainty of any measure-
ment of a true concentration greater than the IQE will not
exceed 6Z %. The range, 63σLQ, is an approximate prediction
or confidence interval very likely to contain the measurement,
which is assumed to be Normally distributed. This assertion is
based on critical values from the Normal distribution (or from
the Student’s t distribution if σ is estimated rather than known).
Then, with high confidence, the relative error of any measure-
ment of a true concentration greater than the IQE will not
exceed 63·Z %. For example, a measurement above the
IQE10 % (and assumed to have true concentration above the
IQE) could be reported as 6 ppb (630 %) = 6 (62) ppb, with
a high degree of certainty.

9.3 There are several real-world complications to this ide-
alized situation. See Maddalone et al. (8), Gibbons (9), and
Coleman et al. (10). Some of these complications are listed as
follows:

9.3.1 Analyte recovery is not perfect; the relationship be-
tween measured values of concentrations and true concentra-
tions cannot be assumed to be trivial. There is bias between
true and measured values. Recovery can and should be
modeled. Usually a straight line will suffice.

9.3.2 Variation is introduced by different laboratories,
analysts, models and pieces of equipment; environmental
factors; flexibility/ambiguity in a test method; contamination;
carryover; matrix influence; and other factors. It is intractable
to model these factors individually, but their collective contri-
butions to measurement ILSD can be observed, if these
contributions are part of how a study is designed and con-
ducted.

9.3.3 The interlaboratory standard deviation of measure-
ments is generally unknown, and may change with true
concentration, possibly because of the physical principle of the
test method. To ensure that a particular %RSD is attained at or
above the IQE, there must be a way to predict the ILSD at
different true concentrations. Short of severely restricting the
range of concentrations for a study, prediction is accomplished
by an empirical ILSD model. In all of the respects discussed in
9.1 – 9.3, IQE10 % is similar to the AML developed by Gibbons
et al. (11). However, the AML follows an approximate
approach, where the standard deviation used in the 10σ
formula is estimated at a detection critical value, and then is
taken to be a constant (over a trace-level range of concentra-
tions) for the 10σ computation. In contrast, IQE10 % follows the
“more statistically and conceptually rigorous” approach de-
scribed by Gibbons et al. (9), and contained in Currie (1). This
greater rigor comes at the risk of: (1) possibly being unattain-
able for some methods (for which only a less strict level of
%RSD can be ensured); (2) having uncertainty that is poten-
tially complex, and depends both on the model used and on the
data.
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10. Example (Hybrid ILSD Model)

10.1 Identify and Fit the ILSD Model—Ten laboratories
participated in a (synthesized) IQE study, where single mea-
surements were made at each of seven concentrations: Tk =
{0.0, 0.50, 1, 2, 4, 8, 12} ppb. Considerations of 6.2, 6.3.1, and
6.3.2 are not described here. The procedure described in 6.3.3
is followed, assuming that no data were eliminated in accor-
dance with 6.3.2.

10.1.1 The reported measurements are shown in Table 3.
These values are also shown in Fig. 2. The straight-line
recovery model appears to be plausible, and the data appear to
have measurement ILSDs that increase with concentration.

10.1.2 Interlaboratory sample standard deviations at each
true concentration are computed, adjusted to remove bias
(using Table 1) and are shown in Table 3.

10.1.3 A plot of interlaboratory sample standard deviation
versus true concentration is shown in Fig. 3. The plot provides
additional qualitative evidence of an increase in standard
deviation with increasing concentration.

10.1.4 A straight-line regression (using OLS) is conducted
of the interlaboratory sample standard deviations, sk, versus Tk.
The results are shown in Table 4, and the fit is shown in Fig. 3.

10.1.5 The slope estimate, h, is statistically significant with
a p-value of 0.0012 < 5 %, so the Constant ILSD model (Model
A) is rejected.

10.1.6 The reasonableness of the straight-line model (Model
B) is evaluated using the lower plot (in Fig. 3) the plot of
residuals versus true concentration. There is subjective appear-
ance of systematic curvature (a roughly U-shape to the
residuals).

10.1.7 To assess more formally the need for a model with
curvature (Hybrid, Model C) instead of the straight line model
(Model B), a formal test is conducted.

10.1.7.1 Using OLS, (Tk)
2 is regressed on Tk, producing

residuals, qk, shown in Table 3.
10.1.7.2 Using OLS, sk is regressed on Tk and qk together,

once again producing estimates of coefficients g and h, and
additionally Q, the coefficient of q. The results are shown in
Table 5.

10.1.7.3 From Table 5, it can be seen that pQ = 0.0096 <
5 %, and Q = 0.013 > 0, so there is sufficient evidence of
curvature to warrant using the Hybrid Model (Model C).

10.1.8 Model C, the Hybrid Model, is used to fit the sample
standard deviation data in Table 3, using NLLS solved by
Newton’s-method iteration, as presented in the appendix. The
steps are as follows:

10.1.8.1 Compute the natural log sample standard deviation,
lsk, for each true concentration, Tk. See Table 3.

10.1.8.2 Let j be the index of iteration, and set j = 0.
Compute initial values, g0 and h0, as follows:

g0 5 s1 5 0.173 (17)

h0 5 ~smax 2 s1!/~Tmax 2 T1! 5 0.140

See Table 6.
10.1.8.3 Compute the natural log of the estimated standard

deviation, lssk, for each k, using the current values of gj and hj

(not shown).
10.1.8.4 Compute the residuals rk = lsk − lssk for each k (not

shown).
10.1.8.5 Compute fgk = gj/exp{2 lssk} for each k (not

shown).
10.1.8.6 Compute fhk = hj(Tk)

2/ exp{2 lssk} for each k (not
shown).

10.1.8.7 Compute intermediate statistics: u, v, c, d, p, and q.
See Table 6.

10.1.8.8 Compute the jth-step changes to g and h (see Table
6):

∆g = d (Vp − cq) dg% = 100 |∆g / gj|
∆h = d (Uq − cp) dhT% = 100 |∆ hj|Tmax

10.1.8.9 Compute the new g and h (see Table 6):
gj + 1 = gj + ∆g hj + 1 = hj + ∆h

10.1.8.10 Iterate (increase j by 1, and return to 10.1.8.3)
until dg% < 1 % and dhT% < 1 %.

10.1.8.11 As can be seen in Table 6 for j=2, dg% = 0.02 %
< 1 % and dhT % = 0.2 % < 1 %, so convergence is achieved
after the second step of iteration, with g = 0.184 and h =
0.1146.

TABLE 3 Reported Measurements and Computed Statistics from the Example IQE Study

True
Concentration

Tk, ppb

Reported Measurement Values, yi,
One per Laboratory for each Tk

sk =
Interlaboratory

Sample Standard
Deviation
(adjusted)

ln sk

k = Predicted
Standard Deviation

(Hybrid Model)

WLS Weights:
wk = (k)

−2
qk, Orthogonal

Component of (Tk)
2

0 −0.105, 0.263, 0.293, 0.187, 0.106,
0.329, 0.080, 0.524, 0.278, 0.206

0.1729 −1.7549 0.1840 29.54 13.029

0.5 0.354, 0.724, 0.682, 0.327, 0.527, 0.868,
0.730, 0.434, 0.794, 0.642

0.1929 −1.6454 0.1927 26.93 7.453

1 1.241, 0.668, 1.200, 1.370, 1.106, 0.964,
0.949, 1.421, 1.032, 1.134

0.2270 −1.4829 0.2168 21.28 2.376

2 2.174, 2.388, 2.153, 2.366, 2.306, 2.309,
1.663, 2.841, 1.933, 1.809

0.3449 −1.0644 0.2939 11.58 −6.277

4 3.660, 3.734, 3,167, 3.578, 4.278, 3.383,
3.873, 4.479, 3.919, 3.856

0.3995 −0.9175 0.4940 4.10 −17.582

8 6.592, 7.520, 6.822, 7.751, 7.771, 7.296,
8.578, 6.863, 7.840, 8.821

0.7521 −0.2849 0.9351 1.14 −16.194

12 9.496, 9.081, 13.942, 10.547, 9.324,
13.148, 10.994, 11.774, 12.320, 13.521

1.8519 0.6162 1.3875 0.52 17.194
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As seen in Table 3, the coefficients, g and h, are used to
compute a predicted measurement standard deviation, ŝk, at
each of the Tk values. The ŝk values are then used to compute
weights, wk, also seen in Table 3.

10.1.9 WLS uses the weights, wk, to fit the straight-line
mean-recovery function. The results are shown in Table 7.

10.1.10 Finally, IQEZ % is computed. First, the lowest
achievable %RSD is estimated, in accordance with the formula
for the Hybrid Model: Z' = 100h/b = 100·0.1146/0.931 = 12,
which is rounded up to a whole-number multiple of 10: Z=20.
Hence, IQE20 % can be computed (but not IQE10 %), as follows:
IQE20 % = g / [(b·20/100)2 − h2](1/2) = 0.184 / [(0.931·20/100) 2 − 0.11461/2] =
1.254 ppb

For comparison purposes, a simple, model-free quantitation
limit equal to five times the sample measurement standard
deviation from blank replicates might be 5·sl = 5·0.173 = 0.865
ppb. This estimate would be even lower if an intralaboratory
standard deviation were used instead of an interlaboratory
standard deviation.

10.1.11 It is also possible to compute IQE30 %, as follows:
IQE30 % = g/ [(b·30/100)2 − h2](1/2) = 0.184 /[0.931·30/100) 2 − 0.11462](1/2) =
0.722 ppb

10.1.12 The IQE20 % value can be confirmed by means of a
graphical device: plotting both sides of Eq 13, (T = (100/
Z)·G(T)), versus true concentration, (T), as seen in Fig. 4.
These functions will intersect at T = IQEZ %. Recall from 6.4

FIG. 2 Reported Concentration Measurement (ppb) Versus True Concentration (ppb), One Measurement per Laboratory at Each Con-
centration With Weighted Least Squares Straight-Line Fit and (Below) Residuals
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that 10 G(LQ) = (100/Z)·(estimated interlaboratory standard
deviation) = (100 / Z) · ŝk / b. The scaling by b transforms the
estimates to true concentration units (in contrast to measured
units). The two curves intersect at the true concentration that

satisfies Eq 13, seen to be slightly more than 1 ppb. Also shown
are the suitably scaled sample standard deviations,
(100/Z)·sk/b, so the goodness of fit for the Hybrid Model can be
seen.

10.1.13 Fig. 4 suggests a way to approximate graphically
IQE20 %, without explicit ILSD modeling and with limited
computation. Graphically estimating the IQE from Fig. 3
involves locating the point of intersection between two rising
curves, a process that would be made more difficult without the

FIG. 3 Sample Standard Deviations (+) Versus True Concentration, with Straight Line Fit, Hybrid Model Fit, and Residuals from Straight
Line Fit (Lower Plot), All in ppb

TABLE 4 Straight-Line OLS Fit of s on T

Standard deviation = s= g + hT = 0.06498 + 0.12678 T

Summary of Fit
RSquare 0.896432
RSquare Adj 0.875719
Root Mean Square Error 0.212178

Parameter Estimates
Term Estimate Standard Error t Ratio Prob>|t|
g (Intercept) 0.0649765 0.110288 0.59 0.5814
h (slope) 0.1267813 0.019272 6.58 0.0012

TABLE 5 Summary of OLS Fit of s on T and q

Term Estimate SI t Ratio Prob >|t|

g (Intercept) 0.0649765 0.048621 1.34 0.2524
h (slope w.r.t. T) 0.1267813 0.008496 14.92 0.0001
Q (coefficient of q) 0.0129282 0.002774 4.66 0.0096
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fitted ILSD model. If, instead, the difference, D = T−(100/
Z)·G(T) (taken from the two sides of Eq 13) is plotted versus T,
and compared to zero, graphical resolution is enhanced,
especially if sample standard deviations are used rather than
standard deviations estimated from the ILSD model. See Fig.
5.

10.1.13.1 To make an unbiased estimate of the IQE, one
must scale by an estimate, b', of the mean-recovery slope,
estimated more precisely by b in the IQE procedure. One can
use OLS to fit y on T, or (less preferable) compute b' =
[mean(yTmax

)−mean(yO)] / [Tmax − T1], where mean (yTmax
) is the

mean of all y measurements made at the highest concentration,
Tmax. For the data in this example, Fig. 5 shows the plot of the
difference, D = T − (100/Z)·s/b' versus T, where b' was
obtained by OLS. Without an ILSD model, it is not obvious
where D = O, but it appears to be at approximately T = 1.25
ppb. In general, this approximate approach cannot always be
relied on to produce an estimate of IQEZ % because sample
standard deviations are noisy, and the plot of D versus T may
not even be monotonic near D = 0.

11. Keywords

11.1 critical limit; matrix effects; precision; quantitation;
quantitation limit

TABLE 6 Summary Statistics from Newton’s Method Fit of Hybrid Model

j g h u v c d p q ∆g ∆h dg% dh T%

0 0.173 0.1400 73.11 176.87 27.77 8.22E-05 0.0634 −4.3765 0.0109 −0.0265 6.3 227
1 0.183 0.1135 74.99 238.43 33.28 5.96E-05 0.0540 0.2681 0.0002 0.0011 0.1 11.5
2 0.184 0.1146 74.47 234.83 32.89 6.10E-05 −0.0016 0.0037 −3E05 2E-05 0.02 0.2

TABLE 7 WLS Straight-Line Fit for Measured Values Versus True

Measurement = y = 0.19399 + 0.93062T
Measurement = y = a + b T

Summary of Fit
RSquare 0.963246
RSquare Adj 0.962706
Root Mean Square Error 0.994013

Parameter Estimates
Term Estimate Standard Error t Ratio Prob>|t|
a (intercept) 0.1939874 0.038359 5.06 < 0.0001
b (slope) 0.9306236 0.022045 42.22 < 0.0001
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FIG. 4 Plot of True Standard Deviation Concentration, T (Straight Line), 5·(Predicted Standard Deviation), and 5·(Sample Standard De-
viation) Versus T - Providing Graphical Confirmation of IQE20 % Result

FIG. 5 Plot of [D= True Concentration (T) Minus 5·(Sample Standard Deviation)] Versus T - Providing Graphical Estimation of IQE20 %

Where D = 0 (For Reference, 5·(T - fit) Curve is Also Shown) (All in ppb)
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ANNEX

(Mandatory Information)

A1. ANNOTATED OUTLINE FOR ANALYSIS REPORTS

A1.1 This outline presents the information to be included in
the reports of analysis performed in accordance with this
practice.

A1.2 Single-Laboratory IQE Report

A1.2.1 Identification of laboratory, analytical method,
analyte(s), matrix (or matrices), and sample properties (for
example, volume).

A1.3 Any anomalies in the study, including QA/QC sample
results.

A1.4 Interlaboratory Quantitation Estimate Report

A1.4.1 Data-screening results, individual values and labo-
ratories omitted from further analysis, and missing values.

A1.4.2 ILSD model selected.

A1.4.3 Coefficient estimates for the ILSD model and mean-
recovery model.

APPENDIXES

(Nonmandatory Information)

X1. FITTING THE HYBRID (ROCKE AND LORENZATO (3)) MODEL FOR ANALYTICAL MEASUREMENTS, USING NEW-
TON’S METHOD OF NON-LINEAR LEAST SQUARES (NLLS)

X1.1 The following numerical procedure can be conve-
niently carried out by using computer spreadsheet software:

X1.1.1 Initialize: The index, j, is the step number for
iteration. Set j = 0.

X1.1.1.1 Compute the natural log of the sample standard
deviation, lsk, for each true concentration, Tk.

NOTE X1.1—The log transformation standardizes the residuals so that
the sum of squares of logs of relative errors is minimized. Log-relative
errors are preferred to absolute errors, since the latter are almost certainly
unequal in variation.

X1.1.1.2 Compute initial values, g0 and h0, as follows:
g0 = s1 (the sample standard deviation for the lowest concentration, T1; usually
T1=0)
h0 = (smax − s1) / (Tmax − T1) if smax > s1, where smax is the maximum sample
standard deviation of measurements, made at concentration, Tmax; Otherwise,
set h0 = 0.

X1.1.1.3 Compute the natural log of the estimated standard
deviation, lssk, for each Tk, using the current estimates, gj and
hj:

lssk 5 f~Tk! , where we define f~Tk! 5 ln=gj
21hj

2Tk
2 (X1.1)

X1.1.1.4 Compute the difference (residual), rk, between the
log sample standard deviation and estimated log standard
deviation for each k:

rk 5 lsk 2 lssk (X1.2)

Note that rk is the natural log of the ratio of the sample
standard deviation to the estimated standard deviation, so rk

represents log-proportional error, and is ideally equal to zero.

X1.1.1.5 Compute fgk, the slope (that is, numerical deriva-
tive) of f(T) with respect to g, for each k:

fgk 5 gj/exp$2 lssk% (X1.3)

X1.1.1.6 Compute fhk, the slope of f(T) with respect to h, for
each Tk:

fhk 5 hj~Tk!
2/exp$2 lssk% (X1.4)

X1.1.1.7 Compute the following intermediate statistics:

u 5 o
k

sfgkd2 v 5 o
k

sfhkd2 c 5 o
k

sfgk·fhkd

d 5
1

uv 2 c2 p 5 o
k

sfgk·rkd q 5 o
k

sfhk·rkd

X1.1.1.8 Compute the jth step changes to g and h (made to
reduce the sum of squared residuals), and % relative changes:

∆g = d (vp − cq) dg% = 100 |∆g / gj|
∆h = d (uq − cp) dhT% = 100 |∆h / hj|Tmax

X1.1.1.9 Compute new g and h estimates:

gj11 5 gj1∆g (X1.5)

hj11 5 hj1∆h

X1.1.1.10 If dg% < 1 % and dhT% < 1 %, then stop and use
gjh and hjh as the final estimates. Otherwise, increase j by 1, and
go to X1.1.1.3.
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X2. THREE WLS APPROXIMATIONS TO BE AVOIDED

X2.1 There are three approximate approaches to WLS
commonly used, but not acceptable for this practice. One
approach uses the reciprocal-squared sample standard
deviations, sk

–2, as weights. Since this practice involves the
explicit evaluation and selection of a standard-deviation model,
the predicted value for sk is probably more precise than a
sample value, and the former value should be used to compute
weights. A second approach omits the blank measurements,
and divides the rest of the measurements by the true concen-
trations. Then, OLS is carried out, using the independent

variable, 1/T, in the following model:

Y/T 5 a ~1/T!1b1error. (X2.1)

This approach is not acceptable because it leads to loss of
data and because the weights so generated implicitly assume
that interlaboratory standard deviation is strictly proportional
to true concentration. A proportional relationship cannot hold
for arbitrarily small concentrations. The third approach ex-
ploits the same approximate (but untrue) proportional relation-
ship to obtain mathematically simpler WLS formulas.

X3. GLOSSARY OF KEY SYMBOLS, ACRONYMS, AND LABELS

σ—true interlaboratory standard deviation
∆g—one iteration’s change in the estimate of g, the intercept coefficient in the

Hybrid Model
∆h—one iteration’s change in the estimate of h, the slope coefficient in the

Hybrid Model
a—estimate of the slope in the mean-recovery curve (Straight-line Model)
a'n—adjustment factor used to remove bias from the sample interlaboratory

standard deviation
AML—Alternative Minimum Level, a quantitation limit that is similar to the IQE

(and compatible in approach)
b—estimate of the slope in the mean-recovery curve (Straight-line Model)
b'—crude estimate of b
c—intermediate variable used in estimating g and h for the Hybrid model, by

nonlinear least squares. Similar to d, p, q, u, and v
D—difference between T and ((100/Z)·(estimated interlaboratory standard

deviation)), used for approximate, graphical determination IQE
d—similar to c
f(T)—the natural log of the current estimate of the interlaboratory standard

deviation at concentration, T
g—estimate of the intercept in the Hybrid model of interlaboratory standard

deviation
G(T)—the (generic) model of the interlaboratory standard deviation
go—initial estimate of g
IDE—the interlaboratory detection estimate, defined and described in Practice

D6091
ILSD—interlaboratory standard deviation
IQEZ %—interlaboratory quantitation estimate associated with approximately

Z % RSD
j—iteration index used for nonlinear least squares solution of the coefficients for

the Hybrid Model for ILSD
k—index used for different concentrations, Tk, and associated statistics
LQ—Another designation for the IQE, in accordance with Currie’s notation
Model A—Constant model for ILSD
Model B—Straight-line model for ILSD; interlaboratory standard deviation in-

creases with increasing concentration

Model C—Hydrid model for ILSD; combines additive and multiplicative error,
with interlaboratory standard deviation that increases with increasing
concentration, according to the model proposed by Rocke and Lorenzato

Model R—the straight-line model for the mean-recovery curve
NLLS—nonlinear least squares, where coefficients in a nonlinear model are

computed to minimize the sum of the squares of the residuals (that is, the
differences between the predicted and actual values)

OLS—ordinary least squares, a fitting technique for a linear (that is, additive)
model that minimizes the sum of the squares of the residuals (that is, the dif-
ferences between predicted and actual values)

p—similar to c
q—similar to c
qk—kth value in the T2quadratic component that is orthogonal to T
Q—intermediate variable used in ILSD model selection, to test for statistically

significant curvature
QL—quantitation limit (also called practical quantitation limit, PQL); see LQ
r—the estimated lowest limit of %RSD achievable, based on study results, for a

particular measurement system, matrix, and analyte
rk (unrelated to r)—the residual associated with Tk from a precision-model fit;

defined as the difference in log sample standard deviation and log estimated
(predicted) standard deviation

RSD—relative standard deviation, that is, the standard deviation divided by the
concentration, (both generally estimated)

s—modeled value of the interlaboratory standard deviation, including error
sk—sample interlaboratory standard deviation at true concentration, Tk, adjusted

to remove bias
smax—maximum sample ILSD: equal to max {s1, s2, . . .}
T—true concentration
Tk—kth value of true concentration in the study
Tmax—maximum concentration in the study; equal to max {T1, T2, ...}
WLS—weighted least squares, a modified form of ordinary least squares. WLS

incorporates nonuniform variability in the data
Y—random variable representing a reported measurement
Z—level of RSD
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