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1. Scope

1.1 This guide covers a practical strategy for examining an
environmental project data collection effort and the resulting
data to determine if they will support the intended use. It
covers the review of project activities to determine confor-
mance with the project plan and impact on data usability. This
guide also leads the user through a logical sequence to
determine which statistical protocols should be applied to the
data.

1.1.1 This guide does not establish criteria for the accep-
tance or use of data but instructs the assessor/user to use the
criteria established by the project team during the planning
(data quality objective process), and optimization and imple-
mentation (sampling and analysis plan) process.

1.2 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

D4687 Guide for General Planning of Waste Sampling
D5088 Practice for Decontamination of Field Equipment

Used at Waste Sites
D5283 Practice for Generation of Environmental Data Re-

lated to Waste Management Activities: Quality Assurance
and Quality Control Planning and Implementation

D5792 Practice for Generation of Environmental Data Re-

lated to Waste Management Activities: Development of
Data Quality Objectives

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 bias, n—a systematic error that is consistently nega-
tive or consistently positive.

3.1.2 characteristic, n—a property of items in a sample or
population which can be measured, counted, or otherwise
observed.

3.1.3 composite sample, n—a physical combination of two
or more samples.

3.1.4 confidence limit, n—an upper and/or lower limit(s)
within which the true value is likely to be contained with a
stated probability or confidence.

3.1.5 continuous data, n—data where the values of the
individual samples may vary from minus infinity to plus
infinity.

3.1.6 data quality objectives (DQOs), n—DQOs are quali-
tative and quantitative statements derived from the DQO
process describing the decision rules and the uncertainties of
the decision(s) within the context of the problem(s).

3.1.7 data quality objective process, n—a quality manage-
ment tool based on the scientific method and developed to
facilitate the planning of environmental data collection activi-
ties.

3.1.8 discrete data, n—data made up of sample results that
are expressed as a simple pass/fail, yes/no, or positive/
negative.

3.1.9 heterogeneity, n—the condition of the population un-
der which all items of the population are not identical with
respect to the parameter of interest.

3.1.10 homogeneity, n—the condition of the population
under which all items of the population are identical with
respect to the parameter of interest.

3.1.11 population, n—the totality of items or units under
consideration.
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3.1.12 representative sample, n—a sample collected in such
a manner that it reflects one or more characteristics of interest
(as defined by the project objectives) of a population from
which it is collected.

3.1.13 sample, n—a portion of material which is taken from
a larger quantity for the purpose of estimating properties or
composition of the larger quantity.

3.1.14 sampling design error, n—error which results from
the unavoidable limitations faced when media with inherently
variable qualities are measured and incorrect judgement on the
part of the project team.

3.1.15 subsample, n—a portion of a sample that is taken for
testing or for record purposes.

4. Significance and Use

4.1 This guide presents a logical process for determining the
usability of environmental data for decision making activities.
The process describes a series of steps to determine if the
enviromental data were collected as planned by the project
team and to determine if the a priori expectations/assumptions
of the team were met.

4.2 This guide identifies the technical issues pertinent to the
integrity of the environmental sample collection and analysis
process. It guides the data assessor and data user about the
appropriate action to take when data fail to meet acceptable
standards of quality and reliability.

4.3 The guide discusses, in practical terms, the proper
application of statistical procedures to evaluate the database. It
emphasizes the major issues to be considered and provides
references to more thorough statistical treatments for those
users involved in detailed statistical assessments.

4.4 This guide is intended for those who are responsible for
making decisions about environmental waste management
projects.

5. General Considerations

5.1 This guide provides general guidance about applying
numerical and other techniques to the assessment of data
resulting form environmental data collection activities associ-
ated with waste management activities.

5.2 The environmental measurement process is a complex
process requiring input from a variety of personnel to properly
address the numerous issues related to the integrity of the
sample collection and measurement process in sufficient detail.
Table 1 lists many of the topics that are common to most
environmental projects. A well-executed project planning ac-
tivity (see Guide D4687, Practices D5088, D5283, and D5792)
should consider the impact of each of these issues on the
reliability of the final project decision. The data assessment
process must then evaluate the actual performance in these
areas versus that expected by the project planners. Significant
deviations from the a priori performance level of any one or
combination of these issues may impact the reliability of the
project decision and necessitate a reconsideration of the
decision criteria by the project decision makers.

5.3 Appropriate professionals must assess the project plan-
ning documents and completed project records to determine if
the project findings match the conceptual model and decision
logic. In areas where the findings don’t match, the assessors
must document and report their findings and, if possible, the
potential impact on the decision process. Items subject to
numerical confirmation are compared to the project plan and
any discrepancies and their potential impact noted.

5.4 Effective quality control (QC) programs are those that
empower the individuals performing the work to evaluate their
performance and implement real-time corrections during the
sampling or measurement process, or both. When quality
control processes (including documentation) are properly
implemented, they result in data sets (see Fig. 1) that are
generated by in-control processes or out-of control processes
that were not amenable to corrective action but whose details
are explained by the project staff conducting the work. Good
QC programs lead to reliable data that are seldom called into
question during the assessment process. However, in cases
where the absence of staff responsibility or authority to
self-monitor and correct deficiencies at the working level is
missing, the burden of assuring data integrity is placed on the

TABLE 1 Information Needed to Evaluate the Integrity of the
Environmental Sample Collection and Analysis Process

General Project Details • Site History
• Process Description
• Waste Generation Records
• Waste Handling/Disposal Practices
• Sources of Contamination
• Conceptual Site Model
• Potential Contaminants of Concern
• Fate and Transport Mechanisms
• Exposure Pathways
• Boundaries of the Study Area
• Adjacent Properties

Sampling Issues • Sampling Strategy
• Sample Location
• Sample Number
• Sample Matrix
• Sample Volume/Mass
• Discrete/Composite Samples
• Sample Representativeness

•
Sampling Equipment, Containers and

Preservatives

Analytical Issues • Laboratory Sub-sampling
• Sample Preparation Methods
• Analytical Method
• Detection Limits
• Matrix Interferences
• Bias
• Holding Times
• Calibration
• Quality Control Results
• Contamination
• Reporting Requirements
• Reagents/Supplies

Validation and
Assessment

• Data Quality Objectives

• Chain of Custody
• Action Level
• Completeness
• Laboratory Audit Results
• Field and Laboratory Records
• Level of Uncertainty in Reported Values
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quality assurance (QA) function. The data assessment process
must determine the location (working level or QA level) where
effective quality control occurs (detection of error and execu-
tion of corrective action) in the data collection process and
focus on how well the QC function was executed. As a general
rule, if the QC function is not executed in real-time and
thoroughly documented by the staff performing the work, the
more likely the data assessor will be to find questionable data.

5.5 In addition to addressing the issues listed in Table 1, the
data assessment process must search for unmeasurable factors
whose impact cannot be detected by the review of the project
records against expectations or numerical techniques. These
are the types of things that are controlled by effective quality
assurance programs, standard operating procedures, documen-
tation practices, and staff training. Historically, efforts have
been focused on the control of data collection errors through
data review and the quality control process but little emphasis
has been placed on the detection and evaluation of immeasur-

able errors using the quality assurance process. These unmea-
surable sources of error are often the greatest source of
uncertainty in the data collected for environmental projects.
Examples of unmeasurable factors are given in Table 2.

5.6 Once the data assessment process has determined the
degree to which the actual data collection effort met the
expectations of the planners, the assessment process moves
into the next phase to determine if the data generated by the
effort can be verified and validated and whether it pass
statistical tests for useability. These issues are discussed in the
next sections.

6. Sources of Sampling Error

6.1 Sample collection may cause random or systematic
errors. Random error affects the data by increasing the
imprecision, whereas systemic error biases the data. The data
assessment process should examine the available sampling
records to determine if errors were introduced by improper
sampling. A discussion of some of the more common sources
of error follow.

6.1.1 Random Error:
6.1.1.1 Flaws in the sampling design which result in too few

quality control samples being taken in the field can result in
undetected errors in the sampling program. Adequate numbers
of field QC samples (for example, field splits, co-located

FIG. 1 General Strategy for Assessment of Continuous Data Sets

TABLE 2 Examples of Unmeasurable Factors Affecting the
Integrity of Environmental Data Collection Efforts

• Biased Sampling/Subsampling • Incorrect Dilutions
• Sampling Wrong Area or Material • Incorrect Documentation
• Sample Switching (Mis-labeling) • Matrix-Specific Artifacts
• Misweighing/Misaliquoting
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samples, equipment rinsate blanks, and trip blanks) are neces-
sary to assess inconsistencies in sample collection practices,
contaminated equipment, and contamination during the ship-
ment process.

6.1.1.2 Variations (heterogeneity) in the media being
sampled can cause concentration and property differences
between and within samples. Field sampling and laboratory
sub-sampling records should be examined to determine if
heterogeneity was noted. This can explain wide variations in
field and/or laboratory duplicate data.

6.1.1.3 Samples from the same population (including co-
located samples) can be very different from each other. For
example, one sample might be taken from a hot spot that was
not visually obvious while the other was taken outside the
perimeter of the hot spot. If data from areas of high concen-
tration is contained in data sets consisting primarily of uncon-
taminated material, statistical outlier analysis might suggest the
sample data should be omitted from consideration when
evaluating a site. This can cause serious decision errors. Prior
to declaring the data point(s) to be outliers, it is important for
the assessor to examine the QC records from the analysis
yielding the suspect data. If the QC data indicates the system
was in control and review of the raw sample data reveals no
handling or calculation errors, the suspect data should be
discussed in the assessor’s report but it should not be dis-
counted. The site history and operating records may hold clues
to the possible existence of hot spots.

6.2 Systematic Error:
6.2.1 Flaws in the sampling design that result in sampling of

inappropriate locations can result in significant bias in the data.
The samples collected from such a flawed plan will not be
representative of the population and can result in incorrect
decisions. The assessor should review the sampling plan for
signs of potential bias and discuss their findings in the final
report.

6.2.2 Sampling tools and equipment can deselect certain
parts of a sample based on the physical properties (density,
particle size, multi-phasic materials, particle geometry, etc.). If
the sample is biased because of some physical characteristic,
then any constituent that is distributed in the material based on
that characteristic, will be incorrectly reported. Both field and
laboratory sampling equipment can introduce this type of bias.

6.2.3 Incorrect sampling procedures can cause losses of
certain constituents of a sample such as volatile organics.
Failure to control the loss of of constituents that exist in the
gaseous state often comprises the collection of unsaturated
media for volatile compound characterization. Deterioration of
the sample can also occur after collection due to improper
storage and transportation. For example, samples left standing
in sunlight or in a hot vehicle can undergo photochemical
reactions or lose volatile constituents.

6.2.4 Interactions between the sample and the material of
the sampling equipment or container, or both, are potential
sources of positive or negative bias.

6.2.5 Inappropriate preservation of the sample can cause a
shift in chemical equilibria, loss of target analytes, or
degradation, or all of these. For example, when analyzing a
water sample for dissolved metals, addition of nitric acid to a

water sample containing suspended solids might dissolve
metals from the solids, resulting in an incorrect high concen-
tration being reported. Failure to preserve water samples
intended for organic analysis may allow significant biological
alteration of the sample.

6.2.6 The time of day and prevailing weather conditions
when samples are collected can affect the sample. For example,
strong winds can blow dust that can contaminate the samples.
Cool mornings or evening can lead to higher retention of
volatile components in near-surface soil samples compared to
the samples collected in the heat of the day.

6.2.7 The above examples only serve to illustrate the need
for an experienced professional to review the sampling activi-
ties and to place the resulting analytical data in the proper
context of the sampling activity. Such assessments add mate-
rially to the usability of the data.

7. Sources of Analytical Error

7.1 Variation in the analytical process may cause random or
systematic error. Random error affects the data by increasing
the imprecision, whereas systematic error increases the bias of
the data. The data assessment process should examine the
available analytical records to determine if errors were intro-
duced in the data by the analytical process. Analytical results
can also be impacted by sample matrix effects. Discussion of
some of the more common sources these types of error follow.

7.1.1 Random Error:
7.1.1.1 Random errors in the analytical process are often

uncontrollable and unobserved. They are usually distributed
between positive and negative error and tend to cancel out and
so have little effect. However, for any one measurement,
random error can be significant.

7.2 Systematic Error—The bias resulting from systematic
error can be either positive or negative but it affects all results
in a data set(s) the same way. Sources of systematic error are
most often associated with sample preparation or analysis.
Incomplete digestion or insufficient reaction time during
sample preparation are examples that can produce negatively
biased results during the preparation process. Improperly
calibrated instruments, incorrect standards, dirty detectors, and
leaking sample introduction systems are examples of instru-
mental problems that cause systematic error. They are most
often detected when reference samples and laboratory control
samples fail to produce the expected results.

7.3 Sample Matrix Effects:
7.3.1 The sample matrix can introduce either systematic or

random error in analytical results. Consistently high or low
results (systematic error) can be obtained when the matrix
contains a non-target constituent that interferes with the accu-
rate measurement of the target analyte. The interfering sub-
stance must be uniformly distributed in the matrix to produce
consistent deviations from the true value. If the interference is
non-uniformly distributed in the matrix, the error will appear as
a random error.

7.3.2 The relationship between the sample matrix and the
analytical method can result in an important class of matrix
errors. When the method selected is not appropriate to the
matrix, errors may result. One of the most common types of
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mismatches of method and matrix is using methods designed
for water analysis to analyze soils. Another is the use of
methods designed for the analysis of naturally occurring
materials, such as groundwater or soils, for the analysis of
waste materials.

7.3.3 Most sample matrix and method selection errors can
be detected by examining the results of matrix spike quality
control samples where known amounts of the target analyte(s)
are introduced into the sample before analysis. Spike results
should be evaluated to determine the presence of any matrix
effect. For certain types of analyses, simple dilution of the
sample and re-analysis will demonstrate matrix effects when
the second result, corrected for the dilution factor, is not
consistent with the initial result.

8. Assessment of Environmental Data Sets

8.1 Data are usually verified and validated prior to compar-
ing the results of environmental analysis to some decision level
by suitable statistical processes. Data verification determines
whether the laboratory carried out all steps required by the
sampling and analysis plan or a contract, or both. After data is
verified, it is validated. Validation examines the available
laboratory data to determine whether an analyte is present or
absent in a sample and the degree of overall uncertainty
associated with the reported value. After data has been
validated, it is normally compared to a decision level using
suitable statistical techniques to determine the appropriate
course of action.

8.2 The verification process compares the laboratory data
package to a list of required data. These requirements are
generated by two separate activities. The first is the contract for
analytical services between the project and the laboratory and
the second is the project sampling and analysis plan with its
accompanying quality assurance project plan (QAPP) devel-
oped by project and laboratory staff. These two activities
determine, a priori, the procedures the laboratory must use to
produce data of known quality and the content of the analytical
data package. Verification compares the material delivered by
the laboratory against these requirements and produces a report
that identifies those requirements which were not met (called
exceptions). Verification exceptions normally identify:

8.2.1 Required steps not carried out by the laboratory (that
is, incomplete analysis of all samples, lack of proper
signatures, etc.),

8.2.2 Procedures not conducted at the required frequency
(that is, too few blanks, duplicates, etc.),

8.2.3 Procedures which did not meet pre-set acceptance
criteria (poor laboratory control sample recovery, unacceptable
duplicate precision, etc).

8.3 The validation process begins with a review of the
verification report or the laboratory data package, or both, to
rapidly screen the areas of strength and weakness of the data
set (tests of quality control). It continues with objective
evaluation of sample data to confirm the presence or absence of
an analyte (tests of detection) and to establish the statistical
uncertainty (precision) of the measurement process for the

analyte (test of uncertainty). Each data point is then qualified as
to its integrity and dependability in the contest of all available
laboratory data.

8.4 Examples of some important data project information
that must be examined during the assessment of data are given
in Table 1. Examples of some of the shortcomings that can
occur are shown in Table 3. Some important characteristics of
the data set that are frequently determined when examining
quality control sample performance are given in Table 4. Data
points not meeting the quality control criteria should be flagged
and the magnitude and direction of any bias should be
documented and made available for reference during the
statistical evaluation processes that follow.

8.5 If project quality requirements are not met, further data
assessment should not be undertaken until the data limitations
are discussed with the project team. Data assessment cannot
overcome basic design/execution flaws in the data collection
process. Many times however, the project team can evaluate
the problem and establish revised data quality objectives
(different project expectations and new data requirements)
factoring in the realities of the data collection effort which can
then be used as the basis for data assessment.

TABLE 3 Common Data Requirements and Potential
Shortcomings

Data Requirement Potential Shortcomings

Number of
samples

• Too few samples may have been collected or
analyzed to be representative of the target
population.

• Too few samples were collected to narrow the
estimate of the dispersion (variance, standard
deviation, coeffiecient of variation, etc) of the
measured results to acceptable levels.

Location of
samples

• Samples were collected from the wrong
locations due to error or inaccessibility.

Analyte/method
• Incorrect choice of analyte/method for the

sample matrix

Quality control • Measurement system not calibrated
• Contamination found in field, trip, or method

blanks
• Method performance on reference samples

unsatisfactory
• Calculation errors

Method sensitivity • Failure to meet minimum detectable limits

Method precision • Failure to achieve satisfactory duplicate
results for analysis of field samples due to
sample characteristics or other analytical
problems

Method bias
• Failure to demonstrate method performance

on reference materials or analytical standards
• Failure to demonstrate satisfactory target

analyte spike/surrogate recoveries in field
sample analysis

Interferences • Presence of unanticipated materials/analytes
in field samples that render accurate analysis
suspect

Action level • Not provided
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9. Statistical Evaluation of Data Sets

9.1 The US EPA Guidance for Data Quality Assessment,
QA/G-9(1)3 is a good source for information on the following
statistical approaches to data assessment.

9.1.1 Continuous Data:
9.1.1.1 Continuous data are data where the values of the

individual samples may vary form zero to any maximum value.
Examples of continuous data are the concentration of a
constituent in soil or the percent moisture in an environmental
sample. This is the type of information most frequently
collected in environmental waste management projects. It is
normally used to establish a statistical characteristic of the
target population which is then compared to a decision level
resulting in an action. This is referred to as the “decision rule”
and normally takes the form:

If (characteristic of the population) (method of
comparison) (action level), then (action). Otherwise,

(alternate action).
where the items in parentheses are determined by the project
team on a project-specific basis. Two examples are:

If (the average concentration of mercury in the top
15 cm of soil over the site) (is greater than) (100 mg/kg),

then (excavate the top 30 cm of soil and dispose of in
a RCRA landfill). Otherwise, (no remediation

is required).
and:

If (less than one half the randomly selected waste
oil drums have an average organic halide concentration)
(of less than 500 ppm), then (composite the contents of

all drums and use it as boiler fuel). Otherwise, (send
all drums to a RCRA treatment and

disposal facility).

9.1.2 Before beginning the statistical interpretation of a
continuous data set, plots of the data should be constructed to
guide the statistical interpretation of the data that follows.
Examples of the types of plots that can be constructed are:

9.1.2.1 Concentration versus time, and
9.1.2.2 Concentration versus location in two or three dimen-

sions as appropriate
9.1.2.3 These types of plots provide a picture of the distri-

bution of the parameter of interest and permit the identification
of strata as a function of time or location. Plots also identify
data points which are abnormally high or low with respect to
the surrounding data. These are potential outliers and they can
be more rigorously evaluated by the verification and validation
process to determine whether there is an analytically-related
explanation. This information will identify random or stratified
data sets and outliers or QC-failed data prior to statistical
evaluation.

9.1.3 Normally Distributed Data:
9.1.3.1 Once the data evaluation described above have been

completed, statistical techniques should be used to evaluate the
data against the decision criteria. The key steps in the sequence
to evaluate continuous data are shown in Fig. 2.

9.1.3.2 The first step is to determine if the data are normally
distributed. That is, are there an approximately equal number
of values that are less than and greater than the mean and is the
range of values approximately equal on either side of the mean
(See Fig. 2). This property of normal distribution is a reason-
able model of the behavior of certain random phenomena and
can be used to approximate many kinds of data.

9.1.3.3 There are several graphical techniques that can be
applied to determine if data are normally distributed. Among
them are: stem- and leaf- diagrams, histogram/frequency plots,
box and whiskers plots, ranked data plots, quantile plots, and,
normal probability plots (quantile-quantile plots).

9.1.3.4 The use of plots to determine if data are normally
distributed involves a subjective decision on the part of the

3 The boldface numbers given in parentheses refer to a list of references at the
end of the text.

TABLE 4 Information Derived From Quality Control SamplesA

Type of QC
Sample

Type of Information

Precision Bias Contamination

Sampling Splitting
Preparation
and Analysis

Spiking
Field/
Shipping/
Storage

Laboratory
Containers

and
Preservatives

Field
Environment

Equipment
Cross-
Contamination

Laboratory

Replicates
Splits, field X X
Collocated, field X X
Splits, laboratory X X

Spikes
Field X X X
Laboratory, matrix X X

Blanks
Trip X X
Field X X X
Equipment X X X X
Method X

A Can be assessed using numerical techniques.
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individuals making the assessment. This is easy when the data
are very non-normal but more difficult as the data approach
normal distribution. There are series of formal numerical
methods to test for normal distribution. The Shapiro - Wilkes
test can be applied to data sets of less than 50 samples. For
larger size sample sets (up to 1000 data points), Fillben’s
Statistic is frequently used. Both methods are difficult to
implement by hand because of the large number of calculations
required but are readily accomplished by computer programs.

9.1.4 Once the normal distribution of the data is shown, the
straightforward calculation of the statistical quantities used in
the project decision rule can be performed. For example, the
two-sided confidence limits for the mean (that is a parametric
population characteristic) can be performed. This allows the
data user to determine the interval in which the true mean is
expected to be found with specified confidence. The mean lead
level, interval and confidence are frequently expressed as:

the level of lead in the soil is X6x at the 95 % confidence level

9.1.4.1 The width of the interval, 6 2x, can be calculated for
varying degrees of confidence (selected by the data user) to

meet project-specific tolerable error rates for making the
correct decision. For a two-sided confidence interval, x is given
by:

x 5
~ t97.5, n21! ~s!

=n
(1)

where:
s = standard deviation,
n = the number of samples, and
t = the student t-statistic.

For the one-sided confidence interval, x is given by:

x 5
~ t0.95, n21! ~s!

=n
(2)

9.1.5 Some types of statistical quantities which can be
calculated from normally distributed data include, but are not
limited to: mean, range, variance, standard deviation, coeffi-
cient of variation, and, confidence limits.

9.1.6 The choice of which statistics should be calculated is
dependent on the characteristic of the population that will be

FIG. 2 Two Types of Data Distribution
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used in the decision rule. After the appropriate statistical
quantities are calculated from the field sample data, they
should be compared to the assumed values which were the
basis of the DQO calculation of tolerable error rate at the
decision level.

9.1.6.1 Fig. 3 shows four examples of the comparison of
various types of laboratory data against a regulatory decision
level. In the examples, the upper confidence limit of the data
set is compared to regulatory decision level. The figure
represents four common characteristics of continuous data sets.

These are: unbiased and precise, unbiased and imprecise,
biased and precise, biased and imprecise.

9.1.6.2 To distinguish between the biased and unbiased
situations pictured in the figure, one can refer to the verification
and validation results described previously. The positive bias
displayed in the bottom two examples of Fig. 3 should be
reflected in high matrix spike recoveries and higher than
normal recoveries on reference samples or laboratory control
samples. None of the examples in Fig. 3 reflect sampling bias,
they only apply to analytical bias.

FIG. 3 Four Examples of Laboratory Data
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9.1.6.3 The results shown in Fig. 3 may also prompt a
re-examination of the decision criteria reached in the DQO
process. The impact of imprecision and bias on the decision
making process increases as the mean approaches the regula-
tory threshold (or action level) and as imprecision increases. At
some mean value, increased variance in the mean will deter-
mine that a correct decision cannot be reached with acceptable
certainty within the project budget.

9.1.6.4 The opposite of the above example may also occur,
the variance may be much less than estimated and the mean
value of the parameter of interest may be low compared to the
action level. It follows then, that the decision error rate and
overall certainty will be improved so that a much higher degree
of confidence in the final decision can be attained.

9.1.7 The complex inter-relationship between confidence
level, relative error, action levels, variance, number of samples,
and population characteristic will determine if an acceptable
decision can be reached. Therefore, the data assessor must
evaluate if the final outcome meets the data quality objective
level of confidence and is within the tolerable error window. If
so, the data can be said to be acceptable for making the
intended decision. If not, the DQO objectives for the final
decision must be changed or additional sampling and analysis
must be conducted to meet the objectives. Table 5 (2) shows
how the two variables, level of error and variance, impact the
correct number of samples.

9.1.7.1 The assessor must determine whether the data con-
form to the project design criteria for level of error and
coefficient of variation in the data for the desired confidence
level in the decision when n samples were collected and
analyzed. If the design criteria were not met, the decision
makers can take additional samples, use more precise analyti-
cal methods, or accept a lower confidence level.

9.1.8 Non-Normally Distributed Data:
9.1.8.1 Not all environmental decisions are based on nor-

mally distributed data. When the data are not normal, non-
parametric statistical methods can sometimes be used. An
example is the use of non-parametric tolerance limits(3).
Suppose a compliance limit limit of 25 mg/kg of copper is in
place at a soil remediation project. Further suppose that after
the collection of six samples, non of them exceeded this limit.
The values were 9, 11, 13, 15, 18, and 24 mg/kg. The question
may be asked whether a total of six samples is large enough to
allow for the making of a complinace decision with a high level
of confidence. In the context of non-parametric tolerance limits
the question can be expressed as:

What is the probability of of exceeding the
largest measured value of 24 mg/kg at some level of

confidence (for example, 95 %) when there are
only six sample values?

9.1.8.2 When there is confidence that this probability is
small, then a conclusion of compliance can be made.
Conversely, if the probability exceeds the limits set by the
stakeholders then the question of how many more samples not
exceeding 24 mg/kg are needed to make the conclusion of
compliance. The determination of the necessary number of
samples to reach a given level of confidence is provided in
Table 6 (2).

9.1.8.3 It can be seen from the table that, given a total of six
samples, the it is 95 % probable that at least 50 % of the values
from this site do not exceed 24 mg/kg. If the stakeholders
prefer an 80 % degree of confidence, then a total of fourteen
samples not exceeding 24/kg are needed.

9.1.9 Many environmental data sets represents populations
where the parameter of interest approaches a lower theoretical
limit (that is, zero concentration of contaminant in soil or
water). Such data sets are not normally distributed, and most
values approach zero with a decreasing number of values as the
concentration increases. The probability model that most often
describes these properties is the lognormal distribution. A
graph of this distribution is shown in Fig. 2.

9.1.9.1 The project design may address this requirement in
one of two ways. Composite samples can be collected and
analyzed rather than a series of individual or discrete samples.
The process of compositing physically averages out the higher
valued samples with the much larger number of lower valued
samples.

9.1.9.2 In one commonly used approached, the data set can
be transformed (changed by the application of a mathematical
process to each data point) into a normally distributed data set
by taking the natural logarithm of the data.

9.1.9.3 Population data sets that have been normalized by
either composite sampling or logarithmic transformation are
then treated as normally distributed data. This means the same
statistical reductions can be used to yield the population
characteristic (for example, mean, variance, upper and lower
confidence limits) used in the decision rule and the same
hypothesis test to determine the correct action. It is important
that whenever using transformed data to determine the statis-
tical parameter used in the decision rule, the value of the action
level (or regulatory threshold) must be transformed as well. It
is also acceptable to take the antilog of the calculated popula-
tion statistic and compare that to the action level.

9.1.9.4 If a suitable transformation of the population data
base cannot be found which results in a normal distribution,
more advanced statistical technique may be required (see

TABLE 5 Number of Samples as a Function of the Coefficient of
Variation and Level of Error at the 95 % Confidence Limit

Number of Samples

Coefficient of Variation

0.1 0.5 0.65 1 2

Relative Error
0.1 4 96 162 384 1537
0.2 1 24 40 96 384
0.3 . . . 10 18 42 170
0.5 . . . 4 6 15 61
1.0 . . . 1 2 4 15
2.0 . . . . . . . . . 1 4

TABLE 6 Relationship of Degree of Confidence to the Percentage
of the Population< Maximum Measured Value of 24 (n = 6)

Degree of Confidence
Percentage of Population < Maximum

Measured Value

98 50
85 70
80 75
70 80
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statistical texts and monographs). The project team can also be
asked to restate the decision rule using population character-
istics that don’t require a normally distributed data set (non-
parametric characteristics).

10. Evaluation of Discrete Data

10.1 Discrete data are made up of a series of sample results
that are expressed as a simple pass/fail, yes/no, or positive/
negative. This is frequently described as dichotomous data.
Examples of analytical test that generate dichotomous data are
flash point and corrosivity.

10.2 In most cases, each individual data point represents a
target population (that is, the contents of a drum) and the
decision is made by comparing the individual value with the
action level. For example, each drum sample that ignites when
tested by a flammability test is determined to have failed the
test (the dichotomous response) and the project response is to
send the drum to a hazardous waste treatment and disposal
facility. In this case (each sample represents the target popu-
lation) no statistical assessment of the data is possible, and the
decision is made on a qualitative basis. In most cases, the test
results supported by the data requirements in Table 3 become
the foundation for the qualitative determination.

10.3 In cases where a set of discrete samples from a large
population (that is, 25 individual drum samples randomly
selected from a set of 125 drums) are analyzed by a test
producing dichotomous results, the proportion of drums failing
the test is the statistic used in the decision rule. Tests of
proportion require that the data set be normally distributed or
capable of being transformed into a normally distributed set.

11. Outliers

11.1 Individual measurements that are extremely large or
small relative to the majority of the data are generally
suspected of misrepresenting the target population from which
they were collected. These values are generally referred to a
outliers. Outliers may be the result of sampling or analytical
errors, or both, or may represent true extremes in the popula-
tion. Before determining the value of population statistic used
in the decision rule, statistical outlier tests should be performed
to identify outliers which are then carefully investigated to see
if the value may be the result of an error.

11.1.1 There are four commonly used techniques to evaluate
data for outliers.

11.1.1.1 Comparison to Historical Data—If sufficient data
exist over time from the same site or population, potential
outlying values can be compared to past data from the same
sampling point or location. If past data show the same high or
low values as the current data, it is reasonable to assume that
the current extreme values are valid. The data assessor should
describe their findings in the evaluation report and a descrip-
tion of how the extreme values were used in past decision
making processes provided. This will allow project decision
makers to apply consistent decision logic over time.

11.1.1.2 Trend Analysis—As discussed in 9.1.2, plots of data
points versus time or three dimensional location will reveal
trends in data sets. If a trend exist, it can be used to support the
validity of data points at the high or low extremes. Data points

that are inconsistent with the trend should be more carefully
evaluated to determine if they are real.

11.1.1.3 Comparison with Companion Data Sets—The ex-
istence of a correlationship between two data sets from a single
population (for example, total petroleum hydrocarbons and
volatile organic compounds in soil) is strong support for the
validity of extreme values. If samples show both high total
petroleum hydrocarbon (TPH) and toluene values, then both
data points can be considered valid. A clear picture of this type
of data relationship can be gained by plotting the two values for
a single sample (TPH and toluene) on a set of coordinates
keyed to two variables. The points that trend in the same
general straight line can be considered valid. Points that lie off
the line may do so because one or both of the variables is an
outlier.

11.1.1.4 Checks for Errors—Errors in interpreting sampling
instructions (location, sampling equipment, sample
preservation), errors in analysis (incorrect sample size, uncali-
brated instruments), errors in calculations or reporting can lead
to apparent outliers in 11.1.1.1 through 11.1.1.3 above. The
data assessor should follow up on potential outliers identified
in the above processes and check for errors. If errors can be
found and documented, the corrected data points should be
introduced to the data set and the entire set re-evaluated.

11.2 Suspect values that can be documented based on some
scientific observation or quality assurance basis should be
omitted from the calculation of the statistic. They are reported
to the data user in the final report but they are flagged as
outlying values not to be used in the project decision or
calculation of the population statistic (for example, mean
value). If no error can be found, the outlying value should be
retained but its presence and impact on the decision statistic
clearly reported to the decision maker who may ask for
re-sampling and analysis in critical situations.

11.3 There are other more powerful statistical tools that can
be applied to the detection and treatment of outliers but they
should be applied under the guidance of an experienced
statistician.

12. Non-Detect Values

12.1 The treatment of non-detect values in a population data
base can greatly affect the final population statistic. There are
a variety of ways to treat values that lie below the detection
limit of the analytical method. However, there are no general
procedures that are applicable in all cases. The choice of data
analysis method is dependent on the percentage of samples in
the data base that are below the detection limit. The EPA’s
Guidance for Data Quality Assessment (1) provides a general
discussion of several approaches outlined below. A brief
discussion of some generally accepted approaches follows.

12.2 Less than 15 % Non-Detects—When less than 15 % of
the reported data falls below the detection limit, it is possible
to replace the non-detected values with a small number less
than the detection limit. The number most frequently chosen is
one-half the detection limit. For difficult to analyze matrices,
one-half the practical quantitation limit can be used if the PQL
has been determined for the analyses in the matrix being
analyzed.
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12.3 Between 15 to 50 % Non-Detects—There are three
methods that can be applied when 15 to 50 % of the data are
non-detects.

12.3.1 Cohen’s method uses the sample mean, the variance,
the total number of observations below the detection limit, and
a set of statistical tables to determine corrected values for the
sample mean and variance. Cohen’s method is constrained by
the requirement that the data above the detection limit be
normally distributed and the detection limit always be the
same.

12.3.2 The method of trimmed means determines the num-
ber of observations below the detection limit and directs that
this number of measurements be deleted from both the high
end and low end of the data. The remaining data is used to
calculate the trimmed population mean and variance.

12.3.3 The method of winsorized means replaces the set
non-detects (n-observations) with values equal to the n-lowest
values above the detection limit. The highest values are
adjusted downward in a similar fashion, that is, the n-highest

values are dropped and replaced by the series of n-highest
values remaining in the data set.

12.4 At the interval between 50 to 90 % non-detects, a test
of proportions is recommended. For sets where less than 10 %
of the values are above the detection limit, a Poisson Distri-
bution approach is recommended.

12.5 All the methods mentioned here can be found in more
detail in standard statistical texts.

13. Final Use of Data in the Decision Rule

13.1 Once it has been established that the data meet the
assumptions of the DQO process in terms of anticipated values
using this assessment process, they are tested against the action
level given in the decision rule using hypothesis tests. These
tests determine if the data meet or exceed the action level and
thereby direct the data user to the agreed upon course of action
for the project. A discussion of the types of hypothesis testing
is beyond the scope of this standard. Guidance can be found in
standard statistical texts and monologues
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