

Standard Classification System and Basis for Specification for Liquid Crystal Polymers Molding and Extrusion Materials (LCP)¹

This standard is issued under the fixed designation D5138; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This classification system covers liquid crystal polymeric (LCP) materials suitable for injection molding and extrusion. This classification system allows the use of liquid crystal polymers that are recycled, reconstituted, recycled-regrind, recovered, or reprocessed, or a combination thereof, provided that the requirements as stated in this classification system are met. It is the responsibility of the supplier and the buyer of liquid crystal polymers that are recycled, reconstituted, recycled-regrind, recovered, or reprocessed, or a combination thereof, to ensure compliance.
- 1.2 The properties included in this classification system are those required to identify the compositions covered. Other requirements necessary to identify particular characteristics important to specialized applications are allowed. These shall be agreed upon between the user and the supplier, by using suffixes as given in Section 5.
- 1.3 This classification system and subsequent line callout (specification) are intended to be a means of calling out plastic materials used in the fabrication of end-use items or parts. It is not intended for the selection of materials. Material selection can be made by those having expertise in the plastics field after careful consideration of the design and the performance required of the part, the environment to which it will be exposed, the fabrication process to be employed, the costs involved, and the inherent properties of the material other than those covered by this classification system.
- 1.4 The values stated in SI units are to be regarded as standard.
- 1.5 The following precautionary caveat pertains only to the test method portion, Section 11, of this classification system: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and

health practices and determine the applicability of regulatory limitations prior to use.

Note 1—There is no known ISO equivalent to this standard.

2. Referenced Documents

2.1 ASTM Standards:²

D256 Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics

D618 Practice for Conditioning Plastics for Testing

D638 Test Method for Tensile Properties of Plastics

D648 Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position

D790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials

D883 Terminology Relating to Plastics

D1238 Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer

D1600 Terminology for Abbreviated Terms Relating to Plastics

D3418 Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry

D3641 Practice for Injection Molding Test Specimens of Thermoplastic Molding and Extrusion Materials

D3835 Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer D3892 Practice for Packaging/Packing of Plastics

D4000 Classification System for Specifying Plastic Materials

D5630 Test Method for Ash Content in Plastics

D7209 Guide for Waste Reduction, Resource Recovery, and Use of Recycled Polymeric Materials and Products (Withdrawn 2015)³

E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications

¹ This classification system is under the jurisdiction of ASTM Committee D20 on Plastics and is the direct responsibility of Subcommittee D20.15 on Thermoplastic Materials.

Current edition approved April 1, 2016. Published April 2016. Originally approved in 1990. Last previous edition approved in 2011 as D5138 - 11. DOI: 10.1520/D5138-16.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

2.2 IEC and ISO Standards:⁴

IEC 112 Recommended Method for Determining the Comparative Tracking Index of Solid Insulation Materials

IEC 243 Recommended Methods of Test for Electrical Strength of Solid Insulating Materials at Power Frequencies

ISO 62 Plastics—Determination of Water Absorption

ISO 75-1 Determination of Temperature of Deflection Under Load—General Test Method

ISO 75-2 Determination of Temperature of Deflection Under Load—Plastics and Ebonite

ISO 178 Plastics—Determination of Flexural Properties of Rigid Materials

ISO 180 Plastics—Determination of Izod Impact Strength of Rigid Materials

ISO 294-1 Plastics—Injection Moulding of Test Specimens of Thermoplastic Materials—General Principles for Injection Molding

ISO 527-1 Plastics—Determination of Tensile Properties—General Principles

ISO 527-2 Plastics—Determination of Tensile Properties— Test Conditions for Moulding and Extrusion of Plastics

ISO 604 Plastics—Determination of Compressive Properties

ISO 3451-1 Plastics—Determination of Ash Content—Part 1: General Methods

ISO 11357-1 Plastics—Differential Scanning Calorimetry (DSC)—Part 1: General Principles

ISO 11357-3 Plastics—Differential Scanning Calorimetry (DSC)—Part 3: Determination of Temperature and Enthalpy of Melting and Crystallization ISO 11443 Plastics—Determination of the Fluidity of Plastics Using Capillary and Slit-Die RheometersISO 20753 Plastics—Test Specimens

2.3 Military Standard:⁵

MIL-M-24519 Molding Plastics—Electrical Thermoplastics

2.4 Underwriters Laboratories (UL):⁶

UL 94 Test for Flammability of Plastic Materials for Parts in Devices and Appliances

2.5 National Technical Information Service (NTIS):⁷
AD297457 Procedure and Analytical Method for Determining Toxic Gases Produced by Synthetic Compounds

3. Terminology

- 3.1 *Definitions*—Except for the terms defined below, the terminology used in this classification system is in accordance with Terminologies D883 and D1600.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *liquid crystal polymer (LCP)*—A family of thermoplastic polymers which upon heating to the processing temperature, exhibit ordered structure and under shear, highly aligned chains that are retained in the solid state. Liquid crystal polymers are polymers that in the molten state exhibit birefringence in polarized light.

TABLE LCP Liquid Crystal Polymers—Classification

Group	Description	Class	Description	Grade ^A	Description
01	unsubstituted or methyl substituted, wholly aromatic copolyester, polyether, or polyester amide	1	high temperature DTUL ^B >260°C	0	
		2	medium temperature DTUL = 220-260°C	0	
		3	general purpose DTUL <220°C	0	
02	mixed aromatic/aliphatic copolyesters, polyethers, or polyester amides	1	high temperature DTUL >260°C	0	
	. ,	2	medium temperature DTUL = 220–260°C	0	
		3	general purpose DTUL <220°C	0	
03	aromatic copolyesters, polyethers, or polyesteramides with aliphatic sidechain	1	high temperature DTUL >260°C	0	
		2	medium temperature DTUL = 220-260°C	0	
		3	general purpose DTUL <220°C	0	
04	blends	1	high temperature DTUL >260°C	0	
		2	medium temperature DTUL = 220-260°C	0	
		3	general purpose DTUL <220°C	0	
00	other	0	other	0	

^A Description unspecified.

⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁵ Available from Standardization Documents Order Desk, DODSSP, Bldg. 4, Section D, 700 Robbins Ave., Philadelphia, PA 19111-5098, http://dodssp.daps.dla.mil.

⁶ Available from Underwriters Laboratories (UL), 2600 N.W. Lake Rd., Camas, WA 98607-8542, http://www.ul.com.

⁷ Available from National Technical Information Service (NTIS), 5301 Shawnee Rd., Alexandria, VA 22312, http://www.ntis.gov.

^B DTUL is deflection temperature under load measured at 1.8 MPa and is determined in accordance with Table A or Table B.

4. Classification

4.1 The LCP materials are classified into groups according to their chemical composition. These groups are subdivided, whether reinforced or not, into classes based on thermal performance as shown in Table LCP.

Note 2—An example of this classification system is as follows: The specification LCP0120 indicates the following LCP = liquid crystal polymer as found in Terminology D1600:

01 = Unsubstituted, or methyl substituted, wholly aromatic copolyester, polyether, or polyester amide (group)

2 = Medium temperature, DTUL = 220-260°C (class)

0 = Other (grade)

- 4.1.1 To facilitate the incorporation of future or special materials, the "other" category for Group (00), Class (0), and Grade (0) is shown in Table LCP.
- 4.2 Reinforced, filled, and lubricated versions of LCP materials are classified in accordance with Tables LCP and Table A. Table LCP is used to specify the group or the group and class of LCP and Table A is used to specify the property requirements.

Note 3—Test specimens shall be prepared in accordance with ISO 20753, Specimen Type A1 or Practice D3641 accordingly.

Note 4—A similar callout can be developed using Table B.

4.2.1 Reinforced, filled, and lubricated variations of the basic materials are identified by a single letter that indicates the filler, or reinforcement used, or both, and two digits that indicate the nominal quantity in percent by weight. The reinforcement letter designations and associated tolerance levels are shown in Table 4.

Note 5—This part of the system uses the percent of reinforcements or additives, or both, in the callout of the modified basic material. The types and percentages of reinforcements and additives are shown on the suppliers' technical data sheet unless they are proprietary in nature. If necessary, additional callout of these reinforcements and additives can be accomplished by the use of the suffix part of the system (see Section 5).

4.2.2 Specific requirements shall be shown by a sixcharacter specification. The specification will consist of the letter A and the five digits comprising the cell numbers for the property requirements in the order as they appear in Table A.

- 4.2.2.1 Although the values listed are necessary to include the range of properties available in existing materials, this does not imply that every possible combination of properties exists or can be obtained.
- 4.2.3 When the grade or class of the basic material is not known or is not important, the "0" classification shall be used.

Note 6-An example of this classification for specifying a reinforced LCP material is given as follows: The specification LCP0120G30A22450 would indicate the following material requirements:

LCP = Liquid Crystal Polymer as found in Terminology D1600

01— = Unsubstituted or methyl substituted, wholly aromatic copolyester, polyether, or polyester amide (group),

2 = medium temperature (class)

0 = unspecified (grade)

G30 = Glass reinforced at 30 % nominal level

A = Table A property requirements

2 = Tensile strength, min, 100 MPa

2 = Flexural modulus, min, 8 GPa

4 = Notched izod impact, min, 15 kJ/m

5 = Deflection temperature under load, min, 260°C at 1.8 MPa,

0 = Unspecified

If no properties are specified, the specification would be LCP0120G30A00000.

5. Suffixes Requirements

- 5.1 When additional requirements are needed that are not covered by the basic requirements or cell-table requirements, they shall be indicated through the use of suffixes.
- 5.2 A list of suffixes is found in Classification System D4000 (Table 3) and are used for additional requirements as appropriate.
- 5.2.1 Additional suffixes will be added to that standard as test methods and requirements are developed and requested.

6. General Requirements

- 6.1 The composition of the specified material shall be uniform and shall conform to the requirements specified herein.
- 6.2 The basic requirements from the property tables or cell tables are always in effect unless superseded by specific suffix requirements, which always take precedence.

TABLE A	Property	Requirements	for Liqu	id Crysta	I Polymer	Based	on ISO	Test Methods
---------	----------	--------------	----------	-----------	-----------	-------	--------	---------------------

						•						
			0	1	2	3	4	5	6	7	8	9
1	Tensile strength, min, MPa	ISO 527	unspecified	70	100	120	140	160	180	200	220	specify value
2	Flexural modulus, min, GPa	ISO 178	unspecified	4	8	12	16	20	24	28	32	specify value
3	Notched izod impact, min, kJ/m ²	ISO 180	unspecified	5	9	12	15	18	25	37	50	specify value
4	DTUL ^A at 1.8 MPa, min,° C	ISO 75/A	unspecified	140	180	220	240	260	300	340	380	specify value
5	To be determined		unspecified									specify value

^A DTUL = Deflection temperature under load tested flatwise on 80 by 10 by 4-mm specimen.

TABLE B (Formerly Table A in D5138 - 90) Property Requirements for LCP Based on ASTM Test Methods

	0	1	2	3	4	5	6	7	8	9
Tensile strength, MPa, min, ^A (D638)	unspecified	70	100	120	140	160	180	200	220	specify value
Flex modulus, GPa, min, ^B (D790)	unspecified	4	8	12	16	20	24	28	32	specify value
Notched Izod impact, min, J/m, (D256) ^C	unspecified	40	75	100	125	150	200	300	400	specify value
Deflection temperature, min, °C at 1.8 MPa, (D648) ^D	unspecified	140	180	220	240	260	300	340	380	specify value
To be determined	unspecified									specify value

^A Type 1 tensile bar, 3.2 mm thick tested at 5 mm/min ± 25 % (minimum length 200 mm).

TABLE 4 Reinforcement-Filler^A Symbols^B and Tolerances

Symbol	Material	Tolerance (Based on Total Mass A)
C G	carbon and graphite fiber	±2 % +2 %
L	glass lubricants (for example PTFE,	±2 % depends upon material and
	graphite, silicone, and molybdenum disulfide)	process—to be specified
M	mineral	±2 %
R	combinations of reinforcements or fillers, or both	±3 % for the total

^AAsh content of filled, or reinforced material, or both, is determined using either Test Method D5630 or ISO 3451-1 where applicable.

7. Detail Requirements

- 7.1 The material shall conform to the requirements prescribed in Tables LCP and A (or B), and the suffix requirements as they apply.
- 7.2 For the purposes of determining conformance with this classification system, all specified limits for a specification (line callout) based on this classification system are absolute limits, as defined in Practice E29.
- 7.3 With the absolute method, an observed value or a calculated value is not rounded, but is to be compared directly with the limiting value. Conformance or nonconformance is based on this comparison.

8. Sampling

- 8.1 Sampling shall be statistically adequate to satisfy the requirements of 12.4.
- 8.2 A batch or lot shall be constituted as a unit of manufacture as prepared for shipment. A batch or lot is allowed to consist of a blend of two or more production runs.

9. Specimen Preparation

- 9.1 The moisture content of the molding material for the preparation of test specimens shall not exceed 0.01 %. Material having a moisture content above these limits shall be dried in accordance with the instructions of the manufacturer.
- 9.2 The test specimens shall be prepared by an injection molding process as specified in ISO 294-1 for Table A or Practice D3641 for Table B. The processing conditions speci-

fied in Table 5 are guidelines only. Since mechanical properties can vary depending on the molding conditions, contact the manufacturer of the grade for molding conditions appropriate for specification purposes.

9.3 Because of the shear sensitivity of LCP materials, occasionally a gate smaller than the gate specified by the molding practice or method is required to fill the part adequately. When reporting data in accordance with a specification (line callout), the gate design shall be reported if different than the applicable molding practice ro method requirement.

10. Conditioning

10.1 Test specimens shall be conditioned in the standard laboratory atmosphere for a minimum of 12 h (condition 12/23/50 of Practice D618).

11. Test Methods

11.1 Determine the properties enumerated in this classification system by means of the test methods referenced in Section 2.

12. Certification and Inspection

- 12.1 Inspection and certification of the material supplied with reference to a specification based on this classification system shall be for conformance to the requirements specified herein.
- 12.2 Lot-acceptance inspection shall be the basis on which acceptance or rejection of the lot is made. The lot-acceptance inspection shall consist of filler or reinforcement content (if any).

TABLE 5 Processing Guidelines for Liquid Crystal Polymers for Preparation of Test Specimens^A

	Melt		Average	Mold
Material	Temperature,	Cycle Time, s	Injection	Temperature,
	°C		Velocity, mm/s	°C
Liquid crystal	В	30 ± 5	150-600	90 ± 5
nolymer				

^A Contact the manufacturer of the grade for more specific molding conditions when conducting tests for comparison with the requirements of this classification system. ^B Target melt temperature shall be $\pm 20^{\circ}$ C around the melt point. Actual melt temperature shall be held at $\pm 3^{\circ}$ C of the target. The melt point is defined as the nominal melt transition temperature as measured by differential scanning calorimetry.

 $^{^{\}it B}$ 127 by 12.7 by 3.2-mm bar tested at 1.3 mm/min.

^C Bar thickness 3.2 mm.

^DTest Method D648, Method A.

^BAdditional symbols will be added to this table as required.

- 12.3 Periodic check inspection with a reference to a specification based on this classification system shall consist of the tests for all requirements of the material under the specification. Inspection frequency shall be adequate to ensure the material is certifiable in accordance with 12.4.
- 12.4 Certification shall be that the material was manufactured by a process in statistical control, sampled, tested, and inspected in accordance with this classification system and that the average values for the lot meet the requirements of the specification (line callout).

Note 7—The ASTM publication *Manual on Presentation of Data and Control Chart Analysis, 8th Edition*, provides detailed information about statistical process control.

12.5 A report of the test results shall be furnished when requested. The report shall consist of the results of the lot-acceptance inspections for the shipment, the percent by weight of recycled plastic as defined in Guide D7209, if requested, and the results of the most recent periodic check inspections.

13. Packaging and Package Marking

13.1 The provisions of Practice D3892 apply to packaging, packing, and marking of containers for plastic materials.

14. Keywords

14.1 aromatic polyester (ARP); classification system; extrusion materials; injection molding materials; line call out; liquid crystal polymers (LCP); recycled plastics

SUPPLEMENTARY REQUIREMENTS

The following supplementary requirements shall apply only when specified by the inquiry, contract, or order for agencies of the U.S. Government.

S1. Special End Uses

S1.1 Unless otherwise specified in the contract or purchase order, the supplier is responsible for the performance of all testing and inspections. Except as otherwise specified, the supplier is allowed to utilize his own facilities or any commercial laboratory acceptable to the Government. The Government reserves the right to perform any of the testing or inspections set forth in the specification requirements. This testing ensures qualification on a one-time basis unless the manufacturer makes a significant change in formulation, raw material, or process.

S2. Physical Requirements

S2.1 The physical and electrical property requirements for initial material qualification are given in Table S2.1 and the test methods in Table S3.1. Unless otherwise stated, the values are minimum requirements.

TABLE S2.1 Property Values for Initial Physical and Electrical Qualification Testing

		Value Required for Each Type of Compound				
Property	Units	Type GLCP-30F	Type GLCP-50F			
Flammability	_	V-0	V-0			
Water absorption	%, max	0.08	0.08			
Compressive strength Dielectric strength	MPa	75	75			
Short-Time Test 1	kV/mm	18.8	18.8			
Short-Time Test 2	kV/mm	18.8	18.8			
Tracking index	V	120	140			

S3. Quality Assurance

- S3.1 *Acceptance Criteria*—Failure to conform to requirements in Table S2.1 shall result in rejection of the material.
- S3.2 *Sample Size*—The minimum number of test specimens to be tested shall be as specified in Table S3.1.
- S3.3 *Test Method*—Testing shall be in accordance with the methods specified in Table S3.1.
- S3.4 Conditioning—Standard test specimens shall be conditioned before testing as specified in Table S3.1 and as described in Section 4.

TABLE S3.1 Sampling and Conditioning for Initial Qualification Testing

Property to Be Tested	Test Method	Test Method Modified per	Specimens	Number Tested	Conditioning	Units
Flammability	UL 94		125 by 13 mm by thickness	10	per UL 94	per UL 94
Compressive strength	ISO 604		25 by 10 by 4 mm	5	E-48/50+C-96/23/50	MPa (minimum average)
Water absorption	ISO 62		50-mm disk, 3 mm thick	3	E-24/100+des+D-48/50	Percent (maximum average)
Dielectric Strength:	IEC 243	S5.1	60 by 60 by 2-mm			kV/mm
Short-time test			plaque	3	E-48/50+C-96/23/50	(minimum average)
Short-time test				3	E-48/50+D-48/50	
Tracking index	IEC 112		80 by 10 by 4 mm	4	Α	V

⁸ Available from ASTM International. Order stock number: MNL7-8TH-EB.

S4. Conditioning

S4.1 Nomenclature:

S4.1.1 Condition A—As received.

S4.1.2 *Condition C*—Humidity conditioning.

S4.1.3 *Condition D*—Immersion conditioning in distilled water.

S4.1.4 *Condition E*—Temperature conditioning.

S4.1.5 *Condition des*—Dessication condition, cooling over silica gel or calcium chloride in a desiccator at 23°C for 16 to 20 h after temperature conditioning.

S4.2 *Designation*— Conditioning procedures shall be designated as follows:

S4.2.1 A capital letter indicating the general conditioning.

S4.2.2 A number indicating, in hours, the duration of conditioning.

S4.2.3 A number indicating, in °C, the conditioning temperature.

S4.2.4 A number indicating the relative humidity when it is controlled.

S4.3 Tolerances:

S4.3.1 *Relative Humidity*—Standard tolerance shall be ± 10 %.

S4.3.2 *Temperature*—Standard tolerance shall be $\pm 2^{\circ}$ C. For water immersion the standard tolerance shall be $\pm 1^{\circ}$ C.

Note S4.1—The numbers shall be separated from each other by slant (/) marks, and from the capital letter by a dash (-). A sequence of conditions

shall be denoted by use of a plus (+) sign between successive conditions.

Examples: C-96/23/50 — Humidity condition; 96 h at 23°C and 50 % R.H.

D-48/50 — Immersion condition; 48 h at 50°C. E-48/50 — Temperature condition; 48 h at 50°C.

S5. Test Method Modification

S5.1 Dielectric Strength:

S5.1.1 The test shall be performed under oil at a frequency not exceeding 100 Hz at the temperature of the final conditioning.

S5.1.2 *Short-Time Test*—The voltage shall be increased uniformly at the rate of 500 V/s.

S6. Toxicity Requirements

S6.1 Thermoplastic molding compounds shall be tested for toxicity in accordance with NTIS AD297457. Specimens shall meet the requirements in Table S6.1, expressed as the maximum level permissible.

TABLE S6.1 Toxicity When Heated

Compounds	Units	GLCP-30F	GLCP-50F
Carbon dioxide	ppm	15 000	15 000
Carbon monoxide	ppm	1 000	1 000
Ammonia	ppm	500	500
Aldehydes as HCHO	ppm	50	50
Cyanide as HCN	ppm	50	50
Oxides of nitrogen as NO ₂	ppm	100	100
Hydrogen chloride	ppm	50	50

APPENDIXES

(Nonmandatory Information)

X1. MELT VISCOSITY TESTING

X1.1 Determine melt viscosity using a capillary rheometer in accordance with Test Method ISO 11443 or Test Method D3835 at the following conditions:

X1.1.1 Drying—Minimum $1\frac{1}{2}$ h (maximum 72 h) at 150 \pm 10°C in a vacuum oven (minimum reduction of 0.05 MPa from atmospheric pressure) under N_2 bleed.

X1.1.2 *Temperature*—0-20°C above the nominal melt transition peak as determined in accordance with Test Method ISO 11357-3 or Test Method D3418 differential scanning calorimetry using second melting curve at 20°C/min.

X1.1.3 Capillary Die—1-mm diameter, 20:1 L/D, 180° full entrance angle.

X1.1.4 Shear Rates—Report at 1000 s⁻¹. Alternatively, run at constant shear rate of 400 s⁻¹ for 15 min. Interpolate and report viscosities at 5 and 10-min residence time.

Note X1.1—The test method for flow rates of thermoplastic materials by extrusion plastometer (Test Method D1238) is not recommended as a test method for describing liquid crystal polymers because of the morphological nature of the material. The LCPs maintain a crystalline structure even at their processing temperatures. They are highly shear sensitive, and are difficult to process under the low shear rate of the flow rate test. Repeatability of flow rate value is poor. Melt viscosity by capillary rheology at appropriate shear rate(s) should be used to describe the flow properties of these materials.

X2. MILITARY SPECIFICATION M-24519

X2.1 The following Specification D5138 call outs describe the LCP materials referenced in Military Specification MIL-M-24519 under the appropriate MIL SPEC callout:

Specification D5138 MIL-M-24519

LCP0120G30A43430 EA300ED035EE200EF140 GLCP-30F LCP0120G50A44230 EA300ED042EE200EF180 GLCP-50F

SUMMARY OF CHANGES

Committee D20 has identified the location of selected changes to this standard since the last issue (D5138 - 11) that may impact the use of this standard. (April 1, 2016)

(1) Replaced ISO 3167 reference with ISO 20753.

(3) Added Note 7 added.

(2) Replaced Specimen 1A with specimen A1 in Note 3.

(4) Added title to Table 1 and footnotes.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/