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Standard Practice for
99 % ⁄95 % Interlaboratory Detection Estimate (IDE) for
Analytical Methods with Negligible Calibration Error1

This standard is issued under the fixed designation D6091; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice establishes a standard for computing a
99 % ⁄95 % Interlaboratory Detection Estimate (IDE) and pro-
vides guidance concerning the appropriate use and application.
The calculations involved in this practice can be performed
with DQCALC, Microsoft Excel-based software available
from ASTM.2

1.2 The IDE is computed to be the lowest concentration at
which there is 90 % confidence that a single measurement from
a laboratory selected from the population of qualified labora-
tories represented in an interlaboratory study will have a true
detection probability of at least 95 % and a true nondetection
probability of at least 99 % (when measuring a blank sample).

1.3 The fundamental assumption of the collaborative study
is that the media tested, the concentrations tested, and the
protocol followed in the study provide a representative and fair
evaluation of the scope and applicability of the test method as
written. When properly applied, the IDE procedure ensures that
the 99 % ⁄95 % IDE has the following properties:

1.3.1 Routinely Achievable IDE Value—Most laboratories
are able to attain the IDE detection performance in routine
analyses, using a standard measurement system, at reasonable
cost. This property is needed for a detection limit to be
practically feasible. Representative laboratories must be in-
cluded in the data to calculate the IDE.

1.3.2 Routine Sources of Error Accounted For—The IDE
should realistically include sources of bias and variation which
are common to the measurement process. These sources
include, but are not limited to: intrinsic instrument noise, some
typical amount of carryover error, plus differences in
laboratories, analysts, sample preparation, and instruments.

1.3.3 Avoidable Sources of Error Excluded—The IDE
should realistically exclude avoidable sources of bias and
variation, that is, those which can reasonably be avoided in

routine field measurements. Avoidable sources would include,
but are not limited to: modifications to the sample, measure-
ment procedure, or measurement equipment of the validated
method, and gross and easily discernible transcription errors
(provided there was a way to detect and either correct or
eliminate them).

1.3.4 Low Probability of False Detection—The IDE is a true
concentration consistent with a measured concentration thresh-
old (critical measured value) that will provide a high
probability, 99 %, of true nondetection (a low probability of
false detection, α = 1 %). Thus, when measuring a blank
sample, the probability of not detecting the analyte would be
99 %. To be useful, this must be demonstrated for the particular
matrix being used, and not just for reagent water.

1.3.5 Low Probability of False Nondetection—The IDE
should be a true concentration at which there is a high
probability, at least 95 %, of true detection (a low probability
of false nondetection, β = 5 %, at the IDE), with a simultane-
ous low probability of false detection (see 1.3.4). Thus, when
measuring a sample at the IDE, the probability of detection
would be at least 95 %. To be useful, this must be demonstrated
for the particular matrix being used, and not just for reagent
water.

NOTE 1—The referenced probabilities, α and β, are key parameters for
risk-based assessment of a detection limit.

1.4 The IDE applies to measurement methods for which
calibration error is minor relative to other sources, such as
when the dominant source of variation is one of the following
(with comment):

1.4.1 Sample Preparation, and calibration standards do not
have to go through sample preparation.

1.4.2 Differences in Analysts, and analysts have little oppor-
tunity to affect calibration results (such as with automated
calibration).

1.4.3 Differences in Laboratories, for whatever reasons,
perhaps difficult to identify and eliminate.

1.4.4 Differences in Instruments (measurement equipment),
which could take the form of differences in manufacturer,
model, hardware, electronics, sampling rate, chemical process-
ing rate, integration time, software algorithms, internal signal
processing and thresholds, effective sample volume, and con-
tamination level.

1 This practice is under the jurisdiction of ASTM Committee D19 on Water and
is the direct responsibility of Subcommittee D19.02 on Quality Systems,
Specification, and Statistics.
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1.5 Alternative Data Quality Objectives—Other values forα,
β, confidence, etc. may be chosen for calculating an IDE;
however, this procedure addresses only the 99 % ⁄95 % IDE.

2. Referenced Documents

2.1 ASTM Standards:3

D2777 Practice for Determination of Precision and Bias of
Applicable Test Methods of Committee D19 on Water

2.2 ASTM Adjuncts:
DQCALC Microsoft Excel-based software for the Interlabo-

ratory Quantitation Estimate (IQE)2

3. Terminology

3.1 Definitions:
3.1.1 99 % ⁄95 % Interlaboratory Detection Estimate

(99 % ⁄95 % IDE, also denoted LD for Limit of Detection in
accordance with Currie (1)4—The lowest concentration at
which there is 90 % confidence that a single measurement from
a laboratory selected from the population of qualified labora-
tories represented in an interlaboratory study will have a true
detection probability of at least 95 % and a true nondetection
probability of at least 99 %.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 Censored Measurement—A measurement that is not

reported numerically nor is reported missing but as a nondetect
or a less-than, for example, “less than 0.1 ppb.” The former
means that an algorithm in the measurement system deter-
mined that the measurement should not be reported numeri-
cally for one of two reasons: either it was considered not
sufficiently precise or accurate, or the identification of the
analyte was suspect. A reported less-than may have the same
meaning, but it also implies (perhaps erroneously) that any
concentration greater than or equal to the accompanying value
(for example, 0.1 ppb) can be measured and will be reported
numerically.

3.2.2 Detection Limit (DL) or Limit of Detection (LD)—A
numerical value, expressed in physical units or proportion,
intended to represent the lowest level of reliable detection (a
level which can be discriminated from zero with high prob-
ability while simultaneously allowing high probability of
nondetection when blank samples are measured.

NOTE 2—In some cases, the discrimination may be from a value other
than zero, such as a background level. Note also that a DL also depends
on other characteristics of the measurement and detection process, such as
described in 1.3.2. The IDE is an example of a DL.

3.2.3 Probability of False Detection—The false positive
probability, denoted α, that a single measurement of a blank
sample will result in a detection. (See Fig. 1.) This probability
is often referred to as the Type 1 error probability and depends
on the analyte, measurement system, analytical method,
matrix, analyst, and measurement (recovery) threshold (mea-
surement critical value) used to decide whether detection has
occurred. This definition can be generalized to refer to un-
wanted detection from a single measurement of a sample at any
nonzero concentration of the analyte rather than a blank
sample, provided that the nonzero concentration is less than the
detection limit or IDE.

3.2.4 Probability of False Nondetection—The false negative
probability, denoted β or β (T), that a single measurement of a
sample containing a nonzero concentration, T, of an analyte of
interest will result in a nondetection. This is the complement of
the probability of true detection. (See Fig. 1.) This probability
function is often referred to as the Type 2 error probability
function, and it depends explicitly on the concentration ( T). It
depends implicitly on the analyte, measurement system, ana-
lytical method, matrix, analyst, and critical value for detection.

3.2.5 Probability of True Detection—The probability, de-
noted 1-β or 1-β (T), that a single measurement of a sample
containing a nonzero concentration, T, of an analyte of interest
will result in a detection. (See Fig. 1.) This probability is often
referred to as statistical power or the power of detection, and it
depends explicitly on the concentration (T). It depends implic-
itly on the analyte, measurement system, analytical method,
matrix, analyst, and critical value for detection.

3.2.6 Probability of True Nondetection—The true negative
probability, denoted 1-α, that a single measurement of a blank

3 For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

4 The boldface numbers in parentheses refer to the list of references at the end of
this standard.

FIG. 1 Simplest Case of Reliable Detection
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sample will result in a nondetection. This is the complement of
the probability of false detection. (See Fig. 1.) This probability
also depends on the analyte, measurement system, analytical
method, matrix, analyst, and response threshold. The probabil-
ity of true nondetection can be similarly generalized: it can
apply to a single measurement of a sample at any nonzero
concentration less than the detection limit or IDE.

3.2.7 100(1-γ) %—Confidence Statistical Tolerance Limit
for 100(1-δ) % of a Population (also known as a One-Sided
Statistical Tolerance Interval)—A statistically determined limit
that will, with 100(1-γ) % confidence, exceed (or fall below)
100(1-δ) % of the population (the 100(1-δ) % quantile). See
Hahn and Meeker (2) for further explanation and tables of
values.

4. Summary of Practice

4.1 Every ASTM D19 test method is evaluated to determine
precision and bias by conducting a collaborative study in
accordance with Practice D2777. That study, or a similar
collaborative study, can also be used to evaluate the lowest
concentration level of reliable detection for a test method,
referred to herein as the Interlaboratory Detection Estimate.
Such a study must include concentrations suitable for modeling
the uncertainty of mean recovery of interlaboratory measure-
ment (preferably without extrapolation). It must also be
planned and conducted to allow the known, routine sources of
measurement variability to be observed at typical levels of
influence. After it is conducted, outlying laboratories and
individual measurements should be eliminated using an
accepted, scientifically based procedure for outlier removal,
such as found in Practice D2777. The IDE computations must
be based on retained data from at least six independent
laboratories at each concentration level.

4.2 Retained data are analyzed to identify and fit one of
three proposed interlaboratory standard deviation (ILSD) mod-
els which describe the relationship between the interlaboratory
standard deviation of measurements and the true concentration.
The identification process involves evaluating the models in
order, from simplest to most complex: constant, straight-line,
or exponential (all with respect to true concentration, T).
Evaluation includes statistical significance and residual analy-
sis.

4.3 The chosen model is used to predict interlaboratory
measurement standard deviation at any true concentration
within the study concentration range. If interlaboratory stan-
dard deviation is not constant, the predictions are used to
generate weights for fitting the mean recovery relationship (the
straight-line relationship between measured concentration and
true concentration), using weighted least squares (otherwise,
ordinary least squares is used). The mean recovery curve is
evaluated for statistical significance and lack of fit and using
residual analysis. An ILSD model prediction is also used to
estimate the interlaboratory standard deviation of measure-
ments of blanks. This estimate is used to compute YC, a
measurement critical value for detection (see 6.4.1). The YC is
the value that with approximately 90 % confidence will not be
exceeded by 99 % of all measurements of blanks made by
qualified laboratories as represented in the study. The LC

computed from YC is the true concentration with expected
measurement equal to YC (see 6.4.2). The model is also used to
predict interlaboratory standard deviation at nonzero concen-
trations. The IDE is directly or iteratively computed to be the
true concentration that with approximately 90 % confidence
will produce measurements that will exceed YC at least 95 %
of the time and simultaneously not exceed more than 1 % of
the time when blank samples are measured.

5. Significance and Use

5.1 Appropriate application of this practice should result in
an IDE achievable by most laboratories properly using the test
method studied. This IDE provides the basis for any prospec-
tive use of the test method by qualified laboratories for reliable
detection of low-level concentrations of the same analyte as the
one studied in this practice and same media (matrix).

5.2 The IDE values may be used to compare the detection
power of different methods for analysis of the same analyte in
the same matrix.

5.3 The IDE provides high probability (approximately
95 %) that result values of the method studied which exceed
the IDE represent presence of analyte in the sample and high
probability (approximately 99 %) that blank samples will not
result in a detection.

5.4 The IDE procedure should be used to establish the
interlaboratory detection capability for any application of a
method where interlaboratory detection is important to data
use. The intent of IDE is not to set reporting limits.

6. Procedure

6.1 The procedure described as follows has stages described
in the following sections: IDE Study Plan, Design and Protocol
(6.2); Conduct the IDE Study, Screen the Data, and Choose a
Model (6.3); and Compute the IDE (6.4). A flowchart of the
procedure is shown in Fig. 2.

6.2 IDE Study Plan, Design, and Protocol:
6.2.1 Choose Analyte, Matrix, and Method—At least one

analyte of interest is selected, typically one for which there is
interest in trace levels of concentration, such as toxic materials
that are controlled and regulated. For each analyte, an approxi-
mate maximum true concentration is selected based on the
following considerations:

6.2.1.1 The anticipated IDE should be exceeded by a factor
of 2 or more,

6.2.1.2 A single model (ideally a straight-line model in true
concentration, T) should describe mean recovery from zero to
that maximum concentration,

6.2.1.3 A single model in true concentration should describe
interlaboratory measurement standard deviation from zero to
that maximum concentration, and

6.2.1.4 The range must be sufficient to enable statistically
significant coefficients to be estimated for the ILSD model and
mean recovery model. One or more matrices of interest are also
selected, and an accepted standard analytical method for those
analytes is selected for study. If there is no possibility of matrix
interference, then it may only be necessary to determine a list
of acceptable matrices which can be used instead of selecting
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a specific matrix. For example, for a particular analyte,
concentration range, and method it may be supposed that
reagent waters from different laboratories are
indistinguishable, but for another analyte or another concen-
tration range that assumption may not hold.

6.2.2 Choose IDE Study Design and Protocol, based (if
possible) on anticipated interlaboratory standard deviation
(ILSD) model. Section 7 of Practice D2777 can be followed for
the study design and protocol. The anticipated form of the
ILSD model (the relationship between interlaboratory mea-
surement standard deviation and true concentration) can help in
choosing an IDE study design. Three models are proposed
herein for the interlaboratory measurement standard deviation
with respect to true concentration: constant, straight-line
(increasing), and exponential (increasing). Chemistry, physics,
empirical evidence, or informed judgment may make one
model more likely than others. However, it may not be possible
to anticipate the relationship between standard deviation and
true concentration.

6.2.2.1 Select an IDE study design that has enough distinct
concentrations to assess statistical lack of fit of the models (see
Draper and Smith (3)). Recommended designs are: (1) The
semi-geometric design at five or more true concentrations, {T1,
T2, and so forth}, such as: {0, IDE0/4, IDE0/2, IDE0, 2 × IDE0,
4 × IDE0}, where IDE0 is an initial estimate of the IDE (such
as 10 × s', where s' is the interlaboratory measurement standard
deviation at a trace-level, nonzero concentration), (2) equi-
spaced design: {0, IDE0/2, IDE0, (3/2) × IDE0, 2 × IDE0,

(5/2) × IDE0}, and (3) any other design with at least five
concentrations, provided that the design includes blanks, at
least one concentration approximately equal to 2 × IDE0, and
at least one nonzero concentration below IDE0.

6.2.2.2 The study concentration levels must either be:
known (true concentration levels), or knowable, after the fact.
A concentration is considered known if reference standards can
be purchased or constructed and knowable if an accurate
determination can be made (for example, the median value
from many laboratories, or results from a recognized
laboratory, such as the National Institute of Standards and
Technology (NIST), using a high-accuracy method).

6.2.3 Choose Protocol—The protocol should follow Section
7 of Practice D2777. It should include design run order and
details on when the system is to be purged, have extra blanks
run, and so forth. It should take into consideration possible
problems with carryover, study cost (in time and money), and
time constants of measurement system drift or sample degra-
dation.

6.2.3.1 For purposes of the collaborative study, the study
supervisor should provide instructions to participating labora-
tories to disable (if possible) any internal measurement system
thresholds (such as an instrument detection limit or peak-area
threshold) that are used to determine whether a numerical
measurement is to be reported as a nondetect or less-than, or as
a number (censoring). If censoring is unavoidable, the labora-
tory censoring threshold must be reported with its study data.
However, qualitative criteria used by the method to identify
and discriminate analytes are separate criteria and must be
satisfied according to the method.

6.2.4 Choose Allowable Sources of Variation—It is assumed
that collectively the many sources of variation will contribute
to cause interlaboratory measurements at any true concentra-
tion to be normally distributed. Representative between-
laboratory variation can only be seen if the number of
laboratories providing usable data is maximized. Ordinary
within-laboratory variation must be allowed to affect the
measurement process as happens in routine measurement.
Ideally, there would be many laboratories, and each measure-
ment at each laboratory would be an unsuspecting blind
measurement made by a different analyst using a different
(qualified) measurement system on a different day, in random
order.

6.2.4.1 As emphasized in Practice D2777, maximizing the
number of participating laboratories is often the most important
thing that can be done to guarantee a successful study, and
there are several reasons why the number of participating
laboratories will somewhat exceed the number of laboratories
providing a full set of usable data. A minimum of ten
participating laboratories is recommended.

6.2.4.2 If possible, the study should be conducted com-
pletely blind, particularly if the method is labor-intensive, as
opposed to a highly automated method. That is, not only should
the analysts not be aware of the true concentrations of the
samples they are measuring, but they should not even be aware
of the fact that they are measuring special, study samples. This
is to minimize the extra care distortion of data so common in
analytical studies.

FIG. 2 Flowchart of IDE Procedure
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6.2.4.3 For each laboratory, the maximum number of quali-
fied analysts possible should be involved in the study since
there are variations which may be allowed by the method, may
be practiced by different analysts, and will be seen in routine
analyses.

6.2.4.4 For each laboratory, the maximum number of quali-
fied measurement systems should be used since there are
model-to-model and instrument-to-instrument differences in
equipment and maintenance, as will be seen in routine analy-
ses.

6.2.4.5 For each laboratory, the IDE study should be sched-
uled to span the maximum possible number of days consistent
with holding time constraints since day-to-day changes in
analytical laboratory environmental conditions, contamination,
solvent purity, and other factors can affect measurements, and
will be seen in routine analyses.

6.3 Conduct the IDE Study, Screen the Data, and Choose a
Model:

6.3.1 The IDE study should be conducted in accordance
with Section 9 of Practice D2777. Blank correction should not
be performed by the laboratories, unless the method requires
this subtraction in order to perform the test. Each laboratory
should supply method blank data along with the uncorrected
measurement values, and the study supervisor can determine
whether the reported measurements should be corrected.

6.3.2 The IDE study data should be screened in accordance
with the initial subsections relating to removing data, Section
10 of Practice D2777. Skip to 6.5 if, for any concentration,
more than 10 % of the retained measurements are nondetects or
less-thans.

6.3.3 Identify and Fit the ILSD Model—The ILSD model
should be identified, and its coefficients should be estimated by
using the following procedure. See Caulcutt and Boddy (4) for
more discussion of standard deviation modeling and weighted
least squares (WLS) in analytical chemistry. This model is an
attempt to characterize the unknown (or partly known) function
between interlaboratory measurement standard deviation and
true concentration, σ = G(T). It is used for two purposes: to
provide weights for the WLS regression to fit the mean
recovery model and to provide the interlaboratory standard
deviation estimates crucial to determining critical values and
the IDE.

6.3.3.1 Three ILSD models are proposed. The identification
process considers (fits and evaluates) each model in turn, from
simplest to most complex, until a suitable model is found. Prior
knowledge can be combined with empirical results to influence
the selection of a model if a suitable refereed publication can
be cited. See Carroll and Ruppert (5) for further discussion of
standard deviation modeling. The model order is as follows:
Model A (Constant ILSD Model):

s 5 g1error (1)

where: g is a fitted constant. Standard deviation does not
change with concentration, resulting in a relative standard
deviation that declines with increasing T.
Model B (Straight-Line ILSD Model):

s 5 g1h 3 T1error (2)

where: g and h are fitted constants. Standard deviation
increases linearly with concentration, resulting in an asymp-
totically constant relative standard deviation as T increases.
Model C (Exponential ILSD Model):

s 5 g 3 exp$h 3 T%1error or (3)

s 5 g 3 exp$h 3 T% 3 error (4)

where: g and h are fitted constants. Interlaboratory standard
deviation increases exponentially with concentration, resulting
in a relative standard deviation that may initially decline as T
increases but eventually increases as T increases. Error can be
additive or multiplicative.

(1) In all cases, it is assumed that g > 0. A value of g < 0
has no practical interpretation and may indicate that a different
ILSD model should be used. Furthermore, it is assumed that g
is not underestimated due to censored data among measure-
ments of blanks or other low-concentration samples. (Censor-
ing is addressed in 6.2.3.1, 6.3.2, and 6.5.)

(2) If h < 0, it must not be statistically significant, and
Model A should be evaluated.

6.3.3.2 ILSD Model Identification and Fitting Procedure:
(1) Merge all retained IDE study data (after possible

elimination of some data in accordance with 6.3.2).
(2) For each true concentration, Tk, compute the adjusted

interlaboratory sample standard deviation, sk, an estimate of the
true underlying interlaboratory measurement standard
deviation, σk. The adjusted interlaboratory sample standard
deviation is the sample standard deviation sk, multiplied by the
bias-correction factor, a'n found in Table 1. In this Practice, all
references to computed and fitted values of the interlaborator
sample standard deviation refer to adjusted values. Note that a
simplifying approximation can be used if the number of
retained replicates is the same for each spike level; unadjusted
sample standard deviations can be sued, and the final IDE can
be multiplied by the adjustment factor (see the example). The
larger the number of replicates, the better the approximation.

(3) Plot sk versus Tk.
(4) Using ordinary least squares (OLS) (see Caulcutt and

Boddy (4)), regress sk on Tk, temporarily assuming that a
straight-line model is valid. This provides coefficients, g and h,
in the relationship:

sk 5 g1h 3 Tk1error (5)
(5) Evaluate the reasonableness of Model A (the constant

ILSD model) by doing two things. Note the p-value associated
with slope estimate h, from the OLS regression. If it is less than

TABLE 1 Bias-Correction Adjustment Factors for Sample Standard Deviations Based on n Measurements (at particular concentration)A

n 2 3 4 5 6 7 8 9 10
a'n 1.253 1.128 1.085 1.064 1.051 1.042 1.036 1.031 1.028

A For each true concentration Tk, the adjusted value sk = a'ns'k should be modeled in place of sample standard deviation s'k. For n > 10, use the formula a'n = 1 + [4(n
– 1)]-1. See Johnson and Kotz (6).
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5 %, there is statistically significant slope, and Model A should
be rejected; proceed to the next step. Secondly, examine the
plot produced in step (3), or a plot of the residuals from the
OLS fit. If obvious systematic curvature is present (for
example, quadratic or exponential-like behavior), Model A
should be rejected; proceed to step (8). If Model A is not
rejected, skip to 6.3.4.

(6) Model A is rejected, due to statistically significant
slope. Compute residuals:

rk 5 sk 2 ~g1h 3 Tk! (6)
Plot rk versus Tk.

(7) Evaluate the reasonableness of Model B (the straight-
line ILSD model). Examine the plot produced in step (6). If
obvious systematic curvature is present (for example, quadratic
or exponential-like behavior), with a minimum that appears to
be within the concentration range, Model B should be rejected;
proceed to step (8). If Model B is not rejected, skip to 6.3.4.

(8) To evaluate the reasonableness of Model C (the expo-
nential ILSD model), the model must first be fit. There are two
approaches. The simplest approach is to do OLS regression on
the log of the interlaboratory sample standard deviations:

lnsk 5 lng1h 3 Tk1error (7)
This corresponds to the multiplicative error assumption, which
is generally a good assumption. The fit will provide h directly
and g' = ln g which is converted, g = exp{g'}. Alternatively, the
fit can be done using nonlinear least squares (NLLS), by
Newton-Raphson iteration or another method. This approach
corresponds to the less-plausible additive error assumption. In
either case, the fit should satisfy two types of evaluation. First,
the p-value for h should be less than 5 %. Secondly, a plot of
the residuals, in log form, should be constructed. Plot rk versus
Tk, where:

rk 5 lnsk 2 ~lng1h 3 Tk! (8)

The plot should show no systematic behavior (for example,
curvature). If the fit satisfies both types of evaluation, proceed
to 6.3.4. Otherwise, a different and possibly more complex
model will have to be used. One possibility is the Rocke and
Lorenzato (7) model, which has:

s'~g1h 3 T 2!1/2 (9)

This model has nearly constant (slightly increasing) ILSD
for low true concentrations, changing to standard deviation
nearly proportional to concentration for higher concentration
levels. It can be fit and evaluated using NLLS or maximum
likelihood. If there are enough true concentrations, a model
with more coefficients could be considered, such as quadratic
(strictly increasing with increasing concentration), or even
cubic.

6.3.4 Fit the Mean Recovery Model—The mean recovery
model is a simple straight line:

Model R:Y 5 a1b 3 T1error (10)

The fitting procedure depends on the model selection from
6.3.3. If Model A was selected for ILSD, then OLS can be used
to fit Model R for mean recovery (see Caulcutt and Boddy (4)).
If a nonconstant ILSD model was selected, such as Model B or
C, then WLS should be used to fit mean recovery. This

approximately provides the minimum variance unbiased linear
estimate of the coefficients a and b. The WLS procedure
appears in 6.3.4.1.

6.3.4.1 Weighted Least Squares Procedure, Using the Inter-
laboratory Standard Deviation Model:

(1) Using the ILSD model and coefficient estimates from
6.3.3, compute predicted interlaboratory standard deviation, ŝk

for each true concentration, Tk:

Model B: ŝ k 5 g1h 3 Tk (11)

Model C: ŝ k 5 g 3 exp$h 3 Tk% (12)
(2) Compute weights for WLS:

wk 5 ~ ŝ k!
22 (13)

(3) Note that if this is done using computer software, the
default setting for weights may be different. For example,
instead of supplying the values, (ŝk)

−2 as weights, the software
may require the user to supply values (ŝk) or (ŝk)

2 as weights
that are internally transformed by the software.

(4) Carry out WLS computations analogous to OLS com-
putations. See Table 2 or Caulcutt and Boddy (4). The result
will be coefficient estimates, a and b, for the mean recovery
model, Model R.

(5) There are three approximate approaches to WLS com-
monly practiced but that are not acceptable for this application.
One approach uses the reciprocal squared sample standard
deviations as weights. In this context, since a standard devia-
tion model is explicitly evaluated and selected, the predicted
value for sk is probably more precise than a sample value. The
predicted value should be used in place of the sample standard
deviation for weight computation. A second approach omits the
blank measurements, divides through the rest of the measure-
ments by the true concentrations, and does OLS using the
independent variable 1/T in the model:

Y/T 5 a 3 ~1/T!1b1error (14)
(6) This is not acceptable because it leads to loss of data

and because the weights so generated implicitly assume that
interlaboratory standard deviation is strictly proportional to
true concentration. The IDE concept and computation rests on
positive, quantifiable interlaboratory standard deviation for
measurements of blanks, and a proportional relationship cannot

TABLE 2 Computations to Estimate Straight-Line Model
Coefficients By Means of Least Squares—Ordinary and Weighted

Ordinary Least Squares, OLS Weighted Least Squares, WLS
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Ti, T̄w 5 o
i51

n

wiTi/o
i51

n

wi

ȳ 5 T̄ 5
1
n o

i51

n

Ti ȳw 5 o
i51

n

wi yi/o
i51

n

wi

STT 5 o
i51

n

sTi 2 T̄d2
SwTT 5 o

i51

n

wi sTi 2 T̄d2

STY 5 o
i51

n

sTi 2 T̄d syi 2 ȳd SwTY 5 o
i51

n

wi sTi 2 T̄d syi 2 ȳd

Slope = b = STY/STT Slope = b = SwTY/SwTT

Intercept = a = ȳ − bT̄ Intercept = a = ȳw − bT̄w
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hold for arbitrarily small concentrations. The third approach
exploits the same approximate but untrue proportional relation-
ship to obtain mathematically simpler WLS formulas.

(7) After fitting, the mean recovery model should be
evaluated for reasonableness and lack of fit. This should be
done by ensuring the following: (1) The fit is statistically
significant (overall p-value <5 %); (2) The lack of fit p-value
(if available; see Caulcutt and Boddy (4) or Draper and Smith
(3)) is not statistically significant (lack of fit p-value > 5 %); (3)
A plot of the residuals should show no obvious systematic
curvature (for example, quadratic or exponential-like behav-
ior). If the mean recovery model fails the evaluation, then the
study supervisor will have to determine if only a subset of the
data should be analyzed (perhaps the model fails for the higher
concentration(s)), or if more data are needed.

6.4 Compute the IDE—The IDE is computed using the
ILSD model to estimate interlaboratory standard deviation at
true concentration = 0 and at the IDE, and using the mean
recovery model to transform measured concentrations to true
concentrations and vice versa. The computation has three
stages, where the following are computed in succession:
YC = recovery critical value, LC = true concentration critical
value, and LD = IDE. Additionally, one can compute YD = the
expected measurement at the IDE.

6.4.1 Compute the recovery critical value:

YC 5 k1 3 ŝ1a (15)

where:
k1 = one-sided, 90 % confidence upper statistical tolerance

limit (also known as the one-sided statistical toler-
ance interval) for the 99 % quantile of the normal
distribution), based on n observations (see Table 2),

n = total number of measurements retained in the IDE
study after 6.3.2,

ŝ(0) = G (0), the predicted interlaboratory standard devia-
tion of the measurement of a blank sample. G (0) = g
for ILSD Model B or C, but for Model A, G (0)
should be set to the root mean squared error (RMSE)
from the recovery model fit,

a = estimated mean recovery intercept, and
YC = measurement value that with (approximately) 90 %

confidence will be exceeded no more than 1 % of the
time when a blank sample is measured.

6.4.2 Compute LC, the true concentration critical value, by
inverting the mean recovery formula with value YC:

LC 5 R21~YC! 5 ~YC 2 a!/b (16)

where:
R−1 = inverse prediction function that transforms a mea-

sured concentration into the true concentration, based
on mean recovery, modeled by a straight line, and

LC = true concentration that has an expected recovery that
with (approximately) 90 % confidence, will be ex-
ceeded no more than 1 % of the time when a blank
sample is measured.

6.4.3 If the constant ILSD model (Model A) was used,
compute:

LD 5 LC1k2 3 ŝ~0!/b (17)

where: k2 = one-sided, 90 % confidence upper statistical
tolerance limit for the 95 % quantile of the normal distribution,
based on n observations (see Table 3).

6.4.4 If either the straight-line ILSD model (Model B) or the
exponential ILSD model (Model C) was used, compute LD by
recursively solving:

LDi11 5 R21 ~k1 3 ŝ~0!1k2 3 G~LDi!1a! (18)

5 @k1 3 ŝ~0!1k2 3 G~LDi!#/b

where: G(LDi) is the predicted interlaboratory standard
deviation at true concentration LDi. Therefore, the recursive
LD formulas are as follows:

Model B:LDi11 5 @k1 3 ŝ~0!1k2 3 ~g1h 3 LDi!#/b (19)

Model C:LDi11 5 @k1 3 ŝ~0!1k2 3 ~g 3 exp$h 3 LDi%!#/b (20)

If a different, nonconstant ILSD model, such as the Rocke
and Lorenzato model (7) is used, the recursive formula for LD
would take the general form of (Eq 18).

6.4.4.1 A reasonable initial estimate for LD is:

LD0 5 2 3 LC, or (21)

LD0 5 LC1k2 3 ŝ~0!/b (22)

For each iteration, the current estimate of LD is plugged into
the right-hand side of the recursive formula, producing a new
estimate for LD. Iterations should continue until the relative
difference between successive LD estimates is < 1 %. The LD
is the true concentration about which with (approximately)
90 % confidence, a single sample measurement will produce a
reported measurement that 95 % of the time will exceed YC.

6.4.5 The result is IDE = LD. The IDE is the true concen-
tration at which the measurement of a single sample will
exceed YC 95 % of the time (resulting in a detection), and
simultaneously, the measurement of a single blank sample will
exceed YC only 1 % of the time, both with approximately 90 %
confidence:

TABLE 3 90 %-Confidence Upper, One-sided Statistical Tolerance
Limit Factors for Computing the 99 % ⁄95 % IDEA

Number of Observations
Retained, n

99 % Quantile, k1 95 % Quantile, k2

5 4.67 3.40
10 3.53 2.57
15 3.21 2.33
20 3.05 2.21
25 2.95 2.13
30 2.88 2.08
35 2.83 2.04
40 2.79 2.01
45 2.76 1.99
50 2.74 1.97
55 2.71 1.95
60 2.69 1.93
65 2.68 1.92
70 2.66 1.91
75 2.65 1.90
80 2.64 1.89
90 2.62 1.87

100 2.60 1.86
150 2.55 1.82
200 2.51 1.79

A Computed using STINT software (93/12/3 version), by Prof. W. Meeker and J.
Chow of Iowa State University.
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YD 5 a1b 3 LD (23)

is the expected measurement value for a sample at true
concentration LD.

6.5 Nontrivial Amount of Censored Data, >10 % for at least
one true concentration of data reported as nondetects or
less-thans. Despite the attempt in 6.2.3.1 to reduce or eliminate
reported nondetects or less-thans, they may still occur at a level
that disrupts the analysis of the data presented in 6.3 and 6.4.
If this happens, the study supervisor should contact laborato-
ries with such measurements to see whether the uncensored
data can be extracted from data archives. If this is not a
sufficient remedy, serious consideration should be given to
augmenting the IDE study with measurements of samples at
new and different concentrations (generally, higher). A third
and final option is to follow the procedure in 6.5.1 through
6.5.4. It should be noted, however, that the procedure provides
no assurance of the probability of false positives, and the IDE
so computed should always be identified with such a qualifier.

6.5.1 Use the Rocke and Lorenzato Model (7) as the ILSD
model and fit it using NLLS with only data for concentrations
that did not have more than 10 % nondetects or less-thans.

6.5.2 Use the same data as in 6.5.1 to fit Model R (the
straight-line mean recovery model) using WLS.

6.5.3 If less than half of all blank sample results are reported
as nondetect or less-thans, proceed with 6.4.2 through 6.4.5,
using the models.

6.5.4 If half or more of all blank sample results are reported
as nondetect or less-thans, use linear interpolation among
low-concentration samples to estimate the true concentration
that would have a detection probability of 50 %. This is the
effective LC. For example, if nondetect or less-than was
reported for 70 % of blank samples and for 20 % of samples
with T = 3 ppb, then:

LC 5 3 3 ~70 2 50!/~70 2 20! 5 1.2 ppb (24)

Proceed with 6.4.4 through 6.4.5.

7. Data Analysis

7.1 The data analysis for eliminating data is given in Section
10 of Practice D2777.

7.2 The data analysis involved in computing an IDE is
shown by example in Section 10.

8. Report

8.1 The analysis report should be structured as in Annex A1.

8.2 The report should be given a second-party review to
verify that:

8.2.1 The data transcription and reporting have been cor-
rectly performed,

8.2.2 The analysis of the data has been correctly performed,
and

8.2.3 The results of the analysis have been appropriately
used, including possible rejection of assumptions necessary to
compute an IDE.

8.3 A statement of the review and the results should
accompany the report. Reviewer(s) should be qualified in one
or more of the following areas: (1) applied statistics and (2)
analytical chemistry.

9. Rationale

9.1 The basic rationale for the 99 % ⁄95 % IDE is contained
in Currie (1), and is shown in Fig. 1. For a selected test method,
this figure shows single-laboratory variation in measurements
of both blank samples and samples at true concentration = T0,
assuming perfect recovery. The variation shown is according to
the normal distribution with known mean (zero bias) and
known interlaboratory standard deviation. The critical value,
LC*, is used to determine detection. It can be moved to
decrease α = the probability of a false detection at the price of
increasing β = the probability of a false nondetection, or vice
versa. Given an acceptable value for α, a value for LC* can be
found. Given, also, an acceptable value for β, a suitable value
for T0 can be found. T0 is then a single-laboratory detection
limit at which reliable detection can occur by definition of
acceptable α and β. Following this IDE procedure, this concept
(LC and LD) can be extended to a method’s interlaboratory
detection capability estimation.

9.2 There are several real-world complications to Fig. 1. See
Maddalone et al. (6) and see Gibbons (8). Some of these
complications are listed with their remedies:

9.2.1 Recovery is not perfect; the relationship between
measured values and true concentrations cannot be assumed to
be trivial. There is bias between true and measured values. It
can and should be modeled, typically by a straight line.

9.2.2 Variation is introduced by different laboratories,
analysts, models and pieces of equipment, environmental
factors, latitude in a test method, contamination, carry-over
influence, and other factors. It is intractable to model these
individually, but their collective contributions towards mea-
surement interlaboratory standard deviation can be observed if
it is part of how a study is designed and conducted.

9.2.3 The interlaboratory standard deviation of measure-
ments (quantified by the standard deviation of the normal
distribution) is unknown. Standard deviations must be esti-
mated with finite sample sizes, and statistical tolerance limits
must be used to obtain high confidence of an estimate of a
distribution quantile.

9.2.4 Interlaboratory standard deviation of measurements
may change with true concentration, possibly due to the
physical principle of the test method. Short of severely
restricting the concentration range for a study, this requires an
empirical ILSD model to enable prediction of the interlabora-
tory standard deviation of measurements at different true
concentrations.

9.3 A more realistic picture of analytical measurement is
shown in Fig. 3.

10. Example (Straight-Line ILSD Model)

10.1 Identify and Fit the ILSD Model—Ten laboratories
participated in a (synthesized) IDE study where single mea-
surements were made at each of five concentrations, including
blanks: Tk = {0, 0.25, 0.50, 1, 2} ppb. Considerations of 6.2,
6.3.1, and 6.3.2 are not described in Section 10. The procedure
described in 6.3.3 is followed, using the adjusted-IDE approxi-
mation of 6.3.3.2, assuming that no data were eliminated in
accordance with 6.3.2.
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10.1.1 The reported measurements are shown in Table 4.
These values are also shown in Fig. 4. The straight-line
recovery model appears to be plausible, and the data appear to
have interlaboratory measurement standard deviation that in-
creases with concentration. Note that for this example, high
blank measurements and an unusually high recovery slope
were used for the purposes of illustration (to distinguish
measured values from true values). In practice, the recovery
curve intercept and slope would typically be closer to 0 and 1,
respectively.

10.1.2 Interlaboratory sample standard deviations at each
true concentration are computed, and are shown in Table 4.

10.1.3 A plot of interlaboratory sample standard deviation
versus true concentration is shown in Fig. 5. There is increas-
ing qualitative evidence of an increase in standard deviation
with increasing concentration.

10.1.4 A straight-line regression (OLS) is conducted of the
interlaboratory sample standard deviations, sk, versus Tk. The
results are shown in Table 5, and the fit is shown in Fig. 5. The
estimates are intercept g = 1.0891 and slope h = 0.95682.

10.1.5 The p-value associated with the slope estimate, h, is
1.28 % < 5 %, so Model A, the constant ILSD model, is
rejected.

10.1.6 The residuals from the straight-line interlaboratory
standard deviation fit are computed as follows and are dis-
played in Fig. 6:

rk 5 sk 2 ~1.08910.957 3 Tk! (25)

10.1.7 There is no evidence of systematic curvature, so the
analysis proceeds in accordance with 6.3.4.

10.2 Fit the Mean Recovery Model—Since the interlabora-
tory standard deviation has been shown to be nonconstant with
respect to true concentration, WLS is used to fit the mean
recovery model, and the fitted ILSD model is used explicitly to
estimate the ILSD at arbitrary true concentrations. The proce-
dure described in 6.3.4 is followed.

10.2.1 The estimate of intercept, g, and the estimate of
slope, h, in the straight-line ILSD model, are used to predict the
ILSD at each true concentration, Tk. These predicted values, ŝk,
are shown in Table 4 and are assumed to be closer to the true
ILSDs, σk, than are the sample ILSDs, sk.

10.2.2 Weights are computed, based on the predicted
ILSDs:

wk 5 ~ ŝ k!
22 (26)

They are shown in Table 4.
10.2.3 The WLS is carried out to estimate the coefficients, a

and b, of the straight-line mean recovery relationship:

Model R:Y 5 a1b 3 T1error (27)

The results of WLS are shown in Fig. 7 and in Table 6.

FIG. 3 Reliable Detection at the IDE (Realistic Case)

TABLE 4 Reported Measurements and Computed Statistics from
IDE Study

True
Concentration,

Tk, ppb

Reported
Measurement, Yi, one
per Laboratory, ppb

Sample
Standard
Deviation

Predicted
Standard
Deviation

Weights for
WLS

0.0 1.41, 3.94, 2.22, 3.48,
1.96, 0.92, 2.17, 2.36,
4.50, 3.26

1.137 1.089 0.843

0.25 4.10, 3.51, 4.07, 4.34,
4.54, 2.76, 2.03, 4.13,
6.06, 6.47

1.336 1.328 0.567

0.50 3.97, 7.34, 6.41, 6.25,
6.38, 7.64, 4.67, 6.74,
4.38, 6.48

1.255 1.568 0.407

1.0 7.54, 7.68, 8.38, 7.14,
3.12, 10.97, 11.15,
10.44, 9.73, 7.27

2.406 2.046 0.239

2.0 8.20, 13.97, 12.88,
18.31, 16.47, 16.06,
12.56, 14.21, 13.96,
17.37

2.900 3.003 0.111
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10.2.4 The fit is evaluated as follows: (1) The overall
p-value is <0.0001 < 5 %; (2) The lack of fit p-value is 0.8537
> 5 %; (3) Fig. 8 shows a plot of the residuals versus true
concentration and shows no evidence of systematic curvature.
Therefore, the straight-line mean recovery fit is acceptable.

10.3 Compute the IDE—Having obtained acceptable fits of
a ILSD model and a mean recovery model, the IDE can be
computed. The procedure described in 6.4 is followed.

10.3.1 The recovery critical value is computed and is shown
in Fig. 7:

YC 5 k1 3 ŝ~0!1a 5 2.74 3 1.08912.73 5 5.71 (28)

where:
k1 = 2.74 = the one-sided statistical tolerance limit for

90 % confidence of the 99 % quantile, based on the
normal distribution assumption and n = 50
observations,

ŝ(0) = g = 1.089 is the predicted ILSD at T = 0 (blank
samples), and

a = 2.73 = intercept from the mean recovery curve (recall
that this is set much higher than 0 for this example to
clearly distinguish measured values from true values
in the plots and tables; see 10.1.1).

10.3.2 The true concentration critical value is computed and
is shown in Fig. 7:

LC 5 ~YC 2 a!/b 5 ~5.71 2 2.73!/5.87 5 0.51 ppb (29)

where: b = 5.87 = slope of the recovery curve (recall that this
is set much higher than 1 for this example to clearly distinguish
measured values from true values in the plots and tables.

FIG. 4 Reported Measurements versus True Concentration, One Measurement per Laboratory at Each Concentration (ppb)

FIG. 5 Sample Standard Deviation (Y) versus True Concentration
(sk versusTk)

TABLE 5 Results of Straight-Line Fit of sk versusTk by OLS

Linear Fit

Standard Deviation (Y) = 1.0891 + 0.95682 T
Standard Deviation (Y) = g + h T

Summary of Fit

RSquare 0.904996
RSquare Adj 0.873329

Analysis of Variance

Source df
Sum of
Squares Mean Square F Ratio

Model 1 2.2887587 2.28876 28.5778
Error 3 0.2402664 0.08009 Prob>F
C total 4 2.5290251 0.0128

Parameter Estimates
Term Estimate Standard Error T-Ratio Prob> T

g (intercept) 1.0891019 0.184493 5.90 0.0097
h (slope) 0.9568195 0.178985 5.35 0.0128
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10.3.3 The IDE (also called the LD, in the tradition of
Currie (1) is computed recursively. An initial value is set as
follows:

LD0 5 LC1k2 3 ŝ~0!/b (30)

5 0.5111.97 3 1.089/5.87 5 0.874

where: k2 = 1.97 = one-sided statistical tolerance interval for
90 % confidence of the 95 % quantile, based on the normal
distribution assumption and n = 50 observations: Then the
recursive function is solved, iteratively, as follows:

LD1 5 R21~k1 3 ŝ~0!1k2 3 G~LD0!1a! (31)

5 LC1k2 3 ~g1h 3 LD0!/b

50.51111.97 3 ~1.08910.957 3 0.874!/5.87 5 1.154

LD2 5 0.51111.97 3 ~1.08910.957 3 1.154!/5.87 5 1.245 (32)

etc., until convergence is achieved at about the eighth
iteration, LD7 ≈ LD8= 1.287. Therefore, IDE = LD × (adjust-

ment factor from Table 1) = 1.287 × 1.028 ≈ 1.3 ppb, as is
shown in Fig. 7. Note that LD > 2 × LC = 1.02.

10.4 Based on this study, there is (approximately) 90 %
confidence that the analyte can be detected at least 95 % of the
time at 1.3 ppb, and simultaneously that blank samples will
result in nondetect no more than 1 % of the time.

NOTE 3—In this example the calculated IDE is less than most calculated
standard deviation values in Table 4. This is because the data used for the
example reflect high blank values and an unusually high recovery slope.
This example serves to illustrate the utility of the practice even when such
anomalous results are reported.

10.4.1 Also shown in Fig. 7 is the expected measurement
value at the IDE concentration:

YD 5 R~LD! 5 a1b 3 LD 5 2.7315.87 3 1.287 5 10.3 (33)

FIG. 6 Residuals from Straight-Line Model of Interlaboratory Measurement Standard Deviation versus True Concentration

FIG. 7 Weighted Least Squares Fit of Mean Recovery Relationship, with IDE and Critical Limits
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TABLE 6 Numerical Results of WLS to Fit the Straight-line Mean
Recovery Relationship Between Measured Concentration and

True Concentration

Response: Y-Linear Fit

Y = 2.729549 + 5.8711952 T
Y = a + b T

Summary of Fit
RSquare 0.794662
RSquare Adj 0.790384
Root Mean Square
Error

0.982227

Lack of Fit

Source df
Sum of
Squares

Mean
Square F Ratio

Lack of fit 3 0.789330 0.26311 0.2601
Pure error 45 45.519596 1.01155 Prob>F
Total error 48 46.308925 0.8537

Parameter Estimates

Term Estimate
Standard

Error
T Ratio Prob> T

a (intercept) 2.729549 0.264938 10.30 <0.0001
b (slope) 5.8711952 0.430774 13.63 <0.0001

Analysis of Variance

Source df
Sum of
Squares

Mean
Square F Ratio

Model 1 179.21612 179.216 185.7606
Error 48 46.30893 0.965 Prob>F
C total 49 225.52504 <0.0001

FIG. 8 Plot of Residuals from WLS Fit of Straight-line Mean Re-
covery Relationship versus True Concentration
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ANNEX

(Mandatory Information)

A1. ANNOTATED OUTLINE FOR ANALYSIS REPORTS

A1.1 This outline presents the information to be included in
the reports of analysis performed in accordance with this
practice.

A1.2 Single-Laboratory IDE Report

A1.2.1 Identification of laboratory, identification of analyti-
cal method, analyte(s), matrix (or matrices), sample properties
(for example, volume).

A1.3 Any anomalies in the study, including QA/QC sample
results.

A1.4 99 % ⁄95 % Interlaboratory Detection Estimate Report.

A1.4.1 Data screening results, individual values and labo-
ratories omitted from further analysis, and missing values.

A1.4.2 The ILSD model selected.

A1.4.3 Coefficient estimates for the ILSD model and mean
recovery model.
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