This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Standard Guide for Selecting a Groundwater Modeling Code¹

This standard is issued under the fixed designation D6170; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This guide covers a systematic approach to the determination of the requirements for and the selection of computer codes used in a groundwater modeling project. Due to the complex nature of fluid flow and biotic and chemical transport in the subsurface, many different groundwater modeling codes exist, each having specific capabilities and limitations. Furthermore, a wide variety of situations may be encountered in projects where groundwater models are used. Determining the most appropriate code for a particular application requires a thorough analysis of the problem at hand and the required and available resources, as well as detailed description of the functionality of candidate codes.

1.2 The code selection process described in this guide consists of systematic analysis of project requirements and careful evaluation of the match between project needs and the capabilities of candidate codes. Insufficiently documented capabilities of candidate codes may require additional analysis of code functionality as part of the code selection process. [Fig.](#page-1-0) [1](#page-1-0) is provided to assist with the determination of project needs in terms of code capabilities, and, if necessary, to determine code capabilities.

1.3 This guide is one of a series of guides on groundwater modeling codes and their applications, such as Guides [D5447,](#page-15-0) D5490, D5609, D5610, D5611, D5718, and [D6025.](#page-16-0)

1.4 *This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This guide cannot replace education or experience and should be used in conjunction with professional judgement. Not all aspects of this guide may be applicable in all circumstances. This guide is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this guide be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.*

1.5 *This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.*

2. Referenced Documents

- 2.1 *ASTM Standards:*²
- D653 [Terminology Relating to Soil, Rock, and Contained](https://doi.org/10.1520/D0653) [Fluids](https://doi.org/10.1520/D0653)
- D5447 [Guide for Application of a Groundwater Flow Model](https://doi.org/10.1520/D5447) [to a Site-Specific Problem](https://doi.org/10.1520/D5447)
- D5490 [Guide for Comparing Groundwater Flow Model](https://doi.org/10.1520/D5490) [Simulations to Site-Specific Information](https://doi.org/10.1520/D5490)
- D5609 [Guide for Defining Boundary Conditions in Ground](https://doi.org/10.1520/D5609)[water Flow Modeling](https://doi.org/10.1520/D5609)
- D5610 [Guide for Defining Initial Conditions in Groundwater](https://doi.org/10.1520/D5610) [Flow Modeling](https://doi.org/10.1520/D5610)
- D5611 [Guide for Conducting a Sensitivity Analysis for a](https://doi.org/10.1520/D5611) [Groundwater Flow Model Application](https://doi.org/10.1520/D5611)
- D5718 [Guide for Documenting a Groundwater Flow Model](https://doi.org/10.1520/D5718) [Application](https://doi.org/10.1520/D5718)
- D6025 [Guide for Developing and Evaluating Groundwater](https://doi.org/10.1520/D6025) [Modeling Codes](https://doi.org/10.1520/D6025) (Withdrawn 2017)³

3. Terminology

3.1 For definitions of other terms used in this guide, see Terminology D653.

3.2 *Definitions of Terms Specific to This Standard:*

3.2.1 *analytical model—in groundwater modeling*, a model that uses closed form solutions to the governing equations applicable to groundwater flow and transport processes.

3.2.2 *code selection—*the process of choosing the appropriate computer code, algorithm, or other analysis technique capable of simulating those characteristics of the physical system to fulfill the modeling project's objective(s).

¹ This guide is under the jurisdiction of ASTM Committee [D18](http://www.astm.org/COMMIT/COMMITTEE/D18.htm) on Soil and Rock and is the direct responsibility of Subcommittee [D18.21](http://www.astm.org/COMMIT/SUBCOMMIT/D1821.htm) on Groundwater and Vadose Zone Investigations.

Current edition approved Jan. 1, 2017. Published January 2017. Originally approved in 1997. Last previous edition approved in 2010 as $D6170 - 97$ (2010). DOI: 10.1520/D6170-17.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

D6170 − 17

Checklist for Ground-Water Modeling Needs and Code Functionality (3)

GENERAL MODEL CHARACTERISTICS - continued

PARAMETER DISCRETIZATION

- \Box lumped
	- \Box mass balance approach
	- \Box transfer function(s)
- \square distributed
- □ deterministic
- □ stochastic

SPATIAL ORIENTATION

Saturated flow

- \square 1D horizontal
- \square 1D vertical
- □ 2D horizontal (areal)
- □ 2D vertical (cross-sectional or profile)
- \Box 2D axi-symmetric (horizontal flow only)
- □ fully 3D
- \Box quasi-3D (layered; Dupuit approx.)
- □ 3D cylindrical or radial (flow defined in horizontal and vertical directions)

Unsaturated flow

- \square 1D horizontal
- \square 1D vertical
- □ 2D horizontal
- \Box 2D vertical
- □ 2D axi-symmetric
- □ fully 3D
- □ 3D cylindrical or radial

RESTART CAPABILITY - types of updates possible

- \Box dependent variables (e.g., head, concentration, temperature)
- \square fluxes
- \square velocities
- \square parameter values
- \Box stress rates (pumping, recharge)
- \Box boundary conditions
- \square other:

DISCRETIZATION IN SPACE

- \Box no discretization
- \Box uniform grid spacing
- \Box variable grid spacing
- \Box movable grid (relocation of nodes during run)
- \square maximum number of nodes/cells/elements
	- \Box modifiable in source code (requires compilation) \Box modifiable through input
- \Box maximum number of nodes (standard version):
- □ maximum number of cells/elements (standard version):

Possible cell shapes

- \Box 1D linear
- \square 1D curvilinear
- □ 2D triangular
- □ 2D curved triangular
- \square 2D square
- \square 2D rectangular
- \Box 2D quadrilateral
- \Box 2D curved quadrilateral
- □ 2D polygon
- □ 2D cylindrical
- \Box 3D cubic
- □ 3D rectangular block
- \Box 3D hexahedral (6 sides)
- \Box 3D tetrahedral (4 sides)
- □ 3D spherical
- □ other:

$$DB170 - 17$

FLOW SYSTEM CHARACTERIZATION

SATURATED ZONE

Hydrogeologic zoning

- □ confined
- □ semi-confined (leaky-confined)
- \Box unconfined (phreatic)
- hydrodynamic approach П.
- n hydraulic approach (Dupuit-Forcheimer assumption for horizontal flow)
- \square single aquifer
- \square single aquifer/aquitard system
- \square multiple aquifer/aquitard systems
- max. number of aquifers: \Box discontinuous aquifers (aquifer
- pinchout) discontinuous aquitards \Box (aquitard pinchout)
- \Box storativity conversion in space (confined-unconfined)
- storativity conversion in time п
- \Box aquitard storativity
- \square other:

Hydrogeologic medium

- \square porous medium
- \Box fractured impermeable rock (fracture system, fracture network)
- \Box discrete individual fractures
- □ equivalent fracture network approach
- □ equivalent porous medium approach
- \Box dual porosity system (flow in fractures and optional in porous matrix, storage in porous matrix and exchange between fractures and porous matrix)
- \Box uniform hydraulic properties (hydraulic conductivity, storativity)
- п. anisotropic hydraulic conductivity
- nonuniform hydraulic properties \Box (heterogeneous)
- \Box other:

Flow characteristics single fluid, water

- \Box single fluid, vapor \Box
- \Box single fluid, NAPL
- air and water flow \Box
- \Box water and steam flow
- moving fresh water and stagnant \Box salt water
- moving fresh water and salt \Box water
- \Box water and NAPL
- \Box water, vapor and NAPL
- \Box incompressible fluid
- compressible fluid \Box
- variable density \Box
- variable viscosity \Box
- linear laminar flow (Darcian flow) \Box
- \Box non-Darcian flow
- \Box steady-state flow
- transient (non-steady state) flow \Box
- dewatering (desaturation of \Box cells)
- dewatering (variable \Box transmissivity)
- \Box rewatering (resaturation of dry cells)
- Ο delayed yield from storage
- \Box other:

Boundary conditions

- \Box infinite domain
- \Box semi-infinite domain
- \Box regular bounded domain
- irregular bounded domain \Box
- \Box fixed head
- \Box prescribed time-varying head
- zero flow (impermeable barrier) \Box
- fixed cross-boundary flux \Box
- prescribed time-varying cross- \Box boundary flux

FIG. 1 Checklist for Groundwater Modeling Needs and Code Functionality (continued)

 $\overline{4}$

- areal recharge: п
	- \square constant in space
	- \Box variable in space
	- \square constant in time
	- \square variable in time
- \square other:

Boundary conditions - continued

- \Box induced recharge from or discharge to a source bed aquifer or a stream in direct contact with ground water
	- surface water stage Π. constant in time
	- П surface water stage variable in time
	- \Box stream penetrating more than one aguifer
- \square induced recharge from a stream not in direct contact with groundwater
- \Box evapotranspiration dependent on distance surface to water table
- drains (gaining only) \Box
- □ free surface
- \Box seepage face
- Π springs
- \Box other:

Sources/Sinks

- \square point sources/sinks
	- (recharging/pumping wells)
	- constant flow rate \Box
	- \Box variable flow rate
	- □ head-specified
	- \Box partially penetrating
	- well loss \Box
	- □ block-to-radius correction
	- □ well-bore storage
	- \square multi-layer well
- line source/sinks (internal drains) П.
	- \square constant flow rate
	- \Box variable flow rate
	- □ head-specified
- collector well (horizontal, radially \Box extending screens)
- mine shafts (vertical) Ο □ water-filled
	- \square partially filled
- \Box mine drifts, tunnel (horizontal) □ water-filled
	- \square partially filled
- \square other:

$\%$ D6170 – 17

FLOW SYSTEM CHARACTERIZATION - continued

UNSATURATED ZONE

Soil medium

- $\overline{\square}$ porous medium
- \Box fractured impermeable rock
- \Box discrete individual fractures
- □ dual porosity system
- \Box equivalent fracture network approach
- $\n *n*\n equivalent porous medium, and the other two components are given by:\n $\frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \cdot \frac{1}{$$
- □ micropore/macropore system
- \square uniform hydraulic properties
- \square nonuniform hydraulic properties
- \Box anisotropic hydraulic properties
- \Box areal homogeneous (single soil type)
- \Box areal heterogeneous (multi soil types)
- □ swelling/shrinking soil matrix
- \Box dipping soil layers
- \square number of soil layers:
- \square other:

Flow characteristics

- □ single fluid, water
- \square single fluid, vapor
- □ single fluid, NAPL
- \Box air and water flow
- □ water and NAPL
- □ water, vapor and NAPL
- \square variable density
- \square variable viscosity
- \Box linear laminar flow (Darcian flow)
- □ non-Darcian flow
- □ steady-state flow
- \Box transient (non-steady state) flow
- \square other:

Parameter representation

Parameter definition

- □ suction vs. saturation (included; see next section)
- \square porosity
- \Box residual saturation
- □ hydraulic conductivity vs. saturation included; (see next section)
- \square number of soil materials:
- \square other:
- Soil moisture saturation matric potential relationship \square tabular
- \Box math. function(s) (describe):

Soil hydraulic conductivity-saturation/hydraulic potential relationship

- \Box tabular
- \Box math. function(s) (describe):

Intercell conductance representation

- (K_{-determination})
- $\overline{\square}$ arithmetic
- \Box harmonic
- \square geometric
- \square other:

Tortuosity model (e.g., for vapor diffusion) \Box math. function(s) (describe):

Boundary conditions

- \square fixed head
- □ prescribed time-varying head
- \Box fixed moisture content
- \Box prescribed time-varying moisture content
- □ zero flow (impermeable barrier)
- □ fixed boundary flux
- \square prescribed time-varying boundary flux
- \Box areal recharge:
	- \square constant in space
	- \square variable in space
	- \square constant in time
	- \square variable in time
- \square ponding
- \Box automatic conversion between prescribed head and flux condition
- \Box other:

Flow related processes

- \square evaporation
- \square evapotranspiration
- plant uptake of water (transpiration) \Box
- capillary rise \Box
- \square hysteresis
- \Box interflow
- \Box perched water
- \Box other:

FLOW SYSTEM CHARACTERIZATION- continued

DEPENDENT VARIABLE(S)

- \square head
- \Box drawdown
- \Box pressure
- \Box suction
- stream function \Box
- \Box velocity

 \square potential

 \Box

SOLUTION METHODS - FLOW

- □ Numerical
- Spatial approximation
- □ finite difference method
	- \Box block-centered
	- \Box node-centered
- □ integrated finite difference method
- \Box boundary elements method
- \Box particle tracking
- \Box pathline integration
- \Box finite element method
- \Box other:

Time-stepping scheme

- \Box fully implicit
- \Box fully explicit
- □ Crank-Nicholson
- \Box other:

Matrix-solving technique

- \Box Iterative
- \Box **SIP**
	- \Box Gauss-Seidel (PSOR)
	- \Box **LSOR**
	- \Box **SSOR**
	- **BSOR** \Box
	- \Box ADIP
	- Iterative ADIP (IADI) \Box
	- \Box Predictor-corrector
	- \Box Point Jacobi
- \Box other:
- □ Direct
	- \Box Gauss elimination
	- Cholesky decomposition \Box
	- \Box Frontal method
	- \Box Doolittle
	- Thomas algorithm \Box
	- \Box other:
- \Box Iterative methods for nonlinear equations
	- □ Picard method
	- Newton-Raphson method \Box
	- Chord slope method \Box
- \square other:
- □ Semi-iterative
	- □ conjugate-gradient
	- other: П.

-
- n Analytical
	- \Box single solution
	- \Box superposition
	- method of images \Box
	- \Box other:

Analytic Element method

- point sources/sinks \Box
- \Box line sinks
- ponds \Box
- \Box uniform flow
- rainfall \Box
- lavering \Box
- \Box inhomogeneities
- \Box doublets
- leakage through confining beds \Box
- other: \Box

Semi-analytical \Box

- \Box continuous in time, discrete in space
- \Box continuous in space, discrete in time
- \Box approximate analytical solution
- \Box other:

□ Solving stochastic PDE's

- \Box Monte Carlo simulations
- \Box spectral methods
- \Box small perturbation expansion
- self-consistent or renormalization technique \Box
- \Box other:
- \Box other:
-
-
- moisture content
-

FLOW SYSTEM CHARACTERIZATION - continued

INVERSE MODELING/PARAMETER IDENTIFICATION FOR FLOW

Parameters to be identified

- \Box hydraulic conductivity
- \Box transmissivity
- □ storativity/storage coefficient
- □ leakeance/leakage factor
- \Box areal recharge
- □ cross-boundary fluxes
- \square boundary heads
- \square pumping rates
- □ soil parameters/coefficients
- \square streambed resistance
- \Box other:

User input

- \Box prior information on parameter(s) to be identified
- \Box constraints on parameters to be identified
- \Box instability conditions
- \Box non-uniqueness criteria
- \Box regularity conditions
- \Box other:

PARAMETER IDENTIFICATION METHOD

□ aquifer tests (based on analytical solutions) \Box numerical inverse approach

Direct method (model parameters treated as dependent variable)

- \Box energy dissipitation method
- \square algebraic approach
- \Box inductive method (direct integration of PDE)
- minimizing norm of error flow (flatness criterion)
- \square linear programming (single- or multi-objective)
- \Box quadratic programming
- \Box matrix inversion
- □ Marquardt
- \Box other:

Indirect method (iterative improvement of parameter estimates)

- □ linear least-squares
- □ non-linear least-squares
- □ quasi-linearization
- \Box linear programming
- □ quadratic programming
- □ steepest descent
- \Box conjugate gradient
- □ non-linear regression (Gauss-Newton)
- □ Newton-Raphson
- \Box influence coefficient
- maximum likelihood
- \Box (co-)kriging
- gradient search
- \Box decomposition and multi-level optimization
- \Box graphic curve matching
- \Box other:

FLOW SYSTEM CHARACTERIZATION - continued

OUTPUT CHARACTERISTICS - FLOW

Echo of input (in ASCII text format)

- \Box grid (nodal coordinates, cell size, element connectivity
- □ initial heads/pressures/potentials
- \square initial moisture content/saturation
- \square soil parameters/function coefficients
- \Box aquifer parameters
- \Box flow boundary conditions
- \Box flow stresses (e.g., recharge, pumping)
- \square other:

Simulation results - form of output

- \Box dependent variables in binary format
- □ complete results in ASCII text format
- \square spatial distribution of dependent variable for postprocessing
- \Box time series of dependent variable for postprocessing
- direct screen display text
- \Box direct screen display graphics
- \Box direct hardcopy (printer)
- \Box direct plot (pen-plotter)
- \Box araphic vector file
- \square graphic bitmap/pixel/raster file
- \square other:

Simulation results - type of output

- $\overline{\Box}$ head/pressure/potential
	- areal values (table, contours) \Box
	- \Box temporal series (table, x-t graphs)
- □ saturation/moisture content
	- areal values (table, contours) \Box
	- \Box temporal series (table, x-t graphs)
- □ head differential/drawdown
	- areal values (table, contours) \Box
	- \Box temporal series (table, x-t graphs)
- \Box moisture content/saturation
	- □ areal values (table, contours)
	- \Box temporal series (table, x-t graphs)
- Type of output continued
- \Box internal (cross-cell) fluxes
	- \Box areal values (table, vector plots)
	- \Box temporal series (table, x-t graphs)
- \square infiltration fluxes
	- \Box areal values (table, vector plots)
	- $\overline{\square}$ temporal series (table, x-t graphs)
- \square evapo(transpi)ration fluxes
	- areal values (table, vector plots)
	- \Box temporal series (table, x-t graphs)
- \square cross boundary fluxes
	- \Box areal values (table, vector plots) temporal series (table, x-t graphs)
	- \Box
- \Box velocities
	- \square areal values (table, vector plots)
	- \Box temporal series (table, x-t graphs)
- \square stream function values
- \square streamlines/pathlines (graphics)
- \Box capture zone delineation (graphics)
- □ traveltimes (table of arrival times: tics on pathlines)
- \Box isochrones (*i.e.*, lines of equal travel times; araphics)
- □ position of interface (table, graphics)
- \Box location of seepage faces
- \Box water budget components
	- \Box cell-by-cell
	- global (main components for total model area) \Box
- \square calculated flow parameters
- \Box uncertainty in results (*i.e.*, statistical measures)
- \square other:

Computational information

- \square iteration progress
- \square iteration error
- \Box mass balance error
- \square cpu time use
- \square memory allocation
- \square other:

$$DB170 - 17$

SOLUTE TRANSPORT AND FATE CHARACTERIZATION

WATER QUALITY CONSTITUENTS

- \Box any constituent(s)
- single constituent \Box
- \Box two interacting constituents
- \Box multiple interacting constituents
- \Box total dissolved solids (TDS)
- \Box inorganics general
- \Box inorganics specific
	- heavy metals \Box
	- \Box nitrogen compounds
	- phosphorus compounds \Box
	- sulphur compounds \Box

(Conservative) transport

- \Box advection
	- \Box steady-state
		- \Box uniform-parallel to transport coordinate system
		- \Box uniform-may be under an angle with transport coordinate system □ non-uniform
	- transient \Box
	-
	- \square velocities generated within code
		- \Box from internal flow simulation
		- \Box from external flow simulation or measured heads
- \Box velocities required as input
- \Box mechanical dispersion
	- longitudinal \Box
	- transverse \Box
- \Box molecular diffusion
- □ filtration (describe model):
- \square other:

Phase transfers

- □ solid<->gas; (vapor) sorption
- □ solid<->liquid: sorption
	- □ equilibrium isotherm \Box linear (retardation)
		- □ Langmuir
		- □ Freundlich
	- non-equilibrium isotherm \Box
	- desorption (hysteresis) \Box
	- other: \Box
- \Box liquid->gas; volatilization
- □ liquid->solids; filtration
- \Box other:
- \square organics
	- \Box volatile organic compounds (VOCs)
	- polycyclic aromatic \Box hydrocarbons (PAHs)
	- polychlorinated biphenyls \Box (PCBs)
	- \Box pesticides
	- \Box phthalates
	- \Box solvents
	- \Box non-polar organic compounds
	- \Box other:

TRANSPORT AND FATE PROCESSES

- Fate Type of reactions:
- \square ion exchange
- □ substitution/hydrolysis
- □ dissolution/precipitation
- \Box reduction/oxidation

Fate - Type of reactions- continued

- \square acid/base reactions
- \Box complexation
- □ biodegradation
	- \Box aerobic
	- anaerobic \blacksquare
- \Box other:

Fate - Form of reactions:

- П. zero order production/decay
- first order production/decay п
- □ radioactive decay
	- □ single mother/daughter decay
	- chain decay \Box
- \Box microbial production/decay aerobic biodegradation П
- \Box anaerobic biodegradation
- \Box other:

Parameter representation

dispersivity

- \Box isotropic (longitudinal = transverse)
- \Box 2D anisotropic - allows longitudinal/transverse ratio
- 3D anisotropic allows п different longitudinal/transverse and horizontal transverse/vertical transverse ratios
- homogeneous (constant in п
- \Box radionuclides
- micro-organisms \Box
	- ["] ם bacteria, coliforms
- \Box viruses
- \square other:

space)

- heterogeneous (variable in \Box $space)$
- \Box scale-dependent
- internal cross terms diffusion П. coefficient
- homogeneous (constant in \Box space)
- \Box heterogeneous (variable in space)

retardation factor

- homogeneous (constant in \Box space)
- \Box heterogeneous (variable in space)
- \Box Chemical processes embedded in transport equation
- п. Chemical processes described by equations separate from the transport

SOLUTE TRANSPORT AND FATE CHARACTERIZATION - continued

BOUNDARY CONDITIONS FOR SOLUTE TRANSPORT

General boundary conditions

- \Box fixed concentration (constant in time)
- □ specified time-varying concentration
- \Box zero solute flux
- \Box fixed boundary solute flux
- \Box specified time-varying boundary solute flux
- □ springs with solute flux dependent on headdependent flow rate and concentration in ground water
- \Box solute flux from stream dependent on flow rate and concentration in stream
- \Box solute flux to stream dependent on flow rate and concentration in ground water
- \square other:

Sources and sinks

- \overline{a} injection well with constant concentration and flow rate
- \Box injection well with time-varying concentration and flow rate
- \Box production well with solute flux dependent on concentration in ground water
- \Box point sources (e.g., injection wells)
- \Box line sources (e.g. infiltration ditches)
- \Box horizontal areal (patch) sources (e.g. feedlots, landfills)
- \Box vertical patch sources
- □ non-point (diffuse) sources
- plant solute uptake \Box
- \Box other:

SOLUTION METHODS - SOLUTE TRANSPORT

- \Box flow and solute transport equations are uncoupled
- \Box flow and solute transport equations are coupled
	- \Box through concentration-dependent density
	- \Box through concentration-dependent viscosity

- □ Analytical
	- single solution \Box
	- \Box superposition
	- method of images \Box
	- \Box other:
- □ Semi-analytical
	- \Box continuous in time, discrete in space
	- continuous in space, discrete in time О
	- approximate analytical solution \Box
	- \Box other:

□ Solving stochastic PDE's

- Monte Carlo simulations □
- \Box spectral methods
- small perturbation expansion \Box
- \Box self-consistent or renormalization technique
- \Box other:
- D Numerical

Spatial approximation

- \Box finite difference
	- block-centered \Box
	- node-centered \Box
- \Box integrated finite difference
- □ particle-tracking
- \Box method of characteristics
- \Box random walk
- □ boundary element method
- \Box finite element method
- \square other:
- Time-stepping scheme
- \Box fully implicit
- \Box fully explicit
- □ Crank-Nicholson
- \Box other:

Matrix-solving technique

- \square Iterative
	- **SIP** \Box
	- \Box Gauss-Seidel (PSOR)
	- \Box **LSOR**
	- \Box **SSOR**
	- \Box **BSOR**
	- \Box ADI
	- \Box Iterative ADIP (IADI)
	- \Box Point Jacobi
	- \Box other:
- \Box Direct
	- Gauss elimination □
	- \Box Cholesky decomposition.
	- \Box Frontal method
	- \Box Doolittle
	- \Box Thomas algorithm
	- \Box other:
- \Box Iterative methods for nonlinear equations
	- Picard method \Box
	- Newton-Raphson method \Box
	- \Box Chord slope method
	- \Box other:
- □ Semi-iterative
	- conjugate-gradient П.
	- \Box other:

$\sqrt{}$ D6170 – 17

SOLUTE TRANSPORT AND FATE CHARACTERIZATION - continued

INVERSE/PARAMETER IDENTIFICATION FOR SOLUTE TRANSPORT

Parameters to be identified

- \overline{a} velocity
- \Box dispersivity
- diffusion coefficient
- \Box retardation factor
- □ source strength
- \Box initial conditions (concentrations)
- \Box other:

User input

- $\overline{\Pi}$ prior information on parameters to be identified
- \Box constraints on parameters to be identified
- \Box instability conditions
- □ non-uniqueness criteria
- \Box regularity conditions
- \Box other:

PARAMETER IDENTIFICATION METHOD

□ tracer tests (based on analytical solutions) □ numerical inverse approach

Direct method (model parameters treated as dependent variable

- \Box energy dissipitation method
- \Box algebraic approach
- \Box inductive method (direct integration of PDE)
- \Box minimizing norm of error flow (flatness criterion)
- □ linear programming (single- or multi-objective)
- \Box quadratic programming
- \Box matrix inversion
- \Box other:

Indirect method (iterative improvement of parameter estimates)

- □ linear least-squares
- □ non-linear least-squares
- \Box quasi-linearization
- linear programming \Box
- \Box quadratic programming
- steepest descent П.
- conjugate gradient \Box
- \Box non-linear regression (Gauss-Newton)
- \Box Newton-Raphson
- \Box maximum likelihood
- \Box (co-)kriging
- □ other:

OUTPUT CHARACTERISTICS - SOLUTE TRANSPORT

Echo of input (in ASCII text format)

- □ grid (nodal coordinates, cell size, element connectivity)
- initial concentrations \Box
- \Box transport parameter values
- \Box transport boundary conditions
- □ transport stresses (source/sink fluxes)
- \Box other:
- Simulation results Type of output
- \Box concentration values
- \square concentration in pumping wells
- \Box internal and cross-boundary solute fluxes
- \Box velocities (from given heads)
	- areal values (table, vector plots) \Box
	- \Box temporal series (table, x-t graphs)
- □ mass balance components
	- □ cell-by-cell
	- global (total model area) \Box
- \square calculated transport parameters
- \square uncertainty in results (*i.e.*, statistical measures)
- \Box other:

Simulation results - Form of output

- \Box binary files of concentrations
- □ complete results in ASCII text format
- \Box spatial distribution of concentration for postprocessing
- \Box time series of concentration for postprocessing
- □ direct screen display text
- \Box direct screen display graphics
- \Box direct hardcopy (printer)
- \Box direct plot (pen-plotter)
- \Box graphic vector file
- □ graphic bitmap/pixel/raster file
- \Box other:

Computational progress

- \Box iteration progress
- \Box iteration error
- □ mass balance error
- \square cpu use
- \square memory allocation
- □ other:

- -
	-

HEAT TRANSPORT CHARACTERIZATION

TRANSPORT PROCESSES

- \square convection
	- steadv-state \Box
		- uniform flow \Box
			- \Box non-uniform flow
- \Box transient
- □ conduction
	- through rock-matrix \Box
- through liquid \Box
- \Box thermal dispersion
- \Box thermal diffusion between rock matrix and liquid
- \Box radiation
- phase change \Box
	- П evaporation/condensation
		- \Box water/vapors
	- water/steam \Box
	- freezing/thawing \Box
- \Box heat exchange between phases
- □ internal heat generation (heat source)
- \square other:

PARAMETER REPRESENTATION (parameters not checked are considered homogeneous)

Thermal conductivity of rock matrix

- \Box homogeneous (constant in space)
- \Box heterogeneous (variable in space)
- \square other:

Thermal dispersion coefficient

- □ isotropic (longitudinal=transverse)
- \square anisotropic
- \Box homogeneous (constant in space)
- \Box heterogeneous (variable in space)

BOUNDARY CONDITIONS FOR HEAT TRANSPORT

General boundary conditions

- \Box fixed temperature (constant in time)
- □ specified time-varying temperature
- □ zero heat flux/temperature gradient
- □ fixed heat flux/temperature gradient
- \square specified time-varying heat flux/temperature gradient
- □ heat flux from stream dependent on flow rate and stream temperature
- \Box heat flux to stream dependent on flow rate and ground-water temperature
- □ heat flux through overburden dependent on flow rate and recharge temperature
- \Box heat flux through overburden dependent on temperature difference between aquifer and atmosphere
- \Box other:

Sources and sinks

- \overline{a} injection well with given constant temperature and flow rate
- \square injection well with given time-varying temperature and flow rate
- \Box production well with given flow rate and heat flux dependent on ground-water temperature
- П. point sources
- \Box line sources
- \square areal sources
- □ non-point (diffuse) sources
- □ other:

SOLUTION METHODS - HEAT TRANSPORT

□ flow and heat transport equations are uncoupled

- \Box flow and heat transport equations are coupled
	- □ through temperature-dependent density
	- □ through temperature-dependent viscosity

□ Analytical

- single solution \Box
- superposition Π
- method of images О
- n. other:
- □ Semi-analytical
	- continuous in time, discrete in space \Box
	- continuous in space, discrete in time Π
- approximate analytical solution 0 \square other:

$\%$ D6170 – 17

HEAT TRANSPORT CHARACTERIZATION - continued

□ Solving stochastic PDE's

- Monte Carlo simulations \Box
- \Box spectral methods
- \Box small perturbation expansion
- self-consistent or renormalization technique \Box
- \Box other:

□ Numerical

Spatial approximation

- \Box finite difference
	- block-centered \Box
	- node-centered \Box
- integrated finite difference \Box
- particle-tracking \Box
- method of characteristics \Box
- random walk \Box
- boundary element method \Box
- \Box finite element method
- \Box other:

Time-stepping scheme

- \Box fully implicit
- \Box fully explicit
- □ Crank-Nicholson
- \Box other:

Matrix-solving technique

- \square Iterative
	- \Box **SIP**
	- \Box Gauss-Seidel (PSOR)
	- \Box **LSOR**
	- \Box **SSOR** \Box **BSOR**
	- \Box ADI
	- Iterative ADIP (IADI) \Box
	- \Box Point Jacobi
	- \Box other:
- \square Direct
	- \Box Gauss elimination
	- □ Cholesky decomposition.
	- □ Frontal method
	- \Box Doolittle
	- \Box Thomas algorithm
	- □ other:
- \Box Iterative methods for nonlinear equations
	- □ Picard method
	- \Box Newton-Raphson method
	- \Box Chord slope method
	- \Box other:
- □ Semi-iterative
	- □ conjugate-gradient
	- \Box other:

OUTPUT CHARACTERISTICS - HEAT TRANSPORT

Echo of input (in ASCII text format)

- \Box arid (nodal coordinates, cell size, element connectivity
- \Box initial temperatures
- □ transport parameter values
- \Box transport boundary conditions
- □ transport stresses (source/sink fluxes)
- \Box other:

Simulation results - Type of output

- \Box temperature values
- \Box temperature in pumping wells
- \Box internal and cross-boundary heat fluxes
- \Box velocities (from given heads)
	- areal values (table, vector plots) \Box
	- \Box temporal series (table, x-t graphs)
- \Box heat balance components
	- □ cell-by-cell
	- \Box global (total model area)
- \Box calculated transport parameters
- \Box uncertainty in results (*i.e.*, statistical measures)
- \Box other:
- Simulation results Form of output
- \Box binary files of temperatures
- □ complete results in ASCII text format
- spatial distribution of temperature for п postprocessing
- time series of temperature for postprocessing п
- □ direct screen display text
- \Box direct screen display graphics
- \Box direct hardcopy (printer)
- direct plot (pen-plotter)
- graphic vector file \Box
- graphic bitmap/pixel/raster file \Box
- \Box other:

Computational progress

- \Box iteration progress
- \Box iteration error
- \Box heat balance error
- \Box cpu use
- \square memory allocation
- □ other:

$\sqrt{}$ D6170 – 17

ROCK/SOIL MATRIX DEFORMATION CHARACTERIZATION

MODELED SYSTEM

Deformation cause

- \Box fluid withdrawal (increased internal rock matrix stresses)
- \Box overburden increase (increased system loading)
- man-made cavities (reduced rock-matrix stresses)
- \Box other:

Model Types

- \Box Empirical model
	- \Box depth/porosity model
	- \square other:
- □ Semi-empirical model
	- \square aquitard drainage model
	- \square other:
- Model components
- \Box aquifer only
- □ aquifer/overburden
- \Box aquifer(s)/aquitard(s)
- \Box aquifer(s)/aquitard(s)/overburden
- \Box other:
- □ Mechanistic process-based model (see processes) List model(s):
- \Box other:

PROCESSES

- □ one-dimensional deformation
	- \Box subsidence (vertical movement of land surface
	- \Box compaction (vertical deformation; decrease of thickness of sediments due to increase of effective stress: also consolidation)
	- \Box matrix expansion (due to reduced skeletal stress)
	- \square other:
- □ two-dimensional deformation
	- □ vertical (cross-sectional)
	- norizontal (areal)
- \Box three-dimensional deformation
- \Box coupling fluid flow and deformation single equation \Box
	- two coupled equations \Box
- \square coupling temperature change with fluid flow and deformation (e.g. geothermal reservoirs)
- \Box elastic deformation
- □ inelastic (plastic) deformation
- PARAMETER REPRESENTATION

(parameters not mentioned are considered homogeneous in space; see also flow model)

- \square stress-dependent hydraulic conductivity compressibility of rock matrix
	- homogeneous (constant in space) \Box
	- \Box

coefficient of consolidation (isotropic)

- homogeneous \Box
- heterogeneous \Box

heterogeneous

BOUNDARY CONDITIONS FOR DEFORMATION

 \square prescribed displacement

- \Box constant in time
- \square varying in time
- \square prescribed pore pressure
	- \Box constant in time
	- \square varying in time
- □ prescribed skeletal stress \Box constant in time
	- \square varying in time
- □ other:

FIG. 1 Checklist for Groundwater Modeling Needs and Code Functionality (continued)

 \Box other:

\degree D6170 - 17

ROCK/SOIL MATRIX DEFORMATION CHARACTERIZATION - continued

SOLUTION METHODS - DEFORMATION

Flow and deformation equations are: \square uncoupled \square coupled

- □ Analytical
	- single solution п.
	- superposition \Box
	- \Box other:
- □ Numerical

Spatial approximation

- \square finite difference
	- \Box block-centered
	- node-centered \Box
- \square integrated finite difference
- \Box finite element method
- \Box other:

Time-stepping scheme

- \Box fully implicit
- \square fully explicit
- □ Crank-Nicholson
- \Box other:
-

Echo of input (in ASCII text format)

- grid (nodal coordinates, cell size, element п connectivity
- initial stresses \Box
- \Box deformation parameter values
- \Box deformation boundary conditions
- \Box other:

Simulation results - Form of output

- \square binary files
- \square complete results in ASCII text format
- \square spatial distribution for postprocessing
- \Box time series for postprocessing
- \Box direct screen display text
- □ direct screen display graphics
- \Box direct hardcopy (printer, pen-plotter)
- □ graphic vector file/display
- □ graphic bitmap/pixel/raster file
- \Box other:

continuous in time, discrete in space \Box continuous in space, discrete in time \Box

□ Semi-analytical

- approximate analytical solution \Box
- \Box other:

Matrix-solving technique

- \square Iterative
	- \Box **SIP**
	- \Box Gauss-Seidel (PSOR)
	- \Box **LSOR**
	-
	- \Box ADI
	- \Box Iterative ADIP (IADI)
	- \Box Point Jacobi
	- \Box other:
- □ Semi-iterative
	- \Box conjugate-gradient
	- \Box other:

OUTPUT CHARACTERISTICS - DEFORMATION

Simulation results - Type of output

- \Box matrix displacements (internal skeletal displacements; 1D, 2D, 3D)
- surface displacements (subsidence: 1D) \Box
- \Box pore pressure
- skeletal stress/strain \Box
- \Box calculated parameters
- \square other:

Computational progress

- \Box iteration progress
- iteration error \Box
- \Box cpu use
- \Box memory allocation
- \Box other:

FIG. 1 Checklist for Groundwater Modeling Needs and Code Functionality (continued)

3.2.3 *conceptual model*—an interpretation or working description of the characteristics and dynamics of the physical system.

3.2.4 functionality—of a groundwater modeling code, the set of functions and features the code offers the user in terms of model framework geometry, simulated processes, boundary conditions, and analytical and operational capabilities.

3.2.5 groundwater modeling code—the non-parameterized computer code used in groundwater modeling to represent a non-unique, simplified mathematical description of the physical framework, geometry, active processes, and boundary conditions present in a reference subsurface hydrologic system.

- \square Direct
	- \Box Gauss elimination
	- Cholesky decomposition. \Box
	- Frontal method \Box
	- \Box Doolittle
	- \Box Thomas algorithm
	- \Box other:
- \Box Iterative methods for nonlinear
- equations
	- \Box Picard method
- \Box Newton-Raphson
- method
	- Chord slope method \Box
	- other: \Box
-
- \Box **SSOR** \Box BSOR
-
-
-
-
-

3.2.6 *mathematical model—(a)* mathematical equations expressing the physical system and including simplifying assumptions; *(b)* the representation of a physical system by mathematical expressions from which the behavior of the system can be deduced with known accuracy.

3.2.7 *model construction—*the process of transforming the conceptual model into a parameterized mathematical form; as parametrization requires assumptions regarding spatial and temporal discretization, model construction requires a priori selection of a computer code.

3.2.8 *model schematization—*simplification of a conceptualized groundwater system for quantitative, model-based analysis commensurate with project objectives and constraints.

3.2.9 *numerical model—in groundwater modeling*, a model that uses numerical methods to solve the governing equations of the applicable problem.

3.2.10 *semi-analytical model—*a mathematical model in which complex analytical solutions are evaluated using approximate techniques, resulting in a solution discrete in either the space or time domain.

4. Significance and Use

4.1 Groundwater modeling has become an important methodology in support of the planning and decision-making processes involved in groundwater management. Groundwater models provide an analytical framework for obtaining an understanding of the mechanisms and controls of groundwater systems and the processes that influence their quality, especially those caused by human intervention in such systems. Increasingly, models are an integral part of water resources assessment, protection, and restoration studies, and provide needed and cost-effective support for planning and screening of alternative policies, regulations, and engineering designs affecting groundwater.⁴

4.2 Many different groundwater modeling codes are available, each with their own capabilities, operational characteristics and limitations. Furthermore, each groundwater project has its own requirements with respect to modeling. Therefore, it is important that the most appropriate code is selected for a particular project. This is even more important for projects that require extensive modeling, or where costly decisions are based, in part, on the outcome of modeling-based analysis.

4.3 Systematic and comprehensive description of project requirements and code features provides the necessary basis for efficient selection of a groundwater modeling code. This standard guide is intended to encourage comprehensive and consistent description of code capabilities and code requirements in the code selection process, as well as thorough documentation of the code selection process.

5. Code Selection Process in Groundwater Modeling

5.1 Code selection in groundwater modeling is a crucial step in the application of groundwater models (see Guide [D5447\)](#page-18-0). Each groundwater project in which computer-based modeling is performed should include a code selection phase.

5.2 Code selection is in essence the process of matching a project's modeling needs with the documented capabilities of existing computer codes.

5.3 Selecting an appropriate code requires analysis and systematic description of both the modeling needs and the characteristics of existing groundwater modeling codes.

5.4 A perfect match rarely exists between desired code characteristics or selection criteria and the capabilities or functionality of available codes. Therefore, the selection criteria are divided into the following two groups: essential code capabilities and non-essential code capabilities. If a candidate code does not include the essential capabilities, it should be removed from consideration.

5.5 The relative importance of the non-essential code capabilities needs to be assessed. This may be done by assigning weighting factors to the considered capabilities (for example, using weights from one to five according to their relative importance). Although such weighing factors are often not explicitly mentioned in the code selection process, candidate codes are often ranked implicitly using some kind of weighting of the non-essential capabilities. Assigning weighting factors is a rather subjective procedure; if a match is difficult to obtain, reassessment of these factors may be necessary. Hence, code selection may turn out to be a rather iterative process requiring a significant level of professional judgment and experience.

5.6 Selecting the right code is necessary for an optimal trade-off between effort and result in a modeling project. The result can be expressed as the expected effectiveness of the modeling tasks in terms of prediction accuracy. The effort is basically represented by the modeling costs, such as incurred in becoming familiar with the code, model schematization and model construction, and model-based scenario analysis. Such costs should not be considered independently from those of field data acquisition, especially those needed for the modeling effort. For a proper assessment of modeling cost, consideration should be given to the choice of developing a new code (or modifying an existing one) versus acquisition of an existing code, the implementation and maintenance of the code, computer platform requirements, and the development and maintenance of databases.

NOTE 1—The availability of or familiarity with a particular code, or both, may lead to modeling overkill by using a pre-chosen code requiring significantly more preparation in data gathering and model construction than necessary for the project. Such modeling overkill may also result from the user's inability to limit the number of "essential" code features, or to discriminate between non-essential code features.

NOTE 2—The belief that use of the "best" or most mathematically advanced codes will automatically provide predictive reliability and scientific credibility is false. The technical capability of the modeler or the modeling team involved in the modeling project has the greatest impact on the overall results.⁵

⁴ National Research Council (NRC), Committee on Ground Water Modeling Assessment, Water Science and Technology Board, *Ground Water Models: Scientific and Regulatory Applications*, National Academy Press, Washington, DC, 1990.

⁵ Simmons, C. R., and Cole, C. R., *Guidelines for Selecting Codes for Ground-Water Transport Modeling of Low-Level Waste Burial Sites; Volume 1 – Guideline Approach*, PNL-4980 Vol 1, Pacific Northwest Laboratory, Richland, WA, 1985.

5.7 If different project questions need to be addressed, more than one code might be needed or different combinations of functions of a single code may be utilized. This is often the case when models are used in different stages of the project. For example, in an early stage of a remediation project, a model is used to assist in problem scoping and system conceptualization, while during the design phase of the project, a model is used to screen between alternative remediation techniques and to detail the selected remediation approach.

5.8 If, as a result of the code selection process, a code is selected that requires modification, proper quality assurance procedures for code development and testing need to be followed (see Guide [D6025\)](#page-0-0).

6. Defining Modeling Needs

6.1 Following are major steps in evaluating modeling needs: formulating the project-related modeling objectives; determining the required level of analysis (that is, modeling complexity) and reliability in terms of prediction accuracy and sensitivity of the project for incorrect or imprecise answers (that is, acceptable level of uncertainty); conceptualizing and characterizing the groundwater system involved; and analyzing the constraints in human and material resources available for the study.

6.2 Project-related modeling objectives may include: preliminary screening of sites for locating facilities that may interact with the groundwater system, risk assessment for existing or planned facilities, site performance assessment based on technical design, environmental impact assessment, optimal control of facility operation, and design of monitoring network.5 Modeling objectives often constitute a subset of the project objectives; some of the project objectives may not require evaluation by means of computer simulation. Project objectives are translated into modeling objectives by formulating model (or stress) scenarios and specifying the variables that need to be computed.

6.3 A major element of the code selection process is the formulation of the *conceptual model* of the groundwater system in the context of project objectives and constraints. The conceptual model represents the general understanding of the system being studied in terms of driving forces (stresses), physical and chemical processes, interactions, geometric factors, and boundary conditions. An important aspect of the conceptualization phase is the determination of the relative importance of the system processes and stresses. The detail that enters into a conceptual model should represent the site characterization data base that will be used in the calibration and predictive modeling stages of the project, (that is, the input variables and parameters needed to run the selected code should be available). 5

6.4 The conceptual model, no matter how complex, will always be a simplified representation of the groundwater system. Furthermore, current limitations in scientific theories (and their mathematical representation) and computer capabilities may require additional simplifications in the conceptual model to facilitate computer modeling.⁵ Combining the description of the conceptual model with the level of modeling needed, while taking into considerations these scientific and technical limitations, often leads to further simplification of the conceptual model, a process that is sometimes called *model schematization*. Such simplifications may relate to the spatial dimensionality of the model, the type of boundary conditions and the geometry of the boundaries employed, the spatial variability or zoning of the system parameters and stresses, the mathematical description of the physical and chemical processes of interest, and the representation of time (that is, steady-state versus transient). A concise description of the conceptual model used for code selection should include a mathematical statement of governing equations and boundary and initial conditions (that is, a mathematical model of the groundwater system).

NOTE 3—Because code selection is a somewhat subjective process, the danger exists that the availability of or familiarity with a particular code, or both, leads to an attempt to force-fit the conceptual model or even the study objectives into the mold of a pre-chosen code.⁵

6.5 Modeling, in its widest interpretation, does not always require the use of computer codes. The level of analysis is determined by project objectives and constraints. It may range from qualitative screening of options and manual calculations (for example, using Darcy's law) to computer-based analysis of "bounded" problems (for example, exceeding maximum contaminant levels) using analytical or semi-analytical models, and defensible predictions along with uncertainty analysis using numerical models.

6.6 Based on the previous analysis, relevant model functions are determined and translated in a set of informative, well-defined descriptors. [Fig. 1](#page-1-0) can be used as a checklist for this purpose. Further details on determining relevant functions can be found in Simmons and Cole.⁵

6.7 *Other Modeling Considerations:*

6.7.1 *Code Acceptance—*An important issue in code selection is the general acceptance of the candidate code and the model predictions made using it. Acceptance of a code is a function of its perceived credibility and its efficiency in use.

6.7.2 *Code Credibility—*Groundwater modeling codes do not always perform as described in the documentation or as claimed by the developers. Also, code documentation may not always contain enough information to determine if the code is appropriate for use under the particular circumstances encountered in the project. This may lead to concerns regarding the predictive reliability of modeling results. A code's credibility is based on its proven *predictive reliability* and the *extent of its (successful) use.* The predictive reliability of a code is primarily evaluated through review of a code's theoretical foundation and program structure, and through code testing (that is, code verification). A code gains user confidence with a growing number of documented applications. This results from the notion that most non-terminal software errors originally present have been detected and corrected. Yet, no program is without programming errors, even after a long history of use and updating. Some errors will be detected and do not or only slightly influence the program's utility.

6.7.3 *Code Use Effıciency—*Code use efficiency is a function of its availability, operational characteristics, and documentation.

6.7.3.1 *Code Availability—*A code is considered available when a executable version or the source code itself can be obtained for use in a project. The software used in groundwater modeling can be divided into two categories: public domain software and proprietary software.

6.7.3.2 *Public Domain Software—*In some countries, such as the United States, a code is considered in the public domain when its development has been supported through public funds and no copyrights or patents apply. Many of the groundwater modeling codes developed by or with funding from federal or state agencies are considered to be in the public domain. It is generally understood that there are no restrictions in the use, modification, and distribution of public domain codes. Some groundwater modeling codes developed for or by government agencies are subject to restrictions in use and distribution, and thus are not considered in the public domain. It should be noted that in most other countries, most groundwater modeling software developed with public funds are considered the property of the funding agency. Certain restrictions in their use and redistribution apply. However, they may be available at no or little cost to the user.

NOTE 4—Restrictions in the use of public domain modeling software may occur if the program includes calls to proprietary software, such as mathematical or graphic subroutines. Such routines are often external to the public domain software and their presence on the host-computer is needed to run the modeling software successfully.

6.7.3.3 *Proprietary Software—*If an institution owns the copyright, trademark, or patent of the software; distributes it solely under license agreements; or states in the software and documentation that the software is proprietary; the software is considered proprietary. Distribution of proprietary software is subject to restrictions put in place by the owner of the software rights. Typically, proprietary software requires an individual license for each CPU on which it is installed, or is covered by a site license arrangement. In most cases, copying of software and documentation is only allowed for backup purposes. Note that when the source code of a groundwater modeling program has appeared in a publication, such as a textbook or journal article, or is available in electronic form from the publisher, their use and distribution is in general covered by copyright protection laws.

NOTE 5—Sometimes, public domain codes are subject to rigorous quality assurance procedures, including version control schemes and strict maintenance protocols. In such cases, the source code is not distributed to prevent non-authorized, non-quality-assured modifications. Such controls are also often in place with respect to proprietary software. When such controls are absent (which is the case with most public domain software) the user should establish the credibility of the considered version of the candidate code. Some of the most popular public domain groundwater modeling codes are in this category; numerous versions exist, available from different commercial and non-commercial sources. It is also good practice to make sure that the most recent version of the candidate code is considered in the code selection process.

NOTE 6—Codes may have originally been released in the public domain, while later versions have been released as proprietary codes. This may be the case when the agency that provided the development funds no longer supports the maintenance of the software and a private institution has taken over that role. If the new, proprietary version includes corrections of code errors or improvements in predictive accuracy and reliability, this new version should be selected for the project and the older versions, if present, discarded.

6.7.3.4 *User Support—*After selecting a particular code for the project, problems may arise that require external assistance (that is, user support), typically provided by the software developer or third-party vendor. Such problems may be related to the following: the installation of the software on the user's computer; the operation of the modeling interface, if present; the preparation of input files; the execution of the simulation module of the software; and exporting and analyzing model simulation results. Sometimes, runtime errors have their origin in coding errors. More often, such problems can be traced to user mistakes in model construction, input preparation, or code execution.

6.7.4 *Operational Code Characteristics—*Executing a groundwater modeling code requires the preparation of input files containing the data needed for the simulation, as well as operational instructions (often in the form of switch parameter values). In numerical models, the input data set often includes parameters which constrain or steer the solution, and thus influence the accuracy of the results. Important aspects of code operation include the structure of the input files (that is, facilitating efficient preparation); the structure and information content of the output files (for example, exporting results to other software applications, completeness of simulation results and computational progress); and the extent and effectiveness of operational instructions (that is, to what extent can the non-simulation functions or controls of the code be manipulated through input).

6.7.4.1 Increasingly, groundwater modeling codes come with a user-interface for preparation of input files, execution of programs and program modules, and analysis of modeling results. The presence of a user interface significantly increases productivity by decreasing the time needed to prepare and modify input data sets, reducing the chance of errors in the data set, and facilitating rapid analysis of the results of each simulation run. Some of these interfaces consist of a standalone (modeling) preprocessor, others include a shell program from which various preprocessing, simulation, and postprocessing functions can be called. Many of the shell programs provide extensive on-line help facilities, or even on-line documentation.

6.7.5 *Code Documentation—*Documentation of a computer code consists of the information recorded during the design, development, and maintenance of the code to explain pertinent aspects of a data processing system, including purposes, methods, logic, relationships, capabilities, and limitations. It is the principal instrument of communication regarding the aspects of the software for those involved in a modeling effort, such as code developer, code maintenance staff, computer system operators, and code users.

6.7.5.1 Documentation of a groundwater modeling code should be informative, well-structured (that is, specific topics are easy to find), and well-written (that is, topics are easy to understand). It should include software installation instructions, a summary of code capabilities (that is, overview of the code's functionality), description of the development history and the code's theoretical framework, discussion of model construction aspects, input preparation instructions (or reference guide), discussion of output options, sample model

runs, complete verification information, a trouble-shooting guide, and a detailed index.

6.7.5.2 Good code documentation will ensure scientific rigor and implementation quality.5 Well-written documentation shortens the learning curve for new users, provides answers to questions from project managers, and supports efficient code selection. Well-structured and indexed documentation provides rapid answers for initiated users.

7. Describing Code Capabilities

7.1 *Functionality description* involves the identification and description of the functions of a simulation code in terms of model framework geometry, simulated processes, boundary conditions, and analytical capabilities. The functions of the code are grouped and systematically described using a set of standard descriptors⁶(see [Fig. 1\)](#page-1-0). If necessary, the list of descriptors may be adapted or expended to cover features resulting from new research or software development progress.

7.2 The documentation of a groundwater modeling code should include a summary section, called "functionality description" or "code functions and capabilities" that addresses the pertinent descriptors from [Fig. 1.](#page-1-0) This section should also include additional details where the descriptors of [Fig. 1](#page-1-0) are insufficient to describe the features and capabilities of the code.

7.3 [Fig. 1](#page-1-0) can be used as a checklist, if in reviewing a code for potential use in a project, the documentation of the code does not contain a section describing the code's functionality in sufficient detail.

7.4 The checklist presented in [Fig. 1](#page-1-0) can also be used for determining project needs as part of a code selection process.

7.5 The format presented in [Fig. 1](#page-1-0) is designed to be applicable to most groundwater modeling code. It includes a brief overview description of the simulation code (that is, authors, contact address, minimum computer platforms, and the like). This is followed by a section that is divided into functionality categories corresponding to sets of specific code functions. Consistent use of the descriptors and their grouping presented in [Fig. 1](#page-1-0) facilities efficient comparison of candidate codes.

8. Documentation of the Code Selection Process

8.1 Code selection in groundwater modeling is often an integral part of a model application, and as such, documented in the model application report (see Guide [D5447\)](#page-0-0). The narrative should provide the justification of the selected code. It should list the "essential" selection criteria and include a discussion of the relative importance of non-essential selection criteria. Finally, the narrative should address the nonsimulation considerations that have influenced the code selection process.

9. Keywords

9.1 code selection; computer model; groundwater modeling; simulation

SUMMARY OF CHANGES

In accordance with Committee D18 policy, this section identifies the location of changes to this standard since the last edition (1997 (2010)) that may impact the use of this standard. (January 1, 2017)

(1) Removed definition of Computer Code as it is no longer specific to this standard and is now in common usage. *(2)* Moved Section 3 terminology introductions to comply with D18 procedures.

- *(3)* Added Summary of Changes secton.
- *(4)* Reworded to remove jargon and superlatives.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

⁶ Van der Heijde, P. K. M., and Elnawawy, O. A., *Quality Assurance and Quality Control in the Development and Application of Ground-Water Models, EPA/600/R-93/011*, R. S. Kerr Environmental Research Laboratory, U.S. Environmental Protection Agency, Ada, OK, 1992.