
Designation: D6300 − 17a An American National Standard

Standard Practice for
Determination of Precision and Bias Data for Use in Test
Methods for Petroleum Products and Lubricants1

This standard is issued under the fixed designation D6300; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

Both Research Report RR:D02-1007,2 Manual on Determining Precision Data for ASTM Methods
on Petroleum Products and Lubricants2 and the ISO 4259, benefitted greatly from more than 50 years
of collaboration between ASTM and the Institute of Petroleum (IP) in the UK. The more recent work
was documented by the IP and has become ISO 4259.

ISO 4259 encompasses both the determination of precision and the application of such precision
data. In effect, it combines the type of information in RR:D02-10072 regarding the determination of
the precision estimates and the type of information in Practice D3244 for the utilization of test data.
The following practice, intended to replace RR:D02-1007,2 differs slightly from related portions of the
ISO standard.

1. Scope*

1.1 This practice covers the necessary preparations and
planning for the conduct of interlaboratory programs for the
development of estimates of precision (determinability,
repeatability, and reproducibility) and of bias (absolute and
relative), and further presents the standard phraseology for
incorporating such information into standard test methods.

1.2 This practice is generally limited to homogeneous prod-
ucts with which serious sampling problems (such as heteroge-
neity or instability) do not normally arise.

1.3 This practice may not be suitable for products with
sampling problems as described in 1.2, solid or semisolid
products such as petroleum coke, industrial pitches, paraffin
waxes, greases, or solid lubricants when the heterogeneous
properties of the substances create sampling problems. In such
instances, consult a trained statistician.

1.4 This international standard was developed in accor-
dance with internationally recognized principles on standard-
ization established in the Decision on Principles for the
Development of International Standards, Guides and Recom-
mendations issued by the World Trade Organization Technical
Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:3

D3244 Practice for Utilization of Test Data to Determine
Conformance with Specifications

D3606 Test Method for Determination of Benzene and
Toluene in Finished Motor and Aviation Gasoline by Gas
Chromatography

D6708 Practice for Statistical Assessment and Improvement
of Expected Agreement Between Two Test Methods that
Purport to Measure the Same Property of a Material

D7915 Practice for Application of Generalized Extreme
Studentized Deviate (GESD) Technique to Simultane-
ously Identify Multiple Outliers in a Data Set

E29 Practice for Using Significant Digits in Test Data to
Determine Conformance with Specifications

E177 Practice for Use of the Terms Precision and Bias in
ASTM Test Methods

E456 Terminology Relating to Quality and Statistics
E691 Practice for Conducting an Interlaboratory Study to

Determine the Precision of a Test Method

2.2 ISO Standards:
ISO 4259 Petroleum Products-Determination and Applica-

tion of Precision Data in Relation to Methods of Test4

1 This practice is under the jurisdiction of ASTM Committee D02 on Petroleum
Products, Liquid Fuels, and Lubricantsand is the direct responsibility of Subcom-
mittee D02.94 on Coordinating Subcommittee on Quality Assurance and Statistics.

Current edition approved July 1, 2017. Published August 2017. Originally
approved in 1998. Last previous edition approved in 2017 as D6300 – 17. DOI:
10.1520/D6300-17A.

2 Supporting data have been filed at ASTM International Headquarters and may
be obtained by requesting Research Report RR:D02-1007.

3 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

4 Available from American National Standards Institute (ANSI), 25 W. 43rd St.,
4th Floor, New York, NY 10036, http://www.ansi.org.

*A Summary of Changes section appears at the end of this standard
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3. Terminology

3.1 Definitions:
3.1.1 analysis of variance (ANOVA), n—technique that en-

ables the total variance of a method to be broken down into its
component factors. ISO 4259

3.1.2 bias, n—the difference between the expectation of the
test results and an accepted reference value.

3.1.2.1 Discussion—The term “expectation” is used in the
context of statistics terminology, which implies it is a “statis-
tical expectation.” E177

3.1.3 between-method bias (relative bias), n—a quantitative
expression for the mathematical correction that can statistically
improve the degree of agreement between the expected values
of two test methods which purport to measure the same
property. D6708

3.1.4 degrees of freedom, n—the divisor used in the calcu-
lation of variance, one less than the number of independent
results.

3.1.4.1 Discussion—This definition applies strictly only in
the simplest cases. Complete definitions are beyond the scope
of this practice. ISO 4259

3.1.5 determinability, n—a quantitative measure of the vari-
ability associated with the same operator in a given laboratory
obtaining successive determined values using the same appa-
ratus for a series of operations leading to a single result; it is
defined as the difference between two such single determined
values that would be exceeded with an approximate probability
of 5 % (one case in 20 in the long run) in the normal and
correct operation of the test method.

3.1.5.1 Discussion—This definition implies that two deter-
mined values, obtained under determinability conditions,
which differ by more than the determinability value should be
considered suspect. If an operator obtains more than two
determinations, then it would usually be satisfactory to check
the most discordant determination against the mean of the
remainder, using determinability as the critical difference (1).5

3.1.6 mean square, n—in analysis of variance, sum of
squares divided by the degrees of freedom. ISO 4259

3.1.7 normal distribution, n—the distribution that has the
probability function x, such that, if x is any real number, the
probability density is

f~x! 5 ~1/σ!~2π!21/2exp@2~x 2 µ! 2/2σ2# (1)
NOTE 1—µ is the true value and σ is the standard deviation of the

normal distribution (σ > 0). ISO 4259

3.1.8 outlier, n—a result far enough in magnitude from other
results to be considered not a part of the set. RR:D02–10072

3.1.9 precision, n—the degree of agreement between two or
more results on the same property of identical test material. In
this practice, precision statements are framed in terms of
repeatability and reproducibility of the test method.

3.1.9.1 Discussion—The testing conditions represented by
repeatability and reproducibility should reflect the normal
extremes of variability under which the test is commonly used.

Repeatability conditions are those showing the least variation;
reproducibility, the usual maximum degree of variability. Refer
to the definitions of each of these terms for greater detail.

RR:D02–10072

3.1.10 random error, n—the chance variation encountered in
all test work despite the closest control of variables.

RR:D02–10072

3.1.11 repeatability (a.k.a. Repeatability Limit), n—the
quantitative expression for the random error associated with
the difference between two independent results obtained under
repeatability conditions that would be exceeded with an
approximate probability of 5 % (one case in 20 in the long run)
in the normal and correct operation of the test method.

3.1.11.1 Discussion—Interpret as the value equal to or
below which the absolute difference between two single test
results obtained in the above conditions may expect to lie with
a probability of 95 %. ISO 4259

3.1.11.2 Discussion—The difference is related to the repeat-
ability standard deviation but it is not the standard deviation or
its estimate. RR:D02–10072

3.1.12 repeatability conditions, n—conditions where inde-
pendent test results are obtained with the same method on
identical test items in the same laboratory by the same operator
using the same equipment within short intervals of time. E177

3.1.13 reproducibility (a.k.a. Reproducibility Limit), n—a
quantitative expression for the random error associated with
the difference between two independent results obtained under
reproducibility conditions that would be exceeded with an
approximate probability of 5 % (one case in 20 in the long run)
in the normal and correct operation of the test method.

3.1.13.1 Discussion—Interpret as the value equal to or
below which the absolute difference between two single test
results on identical material obtained by operators in different
laboratories, using the standardized test, may be expected to lie
with a probability of 95 %. ISO 4259

3.1.13.2 Discussion—The difference is related to the repro-
ducibility standard deviation but is not the standard deviation
or its estimate. RR:D02–10072

3.1.13.3 Discussion—In those cases where the normal use
of the test method does not involve sending a sample to a
testing laboratory, either because it is an in-line test method or
because of serious sample instabilities or similar reasons, the
precision test for obtaining reproducibility may allow for the
use of apparatus from the participating laboratories at a
common site (several common sites, if feasible). The statistical
analysis is not affected thereby. However, the interpretation of
the reproducibility value will be affected, and therefore, the
precision statement shall, in this case, state the conditions to
which the reproducibility value applies, and label this precision
in a manner consistent with how the test data is obtained.

3.1.14 reproducibility conditions, n—conditions where in-
dependent test results are obtained with the same method on
identical test items in different laboratories with different
operators using different equipment.

NOTE 2—Different laboratory by necessity means a different operator,
different equipment, and different location and under different supervisory
control. E177

5 The bold numbers in parentheses refers to the list of references at the end of this
standard.
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3.1.15 standard deviation, n—measure of the dispersion of a
series of results around their mean, equal to the square root of
the variance and estimated by the positive square root of the
mean square. ISO 4259

3.1.16 sum of squares, n—in analysis of variance, sum of
squares of the differences between a series of results and their
mean. ISO 4259

3.1.17 variance, n—a measure of the dispersion of a series
of accepted results about their average. It is equal to the sum of
the squares of the deviation of each result from the average,
divided by the number of degrees of freedom. RR:D02–10072

3.1.18 variance, between-laboratory, n—that component of
the overall variance due to the difference in the mean values
obtained by different laboratories. ISO 4259

3.1.18.1 Discussion—When results obtained by more than
one laboratory are compared, the scatter is usually wider than
when the same number of tests are carried out by a single
laboratory, and there is some variation between means obtained
by different laboratories. Differences in operator technique,
instrumentation, environment, and sample “as received” are
among the factors that can affect the between laboratory
variance. There is a corresponding definition for between-
operator variance.

3.1.18.2 Discussion—The term “between-laboratory” is of-
ten shortened to “laboratory” when used to qualify represen-
tative parameters of the dispersion of the population of results,
for example as “laboratory variance.”

3.2 Definitions of Terms Specific to This Standard:
3.2.1 determination, n—the process of carrying out a series

of operations specified in the test method whereby a single
value is obtained.

3.2.2 operator, n—a person who carries out a particular test.

3.2.3 probability density function, n—function which yields
the probability that the random variable takes on any one of its
admissible values; here, we are interested only in the normal
probability.

3.2.4 result, n—the final value obtained by following the
complete set of instructions in the test method.

3.2.4.1 Discussion—It may be obtained from a single deter-
mination or from several determinations, depending on the
instructions in the method. When rounding off results, the
procedures described in Practice E29 shall be used.

4. Summary of Practice

4.1 A draft of the test method is prepared and a pilot
program can be conducted to verify details of the procedure
and to estimate roughly the precision of the test method.

4.1.1 If the responsible committee decides that an interlabo-
ratory study for the test method is to take place at a later point
in time, an interim repeatability is estimated by following the
requirements in 6.2.1.

4.2 A plan is developed for the interlaboratory study using
the number of participating laboratories to determine the
number of samples needed to provide the necessary degrees of
freedom. Samples are acquired and distributed. The interlabo-
ratory study is then conducted on an agreed draft of the test
method.

4.3 The data are summarized and analyzed. Any depen-
dence of precision on the level of test result is removed by
transformation. The resulting data are inspected for uniformity
and for outliers. Any missing and rejected data are estimated.
The transformation is confirmed. Finally, an analysis of vari-
ance is performed, followed by calculation of repeatability,
reproducibility, and bias. When it forms a necessary part of the
test procedure, the determinability is also calculated.

5. Significance and Use

5.1 ASTM test methods are frequently intended for use in
the manufacture, selling, and buying of materials in accordance
with specifications and therefore should provide such precision
that when the test is properly performed by a competent
operator, the results will be found satisfactory for judging the
compliance of the material with the specification. Statements
addressing precision and bias are required in ASTM test
methods. These then give the user an idea of the precision of
the resulting data and its relationship to an accepted reference
material or source (if available). Statements addressing deter-
minability are sometimes required as part of the test method
procedure in order to provide early warning of a significant
degradation of testing quality while processing any series of
samples.

5.2 Repeatability and reproducibility are defined in the
precision section of every Committee D02 test method. Deter-
minability is defined above in Section 3. The relationship
among the three measures of precision can be tabulated in
terms of their different sources of variation (see Table 1).

TABLE 1 Sources of Variation

Method Apparatus Operator Laboratory Time
Reproducibility Complete Different Different Different Not Specified

(Result)
Repeatability Complete Same Same Same Almost same

(Result)
Determinability Incomplete Same Same Same Almost same

(Part result)
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5.2.1 When used, determinability is a mandatory part of the
Procedure section. It will allow operators to check their
technique for the sequence of operations specified. It also
ensures that a result based on the set of determined values is
not subject to excessive variability from that source.

5.3 A bias statement furnishes guidelines on the relationship
between a set of test results and a related set of accepted
reference values. When the bias of a test method is known, a
compensating adjustment can be incorporated in the test
method.

5.4 This practice is intended for use by D02 subcommittees
in determining precision estimates and bias statements to be
used in D02 test methods. Its procedures correspond with ISO
4259 and are the basis for the Committee D02 computer
software, Calculation of Precision Data: Petroleum Test Meth-
ods. The use of this practice replaces that of Research Report
RR:D02-1007.2

5.5 Standard practices for the calculation of precision have
been written by many committees with emphasis on their
particular product area. One developed by Committee E11 on
Statistics is Practice E691. Practice E691 and this practice
differ as outlined in Table 2.

6. Stages in Planning of an Interlaboratory Test Program
for the Determination of the Precision of a Test
Method

6.1 The stages in planning an interlaboratory test program
are: preparing a draft method of test (see 6.2), planning and
executing a pilot program with at least two laboratories
(optional but recommended for new test methods) (see 6.3),
planning the interlaboratory program (see 6.4), and executing
the interlaboratory program (see 6.5). The four stages are
described in turn.

6.2 Preparing a Draft Method of Test—This shall contain all
the necessary details for carrying out the test and reporting the
results. Any condition which could alter the results shall be
specified. The section on precision will be included at this stage
only as a heading.

6.2.1 Interim Repeatability Study—If the responsible com-
mittee decides that an interlaboratory study for the test method
is to take place at a later point in time, using this standard, an
interim repeatability standard deviation is estimated by follow-
ing the steps as outlined below. This interim repeatability
standard deviation can be used to meet ASTM Form and Style
Requirement A21.5.1. When the committee is ready to proceed
with the ILS, continue with this practice from 6.3 onwards.

6.2.1.1 Design—The following minimum requirements
shall be met:

(1) Three (3) samples, compositionally representative of
the majority of materials within the design envelope of the test
method, covering the low, medium, and high regions of the
intended test method range.

(2) Twelve (12) replicates per sample, obtained under
repeatability conditions in a single laboratory.

6.2.1.2 Analysis—Carry out the following analyses in the
order presented:

(1) Perform GESD Outlier Rejection as per Practice D7915
for each sample.

(2) Calculate sample variance (v) and standard deviation
(s) for each sample using non-rejected results.

(3) Perform the Hartley test for variance equality as fol-
lows:

calculate the ratio : Fmax = vmax/vmin where vmax and vmin

are the largest and smallest variance obtained.
(4) If Fmax is less than 4.85, estimate the interim repeat-

ability standard deviation of the test method by taking the
square root of the average variance calculated using individual
variances from all samples as illustrated below using three
samples:

Interim repeatability standard deviation = @~v1 1 v2

1 v3! ⁄3#0.5, where v1,v2, v3 are variances for each sample; it
should be noted that if the number of non-outlying results used
to calculate the variances are not the same, this equation
provides an approximation only, but is suitable for the intended
purpose.

(5) If Fmax exceeds 4.85, list the averages and associated
repeatability standard deviations for each sample separately.

TABLE 2 Differences in Calculation of Precision in Practices
D6300 and E691

Element This Practice Practice E691

Number of replicates Two Any number

Precision is written
for

Test method Each sample

Outlier tests:
Within laboratories
Between laborato-

ries

Sequential
Cochran test
Hawkins test

Simultaneous
k-value

h-value

Outliers Rejected, subject to subcom-
mittee approval.

Rejected if many laborato-
ries or for cause such as
blunder or not following
method.

Retesting not generally per-
mitted.

Laboratory may retest
sample having rejected
data.

Analysis of variance Two-way, applied globally
to all the remaining data
at once.

One-way, applied to each
sample separately.

Precision multiplier tœ2 , where t is the two-
tailed Student’s t for 95 %
probability.

2.851.96 œ 2

Increases with decreasing
laboratories × samples par-
ticularly below 12.

Constant.

Variation of precision
with level

Minimized by data transfor-
mation. Equations
for repeatability and reproduc-
ibility are generated in the
retransformation process.

User may assess from in-
dividual sample precisions.
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(6) If Fmax exceeds 4.85, and, vmax is associated with the
sample with the lowest average, calculate the following ratio:
[10 smax ]/averagesample, where smax is (vmax)

0.5, and
averagesample is the average of the sample. If this ratio is near
or exceeds 1, then it is likely that this sample is at or below the
limit of quantitation of the test method. If this ratio is far below
1, it is likely this is a sample-specific effect. Method developers
should investigate and take appropriate steps to revise the test
method scope or improve the test method precision at the low
limit prior to the conduct of a full ILS.

(7) If the sample set design meets the requirement in 6.4.2,
the methodology in Appendix X2 can be used to estimate an
interim repeatability function by treating the repeats per sample
as results from ‘pseudo-laboratories’ without repeats.

NOTE 3—It is highly recommended that 6.2.1.2(7) be conducted under
the guidance of a statistician familiar with the methodology in Appendix
X2.

6.2.1.3 Validation of Interim Repeatability Study by Another
Laboratory—It is highly recommended that the findings from
the interim repeatability study be validated by conducting a
similar study at another laboratory. If the findings from the
validation study do not support the functional form (constant or
per Appendix X2) of the interim repeatability study obtained
by the initial laboratory, or, if the ratio:

F interim repeataility standard deviation from lab A
interim repeatability standard deviation from lab BG 2

exceeds 2.4, where the larger of the standard deviation value
is in the numerator, that is, if the repeatability standard
deviation for lab A is numerically larger than B; otherwise use
the repeatability standard deviation for lab B in the numerator
and the repeatability standard deviation for lab A in the
denominator, it can be concluded that the findings from one
laboratory cannot be validated by another laboratory. The
method developer is advised to consult a statistician and
subject matter experts to decide on which laboratory findings
are to be used.

6.3 Planning and Executing a Pilot Program with at Least
Two Laboratories:

6.3.1 A pilot program is recommended to be used with new
test methods for the following reasons: (1) to verify the details
in the operation of the test; (2) to find out how well operators
can follow the instructions of the test method; (3) to check the
precautions regarding sample handling and storage; and (4) to
estimate roughly the precision of the test.

6.3.2 At least two samples are required, covering the range
of results to which the test is intended to apply; however,
include at least 12 laboratory-sample combinations. Test each
sample twice by each laboratory under repeatability conditions.
If any omissions or inaccuracies in the draft method are
revealed, they shall now be corrected. Analyze the results for
precision, bias, and determinability (if applicable) using this
practice. If any are considered to be too large for the technical
application, then consider alterations to the test method.

6.4 Planning the Interlaboratory Program:
6.4.1 There shall be at least six (6) participating

laboratories, but it is recommended this number be increased to
eight (8) or more in order to ensure the final precision is based

on at least six (6) laboratories and to make the precision
statement more representative of the qualified user population.

6.4.2 The number of samples shall be sufficient to cover the
range of the property measured, and to give reliability to the
precision estimates. If any variation of precision with level was
observed in the results of the pilot program, then at least six
samples, spanning the range of the test method in a manner
than ensures the leverage (h) of each sample (see Eq 2) is less
than 0.5 shall be used in the interlaboratory program. In any
case, it is necessary to obtain at least 30 degrees of freedom in
both repeatability and reproducibility. For repeatability, this
means obtaining a total of at least 30 pairs of results in the
program. In the absence of pilot test program information to
permit use of Fig. 1 (see 6.4.3) to determine the number of
samples, the number of samples shall be greater than five, and
chosen such that the number of laboratories times the number
of samples is greater than or equal to 42.
Leverage calculation:

hii 5
1
n

1
~xi 2 x̄!2

(
k51

n

~xk 2 x̄!2

(2)

hii = leverage of sample i,
n = total number of planned samples,
pi = planned property level for sample i,
xi = ln (pi), and
x̄ = grand average of all xi.

6.4.3 For reproducibility, Fig. 1 gives the minimum number
of samples required in terms of L, P, and Q, where L is the
number of participating laboratories, and P and Q are the ratios
of variance component estimates (see 8.3.1) obtained from the
pilot program. Specifically, P is the ratio of the interaction
component to the repeats component, and Q is the ratio of the
laboratories component to the repeats component.

NOTE 4—Appendix X1 gives the derivation of the equation used. If Q
is much larger than P, then 30 degrees of freedom cannot be achieved; the
blank entries in Fig. 1 correspond to this situation or the approach of it
(that is, when more than 20 samples are required). For these cases, there
is likely to be a significant bias between laboratories. The program
organizer shall be informed; further standardization of the test method
may be necessary.

6.5 Executing the Interlaboratory Program:
6.5.1 One person shall oversee the entire program, from the

distribution of the texts and samples to the final appraisal of the
results. He or she shall be familiar with the test method, but
should not personally take part in the actual running of the
tests.

6.5.2 The text of the test method shall be distributed to all
the laboratories in time to raise any queries before the tests
begin. If any laboratory wants to practice the test method in
advance, this shall be done with samples other than those used
in the program.

6.5.3 The samples shall be accumulated, subdivided, and
distributed by the organizer, who shall also keep a reserve of
each sample for emergencies. It is most important that the
individual laboratory portions be homogeneous. Instructions to
each laboratory shall include the following:

6.5.3.1 Testing Protocol—The protocol to be used for test-
ing of the ILS sample set shall be provided. Factors that may
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affect test method outcome but are not intended to be con-
trolled in the normal execution of the test method shall not be
intentionally removed nor controlled in the testing of the ILS
samples, unless explicitly permitted by the sponsoring subcom-
mittee of the ILS for special studies where certain factors are
controlled intentionally as part of the testing protocol to meet
the intended ILS study objectives. To remove, control, or set

limits on factors that are not intended to be controlled in the
normal execution of the test method in the conduct of an ILS
that is intended for the precision evaluation of the test method
executed under normal operating conditions will result in
overly optimistic precision. Precision statements thus gener-
ated will likely be unattainable by majority of users in the
normal execution of the test method.

FIG. 1 Determination of Number of Samples Required (see 6.4.3)
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6.5.3.2 The agreed draft method of test;
6.5.3.3 Material Safety Data Sheets, where applicable, and

the handling and storage requirements for the samples;
6.5.3.4 The order in which the samples are to be tested (a

different random order for each laboratory);
6.5.3.5 The statement that two test results are to be obtained

in the shortest practical period of time on each sample by the
same operator with the same apparatus. For statistical reasons
it is imperative that the two results are obtained independently
of each other, that is, that the second result is not biased by
knowledge of the first. If this is regarded as impossible to
achieve with the operator concerned, then the pairs of results
shall be obtained in a blind fashion, but ensuring that they are
carried out in a short period of time (preferably the same day).
The term blind fashion means that the operator does not know
that the sample is a replicate of any previous run.

6.5.3.6 The period of time during which repeated results are
to be obtained and the period of time during which all the
samples are to be tested;

6.5.3.7 A blank form for reporting the results. For each
sample, there shall be space for the date of testing, the two
results, and any unusual occurrences. The unit of accuracy for
reporting the results shall be specified. This should be, if
possible, more digits reported than will be used in the final test
method, in order to avoid having rounding unduly affect the
estimated precision values.

6.5.3.8 When it is required to estimate the determinability,
the report form must include space for each of the determined
values as well as the test results.

6.5.3.9 A statement that the test shall be carried out under
normal conditions, using operators with good experience but
not exceptional knowledge; and that the duration of the test
shall be the same as normal.

6.5.4 The pilot program operators may take part in the
interlaboratory program. If their extra experience in testing a
few more samples produces a noticeable effect, it will serve as
a warning that the test method is not satisfactory. They shall be
identified in the report of the results so that any such effect may
be noted.

6.5.5 It can not be overemphasized that the statement of
precision in the test method is to apply to test results obtained
by running the agreed procedure exactly as written. Therefore,
the test method must not be significantly altered after its
precision statement is written.

7. Inspection of Interlaboratory Results for Uniformity
and for Outliers

7.1 Introduction:
7.1.1 This section specifies procedures for examining the

results reported in a statistically designed interlaboratory
program (see Section 6) to establish:

7.1.1.1 The independence or dependence of precision and
the level of results;

7.1.1.2 The uniformity of precision from laboratory to
laboratory, and to detect the presence of outliers.

NOTE 5—The procedures are described in mathematical terms based on
the notation of Annex A1 and illustrated with reference to the example
data (calculation of bromine number) set out in Annex A2. Throughout
this section (and Section 8), the procedures to be used are first specified

and then illustrated by a worked example using data given in Annex A2.
NOTE 6—It is assumed throughout this section that all the deviations are

either from a single normal distribution or capable of being transformed
into such a distribution (see 7.2). Other cases (which are rare) would
require different treatment that is beyond the scope of this practice. Also,
see (2) for a statistical test of normality.

7.2 Transformation of Data:
7.2.1 In many test methods the precision depends on the

level of the test result, and thus the variability of the reported
results is different from sample to sample. The method of
analysis outlined in this practice requires that this shall not be
so and the position is rectified, if necessary, by a transforma-
tion.

7.2.1.1 Prior to commencement of analysis to determine if
transformation is necessary, it is a good practice to examine
information gathered from ILS participants to determine com-
pliance with agreed upon ILS protocol and method of test. As
part of this examination, the raw data as reported should be
inspected for existence of extreme or outlandish values that are
visually obvious. Exclusion of extreme or outlandish results
from transformation analysis is recommended if assignable
causes can be found in order to help ensure test data
dependability, transformation reliability, and subsequent com-
putation efficiency. If assignable causes cannot be found,
exclusion of extreme or outlandish results from transformation
analysis should be confirmed on a sample by replicate basis
using a formal statistical test such as the General Extreme
Studentized Deviation (GESD) multi-outlier technique (see
Practice D7915) or other technically equivalent techniques at
the 99 % confidence level. It is recommended that such
statistical tests be conducted under the guidance of a statisti-
cian.

NOTE 7—“Sample by replicate basis” means that each data set to be
examined by GESD or other statistical tests contains only results specific
to a single replicate for a specific sample, and not the entire ILS data set.
As an example, an ILS with eight labs and three samples with two
replicates per sample will have a total of six (3 samples × 2 replicates) data
sets for this purpose. Each data set will contain eight results, with one
result from each lab.

7.2.2 The laboratories’ standard deviations Dj, and the
repeats standard deviations dj (see Annex A1) are calculated
and plotted separately against the sample means mj . If the
points so plotted may be considered as lying about a pair of
lines parallel to the m-axis, then no transformation is necessary.
If, however, the plotted points describe non-horizontal straight
lines or curves of the form D = f1(m) and d = f2(m), then a
transformation will be necessary.

7.2.3 The relationships D = f1(m) and d = f2( m) will not in
general be identical. It is frequently the case, however, that the

ratios uj5
dj

Dj

are approximately the same for all mj, in which

case f1 is approximately proportional to f2 and a single
transformation will be adequate for both repeatability and
reproducibility. The statistical procedures of this practice are
greatly facilitated when a single transformation can be used.
For this reason, unless the uj clearly vary with property level,
the two relationships are combined into a single dependency
relationship D = f(m) (where D now includes d) by including
a dummy variable T. This will take account of the difference
between the relationships, if one exists, and will provide a
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means of testing for this difference (see A4.1).

7.2.4 In the event that the rations uj do vary with level
(mean, mj), as confirmed with a regression of uj on mj, or
log(uj) on log(mj), follow the instructions in Annex A5.
Otherwise, continue with 7.2.5.

7.2.5 The single relationship D = f(m) is best estimated by
weighted linear regression analysis. Strictly speaking, an
iteratively weighted regression should be used, but in most
cases even an unweighted regression will give a satisfactory
approximation. The derivation of weights is described in A4.2,
and the computational procedure for the regression analysis is
described in A4.3. Typical forms of dependence D = f(m) are
given in A3.1. These are all expressed in terms of at most two
(2) transformation parameters, B and B0.

7.2.6 The typical forms of dependence, the transformations
they give rise to, and the regressions to be performed in order
to estimate the transformation parameters B, are all summa-
rized in A3.2. This includes statistical tests for the significance
of the regression (that is, is the relationship D = f(m) parallel
to the m-axis), and for the difference between the repeatability
and reproducibility relationships, based at the 5 % significance
level. If such a difference is found to exist, follow the
procedures in Annex A5.

7.2.7 If it has been shown at the 5 % significance level that
there is a significant regression of the form D = f(m), then the
appropriate transformation y = F(x), where x is the reported
result, is given by the equation

F~x! 5 K*
dx

f~x!
(3)

where K = a constant. In that event, all results shall be trans-
formed accordingly and the remainder of the analysis carried
out in terms of the transformed results. Typical transforma-
tions are given in A3.1.

7.2.8 The choice of transformation is difficult to make the
subject of formalized rules. Qualified statistical assistance may
be required in particular cases. The presence of outliers may
affect judgement as to the type of transformation required, if
any (see 7.7).

7.2.9 Worked Example:
7.2.9.1 Table 3 lists the values of m, D, and d for the eight

samples in the example given in Annex A2, correct to three
significant digits. Corresponding degrees of freedom are in
parentheses. Inspection of the values in Table 3 shows that both
D and d increase with m, the rate of increase diminishing as m
increases. A plot of these figures on log-log paper (that is, a
graph of log D and log d against log m) shows that the points
may reasonably be considered as lying about two straight lines
(see Fig. A4.1 in Annex A4). From the example calculations
given in A4.4, the gradients of these lines are shown to be the
same, with an estimated value of 0.638. Bearing in mind the

errors in this estimated value, the gradient may for convenience
be taken as 2/3.

*x2
2
3 dx 5 3x

1
3 (4)

7.2.9.2 Hence, the same transformation is appropriate both
for repeatability and reproducibility, and is given by the
equation. Since the constant multiplier may be ignored, the
transformation thus reduces to that of taking the cube roots of
the reported bromine numbers. This yields the transformed
data shown in Table A1.3, in which the cube roots are quoted
correct to three decimal places.

7.3 Tests for Outliers:
7.3.1 The reported data or, if it has been decided that a

transformation is necessary, the transformed results shall be
inspected for outliers. These are the values which are so
different from the remainder that it can only be concluded that
they have arisen from some fault in the application of the test
method or from testing a wrong sample. Many possible tests
may be used and the associated significance levels varied, but
those that are specified in the following subsections have been
found to be appropriate in this practice. These outlier tests all
assume a normal distribution of errors.

7.3.1.1 The total percentage of outliers rejected, as defined
by 100× (no. of rejected results/no. of reported results), shall be
reported explicitly to the ILS Program Manager for approval
by the sponsoring subcommittee and main committee.

7.3.2 Uniformity of Repeatability—The first outlier test is
concerned with detecting a discordant result in a pair of repeat
results. This test (3) involves calculating the eij

2 over all the
laboratory/sample combinations. Cochran’s criterion at the 1 %
significance level is then used to test the ratio of the largest of
these values over their sum (see A1.5). If its value exceeds the
value given in Table A2.2, corresponding to one degree of
freedom, n being the number of pairs available for comparison,
then the member of the pair farthest from the sample mean
shall be rejected and the process repeated, reducing n by 1,
until no more rejections are called for. In certain cases,
specifically when the number of digits used in reporting results
leads to a large number of repeat ties, this test can lead to large
proportion of rejections. If this is so, consideration should be
given to cease this rejection test and retain some or all of the
rejected results. A decision based on judgement in consultation
with a statistician will be necessary in this case.

7.3.3 Worked Example—In the case of the example given in
Annex A2, the absolute differences (ranges) between trans-
formed repeat results, that is, of the pairs of numbers in Table
A1.3, in units of the third decimal place, are shown in Table 4.
The largest range is 0.078 for Laboratory G on Sample 3. The
sum of squares of all the ranges is

TABLE 3 Computed from Bromine Example Showing Dependence of Precision on Level

Sample Number 3 8 1 4 5 6 2 7
m 0.756 1.22 2.15 3.64 10.9 48.2 65.4 114
D 0.0669 (14) 0.159 (9) 0.729 (8) 0.211 (11) 0.291 (9) 1.50 (9) 2.22 (9) 2.93 (9)
d 0.0500 (9) 0.0572 (9) 0.127 (9) 0.116 (9) 0.0943 (9) 0.527 (9) 0.818 (9) 0.935 (9)

D6300 − 17a

8

 



0.0422 + 0.0212 + . . . + 0.0262 + 02 = 0.0439.
Thus, the ratio to be compared with Cochran’s criterion is

0.0782

0.0439
5 0.138 (5)

where 0.138 is the result obtained by electronic calculation
of unrounded factors in the expression. There are 72 ranges
and as, from Table A2.2, the criterion for 80 ranges is
0.1709, this ratio is not significant.

7.3.4 Uniformity of Reproducibility:
7.3.4.1 The following outlier tests are concerned with es-

tablishing uniformity in the reproducibility estimate, and are
designed to detect either a discordant pair of results from a
laboratory on a particular sample or a discordant set of results
from a laboratory on all samples. For both purposes, the
Hawkins’ test (4) is appropriate.

7.3.4.2 This involves forming for each sample, and finally
for the overall laboratory averages (see 7.6), the ratio of the
largest absolute deviation of laboratory mean from sample (or
overall) mean to the square root of certain sums of squares
(A1.6).

7.3.4.3 The ratio corresponding to the largest absolute
deviation shall be compared with the critical 1 % values given
in Table A1.5, where n is the number of laboratory/sample cells
in the sample (or the number of overall laboratory means)
concerned and where v is the degrees of freedom for the sum
of squares which is additional to that corresponding to the
sample in question. In the test for laboratory/sample cells v will
refer to other samples, but will be zero in the test for overall
laboratory averages.

7.3.4.4 If a significant value is encountered for individual
samples the corresponding extreme values shall be omitted and
the process repeated. If any extreme values are found in the
laboratory totals, then all the results from that laboratory shall
be rejected.

7.3.4.5 If the test leads to large proportion of rejections,
consideration should be given to cease this rejection test and
retain some or all of the rejected results. A decision based on
judgement in consultation with a statistician will be necessary
in this case.

7.3.5 Worked Example:
7.3.5.1 The application of Hawkins’ test to cell means

within samples is shown below.
7.3.5.2 The first step is to calculate the deviations of cell

means from respective sample means over the whole array.
These are shown in Table 5, in units of the third decimal place.

The sum of squares of the deviations are then calculated for
each sample. These are also shown in Table 5 in units of the
third decimal place.

7.3.5.3 The cell to be tested is the one with the most extreme
deviation. This was obtained by Laboratory D from Sample 1.
The appropriate Hawkins’ test ratio is therefore:

B* 5
0.314

=0.11710.0151 . . .10.017
5 0.7281 (6)

7.3.5.4 The critical value, corresponding to n = 9 cells in
sample 1 and v = 56 extra degrees of freedom from the other
samples is interpolated from Table A1.5 as 0.3729. The test
value is greater than the critical value, and so the results from
Laboratory D on Sample 1 are rejected.

7.3.5.5 As there has been a rejection, the mean value,
deviations, and sum of squares are recalculated for Sample 1,
and the procedure is repeated. The next cell to be tested will be
that obtained by Laboratory F from Sample 2. The Hawkins’
test ratio for this cell is:

B* 5
0.097

=0.00610.0151 . . .10.017
5 0.3542 (7)

7.3.5.6 The critical value corresponding to n = 9 cells in
Sample 2 and v = 55 extra degrees of freedom is interpolated
from Table A1.5 as 0.3756. As the test ratio is less than the
critical value there will be no further rejections.

7.4 Rejection of Complete Data from a Sample:
7.4.1 The laboratories standard deviation and repeats stan-

dard deviation shall be examined for any outlying samples. If
a transformation has been carried out or any rejection made,
new standard deviations shall be calculated.

7.4.2 If the standard deviation for any sample is excessively
large, it shall be examined with a view to rejecting the results
from that sample.

7.4.3 Cochran’s criterion at the 1 % level can be used when
the standard deviations are based on the same number of
degrees of freedom. This involves calculating the ratio of the
largest of the corresponding sums of squares (laboratories or
repeats, as appropriate) to their total (see A1.5). If the ratio
exceeds the critical value given in Table A2.2, with n as the
number of samples and v the degrees of freedom, then all the
results from the sample in question shall be rejected. In such an
event, care should be taken that the extreme standard deviation
is not due to the application of an inappropriate transformation
(see 7.1), or undetected outliers.

TABLE 4 Absolute Differences Between Transformed Repeat
Results: Bromine Example

Laboratory Sample
1 2 3 4 5 6 7 8

A 42 21 7 13 7 10 8 0
B 23 12 12 0 7 9 3 0
C 0 6 0 0 7 8 4 0
D 14 6 0 13 0 8 9 32
E 65 4 0 0 14 5 7 28
F 23 20 34 29 20 30 43 0
G 62 4 78 0 0 16 18 56
H 44 20 29 44 0 27 4 32
J 0 59 0 40 0 30 26 0

TABLE 5 Deviations of Cell Means from Respective Sample
Means: Transformed Bromine Example

Sample
Laboratory 1 2 3 4 5 6 7 8

A 20 8 14 15 10 48 6 3
B 75 7 20 9 10 47 6 3
C 64 35 3 20 30 4 22 25
D 314 33 18 42 7 39 80 50
E 32 32 30 9 7 18 18 39
F 75 97 31 20 30 8 74 53
G 10 34 32 20 20 61 9 62
H 42 13 4 42 13 21 8 50
J 1 28 22 29 14 8 10 53

Sum of Squares 117 15 4 6 3 11 13 17
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7.4.4 There is no optimal test when standard deviations are
based on different degrees of freedom. However, the ratio of
the largest variance to that pooled from the remaining samples
follows an F-distribution with v1 and v2 degrees of freedom
(see A1.7). Here v1 is the degrees of freedom of the variance in
question and v2 is the degrees of freedom from the remaining
samples. If the ratio is greater than the critical value given in
A2.6, corresponding to a significance level of 0.01/S where S is
the number of samples, then results from the sample in
question shall be rejected.

7.4.5 Worked Example:
7.4.5.1 The standard deviations of the transformed results,

after the rejection of the pair of results by Laboratory D on
Sample 1, are given in Table 6 in ascending order of sample
mean, correct to three significant digits. Corresponding degrees
of freedom are in parentheses.

7.4.5.2 Inspection shows that there is no outlying sample
among these. It will be noted that the standard deviations are
now independent of the sample means, which was the purpose
of transforming the results.

7.4.5.3 The values in Table 7, taken from a test program on
bromine numbers over 100, will illustrate the case of a sample
rejection.

7.4.5.4 It is clear, by inspection, that the laboratories stan-
dard deviation of Sample 93 at 15.76 is far greater than the
others. It is noted that the repeats standard deviation in this
sample is correspondingly large.

7.4.5.5 Since laboratory degrees of freedom are not the
same over all samples, the variance ratio test is used. The
variance pooled from all samples, excluding Sample 93, is the
sum of the sums of squares divided by the total degrees of
freedom, that is

~8 3 5.102 19 3 4.202 1…18 3 3.852!

~8191…18!
5 19.96 (8)

7.4.5.6 The variance ratio is then calculated as

15.262

19.96
5 11.66 (9)

where 11.66 is the result obtained by electronic calculation
without rounding the factors in the expression.

7.4.5.7 From Table A1.8 the critical value corresponding to
a significance level of 0.01/8 = 0.00125, on 8 and 63 degrees
of freedom, is approximately 4. The test ratio greatly exceeds
this and results from Sample 93 shall therefore be rejected.

7.4.5.8 Turning to repeats standard deviations, it is noted
that degrees of freedom are identical for each sample and that
Cochran’s test can therefore be applied. Cochran’s criterion
will be the ratio of the largest sum of squares (Sample 93) to
the sum of all the sums of squares, that is

2.972/~1.13210.9921…11.36 2! 5 0.510 (10)
This is greater than the critical value of 0.352 corresponding
to n = 8 and v = 8 (see Table A2.2), and confirms that re-
sults from Sample 93 shall be rejected.

7.5 Estimating Missing or Rejected Values:
7.5.1 One of the Two Repeat Values Missing or Rejected—If

one of a pair of repeats (Yij1 or Yij2) is missing or rejected, this
shall be considered to have the same value as the other repeat
in accordance with the least squares method.

7.5.2 Both Repeat Values Missing or Rejected:
7.5.2.1 If both the repeat values are missing, estimates of aij

(= Yij1 + Yij2) shall be made by forming the laboratories ×
samples interaction sum of squares (see Eq 18), including the
missing values of the totals of the laboratories/samples pairs of
results as unknown variables. Any laboratory or sample from
which all the results were rejected shall be ignored and new
values of L and S used. The estimates of the missing or rejected
values shall be those that minimize the interaction sum of
squares.

7.5.2.2 If the value of single pair sum aij has to be estimated,
the estimate is given by the equation:

aij 5
1

~L 2 1! ~S '21!
~LL11S 'S1 2 T1! (11)

where:
L1 = total of remaining pairs in the ith laboratory,
S1 = total of remaining pairs in the jth sample,
S' = S – number of samples rejected in 7.4, and
T1 = total of all pairs except aij.

7.5.2.3 If more estimates are to be made, the technique of
successive approximation can be used. In this, each pair sum is
estimated in turn from Eq 11, using L1, S1, and T1, values,
which contain the latest estimates of the other missing pairs.
Initial values for estimates can be based on the appropriate
sample mean, and the process usually converges to the required
level of accuracy within three complete iterations (5).

7.5.3 Worked Example:
7.5.3.1 The two results from Laboratory D on Sample 1

were rejected (see 7.3.4) and thus a41 has to be estimated.
Total of remaining results in Laboratory 4 = 36.354
Total of remaining results in Sample 1 = 19.845
Total of all the results except a41 = 348.358
Also S' = 8 and L = 9.

Hence, the estimate of a41 is given by

aij 5
1

~9 2 1! ~8 2 1!
@~9 3 36.354!1~8 3 19.845! 2 348.358#

(12)
Therefore,

TABLE 6 Standard Deviations of Transformed Results: Bromine Example

Sample number 3 8 1 4 5 6 2 7
m 0.9100 1.066 1.240 1.538 2.217 3.639 4.028 4.851
D 0.0278 0.0473 0.0354 0.0297 0.0197 0.0378 0.0450 0.0416

(14) (9) (13) (11) (9) (9) (9) (9)
d 0.0214 0.0182 0.028 0.0164 0.0063 0.0132 0.0166 0.0130

(9) (9) (8) (9) (9) (9) (9) (9)
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aij 5
137.588

56
5 2.457 (13)

7.6 Rejection Test for Outlying Laboratories:
7.6.1 At this stage, one further rejection test remains to be

carried out. This determines whether it is necessary to reject the
complete set of results from any particular laboratory. It could
not be carried out at an earlier stage, except in the case where
no individual results or pairs are missing or rejected. The
procedure again consists of Hawkins’ test (see 7.3.4), applied
to the laboratory averages over all samples, with any estimated
results included. If any laboratories are rejected on all samples,
new estimates shall be calculated for any remaining missing
values (see 7.5).

7.6.2 Worked Example:
7.6.2.1 The procedure on the laboratory averages shown in

Table 8 follows exactly that specified in 7.3.4. The deviations
of laboratory averages from the overall mean are given in Table
9 in units of the third decimal place, together with the sum of
squares. Hawkins’ test ratio is therefore:

B* 5 0.026/=0.00222 5 0.5518 (14)
Comparison with the value tabulated in Table A1.5, for n =
9 and v = 0, shows that this ratio is not significant and there-
fore no complete laboratory rejections are necessary.

7.7 Confirmation of Selected Transformation:
7.7.1 At this stage it is necessary to check that the rejections

carried out have not invalidated the transformation used. If
necessary, the procedure from 7.2 shall be repeated with the
outliers replaced, and if a new transformation is selected,
outlier tests shall be reapplied with the replacement values
reestimated, based on the new transformation.

7.7.2 Worked Example:
7.7.2.1 It was not considered necessary in this case to repeat

the calculations from 7.2 with the outlying pair deleted.

8. Analysis of Variance and Calculation of Precision
Estimates

8.1 After the data have been inspected for uniformity, a
transformation has been performed, if necessary, and any
outliers have been rejected (see Section 7), an analysis of
variance shall be carried out. First an analysis of variance table
shall be constructed, and finally the precision estimates de-
rived.

8.2 Analysis of Variance:

8.2.1 Forming the Sums of Squares for the Laboratories ×
Samples Interaction Sum of Squares—The estimated values, if
any, shall be put in the array and an approximate analysis of
variance performed.

M 5 mean correction 5 T2/2L 'S ' (15)

where:
L' = L – number of laboratories rejected in 7.6 – number of

laboratories with no remaining results after rejections in
7.3.4,

S' = total of remaining pairs in the jth sample, and
T = the total of all replicate test results.

Samples sum of squares 5 F (
j51

S '

~gj
2/2L '!G 2 M (16)

where gj is the sum of sample j test results.

Laboratories sum of squares 5 F (
i51

L '

~hi
2/2S '!G 2 M (17)

where hi is the sum of laboratory i test results.

Pairs sum of squares 5 ~1/2! F (
i51

L '

(
j51

S '

aij
2G 2 M (18)

I = Laboratories × samples interaction sum of squares
= (pairs sum of squares) – (laboratories sum of squares)

– (sample sum of squares)

Ignoring any pairs in which there are estimated values,
repeats sum of squares,

E 5 ~1/2! (
i51

L '

(
j51

S '

eij
2 (19)

The purpose of performing this approximate analysis of
variance is to obtain the minimized laboratories × samples
interaction sum of squares, I. This is then used as indicated in
8.2.2, to obtain the laboratories sum of squares. If there were
no estimated values, the above analysis of variance is exact and
paragraph 8.2.2 shall be disregarded.

8.2.1.1 Worked Example:

Mean correction 5
350.8152

144
(20)

5854.6605

TABLE 7 Example Statistics Indicating Need to Reject an Entire Sample

Sample number 90 89 93 92 91 94 95 96
m 96.1 99.8 119.3 125.4 126.0 139.9 139.4 159.5
D 5.10 4.20 15.26 4.40 4.09 4.87 4.74 3.85

(8) (9) (8) (11) (10) (8) (9) (8)
d 1.13 0.99 2.97 0.91 0.73 1.32 1.12 1.36

(8) (8) (8) (8) (8) (8) (8) (8)

TABLE 8 Averages of All Transformed Results from Each Laboratory

Laboratory A B C D E F G H J
Grand

Average
Average 2.437 2.439 2.424 2.426A 2.444 2.458 2.410 2.428 2.462 2.436

A Including estimated value.
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where 854.6605 is the result obtained by electronic calcula-
tion without rounding the factors in the expression.

Samples sum of squares (21)

5
22.3022 172.512 2 1…119.1922

18
2 854.6605

5 293.5409

Laboratories sum of squares (22)

5
38.9922 139.0202 1…139.3872

16

2 854.6605

5 0.0356

Pairs sum of squares 5 ~1/2! ~2.5202 18.0412 1…12.2382!

2 854.6605 (23)

5293.6908

Repeats sum of squares 5 ~1/2! ~0.0422 10.0212 1…102! (24)

50.0219

Table 10 can then be derived.
8.2.2 Forming the Sum of Squares for the Exact Analysis of

Variance:
8.2.2.1 In this subsection, all the estimated pairs are disre-

garded and new values of gj are calculated. The following sums
of squares for the exact analysis of variance (6) are formed.

Uncorrected sample sum of squares 5 (
j51

S ' gj
2

Sj

(25)

where:
Sj = 2(L' – number of missing pairs in that sample).

Uncorrected pairs sum of squares 5 ~1/2! (
i51

L '

(
j51

S '

aij
2 (26)

The laboratories sum of squares is equal to (pairs sum of
squares) – (samples sum of squares) – (the minimized labora-
tories × samples interaction sum of squares)

5~1/2! F (
i51

L '

(
j51

S '

aij
2G 2 F (

j51

S ' gj
2

Sj
G 2 I (27)

8.2.2.2 Worked Example:

Uncorrected samples sum of squares (28)

5
19.8452

16
1

72.5122

18
1…1

19.1922

18

5 1145.1834

Uncorrected pairs sum of squares 5
2.5202

2
1

8.0412

2
1…1

2.2382

2

(29)

51145.3329

Therefore, laboratories sum of squares (30)

5 1145.3329 2 1145.183410.1143

5 0.0352

8.2.3 Degrees of Freedom:
8.2.3.1 The degrees of freedom for the laboratories are

(L'–1). The degrees of freedom for laboratories × samples
interaction are (L' –1)(S'–1) for a complete array and are
reduced by one for each pair which is estimated. The degrees
of freedom for repeats are (L'S' ) and are reduced by one for
each pair in which one or both values are estimated.

8.2.3.2 Worked Example—There are eight samples and nine
laboratories in this example. As no complete laboratories or
samples were rejected, then S' = 8 and L' = 9.

Laboratories degrees of freedom = L – 1 = 8.
Laboratories × samples interaction degrees of freedom if there
had been no estimates, would have been (9 – 1)(8 – 1) = 56.
But one pair was estimated, hence laboratories × samples
interaction degrees of freedom = 55. Repeats degrees of
freedom would have been 72 if there had been no estimates. In
this case one pair was estimated, hence repeats degrees of
freedom = 71.

8.2.4 Mean Squares and Analysis of Variance:
8.2.4.1 The mean square in each case is the sum of squares

divided by the corresponding degrees of freedom. This leads to
the analysis of variance shown in Table 11. The ratio ML/MLS

is distributed as F with the corresponding laboratories and
interaction degrees of freedom (see A1.7). If this ratio exceeds
the 5 % critical value given in Table A1.6, then serious bias

TABLE 9 Absolute Deviations of Laboratory Averages from Grand Average × 1000

Laboratory A B C D E F G H J
Sum of
Squares

Deviation 1 3 12 10 8 22 26 8 26 2.22

TABLE 10 Sums of Squares: Bromine Example

Sources of Variation Sum of Squares
Samples 293.5409
Laboratories 0.0356
Laboratories × samples interaction 0.1143
Pairs 293.6908
Repeats 0.0219

TABLE 11 Analysis of Variance Table

Sources of Variation Degrees of Freedom Sum of Squares
Mean

Square
Laboratories L' − 1 Laboratories sum of

squares
ML

Laboratories ×
samples

(L' − 1) (S' − 1) − number of
estimated pairs

I MLS

Repeats L'S' − number of pairs in
which one or both values
are estimated

E Mr
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between the laboratories is implied and the program organizer
shall be informed (see 6.5); further standardization of the test
method may be necessary, for example, by using a certified
reference material.

8.2.4.2 Worked Example—The analysis of variance is shown
in Table 12. The ratio ML/MLS = 0.0044/0.002078 has a value
2.117. This is greater than the 5 % critical value obtained from
Table A1.6, indicating bias between laboratories.

8.3 Expectation of Mean Squares and Calculation of Preci-
sion Estimates:

8.3.1 Expectation of Mean Squares with No Estimated
Values—For a complete array with no estimated values, the
expectations of mean squares are

Laboratories: σo
2 + 2σ1

2 + 2S' σ2
2

Laboratories × samples: σo
2 + 2σ1

2

Repeats: σo
2

where:
σ1

2 = the component of variance due to interaction between
laboratories and samples, and

σ2
2 = the component of variance due to differences between

laboratories.

8.3.2 Expectation of Mean Squares with Estimated Values:
8.3.2.1 The coefficients of σ1

2 and σ2
2 in the expectation of

mean squares are altered in the cases where there are estimated
values. The expectations of mean squares then become

Laboratories: ασo
2 + 2σ1

2 + β σ2
2

Laboratories × samples:γσo
2 + 2σ1

2

Repeats: σo
2

where:

β 5 2
K 2 S '
L '21'

(31)

where:
K = the number of laboratory × sample cells containing at

least one result, and α and γ are computed as in 8.3.2.5

8.3.2.2 If there are no cells with only a single estimated
result, then α = γ = 1.

8.3.2.3 If there are no empty cells (that is, every lab has
tested every sample at least once, and K = L'× S'), then α and
γ are both one plus the proportion of cells with only a single
result.

8.3.2.4 If there are both empty cells and cells with only one
result, then, for each lab, compute the proportion of samples
tested for which there is only one result, pi, and the sum of
these proportions over all labs, P. For each sample, compute
the proportion of labs that have tested the sample for which
there is only one result on it, qj, and the sum of these

proportions over samples, Q. Compute the total number of cells
with only one result, W, and the proportion of these among all
nonempty cells, W/K. Then

α 5 11
P 2 W/K

L '21
(32)

and

γ 5 11
W 2 P 2 Q1W/K

K 2 L '2S '11
(33)

NOTE 8—These subsections are based upon the assumptions that both
samples and laboratories are random effects.

8.3.2.5 Worked Example—For the example, which has eight
samples and nine laboratories, one cell is empty (Laboratory D
on Sample 1), so K = 71 and

β 5 2
71 2 8

~9 2 1!
5 15.75 (34)

None of the nonempty cells has only one result, so α = γ =
1. To make the example more interesting, assume that only one
result remains from Laboratory A on Sample 1. Then W = 1, p1

= 1⁄8 , p2 = p3 = ... = p9 = 0, and P = 0.125. We compute q1

= 1⁄8 (we don’t count Laboratory D in the denominator), q2 =
q3 =...= q8 = 0, and Q = 0.125. Consequently,

α 5 11
0.125 2 1/71

9 2 1
5 1.014 (35)

and

γ 5 11
1 2 0.125 2 0.12511/71

55
5 1.014 (36)

8.3.3 Calculation of Precision Estimates:
8.3.3.1 Repeatability—The repeatability variance is twice

the mean square for repeats. The repeatability estimate is the
product of the repeatability standard deviation and the “t-
value” with appropriate degrees of freedom (see Table A2.3)
corresponding to a two-sided probability of 95 %. Round
calculated estimates of repeatability in accordance with Prac-
tice E29, specifically paragraph 7.6 of that practice. Note that
if a transformation y = f(x) has been used, then

r~x!'U dx
dy U r~y! (37)

where r(x), r(y) are the corresponding repeatability functions
(see Table A3.1). A similar relationship applies to the repro-
ducibility functions R(x), R(y).

8.3.3.2 Worked Example:

Repeatability variance 5 2σo
2 (38)

50.000616

Repeatability of y 5 t71=0.000616

51.994 x 0.0248

50.0495

Repeatability of x 5 3x2/3 3 0.0495

50.148x2/3

8.3.3.3 Reproducibility—Reproducibility variance = 2 (σo
2

+ σ1
2 + σ2

2) and can be calculated using Eq 39.

TABLE 12 Analysis of Variance Table: Transformed Benzene
Example

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean Square F

Laboratories 0.0352 8 0.004400 2.117

Laboratories ×
samples

0.1143 55 0.002078

Repeats 0.0219 71 0.000308 ...

D6300 − 17a

13

 



Reproducibility variance (39)

5
2
β ML1S 1 2

2
β D MLS1S 2 2 γ1

2
β ~γ 2 α!D Mr

where the symbols are as set out in 8.2.4 and 8.3.2. The
reproducibility estimate is the product of the reproducibility
standard deviation and the “t-value” with appropriate degrees
of freedom (see Table A2.3), corresponding to a two-sided
probability of 95 %. An approximation (7) to the degrees of
freedom of the reproducibility variance is given by Eq 40.

v 5
~Reproducibility variance!2

r1
2

L '21
1

r2
2

vLS

1
r3

2

vr

(40)

where:
r1, r2, and r3 = the three successive terms in Eq 39,
vLS = the degrees of freedom for laboratories ×

samples, and
vr = the degrees of freedom for repeats.

(1) Round calculated estimates of reproducibility in accor-
dance with Practice E29, specifically paragraph 7.6 of that
practice.

(2) Substantial bias between laboratories will result in a
loss of degrees of freedom estimated by Eq 40. If reproduc-
ibility degrees of freedom are less than 30, then the program
organizer shall be informed (see 6.5); further standardization of
the test method may be necessary.

8.3.3.4 Worked Example—Recalling that α = γ = 1 (not
1.014, as shown in Eq 35 and 36):

Reproducibility variance (41)

5S 2
15.75

3 0.00440D1S 13.75
15.75

3 0.002078D10.000308

50.00055910.00181410.000308

50.002681

v 5
0.0026812

0.0005592

8
1

0.0018142

55
1

0.0003082

71

(42)

572

Reproducibility of y 5 t72= 0.002681 (43)

50.1034

Reproducibility of x 5 0.310x2/3

8.3.3.5 Determinability—When determinability is relevant,
it shall be calculated by the same procedure as is used to
calculate repeatability except that pairs of determined values
replace test results. This will as much as double the number of
“laboratories” for the purposes of this calculation.

8.3.4 Examination of Precision-to-mean Ratio:
8.3.4.1 For test methods that are intended to quantitate

analyte(s), for each sample, calculate the following precision-
to-mean ratio:

10 3
@standard deviation under repeatability conditions#

@sample mean#
(44)

8.3.4.2 Remove all results for samples with the precision-
to-mean ratio (Eq 44) that are greater than 1, and repeat all
precision calculation procedures using this reduced dataset.

8.3.4.3 If the precision versus level relationship established
using the reduced dataset (described in 8.3.4.2) is significantly
different than that calculated using the original dataset, report
the precision for the test method established from the reduced
dataset in lieu of the precision established from the original
dataset. Examples of significantly different relationships can
be, but are not limited to, different functional forms of the
transformation, or parameter values that are highly divergent
numerically.

NOTE 9—It is highly recommended that the decision of including or
excluding samples with precision-to-mean ratio greater than 1 is made
under the guidance of qualified statistical assistance.

8.3.5 Bias:
8.3.5.1 Bias equals average sample test result minus its

accepted reference value. In the ideal case, average 30 or more
test results, measured independently by processes in a state of
statistical control, for each of several relatively uniform
materials, the reference values for which have been established
by one of the following alternatives, and subtract the reference
values. In practice, the bias of the test method, for a specific
material, may be calculated by comparing the sample average
with the accepted reference value.

8.3.5.2 Accepted reference values may be one of the fol-
lowing: an assigned value for a Standard Reference Material, a
consensus value based on collaborative experimental work
under the guidance of a scientific or engineering organization,
an agreed upon value obtained using an accepted reference
method, or a theoretical value.

8.3.5.3 Where possible, one or more materials with ac-
cepted reference values shall be included in the interlaboratory
program. In this way sample averages free of outliers will
become available for use in determining bias.

8.3.5.4 Because there will always be at least some bias
because of the inherent variability of test results, it is recom-
mended to test the bias value by applying Student’s t test using
the number of laboratories degrees of freedom for the sample
made available during the calculation of precision. When the
calculated t is less than the critical value at the 5 % confidence
level, the bias should be reported as not significant.

8.4 Precision and Bias Section for a Test Method—When
the precision of a test method has been determined, in
accordance with the procedures set out in this practice, it shall
be included in the test method as illustrated in these examples:

8.4.1 Precision—The precision of this test method, which
was determined by statistical examination of interlaboratory
results using Practice D6300, is as follows.

8.4.1.1 Repeatability—The difference between two indepen-
dent results obtained by the same operator in a given laboratory
applying the same test method with the same apparatus under
constant operating conditions on identical test material within
short intervals of time would exceed the following value with
an approximate probability of 5 % (one case in 20 in the long
run) in the normal and correct operation of the test method:

Repeatability 5 0.148 x2/3 (45)
where x is the average of the two results.
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8.4.1.2 Reproducibility—The difference between two single
and independent results obtained by different operators apply-
ing the same test method in different laboratories using
different apparatus on identical test material would exceed the
following value with an approximate probability of 5 % (one
case in 20 in the long run) in the normal and correct operation
of the test method:

Reproducibility 5 0.310 x2/3 (46)

where x is the average of the two results.
8.4.1.3 If determinability is relevant, it shall precede repeat-

ability in the statement above. The unit of measurement shall
be specified when it differs from that of the test result:

8.4.1.4 Determinability—The difference between the pair of
determined values averaged to obtain a test result would
exceed the following value with an approximate probability of
5 % (one case in 20 in the long run) in the normal and correct
operation of the test method. When this occurs, the operator
must take corrective action:

Determinability 5 0.59=m (47)
where m is the average of the two determined values.

8.4.2 A graph or table may be used instead of, or in addition
to, the equation format shown above. In any event, it is helpful
to include a table of typical values like Table 13.

8.4.3 Number of Laboratories and Degrees of Freedom for
Final Precision Estimates:

8.4.3.1 The final statement of precision of a test method
shall be based on acceptable test results from at least six (6)
laboratories and at least thirty (30) degrees of freedom for R
and r.

8.5 Data Storage:

8.5.1 The interlaboratory program data should be preserved
for general reference. Prepare a research report containing
details of the test program, including description of the
samples, the raw data, and the calculations described herein.
Send the file to ASTM Headquarters and request a File
Reference Number.

8.5.2 Use the following footnote style in the precision
section of the test method. “The results of the cooperative test
program, from which these values have been derived, are filed
at ASTM Headquarters as RR:D02–XXXX.”

9. Precision Estimates from Interlaboratory Exchange
Testing Programs with No Replicate Data

9.1 A number of agencies, including ASTM, operate inter-
laboratory exchange programs, in which samples are sent out
periodically to a number of laboratories for testing by one or a
number of methods. Such exchange groups can acquire, over a
period of time, multiple sets of data on different materials
without replicates. Estimates of reproducibility precision may
also be calculated using these data sets and the statistical
techniques outlined in Appendix X2 of this practice. While
these estimates (obtained using Appendix X2) may used to
monitor the in-practice reproducibility performance of a
method specific to the laboratories participating in the
exchange, such estimates shall not be used for the purpose of
establishing the reproducibility precision of a new method, or
to modify the reproducibility precision of an existing method.
For the purpose of meeting ASTM Form and Style
requirements, method precisions (repeatability and reproduc-
ibility) are to be established or modified only as computed from
interlaboratory studies that conform to the requirements out-
lined from Section 1 to Section 8 of this practice.

9.2 Appendix X2 provides the statistical methodology, con-
sistent with the statistical techniques of this practice, to
calculate reproducibility estimates from multiple datasets with-
out replicates.

10. Keywords

10.1 interlaboratory; precision; repeatability; reproducibil-
ity; round robin

ANNEXES

(Mandatory Information)

A1. NOTATION AND TESTS

A1.1 Notation Used Throughout

a = the sum of replicate test results,
e = the difference between replicate test results,
g = the sum of sample test results,
h = the sum of laboratory test results,
i = the suffix denoting laboratory number,
j = the suffix denoting sample number,
S = the number of samples,

T = the total of all replicate test results,
L = the number of laboratories,
m = the mean of sample test results,
x = the mean of a pair of test results in repeatability and

reproducibility statements,
x... = an individual test result,
y... = a transformed value of x..., and
v = the degrees of freedom.

TABLE 13 Typical Precision Values: Bromine Example

Average Value Repeatability Reproducibility
Bromine Numbers Bromine Numbers Bromine Numbers

1.0 0.15 0.31
2.0 0.23 0.49

10.0 0.69 1.44
20.0 1.09 2.28

100.0 3.19 6.68
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A1.2 Array of Replicate Results from Each of L Labora-
tories on S Samples and Corresponding Means mj

A1.2.1 See Table A1.1.

NOTE A1.1—If a transformation y = F(x) of the reported data is
necessary (see 7.2), then corresponding symbols yij1 and yij2 are used in
place of xij1 and xij2.

A1.3 Array of Sums of Replicate Results, of Laboratory
Totals hi and Sample Totals gj

A1.3.1 See Table A1.2.

A1.3.2 If any results are missing from the complete array,
then the divisor in the expression for mj will be correspond-
ingly reduced.

A1.4 Sums of Squares and Variances (7.2)

A1.4.1 Repeats Variance for Sample j:

dj
2 5

(
i51

L

eij
2

2L
(A1.1)

where:
L = the repeats degrees of freedom for Sample j, one degree

of freedom for each laboratory pair. If either or both of
a laboratory/sample pair of results is missing, the corre-
sponding term in the numerator is omitted and the factor
L is reduced by one.

A1.4.2 Between Cells Variance for Sample j:

Cj
2 5 F (

i51

L aij
2

nij

2
gj

2

Sj
G /~L 2 1! (A1.2)

A1.4.3 Laboratories Variance for Sample j:

Dj
2 5

1
Kj

@Cj
21~Kj 2 1! dj

2# (A1.3)

where:

Kj 5 S Sj
2 2 (

i51

L

nij
2D /@Sj ~L 2 1!# (A1.4)

nij = number of results obtained by Laboratory i from
Sample j,

Sj = total number of results obtained from Sample j, and
L = number of cells in Sample j containing at least one

result.

A1.4.4 Laboratories degrees of freedom for Sample j is
given approximately (6) by:

vj 5
~KjDj

2!2

~Cj
2!2

L 2 1
1

@~Kj 2 1!dj
2#2

L

(A1.5)

(rounded to the nearest integer)

A1.4.5 If either or both of a laboratory/sample pair of results
is missing, the factor L is reduced by one.

A1.4.6 If both of a laboratory/sample pair of results is
missing, the factor (L – 1) is reduced by one.

A1.5 Cochran’s Test

A1.5.1 The largest sum of squares, SSk, out of a set of n
mutually independent sums of squares each based on v degrees
of freedom, can be tested for conformity in accordance with:

Cochran’s criterion 5
SSk

(
i51

n

SSi

(A1.6)

A1.5.2 The test ratio is identical if sum of squares values are
replaced by mean squares (variance estimates). If the calcu-
lated ratio exceeds the critical value given in Table A1.3, then
the sum of squares in question, SSk, is significantly greater than
the others with a probability of 99 %. Examples of SSi include
eij

2 and dj
2 (Eq A1.1).

A1.6 Hawkins’ Test

A1.6.1 An extreme value in a data set can be tested as an
outlier by comparing its deviation from the mean value of the
data set to the square root of the sum of squares of all such
deviations. This is done in the form of a ratio. Extra informa-
tion on variability can be provided by including independent
sums of squares into the calculations. These will be based on v
degrees of freedom and will have the same population variance
as the data set in question. Table A1.4 shows the values that are
required to apply Hawkins’ test to individual samples. The test
procedure is as follows:

A1.6.1.1 Identify the sample k and cell mean aik/nik, which

TABLE A1.1 Typical Layout of Data from Round Robin

Sample
Laboratory 1 2 j S

1 x111 x121 x1j1 x1S1

x112 x122 x1j2 x1S2

2 x211 x221 x2j1 x2S1

x212 x222 x2j2 x2S2

i xi11 xi21 xij1 xiS1

xi12 xi22 xij2 xiS2

L xL11 xL21 xLj1 xLS1

xL12 xL22 xLj2 xLS2

Total g1 g2 gj gs

Mean m1 m2 mj ms

TABLE A1.2 Typical Layout of Sums of Replicate ResultsA

Sample
Laboratory 1 2 j S Total

1 a11 a12 a1j aiS h1

2 a21 a22 a2j a2S h2

i a i1 ai2 aij ai1 hi

L a L1 aL2 aLj aLS hL

Total g1 g2 gj gS T
A aij = xij1 + xij2 (or aij = yij1 + y ij2, if a transformation has been used)

eij = x ij1 – x ij2 (or aij = yij1 – yij2, if a transformation has been used)

gj 5 o
i51

L

aij hi 5 o
j51

S

aij

mj 5 gj/2L
T 5 o

i51

L

hi 5 o
j51

S

gj
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has the most extreme absolute deviation: ?aik/nik2mk? . The cell
identified will be the candidate for the outlier test, be it high or
low.

A1.6.1.2 Calculate the total sum of squares of deviations:

SS 5 (
i51

S

SSj (A1.7)

A1.6.1.3 Calculate the test ratio:

B* 5
?aik/nik 2 mk?

=SS
(A1.8)

A1.6.1.4 Compare the test ratio with the critical value from
Table A1.5, for n = nk and extra degrees of freedom v where:

v 5 (
j51

S

~nj 2 1! , jfik . (A1.9)

A1.6.1.5 If B* exceeds the critical value, reject results from
the cell in question (Sample k, Laboratory i), modify nk, mk ,
and SSk values accordingly, and repeat from A1.6.1.1.

NOTE A1.2—Hawkins’ test applies theoretically to the detection of only
a single outlier laboratory in a sample. The technique of repeated tests for
a single outlier, in the order of maximum deviation from sample mean,
implies that the critical values in Table A1.5 will not refer exactly to the
1 % significance level. It has been shown by Hawkins, however, that if n
≥ 5 and the total degrees of freedom (n + v) are greater than 20, then this
effect is negligible, as are the effects of masking (one outlier hiding
another) and swamping (the rejection of one outlier leading to the
rejection of others).

A1.6.1.6 When the test is applied to laboratories averaged
over all samples, Table A1.4 will reduce to a single column
containing:
n = number of laboratories = L,
m = overall mean = T/N, where N is the total number of results
in the array, and
SS = sum of squares of deviations of laboratory means from the
overall mean, and is given by

SS 5 (
i51

L S hi

ni

2 mD 2

(A1.10)

where:
ni = the number of results in Laboratory i.

In the test procedure, therefore, identify the laboratory mean
hi/ni which differs most from the overall mean, m. The
corresponding test ratio then becomes:

B* 5
? hi/ni 2 m?

= SS
(A1.11)

A1.6.1.7 This shall be compared with the critical value from
Table A1.5 as before, but now with extra degrees of freedom v
= 0. If a laboratory is rejected, adjust the values of n, m, and SS
accordingly and repeat the calculations.

TABLE A1.3 Cube Root of Bromine Number for Low Boiling Samples

Sample
Laboratory 1 2 3 4 5 6 7 8

A 1.239 4.010 0.928 1.547 2.224 3.586 4.860 1.063
1.281 4.031 0.921 1.560 2.231 3.596 4.852 1.063

B 1.193 4.029 0.884 1.547 2.231 3.691 4.856 1.063
1.216 4.041 0.896 1.547 2.224 3.682 4.853 1.063

C 1.216 3.990 0.913 1.518 2.183 3.647 4.826 1.091
1.216 3.996 0.913 1.518 2.190 3.639 4.830 1.091

D 1.601 3.992 0.928 1.587 2.210 3.674 4.774 1.000
1.578 3.998 0.928 1.574 2.210 3.682 4.765 1.032

E 1.281 3.998 0.940 1.547 2.217 3.619 4.871 1.091
1.216 3.994 0.940 1.547 2.231 3.624 4.864 1.119

F 1.216 4.135 0.896 1.504 2.257 3.662 4.946 1.119
1.193 4.115 0.862 1.533 2.237 3.632 4.903 1.119

G 1.239 3.996 0.917 1.518 2.197 3.586 4.850 1.032
1.301 3.992 0.839 1.518 2.197 3.570 4.832 0.976

H 1.260 4.051 0.921 1.474 2.204 3.674 4.860 1.032
1.216 4.031 0.892 1.518 2.204 3.647 4.856 1.000

J 1.281 4.086 0.932 1.587 2.231 3.662 4.873 1.119
1.281 4.027 0.932 1.547 2.231 3.632 4.847 1.119

TABLE A1.4 Calculations for Hawkins’ Test for OutliersA

Sample
1 2 j S

No. of cells n1 n2 nj ns

Sample mean m1 m2 mj ms

Sum of squares SS1 SS2 SSj SSs

A nj = the number of cells in Sample j which contains at least one result,
mj = the mean of Sample j, and
SSj = the sum of squares of deviations of cell means aij /nij from sample mean

mj , and is given by:

SS j 5 sL 2 1d Cj
2

(L–1) is the between cells (laboratories) degrees of freedom, and shall be
reduced by 1 for every cell in Sample j which does not contain a result.
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A1.7 Variance Ratio Test (F-Test)

A1.7.1 A variance estimate V1, based on v1 degrees of
freedom, can be compared with a second estimate V2, based on
v2 degrees of freedom, by calculating the ratio

F 5
V1

V2

(A1.12)

A1.7.2 If the ratio exceeds the appropriate critical value
given in Tables A1.6-A1.9, where v1 corresponds to the
numerator and v2 corresponds to the denominator, then V1 is
greater than V2 at the chosen level of significance.

TABLE A1.5 Critical Values of Hawkins’ 1 % Outlier Test for n = 3 to 50 and υ = 0 to 200

Degrees of Freedom υ
n 0 5 10 15 20 30 40 50 70 100 150 200
3 0.8165 0.7240 0.6100 0.5328 0.4781 0.4049 0.3574 0.3233 0.2769 0.2340 0.1926 0.1674
4 0.8639 0.7505 0.6405 0.5644 0.5094 0.4345 0.3850 0.3492 0.3000 0.2541 0.2096 0.1824
5 0.8818 0.7573 0.6530 0.5796 0.5258 0.4510 0.4012 0.3647 0.3142 0.2668 0.2204 0.1920
6 0.8823 0.7554 0.6571 0.5869 0.5347 0.4612 0.4115 0.3749 0.3238 0.2755 0.2280 0.1988
7 0.8733 0.7493 0.6567 0.5898 0.5394 0.4676 0.4184 0.3819 0.3307 0.2819 0.2337 0.2039
8 0.8596 0.7409 0.6538 0.5901 0.5415 0.4715 0.4231 0.3869 0.3358 0.2868 0.2381 0.2079
9 0.8439 0.7314 0.6493 0.5886 0.5418 0.4738 0.4262 0.3905 0.3396 0.2906 0.2416 0.2112

10 0.8274 0.7213 0.6439 0.5861 0.5411 0.4750 0.4283 0.3930 0.3426 0.2936 0.2445 0.2139
11 0.8108 0.7111 0.6380 0.5828 0.5394 0.4753 0.4295 0.3948 0.3448 0.2961 0.2469 0.2162
12 0.7947 0.7010 0.6318 0.5790 0.5373 0.4750 0.4302 0.3960 0.3466 0.2981 0.2489 0.2181
13 0.7791 0.6910 0.6254 0.5749 0.5347 0.4742 0.4304 0.3968 0.3479 0.2997 0.2507 0.2198
14 0.7642 0.6812 0.6189 0.5706 0.5319 0.4731 0.4302 0.3972 0.3489 0.3011 0.2521 0.2212
15 0.7500 0.6717 0.6125 0.5662 0.5288 0.4717 0.4298 0.3973 0.3496 0.3021 0.2534 0.2225
16 0.7364 0.6625 0.6061 0.5617 0.5256 0.4701 0.4291 0.3972 0.3501 0.3030 0.2544 0.2236
17 0.7235 0.6535 0.5998 0.5571 0.5223 0.4683 0.4282 0.3968 0.3504 0.3037 0.2554 0.2246
18 0.7112 0.6449 0.5936 0.5526 0.5189 0.4665 0.4272 0.3964 0.3505 0.3043 0.2562 0.2254
19 0.6996 0.6365 0.5876 0.5480 0.5155 0.4645 0.4260 0.3958 0.3506 0.3047 0.2569 0.2262
20 0.6884 0.6286 0.5816 0.5436 0.5120 0.4624 0.4248 0.3951 0.3505 0.3051 0.2575 0.2269
21 0.6778 0.6209 0.5758 0.5392 0.5086 0.4603 0.4235 0.3942 0.3503 0.3053 0.2580 0.2275
22 0.6677 0.6134 0.5702 0.5348 0.5052 0.4581 0.4221 0.3934 0.3500 0.3055 0.2584 0.2280
23 0.6581 0.6062 0.5647 0.5305 0.5018 0.4559 0.4206 0.3924 0.3496 0.3056 0.2588 0.2285
24 0.6488 0.5993 0.5593 0.5263 0.4984 0.4537 0.4191 0.3914 0.3492 0.3056 0.2591 0.2289
25 0.6400 0.5925 0.5540 0.5221 0.4951 0.4515 0.4176 0.3904 0.3488 0.3056 0.2594 0.2293
26 0.6315 0.5861 0.5490 0.5180 0.4918 0.4492 0.4160 0.3893 0.3482 0.3054 0.2596 0.2296
27 0.6234 0.5798 0.5440 0.5140 0.4885 0.4470 0.4145 0.3881 0.3477 0.3053 0.2597 0.2299
28 0.6156 0.5737 0.5392 0.5101 0.4853 0.4447 0.4129 0.3870 0.3471 0.3051 0.2599 0.2302
29 0.6081 0.5678 0.5345 0.5063 0.4821 0.4425 0.4113 0.3858 0.3464 0.3049 0.2600 0.2304
30 0.6009 0.5621 0.5299 0.5025 0.4790 0.4403 0.4097 0.3846 0.3458 0.3047 0.2600 0.2306
35 0.5686 0.5361 0.5086 0.4848 0.4641 0.4294 0.4016 0.3785 0.3421 0.3031 0.2600 0.2312
40 0.5413 0.5136 0.4897 0.4688 0.4504 0.4191 0.3936 0.3722 0.3382 0.3010 0.2594 0.2314
45 0.5179 0.4939 0.4728 0.4542 0.4377 0.4094 0.3859 0.3660 0.3340 0.2987 0.2586 0.2312
50 0.4975 0.4764 0.4577 0.4410 0.4260 0.4002 0.3785 0.3600 0.3299 0.2962 0.2575 0.2308

TABLE A1.6 Critical 5 % Values of F

υ1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

υ 2

3 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.58 8.55 8.54 8.53 8.53
4 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.70 5.66 5.65 5.64 5.63
5 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.50 4.44 4.41 4.39 4.37 4.37
6 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.75 3.71 3.69 3.68 3.67
7 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.32 3.27 3.25 3.24 3.23
8 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.02 2.97 2.95 2.94 2.93
9 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.80 2.76 2.73 2.72 2.71

10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.70 2.64 2.59 2.56 2.55 2.54
15 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.25 2.18 2.12 2.10 2.08 2.07
20 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.04 1.97 1.91 1.88 1.86 1.84
30 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.84 1.76 1.70 1.66 1.64 1.62
50 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.69 1.60 1.52 1.48 1.46 1.44

100 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.57 1.48 1.39 1.34 1.31 1.28
200 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.72 1.62 1.52 1.41 1.32 1.26 1.22 1.19
500 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.69 1.59 1.48 1.38 1.28 1.21 1.16 1.11

` 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.67 1.57 1.46 1.35 1.24 1.17 1.11 1.00
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TABLE A1.7 Critical 1 % Values of F

υ1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

υ 2

3 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 26.9 26.7 26.5 26.4 26.2 26.2 26.1 26.1
4 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.2 14.0 13.8 13.7 13.6 13.5 13.5 13.5
5 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.72 9.55 9.38 9.24 9.13 9.08 9.04 9.02
6 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.23 7.09 6.99 6.93 6.90 6.88
7 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 5.99 5.86 5.75 5.70 5.67 5.65
8 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.52 5.36 5.20 5.07 4.96 4.91 4.88 4.86
9 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.65 4.52 4.42 4.36 4.33 4.31

10 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.25 4.12 4.01 3.96 3.93 3.91
15 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.21 3.08 2.98 2.92 2.89 2.87
20 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.78 2.64 2.54 2.48 2.44 2.42
30 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.39 2.25 2.13 2.07 2.03 2.01
50 4.20 3.72 3.41 3.19 3.02 2.89 2.79 2.70 2.42 2.27 2.10 1.95 1.82 1.76 1.71 1.68

100 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.22 2.07 1.89 1.73 1.60 1.52 1.47 1.43
200 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.13 1.97 1.79 1.63 1.48 1.39 1.33 1.28
500 3.82 3.36 3.05 2.84 2.68 2.55 2.44 2.36 2.07 1.92 1.74 1.56 1.41 1.31 1.23 1.16

` 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.04 1.88 1.70 1.52 1.36 1.25 1.15 1.00

TABLE A1.8 Critical 0.1 % Values of F

υ1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

υ 2

3 141 137 135 133 132 131 130 129 127 126 125 125 124 124 124 124
4 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.0 46.8 46.1 45.4 44.9 44.5 44.3 44.1 44.0
5 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 25.9 25.4 24.9 24.4 24.1 23.9 23.8 23.8
6 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 17.6 17.1 16.7 16.3 16.0 15.9 15.8 15.8
7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 13.3 12.9 12.5 12.2 11.9 11.8 11.7 11.7
8 15.8 14.4 13.5 12.9 12.4 12.0 11.8 11.5 10.8 10.5 10.1 9.80 9.57 9.46 9.39 9.34
9 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.89 9.24 8.90 8.55 8.26 8.04 7.93 7.86 7.81

10 12.6 11.3 10.5 9.92 9.52 9.20 8.96 8.75 8.13 7.80 7.47 7.19 6.98 6.87 6.81 6.76
15 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.53 5.25 4.95 4.70 4.51 4.41 4.35 4.31
20 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.56 4.29 4.01 3.77 3.58 3.48 3.42 3.38
30 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 3.75 3.49 3.22 2.98 2.79 2.69 2.63 2.59
50 6.34 5.46 4.90 4.51 4.22 4.00 3.82 3.67 3.20 2.95 2.68 2.44 2.24 2.14 2.07 2.03

100 5.85 5.01 4.48 4.11 3.83 3.61 3.44 3.30 2.84 2.59 2.32 2.07 1.87 1.75 1.68 1.62
200 5.64 4.81 4.29 3.92 3.65 3.43 3.26 3.12 2.67 2.42 2.15 1.90 1.68 1.55 1.46 1.39
500 5.51 4.69 4.18 3.82 3.54 3.33 3.16 3.02 2.58 2.33 2.05 1.80 1.57 1.43 1.32 1.23

` 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.51 2.27 1.99 1.73 1.49 1.34 1.21 1.00

TABLE A1.9 Critical 0.05 % Values of F

υ1

3 4 5 6 7 8 9 10 15 20 30 50 100 200 500 `

υ 2

3 225 218 214 211 209 208 207 206 203 201 199 198 197 197 196 196
4 80.1 76.1 73.6 71.9 70.6 69.7 68.9 68.3 66.5 65.5 64.6 63.8 63.2 62.9 62.7 62.6
5 44.4 41.5 39.7 38.5 37.6 36.9 36.4 35.9 34.6 33.9 33.1 32.5 32.1 31.8 31.7 31.6
6 30.4 28.1 26.6 25.6 24.9 24.3 23.9 23.5 22.4 21.9 21.4 20.9 20.5 20.3 20.2 20.1
7 23.5 21.4 20.2 19.3 18.7 18.2 17.8 17.5 16.5 16.0 15.5 15.1 14.7 14.6 14.5 14.4
8 19.4 17.6 16.4 15.7 15.1 14.6 14.3 14.0 13.1 12.7 12.2 11.8 11.6 11.4 11.4 11.3
9 16.8 15.1 14.1 13.3 12.8 12.4 12.1 11.8 11.0 10.6 10.2 9.80 9.53 9.40 9.32 9.26

10 15.0 13.4 12.4 11.8 11.3 10.9 10.6 10.3 9.56 9.16 8.75 8.42 8.16 8.04 7.96 7.90
15 10.8 9.48 8.66 8.10 7.68 7.36 7.11 6.91 6.27 5.93 5.58 5.29 5.06 4.94 4.87 4.83
20 9.20 8.02 7.28 6.76 6.38 6.08 5.85 5.66 5.07 4.75 4.42 4.15 3.93 3.82 3.75 3.70
30 7.90 6.82 6.14 5.66 5.31 5.04 4.82 4.65 4.10 3.80 3.48 3.22 3.00 2.89 2.82 2.78
50 7.01 6.01 5.37 4.93 4.60 4.34 4.14 3.98 3.45 3.16 2.86 2.59 2.37 2.25 2.17 2.13

100 6.43 5.47 4.87 4.44 4.13 3.89 3.70 3.54 3.03 2.75 2.44 2.18 1.95 1.82 1.74 1.67
200 6.16 5.23 4.64 4.23 3.92 3.68 3.49 3.34 2.83 2.56 2.25 1.98 1.74 1.60 1.50 1.42
500 6.01 5.09 4.51 4.10 3.80 3.56 3.36 3.21 2.72 2.45 2.14 1.87 1.61 1.46 1.34 1.24

` 5.91 5.00 4.42 4.02 3.72 3.48 3.30 3.14 2.65 2.37 2.07 1.79 1.53 1.36 1.22 1.00
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A2. EXAMPLE RESULTS OF TEST FOR DETERMINATION OF BROMINE NUMBER AND STATISTICAL TABLES

A2.1 Bromine Number for Low Boiling Samples

A2.1.1 See Table A2.1.

A2.2 Cube Root of Bromine Number for Low Boiling
Samples

A2.2.1 See Table A1.3.

A2.3 Critical 1 % Values of Cochran’s Criterion for n
Variance Estimates and v Degrees of Freedom

A2.3.1 See Table A2.2.

A2.4 Critical Values of Hawkins’ 1 % Outlier Test for n =
3 to 50 and v = 0 to 200

A2.4.1 See Table A1.5.

A2.4.2 The critical values in the table are correct to the
fourth decimal place in the range n = 3 to 30 and v = 0, 5, 15,
and 30 (3). Other values were derived from the Bonferroni
inequality as

B* 5 tF ~n 2 1!
n ~n1v 2 21t2! G

1
2

(A2.1)

where t is the upper 0.005/ n fractile of a t-variate with n +
v – 2 degrees of freedom. The values so computed are only
slightly conservative, and have a maximum error of approxi-
mately 0.0002 above the true value. If critical values are
required for intermediate values of n and v, they may be
estimated by second order interpolation using the square of the
reciprocals of the tabulated values. Similarly, second order
extrapolation can be used to estimate values beyond n = 50 and
v = 200.

A2.5 Critical Values of t

A2.5.1 See Table A2.3.

A2.6 Critical Values of F6

A2.6.1 Critical 5 % Values of F—See Table A1.6.

A2.6.2 Critical 1 % Values of F—See Table A1.7.

A2.6.3 Critical 0.1 % Values of F—See Table A1.8.

A2.6.4 Critical 0.05 % Values of F—See Table A1.9.

A2.6.5 Approximate Formula for Critical Values of
F—Critical values of F for untabulated values of v1, and v2 may
be approximated by second order interpolation from the tables.
Critical values of F corresponding to v1 > 30 and v2 > 30
degrees of freedom and significance level 100 (1–P) %, where
P is the probability, can also be approximated from the formula

log10 ~F! 5
A~P!

= b 2 B~P!
2 C~P! S 1

v1

1
1
v2
D (A2.2)

where:

b 5 2/S 1
v1

1
1
v2
D (A2.3)

A2.6.5.1 Values of A(P), B(P), and C(P) are given in Table
A2.4 for typical values of significance level 100 (1 – P) %.

A2.7 Critical Values of the Normal Distribution (see Table
A2.5):

6 See Ref (8) for the source of these tables.

TABLE A2.1 Bromine Number for Low Boiling Samples

Sample
Laboratory 1 2 3 4 5 6 7 8

A 1.9 64.5 0.80 3.7 11.0 46.1 114.8 1.2
2.1 65.5 0.78 3.8 11.1 46.5 114.2 1.2

B 1.7 65.4 0.69 3.7 11.1 50.3 114.5 1.2
1.8 66.0 0.72 3.7 11.0 49.9 114.3 1.2

C 1.8 63.5 0.76 3.5 10.4 48.5 112.4 1.3
1.8 63.8 0.76 3.5 10.5 48.2 112.7 1.3

D 4.1 63.6 0.80 4.0 10.8 49.6 108.8 1.0
4.0 63.9 0.80 3.9 10.8 49.9 108.2 1.1

E 2.1 63.9 0.83 3.7 10.9 47.4 115.6 1.3
1.8 63.7 0.83 3.7 11.1 47.6 115.1 1.4

F 1.8 70.7 0.72 3.4 11.5 49.1 121.0 1.4
1.7 69.7 0.64 3.6 11.2 47.9 117.9 1.4

G 1.9 63.8 0.77 3.5 10.6 46.1 114.1 1.1
2.2 63.6 0.59 3.5 10.6 45.5 112.8 0.93

H 2.0 66.5 0.78 3.2 10.7 49.6 114.8 1.1
1.8 65.5 0.71 3.5 10.7 48.5 114.5 1.0

J 2.1 68.2 0.81 4.0 11.1 49.1 115.7 1.4
2.1 65.3 0.81 3.7 11.1 47.9 113.9 1.4
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TABLE A2.2 Critical 1 % Values of Cochran’s Criterion for n Variance Estimates and υ Degrees of FreedomA

Degrees of Freedom υ
n 1 2 3 4 5 10 15 20 30 50
3 0.9933 0.9423 0.8831 0.8335 0.7933 0.6743 0.6145 0.5775 0.5327 0.4872
4 0.9676 0.8643 0.7814 0.7212 0.6761 0.5536 0.4964 0.4620 0.4213 0.3808
5 0.9279 0.7885 0.6957 0.6329 0.5875 0.4697 0.4168 0.3855 0.3489 0.3131
6 0.8828 0.7218 0.6258 0.5635 0.5195 0.4084 0.3597 0.3312 0.2982 0.2661
7 0.8376 0.6644 0.5685 0.5080 0.4659 0.3616 0.3167 0.2907 0.2606 0.2316
8 0.7945 0.6152 0.5209 0.4627 0.4227 0.3248 0.2832 0.2592 0.2316 0.2052
9 0.7544 0.5727 0.4810 0.4251 0.3870 0.2950 0.2563 0.2340 0.2086 0.1842
10 0.7175 0.5358 0.4469 0.3934 0.3572 0.2704 0.2342 0.2135 0.1898 0.1673
11 0.6837 0.5036 0.4175 0.3663 0.3318 0.2497 0.2157 0.1963 0.1742 0.1532
12 0.6528 0.4751 0.3919 0.3428 0.3099 0.2321 0.2000 0.1818 0.1611 0.1414
13 0.6245 0.4498 0.3695 0.3223 0.2909 0.2169 0.1865 0.1693 0.1498 0.1313
14 0.5985 0.4272 0.3495 0.3043 0.2741 0.2036 0.1748 0.1585 0.1400 0.1226
15 0.5747 0.4069 0.3318 0.2882 0.2593 0.1919 0.1645 0.1490 0.1315 0.1150
20 0.4799 0.3297 0.2654 0.2288 0.2048 0.1496 0.1274 0.1150 0.1010 0.0879
25 0.4130 0.2782 0.2220 0.1904 0.1699 0.1230 0.1043 0.0939 0.0822 0.0713
30 0.3632 0.2412 0.1914 0.1635 0.1455 0.1046 0.0885 0.0794 0.0694 0.0600
35 0.3247 0.2134 0.1685 0.1435 0.1274 0.0912 0.0769 0.0690 0.0601 0.0519
40 0.2940 0.1916 0.1507 0.1281 0.1136 0.0809 0.0681 0.0610 0.0531 0.0457
45 0.2690 0.1740 0.1364 0.1158 0.1025 0.0727 0.0611 0.0547 0.0475 0.0409
50 0.2481 0.1596 0.1248 0.1057 0.0935 0.0661 0.0555 0.0496 0.0431 0.0370
60 0.2151 0.1371 0.1068 0.0902 0.0796 0.0561 0.0469 0.0419 0.0363 0.0311
70 0.1903 0.1204 0.0935 0.0788 0.0695 0.0487 0.0407 0.0363 0.0314 0.0269
80 0.1709 0.1075 0.0832 0.0701 0.0617 0.0431 0.0360 0.0320 0.0277 0.0236
90 0.1553 0.0972 0.0751 0.0631 0.0555 0.0387 0.0322 0.0287 0.0248 0.0211
100 0.1424 0.0888 0.0685 0.0575 0.0505 0.0351 0.0292 0.0260 0.0224 0.0191

A These values are slightly conservative approximations calculated via Bonferroni’s inequality (3) as the upper 0.01/n fractile of the beta distribution. If intermediate values
are required along the n-axis, they may be obtained by linear interpolation of the reciprocals of the tabulated values. If intermediate values are required along the v-axis,
they may be obtained by second order interpolation of the reciprocals of the tabulated values.

TABLE A2.3 Critical Values of t

Degrees of Freedom
Double-Sided % Significance Level

50 40 30 20 10 5 1
1 1.000 1.376 1.963 3.078 6.314 12.706 63.657
2 0.816 1.061 1.386 1.886 2.920 4.303 9.925
3 0.765 0.978 1.250 1.638 2.353 3.182 5.841
4 0.741 0.941 1.190 1.533 2.132 2.776 4.604
5 0.727 0.920 1.156 1.476 2.015 2.571 4.032
6 0.718 0.906 1.134 1.440 1.943 2.447 3.707
7 0.711 0.896 1.119 1.415 1.895 2.365 3.499
8 0.706 0.889 1.108 1.397 1.860 2.306 3.355
9 0.703 0.883 1.100 1.383 1.833 2.262 3.250

10 0.700 0.879 1.093 1.372 1.812 2.228 3.165
11 0.697 0.876 1.088 1.363 1.796 2.201 3.106
12 0.695 0.873 1.083 1.356 1.782 2.179 3.055
13 0.694 0.870 1.079 1.350 1.771 2.160 3.012
14 0.692 0.868 1.076 1.345 1.761 2.145 2.977
15 0.691 0.866 1.074 1.341 1.753 2.131 2.947
16 0.690 0.865 1.071 1.337 1.746 2.120 2.921
17 0.689 0.863 1.069 1.333 1.740 2.110 2.898
18 0.688 0.862 1.067 1.330 1.734 2.101 2.878
19 0.688 0.861 1.066 1.328 1.729 2.093 2.861
20 0.687 0.860 1.064 1.325 1.725 2.086 2.845
21 0.686 0.859 1.063 1.323 1.721 2.080 2.831
22 0.686 0.858 1.061 1.321 1.717 2.074 2.819
23 0.685 0.858 1.060 1.319 1.714 2.069 2.807
24 0.685 0.857 1.059 1.318 1.711 2.064 2.797
25 0.684 0.856 1.058 1.316 1.708 2.060 2.787
26 0.684 0.856 1.058 1.315 1.706 2.056 2.779
27 0.684 0.855 1.057 1.314 1.703 2.052 2.771
28 0.683 0.855 1.056 1.313 1.701 2.048 2.763
29 0.683 0.854 1.055 1.311 1.699 2.045 2.756
30 0.683 0.854 1.055 1.310 1.697 2.042 2.750
40 0.681 0.851 1.050 1.303 1.684 2.021 2.704
50 0.680 0.849 1.048 1.299 1.676 2.008 2.678
60 0.679 0.848 1.046 1.296 1.671 2.000 2.660

120 0.677 0.845 1.041 1.289 1.658 1.980 2.617
` 0.674 0.842 1.036 1.282 1.645 1.960 2.576

D6300 − 17a

21

 



A2.7.1 Critical values Z corresponding to a single-sided
probability P, or to a double-sided significance level 2 (1 – P)
are given below in terms of the “standard normal deviate,”
where

Z 5
x 2 µ

σ (A2.4)

and where µ and σ are the mean and standard deviation
respectively of the normal distribution.

A3. TYPES OF DEPENDENCE AND CORRESPONDING TRANSFORMATIONS (7.2)

A3.1 Types of Dependence

A3.1.1 See Table A3.1.

A3.2 Transformation Procedure

A3.2.1 The following steps shall be taken in identifying the
correct type of transformation and its parameters, B or B0, or
both.

A3.2.1.1 Plot laboratories standard deviations, D, and re-
peats standard deviations, d, against sample means in the form
of scatter diagrams. Refer to Figs. A3.1-A3.6 and identify the
type of transformation to be applied (if any).

A3.2.1.2 With the exception of the power transformation
(Type 2 in Table A3.1), the transformation parameter is either
known in advance or estimated from the scatter diagrams. For
the arcsin (Type 3) and logistic (Type 4) transformations, B will
be the upper limit of the rating scale or “score” that defines
results. For the log (Type 1) transformation, calculate B0 from
the intercept and slope (B0 = intercept/slope), estimated from
the scatter diagrams. Similarly, estimate B from the intercept in
the case of the arctan (Type 5) transformation. In every case, B
or B0, or both, shall be rounded to give a meaningful value that
satisfies the plots for both the laboratories and repeats standard
deviations.

A3.2.1.3 In the case of the power transform, B and B0 = 0
will be estimated as part of the line fitting procedure described
in the next section (A3.2.1.4). A non-zero B0 may be estimated
by minimizing the sum of squared residuals from the fitted line.
Function minimization using a simplex procedure due to
Nelder and Mead (9) has been found satisfactory. This is
applied to the functional form of the line shown in Table A3.1
using the calculated sample means and standard deviations.

The values and significances of all the constants are determined
simultaneously as part of the simplex minimization. For
detailed discussion of simplex minimization consult a trained
statistician.

A3.2.1.4 In order to confirm the selected transformation
type, and to estimate the parameter B in the case of the power
transformation, fit the line specified in Table A3.1, correspond-
ing to the transformation in question, in accordance with the
computational procedure in A4.3. For the power
transformation, coefficient B, shall differ significantly from
zero and shall be rounded to a meaningful value. For the arcsin
transformation, b1 shall have a value not significantly different
from 0.5. Similarly, b1 shall not significantly differ from a
value of one for the logistic, log, and arctan transformations. In
every case the test specified in Table A3.1 shall be applied at
the 5 % significance level. Failure of this test implies either that
the type of transformation or its parameter B is incorrect.
Similarly, coefficient b3 shall in every case be tested as zero.
Failure in this case implies that the transformation is different
for repeatability and reproducibility, and the procedures of
Annex A5 shall be applied. In some cases the presence of
outliers (see 7.3) can give rise to this difference, so the
adequacy of a single transformation should be reassessed after
removing outlying observations, if any.

A3.2.1.5 If the tests applied above were satisfactory, trans-
form all the results accordingly, recalculate means and standard
deviations using transformed results, and create new scatter
diagrams as in A3.2.1. These will now show a uniform level for
laboratories standard deviation, and a uniform (but not neces-
sarily the same) level for repeats standard deviation. A statis-
tical test for uniformity is given in 7.4.

TABLE A2.4 Constants for Approximating Critical Values of FA

100 (1 – P) % A(P) B(P) C(P)
10.0 % 1.1131 0.77 0.527
5.0 % 1.4287 0.95 0.681
2.5 % 1.7023 1.14 0.846
1.0 % 2.0206 1.40 1.073
0.5 % 2.2373 1.61 1.250
0.1 % 2.6841 2.09 1.672
0.05 % 2.8580 2.30 1.857

A For values of P not given above, critical values of F may be obtained by second
order interpolation/extrapolation of log (F) (either tabulated or estimated from the
formula) against log (1 – P).

TABLE A2.5 Critical Values of the Normal DistributionA

P 0.70 0.80 0.90 0.95 0.975 0.99 0.995
Z 0.524 0.842 1.282 1.645 1.960 2.326 2.576

2(1 – P) 0.60 0.40 0.20 0.10 0.05 0.02 0.01
A When P is less than 0.5 the appropriate critical value is the negative of the value
corresponding to a probability (1 – P).
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TABLE A3.1 Types of DependenceA

Form of Dependence Transformations Form of Line to be Fitted dx/dy Remarks
D = K(m + B0)

m + B0 > 0
y = log(x + B0)
Type 1 – “log”

log(D) = bo +
+ b1log(m + B0) + b2 T + b3Tlog(m + B0)

(x + B0) Care must be taken if (x + B0) is small, as
rounding becomes critical

Test: b1 = 1, b3 = 0

D = K(m + B0)B

m + B0 > 0,
B fi 1

y =( x + B0) 1–B

Type 2 – “power”
log(D) = bo + Blog(m + B0) + b2T +
b3Tlog(m + B0)
Test: B fi 1, b3 = 0

(x + B0)B/(1 - B) B = 1⁄2 or 2 are common cases.
If B is not different from 1, use log
transform 1 above. The fitted line may pass
through the origin.

D=K[(m/B) (1 - m/B)] 1/2 y=arcsin(x/B)1/2 log(D) = bo + b1log[m (B - m)] + b2T +
b3Tlog[ m (B – m)]

2[x (B - x)]1/2 This case often arises when results are
reported as percentages or qualitatively as
“scores.” If x is always small compared to
B, the transformation reduces to y=(x)1/2, a
special case of 2 above.

0 # m # B Type 3 – “arcsin”
Test: b1 = 1/2, b3 = 0

D=K[ (m/B)(1- m/B)] y=log[x/(B-x)] log(D)= bo + b1log[m (B - m)] + b2 T +
b3Tlog[m (B – m)]

x (B - x)/B This case arises when results are reported
on a scale of 0 to B. If x is always small
compared to B, then the transformation
reduces to y = log(x) a special case of 1
above.

0 # m # B Type 4 – “logistic”
Test: b1 = 1, b3 = 0

D=K[(m2 + B2)/B] y = arctan(x/B) log(D)= bo + b1log(m2+B2) + b2T +
b3Tlog(m2 + B2)

(x2 + B 2)/ B The fitted line does not pass through the
origin. If B is small, the transformation
reduces to y = 1/ x, a special case of 2
above.

B > 0 Type 5 – “arctan”
Test: b1 = 1, b3 = 0

A The forms of dependence above are shown graphically in the corresponding Figs. A3.1-A3.6. In all cases, K can be any positive constant, and “log” refers to natural
logarithms. The form of line to be fitted includes a dummy variable T (see A4.1) by which it is possible to test for a difference in the transformation as applied to repeatability
and reproducibility.

FIG. A3.1 Type 1, log FIG. A3.2 Type 2, power
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FIG. A3.3 Type 2, power

FIG. A3.4 Type 3, arcsin

FIG. A3.5 Type 4, logistic
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A4. WEIGHTED LINEAR REGRESSION ANALYSIS (7.2)

A4.1 Explanation for Use of a Dummy Variable

A4.1.1 Two different variables Y1 and Y2, when plotted
against the same independent variable X, will in general give
different linear relationships of the form

Y1 5 b10 1b11X (A4.1)

Y2 5 b20 1b21X

where the coefficients bij are estimated by regression analy-
sis. In order to compare the two relationships, a dummy
variable T can be defined such that

T = T1, a constant value for every observation of Y1,
T = T2, a constant value for every observation of Y2, and
T1 fi T2

A4.1.2 Letting Y represent the combination of Y1 and Y2,
plot a single relationship

Y 5 b0 1b1X1b2T1b3TX (A4.2)

where, as before, the coefficients bi are estimated by regres-
sion analysis. By comparing Eq A4.1 and Eq A4.2), it is
evident that

b10 5 b0 1b2T1 (A4.3)

b20 5 b0 1b2T2

and that therefore

b10 2 b20 5 b2 ~T1 2 T2! (A4.4)

A4.1.3 Similarly,

b11 2 b21 5 b3 ~T1 2 T2! (A4.5)

A4.1.4 In order to test for a difference between b10 and b20

therefore, it is only necessary to test for a non-zero coefficient
b2. Similarly, to test for a difference between b11 and b21, test
for a non-zero coefficient b3.

A4.1.5 Any non-zero values can be chosen for T1 and T2.
However, since reproducibility is the basis of tests for quality
control against specifications, weighting shall reflect this in the
estimation of precision relationships. An “importance ratio” of

2:1 in the favor of reproducibility shall be applied by setting T1

= 1 and T2 = –2, where T1 refers to the plot of laboratories
standard deviation and T2 refers to the repeats standard devia-
tion.

A4.2 Derivation of Weights Used in Regression Analysis

A4.2.1 In order to account for the relative precision of fitted
variables in a regression analysis, weights shall be used that are
inversely proportional to the variances of the fitted variables.

A4.2.1.1 For a variable D, which is an estimate of popula-
tion standard deviation σ, based on v(D) degrees of freedom,
the variance of D is given by

Var ~D! 5 σ2/2v ~D! (A4.6)

A4.2.1.2 Replacing σ2 by its estimate D2, the weight for this
variable will be approximated by

w~D! 5 2v ~D!/D2 (A4.7)

A4.2.1.3 It is clear that as standard deviation D increases, so
will the weight decrease. For this reason the fitted variable in
the weighted regression shall instead be a function of standard
deviation, which yields weights independent of the fitted
variable.

A4.2.1.4 In cases where a function g(D) is fitted, rather than
D itself, the variance formula becomes

Var @log~D!# 5
1

D2 Var ~D! 5
1

D2

σ2

2v ~D!
(A4.8)

A4.2.1.5 Once again replacing σ2 by its estimate D2, the
weight for log(D) will be approximated by

w@log~D!# 5 2v ~D! (A4.9)

A4.2.1.6 In relation to laboratories standard deviation D and
repeats standard deviation d, therefore, it is necessary to
perform regression analysis in terms of log(D) and log(d),
since weighting will then take account only of the amount of
data on which the standard deviation was based. A relationship
estimated in this way will be less dependent on samples which
have a high proportion of missing results.

FIG. A3.6 Type 5, arctan
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A4.2.1.7 Denoting degrees of freedom as v(D) for labora-
tory standard deviations D and v(d) for repeats standard
deviations d, formulae for calculating weights then become

w@log~D!# 5 2v ~D! (A4.10)

w@log~d!# 5 2v ~d! (A4.11)
NOTE A4.1—Unweighted regression corresponds to weighted regres-

sion in which all the weights have a constant value 1.

A4.3 Computational Procedure for Regression Analysis

A4.3.1 The following technique gives the best fitting
straight line of the form of Eq A4.2.

A4.3.1.1 First draw up a table (see Table A4.1) giving
values of the variables to be plotted in the regression, together
with corresponding weights. Functions g1 and g2 will always be
natural logarithms corresponding to the transformation in
question, as specified in A3.2.

A4.3.1.2 Using the symbols defined in Table A4.1, the line
to be fitted (Eq A4.2) becomes

y 5 b0 1b1x1 1b2x 2 1b3x3 (A4.12)

A4.3.1.3 The intercept b0 can be eliminated by rewriting
this as

~y 2 ȳ! 5 b1 ~x1 2 x̄1!1b2 ~x2 2 x̄2!1b3 ~x3 2 x̄3!

(A4.13)

where y, x1, x2, and x3 are weighted mean values, for
example

x̄2 5
(
i21

n

wix2i

(
i51

n

wi

(A4.14)

and where n is the number of points (twice the number of
samples) to be plotted.

A4.3.1.4 The least squares solution of Eq A4.14 requires the
solution of the set of simultaneous equations of the form

ay1 5 a11b1 1a12b2 1a13b3 (A4.15)

ay2 5 a21b1 1a22b2 1a23b3

ay3 5 a31b1 1a32b2 1a33b 3

A4.3.1.5 Examples of aij and ayi elements, in terms of
weighted means x̄i, are as follows

a22 5 (wi ~x2i 2 x̄2! 2 a23 5 (wi ~x2i 2 x̄2! ~x3i 2 x̄3!

(A4.16)

ay2 5 (wi ~yi 2 ȳ! ~x2i 2 x̄2! ayy 5 (wi ~yi 2 ȳ!2

A4.3.1.6 Having solved the equations for b1, b2, and b3,
calculate the intercept from the weighted means of the vari-
ables as

b0 5 ȳ 2 b1x̄1 2 b2x̄2 2 b3x̄3 (A4.17)

A4.3.1.7 Coefficient estimates bi can be summarized in
tabular form, together with test statistics, as in Table A4.2.

A4.3.1.8 In order to complete the table, it is necessary to
calculate the standard deviation of the observed y values about
the estimated line. This is called the residual standard
deviation, and is given by

s 5Œ 1
n 2 4 ~ayy 2 b1ay1 2 b2ay2 2 b3ay3! (A4.18)

A4.3.1.9 Standard errors of the estimates then become

ei 5 s=cii, for i 5 1 to 3 (A4.19)

and

e0 5 (A4.20)

sŒ1
n

1c11x̄1
2 1c22x̄2

2 1c33x̄3
2 12c12x̄1x̄2 12c13x̄1x̄3 12c23x̄2x̄3

where the elements cjj correspond to the inverse of the matrix
containing elements ajj.

A4.3.1.10 The t-ratios are the ratios (bi–K)/ ej, where K is a
constant, and by comparing these to the critical values of t in
Table A2.3, it is possible to test if coefficient bi differs from K.
If ti is greater than the critical value corresponding to 5 %
significance and (n – 4) degrees of freedom, then the coefficient
can be regarded as differing from K. In particular, t1 will
identify an inappropriate slope b1 and t3 will indicate whether
the slope is different for laboratories and repeats standard
deviations. Since laboratories standard deviation will generally
be larger than repeats standard deviation at the same level of
sample mean, t2 will in general indicate a non-zero coefficient
b2.

A4.4 Worked Example

A4.4.1 This section describes the fitting of a power function
(Type 2 of Table A3.1) using weighted linear regression
according to the procedure of A3.2. Rounded sample means

TABLE A4.1 Arrangement of Variables for Regression Analysis

Sample

Standard
Deviation
Function

g1

Sample Mean
Function

g2

Dummy T Tg2 Weight

1 g1 (D1) g2 (m1) 1 g2 (m1) 2υ (D1)
2 g1 (D2) g2 (m2) 1 g2 (m2) 2υ (D2)
3 g1 (D3) g2 (m3) 1 g2 (m3) 2υ (D3)
· · · · · ·
· · · · · ·
· · · · · ·
S g1 (Ds) g2 (ms) 1 g2 (ms) 2υ (Ds)

1 g1 (d1) g2 (m1) –2 –2g2 (m1) 2υ (d1)
2 g1 (d2) g2 (m2) –2 –2g2 (m2) 2υ (d2)
3 g1 (d3) g2 (m3) –2 –2g2 (m3) 2υ (d3)
· · · · · ·
· · · · · ·
· · · · · ·
S g1 (ds) g2 (ms) –2 –2g2 (ms) 2υ (ds)

Symbol yi x1j x2i x3 i wi

TABLE A4.2 Presentation of Estimates from Regression Analysis

Fitted
Variable

Coefficient
Estimate

Standard Error of
Estimate

t-Ratio

Intercept b0 e0 t0
Sample Mean b1 e1 t1

Dummy b2 e2 t2
Dummy × mean b3 e3 t3
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and standard deviations are given in Table 3, 7.2, based on the
bromine number data in A2.1.

A4.4.1.1 Scatter diagrams identified the power transforma-
tion as appropriate, as indicated by the log-log plot shown in
Fig. A4.1.

A4.4.1.2 Transformation parameter B need not be estimated
from Fig. A4.1, since it will be given in the regression analysis
that follows.

A4.4.1.3 The form of the line to be fitted (Table A3.1) is

log~D! 5 b01b1log~m!1b2T1b3Tlog~m! (A4.21)

A4.4.1.4 The table of values to be fitted (see Table A4.1) is
shown in Table A4.3.

A4.4.1.5 Least squares regression requires the solution of
the simultaneous equations

614.671 5 999.894b1 2 35.8524b2 2 493.045b3 (A4.22)

188.526 5 35.8524b1 1673.920b2 11409.58b3

195.477 5 2493.045b1 11409.58b2 15362.27b3

A4.4.1.6 Also required are

ayy 5 505.668 (A4.23)

s 5 2.23868

A4.4.1.7 The solution is summarized in Table A4.4 (see
Table A4.2):

A4.4.1.8 Comparing the t-ratios with the critical 5 % values
for 12 degrees of freedom (namely 2.179) given in Table A2.3,

it can be seen that the slope is significantly non-zero (b1 =
0.638), confirming that a transformation was required.
Furthermore, since coefficient b3 does not significantly differ
from zero, the slope (and resulting transformation) is the same
for both laboratories and repeats standard deviations.

A4.4.1.9 As the slope b1 = 0.638 has a standard error of
0.074, the approximate 66 % confidence region of 0.638 6

0.074 will contain the value 2/3. Rounding to this value is
therefore reasonable, and leads to the convenient transforma-
tion

y 5 x1/3 (A4.24)

A4.4.1.10 Having applied this transformation and recalcu-
lated sample means and standard deviations, corresponding
scatter diagrams are shown in Fig. A4.2. These show uniform
levels for both laboratories and repeats standard deviations for
all samples except Sample 1. In the case of the latter sample,
the extreme point is due to outliers.FIG. A4.1 Precisions Vary with Level

TABLE A4.3 Arrangement of Variables for Sample Data

Sample
Logarithm of

Standard
Deviation

Logarithm of
Sample Mean

Dummy T
Dummy × log

(mean)
Weight

1 –0.3158 0.7655 1 0.7655 16
2 0.7969 4.1804 1 4.1804 18
3 –2.7046 –0.2802 1 –0.2802 28
4 –1.5568 1.2932 1 1.2932 22
5 –1.2358 2.3888 1 2.3888 18
6 0.4029 3.8755 1 3.8755 18
7 1.0762 4.7378 1 4.7378 18
8 –1.8401 0.1975 1 0.1975 18

1 –2.0644 0.7655 –2 –1.5309 18
2 –0.2015 4.1804 –2 –8.3609 18
3 –2.9957 –0.2802 –2 0.5605 18
4 –2.1585 1.2932 –2 –2.5864 18
5 –2.3613 2.3888 –2 −4.7775 18
6 –0.6415 3.8755 –2 –7.7510 18
7 −0.0674 4.7378 –2 −9.4756 18
8 –2.8612 0.1975 –2 −0.3949 18

Symbol yi x1i x2 i x3i wi

TABLE A4.4 Presentation of Estimates from Sample Data

Fitted Variable
Coefficient Estimate

bi

Standard Error of
Estimate

t-Ratio

Intercept –2.4064
Log (mean) 0.63773 0.07359 8.67
Dummy 0.25496 0.13052 1.95
Dummy × log (mean) 0.02808 0.04731 0.59
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A5. DIFFERENT (TWO) TRANSFORMATIONS FOR REPEATABILITY AND REPRODUCIBILITY

A5.1 Introduction

A5.1.1 Occasionally a single transformation cannot be
found that eliminates simultaneously the dependence of both
repeatability and reproducibility on property level. When this
happens, it is an indication that the sources of variation
contributing to repeatability and reproducibility are of a very
different nature. At the same time, reproducibility may be very
much larger than repeatability for almost all materials tested.
This may occur if the repeatability conditions are not correctly
identified, and/or if all steps of the method are not “repeated”
independently. Alternatively, there may be single large con-
tributor to inter-lab variation (a laboratory bias, for example)
that needs to be identified and eliminated. It is advisable to
investigate these possibilities diligently before making use of
separate transformations for repeatability and reproducibility.

A5.1.1.1 Outline of main steps involved in a two-transform
process:

(1) A single transformation should be used whenever (R/r)
does not vary with level. The feasibility of a single transform
should be assessed using regression plots of log(R/r) on mean
values and, separately on log(mean values). It is strongly
recommended that a single transformation be used whenever
data does not overwhelmingly suggest otherwise. If separate
transformations are indicated, then continue to step 2.

(2) Choose a transformation suitable for dj only, as is
described in Annex A4, only no dummy variables are required.
Examine transformed data for repeatability outliers (see 7.3.1
and 7.3.2), and iterate transformation selection as necessary.
Compute estimate of r.

(3) Having removed repeatability outliers, re-compute cell
averages, sample averages, dj, Cj, and Dj from the remaining
(untransformed) data. If a single transformation works now,
then use it. Otherwise continue with step 4.

(4) Having removed repeatability outliers, select a trans-
form suitable for the Dj. Using this second transformation, do

the complete ANOVA, except do not remove any additional
outliers for repeatability.

(5) After removing reproducibility outliers, go back to step
1. If a single transformation works now, then use it. Otherwise
continue with step 6.

(6) Estimate R from the ANOVA in Part 4.

A5.1.2 If a single transformation cannot be found, separate
transformations must be applied to dj and Dj of A1.1 and A1.2.
The transformations of Table A3.1 apply, but there will be no
dummy variable T in the models, and no parameters b3 to test.
The computational methods of Annex A4 still apply, but
without the complicating dummy variable.

A5.1.3 Although separate models are to be fit to the dj and
Dj, efforts should be made to make them as alike as possible,
without sacrificing significantly the quality of the fits. For
example, if power function transformations, “Type 2,” are
fitted to both, it would be desirable that one or the other of the
pairs of parameters b2 and B0 take on the same value for both
models. (If both are alike, then a single transformation could
and should be used.) If a common value for either parameter
pair can be found so that the fit of neither model is significantly
degraded, then that common value should be used.

A5.1.4 The identification and removal of outliers can affect
the choice of transformations—the process is an iterative one.
As outliers are removed, the necessity of separate transforma-
tions should be reexamined.

A5.2 Example Data

A5.2.1 Table A5.1 contains data from a round robin on
Derived Cetane Number (DCN – D6890) on diesel fuels. These
data will be used as an example in the following sections. The
means, repeats standard deviation and laboratories standard
deviation have been computed and are shown in the table, as
well as the ratios uj. Fig. A5.1 shows that the uj appear to vary

FIG. A4.2 After Transforming, Precisions Do Not Vary with Level
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with concentration, mj. Regression of the uj on the means, mj,
yields a slope of 0.117, with standard error 0.033, which
confirms that the uj vary with concentration.

A5.3 Repeatability Transformation and Outlier Rejection

A5.3.1 Following Annex A4, perform a weighted linear
regression of the logarithms of the repeats standard deviations,

dj, on the logarithms of the sample mean concentrations, mj.
Alternatively, use log(mj + B0) as the regressor variable, where
B 0 > – min(mj) is chosen to minimize the sum of weighted
squared residuals. This leads us to a model of Type 2 in Table
A3.1, but with no dummy variable:

log~d! 5 b01Blog~m1B0! (A5.1)

TABLE A5.1 Derived Cetane Numbers

Lab Repeat D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

Lab 1 1 51.2 33.6 43.3 46.8 52.2 53.9 36.8 60.6 50.1 42.1 57.1 60.4 50.5 56.5 45.2
2 51.4 33.6 43.3 46.5 51.7 53.2 37.1 60.3 50.1 42.1 56.9 60.4 51.4 56.6 45.8

Lab 2 1 52.1 33.7 42.7 46.0 52.2 54.3 37.4 60.7 50.9 42.6 57.2 60.6 51.5 57.1 45.6
2 52.0 34.3 43.0 46.0 52.3 54.6 36.8 60.4 50.6 43.1 57.4 61.0 51.5 57.3 45.8

Lab 3 1 53.3 35.1 44.9 48.0 54.3 55.4 38.4 62.2 52.2 43.4 58.1 63.4 52.8 58.1 47.2
2 53.8 35.6 44.5 47.4 54.6 55.1 38.3 62.3 51.8 43.3 58.2 63.1 54.1 58.6 47.6

Lab 4 1 51.9 34.8 44.2 47.8 53.8 55.0 37.9 60.5 51.3 43.6 57.6 61.8 51.8 57.4 46.2
2 51.7 34.9 43.9 47.9 54.1 54.9 38.2 60.9 51.1 43.3 57.5 61.8 51.4 57.7 46.5

Lab 5 1 50.8 34.9 43.3 45.4 52.4 53.8 37.8 60.6 50.2 42.5 56.8 61.4 50.8 56.6 46.0
2 51.4 34.6 43.6 46.3 53.2 54.3 37.8 60.8 50.1 42.4 56.9 61.7 51.0 56.8 46.0

Lab 6 1 51.7 33.5 42.6 45.8 52.0 53.3 36.9 59.5 50.0 42.3 57.1 61.0 50.7 56.6 45.7
2 51.3 33.5 42.6 46.2 52.5 53.8 36.9 60.0 49.8 41.9 56.5 60.9 51.0 55.9 45.2

Lab 7 1 52.5 35.6 44.8 47.5 53.6 56.0 38.7 62.1 51.9 43.0 59.5 63.7 52.9 58.8 47.1
2 52.5 35.4 44.9 46.8 54.7 55.2 39.9 61.8 52.3 43.4 59.2 63.5 52.8 58.9 47.4

Lab 8 1 50.7 33.2 42.5 45.2 51.7 52.4 36.9 59.3 49.8 41.3 56.0 59.5 49.9 55.8 46.3
2 50.9 34.1 42.5 45.8 51.6 52.8 36.8 59.2 49.3 41.9 56.3 59.5 49.9 55.8 44.7

Lab 9 1 50.5 33.8 42.6 45.8 50.9 51.9 36.6 58.1 50.2 42.0 54.5 59.2 50.1 55.8 45.0
2 50.6 34.3 42.5 45.0 50.6 52.1 36.8 58.1 49.9 41.4 55.2 59.8 50.0 55.9 45.3

Lab 10 1 51.5 34.5 42.9 47.8 52.0 53.0 38.2 60.8 50.8 41.9 56.2 61.7 52.2 57.4 45.6
2 52.3 34.4 42.4 47.8 52.3 53.4 37.8 61.0 50.6 41.3 56.8 62.0 52.5 57.1 45.6

Mean mj 51.7 34.4 43.3 46.6 52.6 53.9 37.6 60.5 50.7 42.4 57.1 61.3 51.4 57.0 46.0
dj 0.2768 0.3105 0.1820 0.3833 0.3756 0.3298 0.3249 0.2094 0.2060 0.2957 0.2846 0.2099 0.3855 0.2431 0.4245

C j
2 1.502 1.056 1.602 1.856 2.891 2.708 1.467 2.991 1.574 1.094 2.881 3.892 2.661 2.074 1.248

Dj 0.888 0.759 0.904 1.001 1.231 1.187 0.887 1.232 0.899 0.769 1.217 1.403 1.185 1.033 0.845
Ratio uj 3.21 2.44 4.97 2.61 3.28 3.60 2.73 5.88 4.36 2.60 4.28 6.68 3.07 4.25 1.99

FIG. A5.1 Precision Ratio Increases with Mean DCN
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A5.3.2 The parameter B should be rounded to carry as few
digits as possible, provided the rounded result does not differ
from the weighted least squares solution by more than twice its
standard error (Eq A4.19). If |B| itself is less than twice this
standard error, then B should be rounded to zero, as this implies
that no transformation is necessary. If B cannot be rounded to
zero, then B0 should be rounded to carry no more than two
significant digits.

A5.3.3 In rare cases, it may be necessary to fit a model of
Types 3, 4, or 5. Use Table A3.1 to guide such an endeavor.

A5.3.4 Based on the regression model of Eq A5.1, trans-
form every response using the appropriate transformation:
yijk = (xijk + B0)1-B, for a Type 2 model with B ≠ 1, yijk =
log(xijk + B0) for a Type 1 model (that is, a Type 2 model with
B = 1), or as guided by Table A3.1 for a model of a different
type. Re-compute the cell differences from the transformed
results: eij = yij1 – yij2.

A5.3.5 Test for Uniformity of Repeatability:
A5.3.5.1 Apply Cochran’s criterion to compare the maxi-

mum or the eij
2 to the sum of squared differences, (

i ,j

e ij
2, as

described in 7.3.2 and A1.5.

A5.3.5.2 Test repeats standard deviation for outlying
samples, as in 7.4.

A5.3.5.3 A half-normal plot of remaining absolute
differences, |eij|, may be produced as follows: Rank the
absolute differences from smallest to largest. If n is the number
of differences remaining, and the rank a specific |eij | is k, then
plot |eij| against Φ-1(n +k⁄2n+1 ), where Φ-1 is the inverse of the
standard normal distribution function. Φ-1(n +k⁄2n+1 ), is tabu-
lated in Table A5.2. In the event that the half-normal plot does
not approximate a straight line, especially for the largest |eij|,
then additional outliers may remain. Repeat Cochran’s test
(7.4.3) with significance level 2 %. (Due to rounding, an
excessive number of |eij| may be zero. Then the half-normal
plot may fail to approximate a line for small values of |eij|. This
is not a reason to suspect additional outliers.)

A5.3.6 Worked Example:
A5.3.6.1 As no data are missing, an unweighted regression

of log(dj) on log(mj) is performed. The estimated slope is
–0.445 with standard error 0.447, so is not significantly
different from zero. Trial regressions of log(dj) on log(mj + B0

) fail to yield a significant slope for any value of B0 . Thus we
conclude that repeatability does not differ significantly with
concentration, and no transformation is required in A5.3.4.

A5.3.6.2 The largest of the eij
2 (fuel D15, Lab 8) is 2.57 and

the sum of squared differences, (
i ,j

e ij
2, is 27.9. Cochran’s ratio is

0.0921, which is less than the critical 1 % value obtained from
an extended version of Table A2.3 (0.1130).

A5.3.6.3 As no data are missing or removed at this point,
Cochran’s test may be applied to:

maxj (
i

e ij
2

(
i ,j

e ij
2

5
maxj ~dj

2!

(
j

d j
2

5 0.1292 (A5.2)

where the maximum occurs on fuel S15. Table A2.3, for ν =

10 degrees of freedom and n = 15 variances, is 0.1919, so
there is no reason to reject any fuel for excessive repeatabil-
ity variation.

A5.3.6.4 Fig. A5.2 is the half-normal plot of the 150
absolute differences. The trace is not linear, indicating that the
distribution is not normal. Returning to Cochran’s test with
significance level 2 %, the critical value for A5.3 is 0.1815,
which still does not suggest rejection of the largest pair
difference.

A5.4 Reproducibility Transformation and Outlier Rejec-
tion

A5.4.1 Returning now to the data before transformation,
remove the results identified as repeat outliers in A5.3.5, if any.
If outliers have been removed, re-compute the means, mj,
repeats variances, dj

2, and laboratories variance, Dj
2 (see

A1.4.1 – A1.4.3), for each sample, and reassess the necessity of
separate transformations (see 7.2.3).

A5.4.2 If a single, suitable transformation can now be
found, return to 7.2.5.

A5.4.3 If a single, suitable transformation still cannot be
found, follow Annex A4 to perform a weighted linear regres-
sion of the logarithms of the laboratories standard deviations,
Dj, on the logarithms of the sample mean concentrations, mj.
Weight each observation log(Dj) by Lj, the number of labs that
have measured sample j. Alternatively, regress the log(Dj) on
log(mj + B'0), where B'0 > – min(mi) is chosen to minimize the

TABLE A5.2 Quantiles of Standard Normal Probability
Distribution

p Φ–1(p ) p Φ–1(p ) p Φ–1(p )
0.01 -2.33 0.34 -0.41 0.67 0.44
0.02 -2.05 0.35 -0.39 0.68 0.47
0.03 -1.88 0.36 -0.36 0.69 0.50
0.04 -1.75 0.37 -0.33 0.70 0.52
0.05 -1.64 0.38 -0.31 0.71 0.55
0.06 -1.55 0.39 -0.28 0.72 0.58
0.07 -1.48 0.40 -0.25 0.73 0.61
0.08 -1.41 0.41 -0.23 0.74 0.64
0.09 -1.34 0.42 -0.20 0.75 0.67
0.10 -1.28 0.43 -0.18 0.76 0.71
0.11 -1.23 0.44 -0.15 0.77 0.74
0.12 -1.17 0.45 -0.13 0.78 0.77
0.13 -1.13 0.46 -0.10 0.79 0.81
0.14 -1.08 0.47 -0.08 0.80 0.84
0.15 -1.04 0.48 -0.05 0.81 0.88
0.16 -0.99 0.49 -0.03 0.82 0.92
0.17 -0.95 0.50 0.00 0.83 0.95
0.18 -0.92 0.51 0.03 0.84 0.99
0.19 -0.88 0.52 0.05 0.85 1.04
0.20 -0.84 0.53 0.08 0.86 1.08
0.21 -0.81 0.54 0.10 0.87 1.13
0.22 -0.77 0.55 0.13 0.88 1.17
0.23 -0.74 0.56 0.15 0.89 1.23
0.24 -0.71 0.57 0.18 0.90 1.28
0.25 -0.67 0.58 0.20 0.91 1.34
0.26 -0.64 0.59 0.23 0.92 1.41
0.27 -0.61 0.60 0.25 0.93 1.48
0.28 -0.58 0.61 0.28 0.94 1.55
0.29 -0.55 0.62 0.31 0.95 1.64
0.30 -0.52 0.63 0.33 0.96 1.75
0.31 -0.50 0.64 0.36 0.97 1.88
0.32 -0.47 0.65 0.39 0.98 2.05
0.33 -0.44 0.66 0.41 0.99 2.33
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sum of weighted squared residuals. This leads us to a model of
Type 2 in Table A3.1, but with no dummy variable:

D 5 K~m1B ' 0!B ' (A5.3)

A5.4.4 The parameter B' should be rounded to the nearest
1/10. B'0 should be rounded to carry no more than two
significant digits.

A5.4.5 In rare cases, it may be necessary to fit a model of
Types 3, 4, or 5. Use Table A3.1 to guide such an endeavor.

A5.4.6 Based on the regression model of Eq A5.3, trans-
form every response using the appropriate transformation:
yijk = (x + B'0) 1-B' for a Type 2 model with B' ≠ 1, yijk =
log(xijk + B'0) for a Type 1 model (that is, a Type 2 model with
B' = 1), or as guided by Table A3.1 for a model of a different
type.

A5.4.7 Do not test for the uniformity of repeatability (see
7.3.3). Do not reject any additional data as repeat outliers.

A5.4.8 Test for Uniformity of Reproducibility:
A5.4.8.1 Following 7.3.4, test the yijk for uniformity of

reproducibility (outliers).
A5.4.8.2 Following 7.4, test laboratories standard deviation

for outlying samples.

A5.4.9 Estimating Missing or Rejected Values—If data are
missing, or if outliers have been removed in either A5.3.5 or
A5.4.8, estimate the missing yijk in accordance with 7.5.

A5.4.10 Rejection Test for Outlying Laboratories—
Following 7.6, and using the data as transformed in A5.4.6, test
the laboratory means for outliers using Hawkins’ test.

A5.4.11 Confirmation of Selected Transformations—If any
outliers have been removed in A5.4.8 or A5.4.10, check to see
that these rejections have not invalidated the transformation of
A5.4.6, and reassess again the need for separate transforma-
tions before continuing to A5.5.

A5.4.12 Worked Example:
A5.4.12.1 As no repeats data have been removed, go

directly to A5.4.3. The means and variances do not need to be
recomputed and remain as shown in Table A5.1.

A5.4.12.2 Regressing the log(Dj) on log(mj + B'0), for a
number of choices of B'0, with constant weights, we find that
the sum of squared residuals takes its minimum value of
0.1575 when B'0 is very large—greater than 106. But when
B'0 = 4, the sum of squared residuals is 0.1691, an increase of
less than 1/12 = 1/(S–3). This penalty is reasonable for
constraining one parameter, and the specific choice and results
in a slope B very close to 1. These are the values that have been
selected.

A5.4.12.3 The transformation appropriate to the parameters
B'0 = 4 and B' = 1 is:

yijk 5 ln~xijk14! (A5.4)
The cell sums were computed as aij = yij1 + yij2 . These are
shown in Table A5.3.

A5.4.12.4 The largest difference between a cell sum and its
corresponding sample mean is 0.0898, from Lab 7, fuel D7.
The root sum of squares of such differences is 0.4704, resulting
in a Hawkins ratio of 0.1908. We enter Table A1.5, n = 9 and
ν = 135. As the tabled value for n = 9 and ν = 150, 0.2416, is
larger than our ratio, no cell sums are identified as outliers.

FIG. A5.2 Half-Normal Plot of Absolute Pair Differences
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A5.4.12.5 The fuel with the largest sum of squared devia-
tions of cell totals from their means is D5, and that sum is
0.0187. The total for all fuels is 0.2213. The degrees of
freedom for every fuel’s sum of squares is the same, 9. The
ratio of the largest sum to the total is 0.0844, while the value
from Table A2.2 for n = 15 and ν = 9, would have to be larger
than the value for n = 15 and ν = 10, namely 0.1919. Thus there
is no indication that the between labs variation is larger for
some fuels than for others.

A5.4.12.6 The means of the cell totals across fuels are given
in Table A5.3. The largest deviation from the grand mean is
from Lab 7, at 0.0577. The root sum of squared deviations is
0.1108, and Hawkins ratio is 0.0577/0.1108 = 0.5212. Entering
Table A1.5 with n = 10 and ν = 1, we see that so long as this
ratio is less than 0.7175, there is no indication that any lab
mean is an outlier.

A5.5 Analysis of Variance and Calculation of Precision
Estimates

A5.5.1 Repeatability Estimate:
A5.5.1.1 Using the eij as produced from the transformation

in A5.3.4, but eliminating any differences from samples
rejected in A5.4.8.2, and from labs rejected in A5.4.10,

calculate the sum of squares for repeats, E5(
i

(
j

e ij
2.

A5.5.1.2 The degrees of freedom for repeats is the number
remaining differences, that is, the number of terms in the sum
of the previous paragraph.

A5.5.1.3 The mean square for repeats is the sum of squares
for repeats divided by the degrees of freedom for repeats.

A5.5.1.4 The repeatability variance is one-half the mean
square for repeatability. The repeatability standard deviation is
the square root of the repeatability variance.

A5.5.1.5 The estimate of repeatability for results as trans-
formed according to A5.3.4 is the product of the square root of
the mean square for repeatability and the “t-value” with
degrees of freedom for repeats. Use the t-value corresponding
to a two-sided probability of 95 %. (See Table A2.5.) Round
the calculated estimate in accordance with Practice E29.

A5.5.1.6 The estimate for repeatability for untransformed
(raw) results is given by:

r~x! 5 U dx
dyU r~y! (A5.5)

where |dx/dy | is the absolute value of the reciprocal of the
derivative of the transformation of A5.3.4.

A5.5.2 Worked Example:

A5.5.2.1 From A5.3.6.2, E5(
i ,j

e ij
2527.90. There are 150

pairs, so the mean square for repeats is 27.9/150 = 0.1860. The
repeatability variance is 0.1860/2 = 0.0930, and the repeatabil-
ity standard deviation is the square root, 0.3040. The t critical
value, from an extended version of Table A2.5, with 135
degrees of freedom, is 1.978, so the repeatability estimate is
1.978=0.186050.8530. As there was no transformation for
repeatability, this value is appropriate for all concentrations
within the range the fuels tested. In conformance with Practice
E29, the repeatability should be reported as:

rx 5 0.85 numbers (A5.6)

A5.5.3 Analysis of Variance and Estimate of Reproducibil-
ity:

A5.5.3.1 Using the transformed yijk from A5.4.6, carry out
an analysis of variance as in Section 8.

A5.5.3.2 Plot the absolute residuals from the ANOVA on a
half-normal plot as was done with the pair differences in
A5.3.5.3.

A5.5.3.3 The reproducibility variance, degrees of freedom
for reproducibility, and the reproducibility estimate for results
as transformed according to A5.4.6 are given exactly as in
8.3.3.3. Round the reproducibility estimate in accordance with
Practice E29.

A5.5.3.4 The estimate for reproducibility for untransformed
(raw) results is given by:

r~x! 5 U dx
dyU r~y! (A5.7)

where |dx/dy | is the absolute value of the reciprocal of the
derivative of the transformation of A5.4.6.

A5.5.4 Worked Example:
A5.5.4.1 ANOVA applied to the complete Table A5.3 re-

sults in Table A5.4. Note that the statistics for repeats in this

TABLE A5.3 Sums of Transformed Results

Fuel D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 Mean

Lab 1 7.90 7.05 7.51 7.66 7.91 7.99 7.22 8.21 7.83 7.48 8.09 8.20 7.86 8.07 7.64 7.77
Lab 2 7.96 7.13 7.60 7.73 8.00 8.02 7.29 8.26 7.85 7.52 8.10 8.22 7.88 8.09 7.64 7.78
Lab 3 7.89 7.10 7.57 7.73 7.98 8.01 7.28 8.21 7.90 7.54 8.13 8.30 7.96 8.13 7.72 7.84
Lab 4 7.87 7.10 7.54 7.65 7.93 7.98 7.27 8.21 7.87 7.54 8.11 8.25 7.89 8.11 7.67 7.81
Lab 5 7.88 7.02 7.50 7.66 7.91 7.96 7.22 8.18 7.83 7.50 8.08 8.24 7.86 8.07 7.66 7.79
Lab 6 7.92 7.14 7.61 7.71 7.98 8.04 7.34 8.25 7.82 7.48 8.08 8.22 7.86 8.06 7.63 7.77
Lab 7 7.86 7.03 7.50 7.64 7.89 7.93 7.21 8.16 7.91 7.53 8.17 8.31 7.93 8.15 7.71 7.85
Lab 8 7.85 7.05 7.50 7.63 7.85 7.90 7.21 8.12 7.81 7.46 8.06 8.17 7.82 8.04 7.63 7.75
Lab 9 7.90 7.08 7.51 7.73 7.91 7.95 7.28 8.22 7.83 7.46 8.01 8.17 7.83 8.04 7.62 7.74
Lab 10 7.90 7.05 7.51 7.66 7.91 7.99 7.22 8.21 7.85 7.46 8.07 8.25 7.92 8.09 7.64 7.79
Mean 2mj 7.89 7.07 7.54 7.68 7.93 7.97 7.25 8.20 7.85 7.50 8.09 8.23 7.88 8.09 7.66 7.79

TABLE A5.4 Analysis of Variance for Transformed
Sulfur Concentrations

Source Sum Sq df Mean Sq

Samples 6.76 14
Labs 0.0787 9 0.00875
Interaction 0.0158 126 0.000125
Repeats 0.00532 150 0.000035
Total 6.86 299
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table have all been computed from differences of transformed
results.

A5.5.4.2 The residuals from the ANOVA are plotted in Fig.
A5.3. The plot appears very straight, indicating normal residu-
als.

A5.5.4.3 By 8.3, the expected mean square for labs is σ0
2 +

2σ1
2 + 30σ2

2. The expect mean square for interactions is σ0
2 +

2σ1
2, and the expect mean square for repeats is σ0

2. Thus, to
estimate reproducibility variance, σ0

2 + σ1
2 + σ2

2, we take 1⁄30

(0.00875) + 14⁄30 (0.000125) + 1⁄2 (0.000035) = 0.000368. The
degrees of freedom for this variance is approximately 14

(Warning! Less than 30!), so the t-value we use is 2.145. The
estimate of reproducibility of the transformed results is:

Ry 5 2.145=2 3 0.000368 5 0.0582 (A5.8)

A5.5.4.4 Reproducibility in terms of sulfur concentration is
given by:

Rx 5 U dx
dyU Ry (A5.9)

As y = ln(x + 4), dx
dy

= (x + 4) and

Rx 5 ~x14!Ry 5 0.0582~x14!
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APPENDIXES

(Nonmandatory Information)

X1. DERIVATION OF FORMULA FOR CALCULATING THE NUMBER OF SAMPLES REQUIRED (see 6.4.3)

X1.1 An analysis of variance is carried out on the results of
the pilot program. Setting the three expressions in 8.3.1 equal
to the corresponding mean squares and solving yields rough
estimates of the three components of variance, namely:
σ0

2 for repeats,
σ1

2 for laboratories × samples interaction, and
σ2

2 for laboratories.

X1.2 Substituting the above in Eq 40 (8.3.3.3) for calculat-
ing the reproducibility degrees of freedom, this becomes

~11P1Q!2

v
5

@~1/21P!/S1Q#2

~L 2 1!
1

~S 2 1! ~1/21P!2

S2~L 2 1!
1

1
4LS

(X1.1)

where:
P = σ1

2/σ0
2,

Q = σ2
2 /σ0

2,
v = reproducibility degrees of freedom,
L = number of laboratories, and
S = number of samples.

X1.3 The formula rearranges into the form

aS1b 5 0 (X1.2)

where:
a = vQ2 – (1 + P + Q) 2(L – 1), and
b = v[(2Q + 1/2 + P) (1/2 + P) + 0.25 (L – 1) / L].

X1.3.1 Therefore S = –b/a gives the values of S for given
values of L, P, Q, and v.

X1.4 Fig. 1 is based on v = 30 degrees of freedom. For
non-integral values of P and Q, S can be estimated by second
order interpolation from the table.

FIG. A5.3 Half-Normal Plot of Residuals from ANOVA
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X2. CALCULATING REPRODUCIBILITY WHEN NO REPLICATE RESULTS ARE AVAILABLE

X2.1 Introduction

X2.1.1 A number of agencies, including ASTM, operate
inter-laboratory exchange programs (“Proficiency Testing Pro-
grams” or PTP), in which samples are sent out periodically to
a number of laboratories for testing using one or more
methods. Such exchange groups can acquire, over a period of
time, a set of data comprising test results from multiple labs for
multiple samples (materials). PTP programs frequently do not
solicit or require replicate measurements. This appendix pro-
vides a statistical methodology, consistent with the methods of
this practice, to calculate reproducibility estimates from such
datasets without replicates. The outcome can be compared to
the published reproducibility to check for consistency and
monitor the in-practice performance of a standard test method.
The minimum number of labs (L) and samples (S) recom-
mended for application of this methodology are 7 and 6,
respectively.

X2.2 Array of Results from Each of L Laboratories on S
Samples, and Corresponding Sample Means mj,
Sample Totals gj, and Lab Totals hi

X2.2.1 Form the array as in A1.2 and A1.3. Note that, as
each sample is tested at most once by each lab, there is only
one table, with elements xij.

X2.2.2 The sample mean for the jth sample is

mj 5
(
i51

Lj

x ij

Lj

(X2.1)

where Lj is the number of labs that tested that jth sample.

X2.3 Sums of Squares and Variances

X2.3.1 Repeats Variances—Note that there are no repeats
variances for any sample.

X2.3.2 Between Cells Variance and Reproducibility Vari-
ance for Sample j—These are the same:

Cj
2 5 Dj

2 5
(
i51

Lj

~xij 2 mj!
2

Lj 2 1
(X2.2)

X2.4 Inspection of Interlaboratory Results for Unifor-
mity and for Outliers

X2.4.1 Test for Uniformity of Reproducibility:
X2.4.1.1 Follow Annex A4 to perform a weighted linear

regression of the logarithms of the laboratories standard
deviations, Dj, on the logarithms of the sample mean
concentrations, mj. Weight each observation log(Dj) by Lj–1,
one fewer than the number of labs that have measured sample
j. Alternatively, regress the log(Dj) on log(mj + B0), where B0

> – min(xij) is chosen to minimize the sum of weighted squared
residuals. This leads us to a model of Type 2 in Table A3.1, but
with no dummy variable:

D 5 K~m 1 B0!B (X2.3)

B is the value of the slope in the proposed regression.
X2.4.1.2 Since the intention of this technique is to compare

the reproducibility computed from interlaboratory exchange
data to the currently published reproducibility in the same
standard test method, the model that was used to develop the
currently published precisions should be the first choice. To
this end, apply the same transformation to the data as was
applied to the data of the original interlaboratory study, and use
these transformed data as the baseline data set. Do the
regression of X2.4.1.1 and test the hypothesis that the calcu-
lated B is zero. If it is not, and that remains the case after any
outliers have been removed, then this data set is not compatible
with currently published R.

X2.4.1.3 Notwithstanding the advice of the last subsection,
if the model selected in X2.4.1.1 is not a significant improve-
ment over the constant reproducibility model (B = 0), do not
transform the data. If used, B should be rounded to the nearest
1/10, and B0 should be rounded to carry no more than two
significant digits.

X2.4.1.4 In rare cases, it may be necessary to fit a model of
Types 3, 4, or 5. Use Table A3.1 to guide such an endeavor.

X2.4.1.5 Based on the regression model of Eq X2.3, trans-
form every response using the appropriate transformation: yij =
(xij + B0)1-B for a Type 2 model with B ≠ 1, yij = log(xij + B0)
for a Type 1 model (that is, a Type 2 model with B = 1), or as
guided by Table A3.1 for a model of a different type.

X2.4.2 Tests for Outlying Results or Samples:
X2.4.2.1 Following 7.3.4, test the yij for outliers.
X2.4.2.2 Following 7.4, test sample standard deviations for

outlying samples.

X2.4.3 Tests for Outlying Laboratories:
X2.4.3.1 Estimating Missing or Rejected Values—If data are

missing (that is, if all laboratories have not tested every
sample), or if outliers have been removed in X2.4.2, estimate
the missing yij in accordance with 7.5.

X2.4.3.2 Rejection Test for Outlying Laboratories—
Following 7.6, and using the data as transformed in X2.4.1, test
the laboratory means for outliers using Hawkins’ test.

X2.4.4 Estimating Missing or Rejected Values—If any
(transformed) results are missing, or have been rejected, from
the complete array, their values will have to be estimated, both
in order to compute the sum of squares for interactions in X2.5,
and also to allow testing for outlying laboratories.

X2.4.4.1 Following 7.5.2, estimate the values of any miss-
ing xij, or yij if the data have been transformed. Substitute xij or
yij for aij in Eq 11.

X2.4.5 Test for Outlying Laboratories—The procedure
again consists of Hawkins’ test (see 7.3.4), applied to the
laboratory averages over all samples, as in 7.6.1.

X2.4.6 Confirmation of Selected Transformation—If any
outliers have been removed in X2.4.2, X2.4.3, or X2.4.5, check
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to see that these rejections have not invalidated the transfor-
mation of X2.4.1. If the transformation (or lack thereof) is no
longer valid, return to X2.4.1 to determine a new
transformation, then repeat X2.4.2 and X2.4.3. Otherwise,
continue to X2.5.

X2.5 Analysis of Variance and Calculation of Reproduc-
ibility Estimate

X2.5.1 The steps required here parallel those in Section 8.
First, in the likely event that there are missing values, or that
some results have been removed as outliers, an approximate
analysis of variance is carried out using estimates of missing
results. The purpose of this approximate analysis is to calculate
the interaction sum of squares. Next the remaining sums of
squares are recalculated in an exact analysis of variance. The
reproducibility estimate is calculated from the resulting sums
of squares and their degrees of freedom.

X2.5.2 The Approximate Analysis of Variance—Calculating
the Laboratories x Samples Interaction Sum of Squares—All
calculations of this subsection are to be carried out on the
complete array of values {xij}, or {yij} if the data have been
transformed, with missing or removed values estimated as in
X2.4.4.

NOTE X2.1—If all data from one or more laboratories (samples) have
been removed, do not include the corresponding rows (columns) in the
array.

X2.5.2.1 For the purposes of this section, Ŷi•, is the average
of all transformed results and estimated transformed results
from the ith laboratory, That is, Ŷi• is the average of the ith row
of the array. Ŷ•j is the average of the jth column, and Ŷ•• is the
average of all the results in the array.

X2.5.2.2 Compute the following:

samples sum of squares 5 SSS 5 L(
j51

S

~ Ŷ •j 2 Ŷ ••!
2

(X2.4)

laboratories sum of squares 5 SSL 5 S(
i51

L

~ Ŷ i• 2 Ŷ ••!
2

(X2.5)

total sum of squares 5 SST 5 (
i51

L

(
j51

S

~yij 2 Ŷ ••!
2

(X2.6)

(replacing yij with xij if the data have not been transformed)
and

interaction sum of squares 5 I 5 SST 2 SSS 2 SSL (X2.7)

X2.5.3 The Exact Analysis of Variance—If any data were
missing or removed, recomputed the samples, laboratories, and
total sums of squares from the incomplete array of data, not
including estimates for missing or removed values, as follows.

X2.5.3.1 Sample Means, Grand Mean, and Mean
Correction—If you have not already done so, compute the
mean of the (transformed) results for each sample—not includ-
ing estimates for any missing or removed results:

Ȳ •j 5 (
i51

Lj

y ij ⁄Lj (X2.8)

where Lj is the number of labs that have contributed
non-outlying results for the jth sample. Compute also the
“grand” mean of all remaining transformed results:

Ȳ •• 5
(
j51

S

(
i51

Lj

y ij

N
5

(
j51

S

LjȲ •j

(
j51

S

Lj

(X2.9)

where N5 (
j51

S

Lj is the number of non-missing, non-outlying

results.

X2.5.3.2 The new, exact samples sum of squares is:

SSS 5 (
j

S

Lj~ Ȳ •j 2 Ȳ ••!
2

(X2.10)

X2.5.3.3 The new, exact total sum of squares is:

SST 5 (
j51

S

(
i51

Lj

~yij 2 Ȳ ••!
2

(X2.11)

X2.5.3.4 The interaction sum of squares, I, is unchanged
from X2.5.2.2, and the new, exact laboratories sum of squares
is:

SSL 5 SST 2 SSS 2 I (X2.12)

where I is from Eq X2.8.

X2.5.4 Degrees of Freedom and Mean Squares:
X2.5.4.1 The degrees of freedom for the samples sum of

squares is S – 1, where S is the number of samples for which
results remain after outlier elimination. The degrees of freedom
for labs is L – 1, where L is the number of labs with data
remaining. The degrees of freedom for interactions is N – S –
L + 1 where N is the number of results remaining in the array.

X2.5.4.2 Compute the mean squares for samples, labs, and
samples×labs interactions by dividing each sum of squares by
the corresponding degrees of freedom:

MSL 5 SSL ⁄~L 2 1!

MSI 5 I ⁄~N 2 S 2 L 1 1!

X2.5.4.3 Compute the ratio MSL /MSI and test for lab bias as
in 8.2.4.1.

X2.5.5 Expected Mean Squares and Calculation of the
Reproducibility Estimate:

X2.5.5.1 The expected value of MSL5σ0
21σ1

21
N2S
L21

σ2
2

where σ0
2 is the component of variance due to repeatability

variation, σ1
2 is the variance component due to interaction

variation, and σ2
2 is the variance component due to lab

variation (biases). The expected value of MSI is σ0
2 + σ1

2.

X2.5.5.2 The reproducibility variance is σ0
2 + σ1

2 + σ2
2,

which is estimated by:

σ̂R
2 5

L 2 1
N 2 S

MSL1
N 2 L 2 S11

N 2 S
MSI 5

SST 2 SSS

N 2 S
(X2.13)

X2.5.5.3 The degrees of freedom for σ̂R
2 must be estimated

as per Eq X2.14 below:

ν 5
~SST 2 SSS!2

SSL
2

~L 2 1!
1

SSI
2

~N 2 S 2 L 1 1!

(X2.14)

X2.5.5.4 Calculate the reproducibility as:

R 5 t =2σ̂R
2 (X2.15)
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where t is the 5 % critical value of a Student’s t variable,
from Table A2.5, with ν degrees of freedom.

X2.5.6 Transforming the Reproducibility into Original
Units:

X2.5.6.1 If the data were transformed in X2.4.1.5, then the
reproducibility computed in X2.5.5.4 is must be un-
transformed to express it in the same units as the test results. If
the form of the transformation was y = f(x), then

RX 5 RY ⁄ ? f '~x!? (X2.16)

where f ' is the derivative of f at the measured value. In
particular, if the transformation was of the form y5~x
1 B0!12B, then RX~x!5RY~x 1 B0!B ⁄ |12B | . If the transformation
was y5ln~x 1 B0!, then RX~x!5RY~x 1 B0!.

X2.6 Comparing the Estimate of Reproducibility from
this Appendix to the Published Reproducibility in
the Standard Test Method

X2.6.1 This section provides a procedure for comparing a
reproducibility estimate as calculated according to this appen-
dix to the published reproducibility of the corresponding
standard test method.

X2.6.2 If the reproducibility of these data (X2.5.6.1) is not
in the same functional form with the same parameter values as
the reproducibility of the standard method, do not proceed with
this section.

X2.6.3 Compute the chi square statistic:

X2 5 νS RX

RM
D 2

(X2.17)

where v and Rx are as in Eq X2.14 and Eq X2.16,
respectively, and RM is the published reproducibility of the
standard method. If X2 does not fall between the 2.5 percentile
and the 97.5 percentile of the chi square distribution with ν
degrees of freedom, then the reproducibility estimated from the

inter-laboratory data are not compatible with the published
reproducibility, with confidence 95 %. For 99 % confidence
use the 0.5 % and 99.5 % percentile of the chi square distri-
bution. Percentiles of the chi square distribution are given
Table X2.1.

X2.7 A Worked Example

X2.7.1 Data—Table X2.2 contains data from an exchange
program in which, each month, aliquots a reformulated gaso-
line (RFG) are distributed to laboratories which measure,
among other properties, the benzene concentration by D3606.
(See Note X2.2.) For this example, S = 8 gasolines and L = 69
participating laboratories were selected from a much larger
data set. All of the selected gasolines contained ethanol as a
blended component.

NOTE X2.2—The original data set consisted of 48 reformulated gaso-
lines and 88 participants. Our interest here was on the 32 ethanol-
containing fuels. In this example, only 8 fuels are shown, and only those
69 labs which measured at least half of those fuels are included.

X2.7.2 Counts, Means, and Variances—The Lj, mj, and Cj
2

are displayed at the bottom of Table X2.2. The numbers of
samples measured by the individual participants, Si are shown
in the rightmost column. Note that N = 471 out of L×S = 552
possible results—an 85% participation rate amongst these
selected labs.

X2.7.3 Initial Transformation—The reproducibility pub-
lished in Test Method D3606 – 06, for benzene in the range
0.1 % to 1.5% by volume, is 0.13 C + 0.05 = 0.13 (C + 0.385),
where C is the concentration in volume %. The transformation
that corresponds to this relationship is Y = ln(X + 0.385). We
will assume that as the baseline transformation, and see
whether it fits the data adequately. Table X2.2 shows the
means, sums of squares, and standard deviations of the
transformed (Y) data.

TABLE X2.1 Percentiles of Chi Squared Distribution

Degrees of
Freedom

Percentile

0.5 % 1 % 2.5 % 5 % 95 % 97.5 % 99 % 99.5 %

5 0.412 0.554 0.831 1.145 11.07 12.83 15.09 16.75
10 2.16 2.56 3.25 3.94 18.31 20.5 23.2 25.2
15 4.60 5.23 6.26 7.26 25.0 27.5 30.6 32.8
20 7.43 8.26 9.59 10.85 31.4 34.2 37.6 40.0
25 10.52 11.52 13.12 14.61 37.7 40.6 44.3 46.9
30 13.79 14.95 16.79 18.49 43.8 47.0 50.9 53.7
40 20.7 22.2 24.4 26.5 55.8 59.3 63.7 66.8
50 28.0 29.7 32.4 34.8 67.5 71.4 76.2 79.5
60 35.5 37.5 40.5 43.2 79.1 83.3 88.4 92.0
70 43.3 45.4 48.8 51.7 90.5 95.0 100.4 104.2
80 51.2 53.5 57.2 60.4 101.9 106.6 112.3 116.3
90 59.2 61.8 65.6 69.1 113.1 118.1 124.1 128.3
100 67.3 70.1 74.2 77.9 124.3 129.6 135.8 140.2
125 88.0 91.2 95.9 100.2 152.1 157.8 164.7 169.5
150 109.1 112.7 118.0 122.7 179.6 185.8 193.2 198.4
175 130.6 134.4 140.3 145.4 207 214 221 227
200 152.2 156.4 162.7 168.3 234 241 249 255
225 174.1 178.6 185.3 191.3 261 268 277 283
250 196.2 201 208 214 288 296 305 311
300 241 246 254 261 341 350 360 367
350 286 291 300 308 395 404 414 422
400 331 337 346 355 448 457 469 477
450 376 383 393 402 500 511 523 531
500 422 429 440 449 553 564 576 585

D6300 − 17a

37

 



TABLE X2.2 Benzene Concentrations in RFG

G1 G2 G3 G4 G5 G6 G7 G8 Si

L1 1.78 0.39 1.04 0.51 0.75 0.35 2.16 0.77 8
L2 1.93 1.05 0.68 0.67 0.3 2.03 0.61 7
L3 1.48 0.43 0.94 0.54 0.75 0.27 2.14 0.64 8
L4 1.83 0.33 0.96 0.5 0.72 0.31 2.18 0.68 8
L5 1.78 0.39 1.01 0.55 0.77 0.34 2.08 0.71 8
L6 0.65 0.65 0.23 1.95 0.59 5
L7 1.7 0.36 0.97 0.47 0.3 2.19 0.68 7
L8 1.83 0.45 1.09 0.48 4
L9 1.74 0.32 0.99 0.51 0.82 0.42 2.25 0.73 8
L10 1.67 0.36 1.01 0.47 0.66 0.27 0.67 7
L11 1.89 0.33 0.95 0.46 0.67 0.27 2.2 0.64 8
L12 1.7 0.37 0.94 0.44 0.64 0.29 2.25 0.69 8
L13 1.84 0.34 0.93 0.45 0.69 0.33 2.01 0.66 8
L14 1.88 0.33 0.99 0.52 0.68 0.24 2.43 0.59 8
L15 1.85 0.3 1.03 0.46 0.62 0.28 0.82 7
L16 1.72 0.37 0.98 0.49 0.68 0.22 1.97 0.59 8
L17 1.72 0.31 0.92 0.58 2.05 0.71 6
L18 1.79 0.33 0.97 0.52 0.71 0.3 2.16 0.67 8
L19 1.9 0.46 1.12 0.61 0.6 5
L20 1.78 0.34 1.04 0.53 0.73 0.31 2.14 0.74 8
L21 1.81 0.38 1.01 0.51 0.66 0.29 2.22 0.76 8
L22 2.41 0.73 1.48 0.43 4
L23 1.61 0.32 0.95 0.47 2.07 5
L24 0.35 1.02 0.55 0.76 0.37 2.36 0.68 7
L25 1.88 0.35 0.98 0.48 0.68 0.4 2.2 7
L26 1.63 0.35 0.85 0.47 0.33 2.31 0.78 7
L27 0.66 0.41 1.16 0.55 0.82 5
L28 1.61 0.34 0.91 0.56 0.68 0.29 2.28 0.65 8
L29 1.85 0.39 1.01 0.5 0.78 0.34 2.2 0.64 8
L30 1.69 0.35 0.98 0.48 0.73 5
L31 1.64 0.32 0.92 0.54 0.73 0.28 2.07 0.65 8
L32 1.77 0.37 0.9 0.48 0.62 5
L33 1.82 0.91 0.41 0.69 0.29 2.22 1 7
L34 0.4 0.5 0.69 0.31 2.17 0.68 6
L35 1.42 0.39 0.85 0.46 0.62 0.28 2.06 0.6 8
L36 1.95 0.58 1.24 0.28 1.26 5
L37 1.63 0.33 0.92 0.42 0.57 0.26 2.01 0.62 8
L38 1.58 0.29 0.98 0.51 0.54 5
L39 1.69 0.4 1.08 0.56 0.42 0.28 2.04 0.66 8
L40 1.61 0.34 0.93 0.45 0.6 0.25 2.07 0.61 8
L41 0.364 1.04 0.49 0.74 0.3 2.23 0.73 7
L42 1.71 0.4 0.97 0.52 0.7 5
L43 1.66 0.31 0.94 0.44 0.62 5
L44 1.78 0.3 0.98 0.51 0.74 0.29 2.11 0.66 8
L45 1.68 0.37 1 0.48 0.72 2.2 0.71 7
L46 1.83 0.38 0.99 0.5 0.74 0.4 2.24 0.77 8
L47 1.83 0.37 0.99 0.48 0.61 5
L48 1.55 0.35 0.94 0.46 0.66 0.3 2.16 0.67 8
L49 1.78 0.35 0.97 0.35 0.63 0.46 2.29 0.68 8
L50 1.7 0.34 0.98 0.47 0.59 0.32 2.15 0.58 8
L51 1.92 0.51 0.92 0.44 0.8 0.26 0.65 7
L52 1.71 0.32 0.95 0.45 0.65 0.27 2.12 0.64 8
L53 1.7 0.34 1.01 0.5 0.3 2.21 0.77 7
L54 1.72 0.37 0.97 0.5 0.65 0.32 2.14 0.65 8
L55 1.5907 0.26 0.89 0.43 0.61 0.26 2.01 0.62 8
L56 1.77 0.36 0.99 0.6 0.76 2.43 0.68 7
L57 1.69 0.38 0.49 0.67 2.28 0.71 6
L58 1.65 0.35 0.94 0.49 0.69 0.29 2.16 0.67 8
L59 0.27 1.34 0.36 0.39 0.28 2.13 0.71 7
L60 0.46 0.73 0.33 2.23 4
L61 1.65 0.35 1.32 0.79 0.97 0.83 2.76 1.18 8
L62 0.47 0.63 0.28 2.06 0.64 5
L63 0.96 0.41 0.74 0.33 2.2 0.71 6
L64 1.29 0.34 0.93 0.5 0.73 0.34 2.47 1.33 8
L65 1.74 0.31 0.45 0.66 4
L66 2.1 0.3 0.95 0.43 0.59 0.32 2.2 0.72 8
L67 0.74 0.35 2.17 0.65 4
L68 0.93 0.46 0.32 2.21 0.77 5
L69 1.74 0.34 0.96 0.45 0.73 0.27 2.08 0.71 8
Lj 59 61 62 68 61 52 54 54
mj 1.726 0.364 0.998 0.491 0.691 0.316 2.180 0.706

Cj^2 0.04506 0.00497 0.01210 0.00525 0.01322 0.00741 0.01885 0.01688
stdev 0.2122767 0.070532 0.109995 0.07246 0.114974 0.086077 0.137299 0.129941
avg Y 0.741 -0.292 0.321 -0.135 0.068 -0.361 0.941 0.081

stdev Y 0.117861 0.084893 0.073477 0.080893 0.102005 0.101903 0.051746 0.103034
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X2.7.4 Weighted Regression—A weighted linear regression
(Annex A4) of the natural logarithms of the sample standard
deviation on the sample averages, {Ȳ•j}, with the degrees of
freedom as weights, yielded an model sY = –0.193 Ȳ•j – 2.41.
The standard error of the coefficient was 0.210, so the slope,
–0.193, is not significantly different from zero, suggesting that
the baseline transformation may be adequate. (We will check
again after removing any outliers.)

X2.7.5 Hawkins’ Test for Outlying Results—The largest
absolute difference between a Yij and the corresponding sample
average, Ȳ•j, was 0.697, associated with G1 from L27. The
Hawkins statistic was 0.3547. Entering Table A1.5 with n = 59
and ν = 405, we can see that the critical value is less than
0.2308. Using Eq A2.1, the critical value is actually 0.1722. So
this result, G1-L46, was rejected as an outlier. Continuing in
this manner, we remove also G6-L61, G6-L36, G8-L64,
G2-L22, G5-L59, G8-L61, G3-L22, G4-L61, G5-L39, G1-
L22, G4-L36, G2-L36, G8-L33, G5-L61, G1-L64, G3-L59,
and G3-L61. Eleven of the 18 identified outliers were from
only three labs: L22, L36, and L61, so the remaining results
from these labs were also discarded.

X2.7.6 Test for Outlying Samples—The sample means and
standard deviations of the transformed results, yij, were recom-
puted after removal of outliers as described in the previous
paragraph. They are shown in Table X2.3. As the degrees of
freedom associated with the sample variances are not identical,
we follow 7.4.4. The largest variance is that of G6, 0.06552 =
0.00429. The pooled variance from the other 7 samples is

0.05642 3 0.05902 3 571 · · ·10.05232 3 50
531571 · · ·150

5 0.00302

(X2.18)

where the sums in neither the numerator nor the denominator
above include a contribution from G6. The F ratio = .00429/
.00302 = 1.42. The .01/8=.00125 critical value of the F
distribution with 50 and 381 degrees of freedom is larger. (This
can be seen by entering Table A1.9—p = 0.005, with 50 and
500 degrees of freedom—the critical value we seek exceeds
1.87.) Thus, no samples are suspect.

X2.7.7 Estimating Missing and Removed Values in Array of
Yij—Transformed results for all empty cells were estimated by
iteratively applying Eq 11, as described in 7.5.2.3. The com-
pleted array (except for the three laboratories from which all
results have been excluded) is shown in Table X2.4. Estimate
results have been shaded. The averages (Ŷi•) of transformed
results from each lab, from each sample, and of the entire array
are also shown.

X2.7.8 Testing for Outlying Labs—The grand average of all
observed and estimated transformed values is 0.16486. The
largest lab average is 0.26277 (L27) and the smallest is
0.08946 (L55). L27’s average is furthest from 0.16486, so the

maximum squared difference between a lab average and the
grand average is (0.26277 – 0.16485)^2 = 0.009588. The sum
of squared differences, across all labs, is 0.07361, so Hawkins’
ratio is 0.009588/0.7361 = 0.1302. Entering Table A1.3 with n
= 66 and v = 0. we see that we must again turn to Eq A2.1 to
determine that the critical value is 0.4436. There are no
outlying labs discernable.

X2.7.9 Double-checking the Baseline Model—Returning
now to the incomplete array of transformed results, Table X2.4,
the natural logarithms of the sample standard deviations are
regressed against the sample averages, {Ῡ•j}, with weights {Lj

– 1}. The resulting regression coefficient is –0.245 with
standard error 0.107. As there are only 8 samples—six degrees
of freedom—the coefficient is not statistically different from
zero. The baseline model has been found acceptable and we
will continue with the next steps.

X2.7.10 Approximate Analysis of Variance and Sum of
Squares for Interaction—Turning back Table X2.4, the array of
yij data completed with estimates of missing or removed
values, we follow the steps of X2.5.2. The values of the
averages {Ŷi•}, {Ŷ•j} and {Ŷ••}} are included in Table X2.4,
from which we compute:
SSS = 66 × [(0.7541–0.1649)2 + (–0.3034–0.1649)2 +{ (8 terms)] = 104.2873

SSL = 66 × [(0.7724–0.1649)2 + (–0.2549–0.1649)2 +{ (66 terms) = 0.5889

SST = (0.7724–0.1649)2 + (–0.2549–0.1649)2 +{ (66×8 terms) = 105.8050

I = 105.8050 – 104.2873 – 0.5889 = 0.9288

X2.7.11 The Exact Analysis of Variance—Computing now
without including estimates for missing or removed results, the
lab means, Ῡ•j, are shown in Table X2.4, as are N and Ῡ••. The
sums of squares are:
SSS = 54 (0.7517–0.1556)2 + 58 (–0.3032–0.1556)2 + { (8 terms) = 85.6300

SST = (0.7724–0.1556)2 + (–0.2549–0.1556)2 + { (446 terms) = 87.0187

SSL = SST – SSS – I = 87.0187 – 85.6300 – 0.9288 = 0.4599

The reproducibility variance is:

σ̂R
2 5

87.0187 2 85.6300
446 2 8

5 0.003163

The degrees of freedom for σ̂R
2 are:

ν 5
~1.3687!2

0.45992

65
1

0.98822

373

5 346.8

RY 5 1.967=2 3 0.003163 5 0.1564

RX 5 0.1564~X 1 0.385!

X2.7.12 Comparing This Estimate to Published Reproduc-
ibility:

TABLE X2.3 Sample Means and Standard Deviations of Transformed Results After Rejection of Outliers

G1 G2 G3 G4 G5 G6 G7 G8

df 53 57 57 64 56 50 52 50
avg Y 0.752 -0.303 0.306 -0.135 0.067 -0.372 0.937 0.061

stdev Y 0.056362 0.059007 0.042326 0.065107 0.059541 0.065473 0.043629 0.052279
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TABLE X2.4 Transformed Benzene Results with Missing Results Estimated

NOTE 1—The boldface values are estimates of missing data or outliers.

G1 G2 G3 G4 G5 G6 G7 G8 Ŷ i•

L1 0.7724 -0.2549 0.3542 -0.1109 0.1266 -0.3079 0.9341 0.1441 0.2072
L2 0.8394 -0.2758 0.3612 0.0630 0.0535 -0.3783 0.8817 -0.0050 0.1925
L3 0.6233 -.02046 0.2814 -0.0780 0.1266 -0.4231 0.9262 0.0247 0.1596
L4 0.7953 -0.3355 0.2964 -0.1222 0.0998 -0.3638 0.9420 0.0630 0.1719
L5 0.7724 -0.2549 0.3329 -0.0672 0.1441 -0.3216 0.9022 0.0908 0.1998
L6 0.7224 -0.3351 0.2724 0.0344 0.0344 -0.4861 0.8480 -0.0253 0.1331
L7 0.7348 -0.2944 0.3038 -0.1567 0.0619 -0.3783 0.9458 0.0630 0.1600
L8 0.7953 -0.1803 0.3887 -0.1450 0.1262 -0.3104 0.9982 0.1222 0.2244
L9 0.7538 -0.3496 0.3185 -0.1109 0.1865 -0.2169 0.9689 0.1089 0.2074
L10 0.7203 -0.2944 0.3329 -0.1567 0.0440 -0.4231 0.9239 0.0535 0.1501
L11 0.8220 -0.3355 0.2889 -0.1684 0.0535 -0.4231 0.9497 0.0247 0.1515
L12 0.7348 -0.2810 0.2814 -0.1924 0.0247 -0.3930 0.9689 0.0723 0.1520
L13 0.7998 -0.3216 0.2738 -0.1803 0.0723 -0.3355 0.8734 0.0440 0.1532
L14 0.8176 -0.3355 0.3185 -0.0998 0.0630 -0.4700 1.0350 -0.0253 0.1629
L15 0.8042 -0.3783 0.3471 -0.1684 0.0050 -0.4080 0.9398 0.1865 0.1660
L16 0.7443 -0.2810 0.3112 -0.1335 0.0630 -0.5025 0.8565 -0.0253 0.1291
L17 0.7443 -0.3638 0.2662 -0.0356 0.0617 -0.3749 0.8899 0.0908 0.1598
L18 0.7770 -0.3355 0.3038 -0.0998 0.0908 -0.3783 0.9341 0.0535 0.1682
L19 0.8264 -0.1684 0.4088 -0.0050 -0.0151 -0.2980 1.0105 0.1345 0.2367
L20 0.7724 -0.3216 0.3542 -0.0888 0.1089 -0.3638 0.9262 0.1178 0.1882
L21 0.7862 -0.2679 0.3329 -0.1109 0.0440 -0.3930 0.9574 0.1354 0.1855
L23 0.6906 -0.3496 0.2889 -0.1567 0.0292 -0.4074 0.8981 0.0251 0.1273
L24 0.8009 -0.3079 0.3400 -0.0672 0.1354 -0.2810 1.0098 0.0630 0.2116
L25 0.8176 -0.3079 0.3112 -0.1450 0.0630 -0.2421 0.9497 0.0899 0.1920
L26 0.7006 -0.3079 0.2111 -0.1567 0.0673 -0.3355 0.9914 0.1527 0.1654
L27 0.8520 -0.2294 0.4350 -0.0672 0.1865 -0.2719 1.0366 0.1606 0.2628
L28 0.6906 -0.3216 0.2585 -0.0566 0.0630 -0.3930 0.9802 0.0344 0.1569
L29 0.8042 -0.2549 0.3329 -0.1222 0.1527 -0.3216 0.9497 0.0247 0.1957
L30 0.7300 -0.3079 0.3112 -0.1450 0.1089 -0.3679 0.9406 0.0646 0.1668
L31 0.7056 -0.3496 0.2662 -0.0780 0.1089 -0.4080 0.8981 0.0344 0.1472
L32 0.7678 -0.2810 0.2508 -0.1450 0.0050 -0.3878 0.9207 0.0447 0.1469
L33 0.7907 -0.3205 0.2585 -0.2294 0.0723 -0.3930 0.9574 0.0455 0.1477
L34 0.7682 -0.2421 0.3182 -0.1222 0.0723 -0.3638 0.9381 0.0630 0.1790
L35 0.5906 -0.2549 0.2111 -0.1684 0.0050 -0.4080 0.8940 -0.0151 0.1068
L37 0.7006 -0.3355 0.2662 -0.2169 -0.0460 -0.4385 0.8734 0.0050 0.1010
L38 0.6755 -0.3930 0.3112 -0.1109 -0.0780 -0.4264 0.8822 0.0062 0.1083
L39 0.7300 -0.2421 0.3819 -0.0566 0.0786 -0.4080 0.8858 0.0440 0.1767
L40 0.6906 -0.3216 0.2738 -0.1803 -0.0151 -0.4541 0.8981 -0.0050 0.1108
L41 0.7793 -0.2890 0.3542 -0.1335 0.1178 -0.3783 0.9613 0.1089 0.1901
L42 0.7396 -0.2421 0.3038 -0.0998 0.0816 -0.3507 0.9578 0.0818 0.1840
L43 0.7154 -0.3638 0.2814 -0.1924 0.0050 -0.4182 0.8903 0.0143 0.1165
L44 0.7724 -0.3783 0.3112 -0.1109 0.1178 -0.3930 0.9143 0.0440 0.1597
L45 0.7251 -0.2810 0.3257 -0.1450 0.0998 -0.3589 0.9497 0.0908 0.1758
L46 0.7953 -0.2679 0.3185 -0.1222 0.1178 -0.2421 0.9651 0.1441 0.2136
L47 0.7953 -0.2810 0.3185 -0.1450 -0.0050 -0.3708 0.9377 0.0617 0.1639
L48 0.6601 -0.3079 0.2814 -0.1684 0.0440 -0.3783 0.9341 0.0535 0.1398
L49 0.7724 -0.3079 0.3038 -0.3079 0.0149 -0.1684 0.9839 0.0630 0.1692
L50 0.7348 -0.3216 0.3112 -0.1567 -0.0253 -0.3496 0.9302 -0.0356 0.1359
L51 0.8351 -0.1109 0.2662 -0.1924 0.1697 -0.4385 0.9649 0.0344 0.1911
L52 0.7396 -0.3496 0.2889 -0.1803 0.0344 -0.4231 0.9183 0.0247 0.1316
L53 0.7348 -0.3216 0.3329 -0.1222 0.0798 -0.3783 0.9536 0.1441 0.1779
L54 0.7443 -0.2810 0.3038 -0.1222 0.0344 -0.3496 0.9262 0.0344 0.1613
L55 0.6809 -0.4385 0.2429 -0.2046 -0.0050 -0.4385 0.8734 0.0050 0.0895
L56 0.7678 -0.2944 0.3185 -0.0151 0.1354 -0.3239 1.0350 0.0630 0.2108
L57 0.7300 -0.2679 0.3155 -0.1335 0.0535 -0.3585 0.9802 0.0908 0.1763
L58 0.7105 -0.3079 0.2814 -0.1335 0.0723 -0.3930 0.9341 0.0535 0.1522
L59 0.6929 -0.4231 0.2428 -0.2944 0.0055 -0.4080 0.9223 0.0908 0.1036
L60 0.7703 -0.2871 0.3203 -0.1684 0.1089 -0.3355 0.9613 0.0789 0.1811
L62 0.7151 -0.3424 0.2651 -0.1567 0.0149 -0.4080 0.8940 0.0247 0.1259
L63 0.7577 -0.2997 0.2964 -0.2294 0.1178 -0.3355 0.9497 0.0908 0.1685
L64 0.7815 -0.3216 0.2738 -0.1222 0.1089 -0.3216 1.0491 0.0901 0.1923
L65 0.7538 -0.3638 0.2717 -0.1803 0.0440 -0.4023 0.9063 0.0303 0.1324
L66 0.9103 -0.3783 0.2889 -0.2046 -0.0253 -0.3496 0.9497 0.0998 0.1614
L67 0.7751 -0.2823 0.3251 -0.1132 0.1132 0.1178 -0.3079 0.0344 0.1859
L68 0.7646 -0.2929 0.2738 -0.1684 0.0772 -0.3496 0.9536 0.1441 0.1753
L69 0.7538 -0.3216 0.2964 -0.1803 0.1089 -0.4231 0.9022 0.0908 0.1534
Ŷ • j

0.7541 -0.3034 0.3041 -0.1343 0.0668 -0.3699 0.9387 0.0627 0.1649 = Ŷ ••

L•j 54 58 58 65 57 51 53 51 447 = N
Ȳ • j

0.7517 -0.3032 0.3058 -0.1346 0.0670 -0.3722 0.9367 0.0605 0.1556 = Ȳ ••
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X2.7.12.1 The reproducibility of Test Method D3606 as
published is RP = 0.13(X + 0.385). To test whether the
reproducibility calculated from these data are compatible with
the published reproducibility, we calculate:

ν
RX

RP

5 346.8
0.1564
0.13

5 417

Comparing this ratio to the 97.5 percentile of a chi square
distribution with 350 degrees of freedom, 404 from Table
X2.1, we see that our ratio is larger. So it must be larger than

the 97.5th percentile of a chi square variable with 347 degrees
of freedom as well, and we conclude that, for ethanol-
containing gasolines, the crosscheck labs have not been meet-
ing the published reproducibility of Test Method D3606.
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SUMMARY OF CHANGES

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6300 – 17) that may impact the use of this standard. (Approved July 1, 2017.)

(1) Revised subsections 1.2, 1.3, 3.1.13.3, and 7.3.1.1.

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6300 – 16a) that may impact the use of this standard. (Approved May 1, 2017.)

(1) Revised terms in Section 3, Terminology.
(2) Added terms repeatability conditions and reproducibility
conditions to Section 3, Terminology.

(3) Added Note 2 to Section 3, Terminology.
(4) Revised subsection 8.4.

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6300 – 16) that may impact the use of this standard. (Approved July 1, 2016.)

(1) Revised subsection 1.3, Table 1, and Table 2.

Subcommittee D02.94 has identified the location of selected changes to this standard since the last issue
(D6300 – 15) that may impact the use of this standard. (Approved April 1, 2016.)

(1) Revised 6.2.1.2 and 6.2.1.3. (2) Added new subsection 6.5.3.1.
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